WorldWideScience

Sample records for salt tolerance isolated

  1. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  2. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from ...

    African Journals Online (AJOL)

    tolerant alkaliphilic. All the isolates need to be further studied for the ability of their potential protease enzyme production. Key words: Alkaliphilic actinomycetes, salt tolerant actinomycetes, desert soil, isolation, proteolytic activity.

  3. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  4. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  5. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  6. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    Science.gov (United States)

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  7. Halopiger thermotolerans sp. nov., a thermo-tolerant haloarchaeon isolated from commercial salt.

    Science.gov (United States)

    Minegishi, Hiroaki; Shimogaki, Ryuta; Enomoto, Shigeaki; Echigo, Akinobu; Kondo, Yusuke; Nagaoka, Shuhei; Shimane, Yasuhiro; Kamekura, Masahiro; Itoh, Takashi; Ohkuma, Moriya; Nunoura, Takuro; Takai, Ken; Usami, Ron

    2016-12-01

    Three thermo-tolerant halophilic archaeal strains, SR-441T, SR-412 and SR-188, were isolated from commercial salt samples. Cells were non-motile pleomorphic rod-shaped, and stained Gram-negative. Colonies were pink-pigmented. The three strains were able to grow with 1.7-4.6 M NaCl (optimum, 2.5 M), at pH 6.5-9.0 (optimum, pH 8.0) and at 35-60 °C (optimum, 45 °C). The orthologous 16S rRNA gene sequence similarities amongst the three strains were 98.8-99.3 %, and the level of DNA-DNA relatedness was 71-74 and 72-75 % (reciprocally). The closest relative was Halopiger aswanensis JCM 11628T with 98.6 %-99.1 % similarity in the orthologous 16S rRNA gene sequences, followed by two more Halopiger species, Halopiger xanaduensis JCM 14033T (98.5 %-99.1 %) and Halopiger salifodinae JCM 9578T (95.5 %-95.6 %). DNA-DNA relatednesses between the three strains and H. aswanensis JCM 11628T and H. xanaduensis JCM 14033T were 61 and 54 %, respectively. The polar lipids of the three novel strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and bis-sulfated diglycosyl archaeol-1. The most distinctive feature of the three strains was the ability to grow at 60 °C, while the maximum growth temperature of H. aswanensis is 55 °C. Based on phenotypic and phylogenetic analyses, the isolates are considered to represent a novel species of the genus Halopiger, for which the name Halopiger thermotolerans sp. nov. is proposed. The type strain is SR-441T (=JCM 19583T=KCTC 4248T) isolated from solar salt produced in Australia. SR-412 (=JCM 19582) and SR-188 (=JCM 19581) isolated from commercial salt samples are additional strains of the species.

  8. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased

  9. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  10. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  11. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  12. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    Science.gov (United States)

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  13. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  14. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  15. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    International Nuclear Information System (INIS)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-01-01

    Highlights: ► We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. ► Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. ► The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. ► GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  16. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  17. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  18. Augmenting the salt tolerance in wheat ( Triticum aestivum ) through ...

    African Journals Online (AJOL)

    Augmenting the salt tolerance in wheat ( Triticum aestivum ) through exogenously applied silicon. ... African Journal of Biotechnology ... physiology and biochemistry of wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) ...

  19. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco.

    Science.gov (United States)

    George, Suja; Parida, Ajay

    2011-03-01

    Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.

  20. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  1. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    Science.gov (United States)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  2. Phenotypic and genetic characteristics associated with Listeria monocytogenes food chain isolates displaying enhanced and diminished cold tolerance

    DEFF Research Database (Denmark)

    Hingston, P.; Chen, J.; Laing, C.

    between strains with varied cold tolerance. The objective of this study was to determine if Lm isolates with enhanced cold tolerance, exhibit other high risk characteristics that may add to their survival and/or pathogenicity. To accomplish this, 166 predominantly food/food plant Lm isolates were tested...... in brainheart infusion broth, for their ability to tolerate cold (4°C), salt (6% NaCl, 25°C), acid (pH 5, 25°C), and desiccation (33% RH, 20°C) stress. Isolates were considered tolerant or sensitive if they exhibited survival characteristics > or ... with a truncated version (n=47). Cold tolerant isolates were more likely to be tolerant to the other three stresses than intermediate and cold sensitive isolates. Similarly, cold sensitive isolates were more likely to be sensitive to the other stresses. Cold tolerant isolates had shorter (p=0.012) lag phases...

  3. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  4. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  6. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  7. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.; Bastola, D.R.; Deutch, C.E.; Pethe, V.V.; Petrusa, L.

    2001-01-01

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  8. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    Science.gov (United States)

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    Science.gov (United States)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  10. Salt tolerance at single cell level in giant-celled Characeae

    Directory of Open Access Journals (Sweden)

    Mary Jane eBeilby

    2015-04-01

    Full Text Available Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i very large cell size, (ii position on phylogenetic tree near the origin of land plants and (iii continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt-sensitive Chara australis succumbs to 50 - 100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells

  11. Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California.

    Science.gov (United States)

    Hauer, G; Rogerson, A; Anderson, O R

    2001-01-01

    A new species of naked amoeba, Platyamoeba pseudovannellida n.sp., is described on the basis of light microscopic and fine structural features. The amoeba was isolated from the Salton Sea, California, from water at a salinity of ca. 44%. Locomotive amoebae occasionally had a spatulate outline and floating cells had radiating pseudopodia, sometimes with pointed tips. Both these features are reminiscent of the genus Vannella. However, the surface coat (glycocalyx) as revealed by TEM indicates that this is a species of Platyamoeba. Although salinity was not used as a diagnostic feature, this species was found to have remarkable tolerance to fluctuating salinity levels, even when changes were rapid. Amoebae survived over the range 0 per thousand to 150 per thousand salt and grew within the range 0 per thousand to 138 per thousand salt. The generation time of cells averaged 29 h and was not markedly affected by salt concentration. This is longer than expected for an amoeba of this size and suggests a high energetic cost of coping with salinity changes. The morphology of cells changed with increasing salinity: at 0 per thousand cells were flattened and active and at the other extreme (138 per thousand) amoebae were wrinkled and domed and cell movement was very slow. At the ultrastructural level, the cytoplasm of cells grown at high salinity (98 per thousand was considerably denser than that of cells reared at 0 per thousand.

  12. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  13. Bile Salt and Acid Tolerant of Lactic Acid Bacteria Isolated from Proventriculus of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    E. Damayanti

    2014-08-01

    Full Text Available The aim of this research was to obtain the lactic acid bacteria (LAB as probiotic candidates which have resistance to bile salt and acid condition. LAB was obtained using isolation method from proventriculus of broiler chicken. Selective MRS media with 0.2% CaCO3 addition were used for LAB isolation using pour plate sampling method under anaerobic condition. The result showed that four selected isolates had morphological and biochemical characteristics as LAB. The selected LAB was characterized as follow: antibacterial activities, antibiotic sensitivity, resistance on bile salt, gastric juice and acid condition, and biochemical identification. Antibacterial activities assay of cell free supernatant was confirmed using disc paper diffusion method which was arranged on factorial design and each treatment consisted of three replications. The cell free supernatant of LAB isolates had antibacterial activities against Escherichia coli, Pseudomonas aerugenosa, and Salmonella pullorum. Molecular identification procedure using 16S rRNA sequence analysis showed that R01 and R02 as Pediococcus acidilactici. The viability of the two isolates were tested by acid pH (pH 1, 2, and 3, gastric juice pH 2, and bile salt condition for digestives tract simulation. The result showed that R01 and R02 had a high viability percentages at pH 1, 2, and 3 (95.45%, 99.49%, 104.01%, and 67.17%, 120.74%, 103.4%, respectively and at bile salt simulation for 1-2 hours (100.35%-102.71% and 100.02%-102.65%, respectively, but at gastric juice simulation for 1-2 hours, the P. acidilactici R01 had higher viability than P. acidilactici R02 (59.69%-76.53% versus 43.57%-40.69%, respectively. In the antibiotic sensitivity test for three antibiotics (i.e. erythromicin 15 µg, penicillin G 10 µg, and streptomycin 10 µg, the P. acidilactici R02 showed resistance to Streptomycin and Penicillin. It is concluded that P. acidilactici R01 and P. acidilactici R02 isolated from proventriculus

  14. Isolation and charactarization of T-DNA-insertion Mutants of Arabidopsis thaliana that are Tolerant to Salt

    International Nuclear Information System (INIS)

    Njoroge, N.C.; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    In order to provide an insight into physiological mechanisms underlying salt tolerance in plants,T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were screened on media containing 150-175 millimolar sodium chloride (mM Nacl) for an ability to germinate with formation of two green expanded cotyledons.Under these saline conditions the wild-type (WT) seeds of A.thaliana do not germinate. Two different mutants,NN3 and NN143 were isolated. Genetic analysis of the F1 and F2 generations indicates that the salt tolerance trait in mutant NN3 is recessive and dominant in mutant NN143. Allelism test indicates that mutants NN3 and NN143 are not allelic to each other, but they are alleic to aba and abi mutants respectively. When subjected to water stress imposed by 175mM Nacl for two weeks,kanamycin homozygous seeds of mutants NN3 and NN143 attained germination levels of 97% and 65% respectively. At this concentration of salt, the wild-type seeds are incapable of germination. On 300mM mannitol, a non-ionic osmoticum, mutants NN143 and NN3 and wild type attained a germination levels of 77%, 95% and 2% respectively. The biomass of mutant NN3 seedlings grown on a medium containing 150 mM NaCl was significanlly greater than that of mutant NN143.Between 104 and 145 hours after germination on media containing 175 mM NaCl and 300mM mannitol,germination levels of mutant NN3 were significantly higher than those of mutant NN143.However, both attain the same level of germination after 200 hours. Mutant NN43 is capable of germination on a medium containing 2-6 μM (micromolar) abscisic acid (ABA) with germination ranging from 11to100%. After two weeks on 2 μ ABA, it attained 100% germination and the wild type and mutant NN3 did not germinate. The biomass of NN143 seedlings grown on ABA-free medium and those grown on 2 μM ABA were not significantly different. In presence of both 1μABA and 250mM mannitol, mutant NN143 seedlings achieved 60% germination compared to 93

  15. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum Lines.

    Directory of Open Access Journals (Sweden)

    Guofu Hu

    Full Text Available Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L. is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL], reduced leaf relative water content (RWC, net photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr. An alkali-salt stress tolerance trait index (ASTTI for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64 and two upland lines (Caddo and Blackwell-1 were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  16. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    Science.gov (United States)

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  17. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  19. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  20. RAPD tagging of salt tolerance gene in rice

    International Nuclear Information System (INIS)

    Ding, H.; Zhang, G.; Guo, Y.; Chen, S.; Chen, S.

    1998-01-01

    Salinity, which is critical in determining the growth and development of plants, is a major problem affecting ever-increasing areas throughout the world. A salt tolerant rice mutant (M-20) was obtained from accession 77-170 (Oryza sativa) through EMS mutagenesis and selection in vitro. The use of 220 10-mer RAPD primers allowed the identification of a new molecular marker, whose genetic distance from a salt tolerance gene is about 16.4 cM. (author)

  1. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    Science.gov (United States)

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.

    Science.gov (United States)

    Matsushika, Akinori; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2017-08-01

    We previously showed that overexpression of IoGAS1, which was isolated from the multiple stress-tolerant yeast Issatchenkia orientalis, endows Saccharomyces cerevisiae cells with the ability to grow and ferment under acidic and high-salt conditions. The deduced amino acid sequence of the IoGAS1 gene product exhibits 60% identity with the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity. However, the functional roles of ScGAS1 in stress tolerance and pH regulation remain unclear. In the present study, we characterized ScGAS1 regarding its roles in tolerance to low pH and high salt concentrations. Transcriptional analysis indicated that, as for the IoGAS1 gene, ScGAS1 expression was pH dependent, with maximum expression at pH 3.0; the presence of salt increased endogenous expression of both GAS1 genes at almost all pH levels. These results suggested that ScGAS1, like IoGAS1, is involved in a novel acid- and salt-stress adaptation mechanism in S. cerevisiae. Overexpression of ScGAS1 in S. cerevisiae improved growth and ethanol production from glucose under acid stress without added salt, although the stress tolerance of the ScGAS1-overexpressing strain was inferior to that of the IoGAS1-overexpressing strain. However, overexpression of ScGAS1 did not result in increased tolerance of S. cerevisiae to combined acid and salt stress, even though ScGAS1 appears to be a salt-responsive gene. Thus, ScGAS1 is directly implicated in tolerance to low pH but does not confer salinity tolerance, supporting the view that ScGAS1 and IoGAS1 have overlapping yet distinct roles in stress tolerance in yeast. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Quantitative Trait Locus Mapping of Salt Tolerance and Identification of Salt-Tolerant Genes in Brassica napus L

    Directory of Open Access Journals (Sweden)

    Lina Lang

    2017-06-01

    Full Text Available Salinity stress is one of typical abiotic stresses that seriously limit crop production. In this study, a genetic linkage map based on 532 molecular markers covering 1341.1 cM was constructed to identify the loci associated with salt tolerance in Brassica napus. Up to 45 quantitative trait loci (QTLs for 10 indicators were identified in the F2:3 populations. These QTLs can account for 4.80–51.14% of the phenotypic variation. A major QTL, qSPAD5 on LG5 associated with chlorophyll can be detected in three replicates. Two intron polymorphic (IP markers in this QTL region were developed successfully to narrow down the QTL location to a region of 390 kb. A salt tolerance related gene Bra003640 was primary identified as the candidate gene in this region. The full length of the candidate gene was 1,063 bp containing three exons and two introns in B. napus L. The open reading frame (ORF is 867 bp and encodes 287 amino acids. Three amino acid differences (34, 54, and 83 in the conserved domain (B-box were identified. RT-qPCR analysis showed that the gene expression had significant difference between the two parents. The study laid great foundation for salt tolerance related gene mapping and cloning in B. napus L.

  4. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    Science.gov (United States)

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  5. Screening of diverse local germplasm of guar (cyamposis tetragonoloba (l.) taub.) for salt tolerance: A possible approach to utilize salt - affected soils

    International Nuclear Information System (INIS)

    Rasheed, M. J. Z.; Ahmad, K.; Qurainy, F. A.; Khan, S.; Athar, H. U. R.

    2015-01-01

    Lack of good quality water and soil salinity reduces crop productivity world-over. The development of salt stress tolerant cultivars/lines by screening and selection is of considerable value to enhance crop growth and yield. Though a number of breeding programs are underway to develop salt tolerant cultivars in wheat, barley, maize, and even grasses, a low amount of work done for improving salt tolerance in a potential leguminous forage crop guar widely grown in subcontinent due to rapid increase in its demand for its commercial use. Thus, the present study was focused on efforts to develop salt tolerant cultivars of guar. The growth responses of 31 accessions/lines/cultivars of a potential leguminous crop (Cyamopsis tetragonoloba) to salt stress were assessed at the vegetative growth stage. A considerable variation in salinity tolerance was found in a set of lines/cultivars of guar using agronomic traits. Under saline conditions, Khanewal Local2, Chiniot White, 27340, 24323, BWP-5589 produced the lowest shoot fresh and dry biomass in relative terms, while genotypes/lines 5597, 24288, Br 99, Khushab white, Sillanwali white and Mardan white had greater fresh and dry biomass. Klorkot white and 24323 had maximum plant height under non-saline conditions, whereas genotypes/line 5597 and 24288 was maximal in plant height under salt stress conditions. Moreover, genotypes/lines Khanewal Local2 followed by Chiniot White and 27340 were the lowest in plant height. Growth attributes and relative salt tolerance of guar genotypes were used to group genotypes/lines as salt tolerant, moderately tolerant and salt sensitive using Hierarchical Cluster method following squared Euclidean distance. It was found that genotypes/lines 41671, Khaushab White, 5597, 24320, 24288, Sillanwali White, 24321, Mardan White were the most salt tolerant, while Chiniot White, BWP-5589, Kalorkot White, Khanewal Local 2, 24323 were the most salt sensitive. The availability of considerable amount of

  6. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    Science.gov (United States)

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  8. Overexpression AtNHX1 confers salt-tolerance of transgenic tall ...

    African Journals Online (AJOL)

    Saline soil is a serious problem worldwide, and it is necessary to improve the salt tolerance of plants so as to avoid the progressive deterioration of saline soil. Here we report that over-expression of AtNHX1 improves salt tolerance in transgenic tall fescue. The AtNHX1 gene driven with CaMV35S promoter was constructed ...

  9. Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa

    Science.gov (United States)

    Basyuni, M.; Sumardi

    2017-01-01

    This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.

  10. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhao, Y L; Wang, H M; Shao, B X; Chen, W; Guo, Z J; Gong, H Y; Sang, X H; Wang, J J; Ye, W W

    2016-05-25

    The identification of simple sequence repeat (SSR) markers associated with salt tolerance in cotton contributes to molecular assisted selection (MAS), which can improve the efficiency of traditional breeding. In this study, 134 samples of upland cotton cultivars were selected. The seedling emergence rates were tested under 0.3% NaCl stress. A total of 74 SSR markers were used to scan the genomes of these samples. To identify SSR markers associated with salt tolerance, an association analysis was performed between salt tolerance and SSR markers using TASSEL 2.1, based on the analysis of genetic structure using Structure 2.3.4. The results showed that the seedling emergence rates of 134 cultivars were significantly different, and 27 salt-sensitive and 10 salt-tolerant cultivars were identified. A total of 148 loci were found in 74 SSR markers involving 246 allelic variations, which ranged from 2 to 7 with an average of 3.32 per SSR marker. The gene diversity ranged from 0.0295 to 0.4959, with the average being 0.2897. The polymorphic information content ranged from0.0290 to 0.3729, with the average being 0.2381. This natural population was classified into two subgroups by Structure 2.3.4, containing 89 and 45 samples, respectively. Finally, eight SSR sites associated with salt tolerance ware found through an association analysis, with the rate of explanation ranging from 2.91 to 7.82% and an average of 4.32%. These results provide reference data for the use MAS for salt tolerance in cotton.

  11. Deinococcus gobiensis cold shock protein improves salt stress tolerance of escherichia coli

    International Nuclear Information System (INIS)

    Jiang Shijie; Wang Jin; Yang Mingkun; Chen Ming; Zhang Wei; Luo Xuegang

    2013-01-01

    The Deinococcus gobiensis I-0, an extremely radiation-resistant bacterium, isolated from the Gobi, has superior resistance to abiotic stress (e.g radiation, oxidation, dehydration and so on). The two cold-shock proteins encoded by csp1 (Dgo_CA1136) and csp2 (Dgo_PA0041) were identified in the complete genome sequence of D. gobiensis. In this study, we showed that D. gobiensis Csp1 protected Escherichia coli cells against cold shock and other abiotic stresses such as salt and osmotic shocks. The quantitative real-time PCR assay shows that the expression of trehalose synthase (otsA, otsB) was up-regulated remarkably under salt stress in the csp1-expressing strain, while no difference in the expression of the genes involved in trehalose degradation (treB and treC). The results suggested that Csp1 caused the accumulation of the trehalose was a major feature for improving tolerance to salt stress in E. coli. (authors)

  12. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  13. Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots

    Directory of Open Access Journals (Sweden)

    Mingxia Li

    2017-06-01

    Full Text Available Soybean is an important economic crop that is continually threatened by abiotic stresses, especially salt stress. Wild soybean is an important germplasm resource for the breeding of cultivated soybean. The root system plays a very important role in plant salt tolerance. To explore the salt tolerance-related mechanisms among Soja, we have demonstrated the seedling roots' growth and metabolomics in wild soybean, semi-wild soybean, and cultivated soybean under two types of salt stress by using gas chromatography-mass spectrometry. We characterized 47 kinds of differential metabolites under neutral salt stress, and isoleucine, serine, l-allothreonine, glutamic acid, phenylalanine, asparagines, aspartic acid, pentadecanoic acid, lignoceric acid, oleic acid, galactose, tagatose, d-arabitol, dihydroxyacetone, 3-hydroxybutyric acid, and glucuronic acid increased significantly in the roots of wild soybean seedlings. However, these metabolites were suppressed in semi-wild and cultivated soybeans. Amino acid, fatty acid, sugars, and organic acid synthesis and the secondary metabolism of antioxidants increased significantly in the roots of wild soybean seedling. Under alkaline salt stress, wild soybean contained significantly higher amounts of proline, glutamic acid, aspartic acid, l-allothreonine, isoleucine, serine, alanine, arachidic acid, oleic acid, cis-gondoic acid, fumaric acid, l-malic acid, citric acid, malonic acid, gluconic acid, 5-methoxytryptamine, salicylic acid, and fluorene than semi-wild and cultivated soybeans. Our study demonstrated that carbon and nitrogen metabolism, and the tricarboxylic acid (TCA cycle and receiver operating characteristics (especially the metabolism of phenolic substances of the seedling roots were important to resisting salt stress and showed a regular decreasing trend from wild soybean to cultivated soybean. The metabolomics's changes were critical factors in the evolution of salt tolerance among Soja. This study

  14. Genetic study on salt tolerance involving mutants of barley

    International Nuclear Information System (INIS)

    Patil, S.S.; Sharma, R.P.

    1990-01-01

    Full text: Cultivar 'R-16' was subjected to mutagenesis through gamma irradiation, EMS and their combination treatments. M 6 lines differing in salt tolerance were utilised along with untreated control to generate 8x3 diallel crosses. The magnitude of combining ability variances indicated a relatively prominent role of SCA variance (non additive). The values of GCA effects indicate high breeding value of the mutant M-3 for salt tolerance based on measuring shoot length and root length of 10 day old seedlings. (author)

  15. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    DEFF Research Database (Denmark)

    Hingston, Patricia A.; Chen, Jessica; Dhillon, Bhavjinder K

    2017-01-01

    elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold......The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also...... tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food...

  16. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  17. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  18. Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Zalesny

    2015-01-01

    Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to...

  19. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    Science.gov (United States)

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance. © 2015 John Wiley & Sons Ltd.

  20. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.

    Science.gov (United States)

    Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang

    2018-02-15

    Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through

  1. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR......), shoot fresh weight (SFW), shoot-root ratio, and K+:Na+ ratio, compared to the most salt sensitive genotypes (S-9189 and S-9476). Superoxide dismutase (SOD) and catalase (CAT) increased significantly in SARC-1 and SARC-2 with increasing salt stress, while there was no difference in S-9189 and S- 9476....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...

  2. Genome-wide association study of salt tolerance at the seed germination stage in rice.

    Science.gov (United States)

    Shi, Yingyao; Gao, Lingling; Wu, Zhichao; Zhang, Xiaojing; Wang, Mingming; Zhang, Congshun; Zhang, Fan; Zhou, Yongli; Li, Zhikang

    2017-05-30

    Improving the salt tolerance of direct-seeding rice at the seed germination stage is a major breeding goal in many Asian rice-growing countries, where seedlings must often establish in soils with a high salt content. Thus, it is important to understand the genetic mechanisms of salt tolerance in rice and to screen for germplasm with salt tolerance at the seed germination stage. Here, we investigated seven seed germination-related traits under control and salt-stress conditions and conducted a genome-wide association study based on the re-sequencing of 478 diverse rice accessions. The analysis used a mixed linear model and was based on 6,361,920 single nucleotide polymorphisms in 478 rice accessions grouped into whole, indica, and non-indica panels. Eleven loci containing 22 significant salt tolerance-associated single nucleotide polymorphisms were identified based on the stress-susceptibility indices (SSIs) of vigor index (VI) and mean germination time (MGT). From the SSI of VI, six major loci were identified, explaining 20.2% of the phenotypic variation. From the SSI of MGT, five major loci were detected, explaining 26.4% of the phenotypic variation. Of these, seven loci on chromosomes 1, 5, 6, 11, and 12 were close to six previously identified quantitative gene loci/genes related to tolerance to salinity or other abiotic stresses. The strongest association region for the SSI of MGT was identified in a ~ 13.3 kb interval (15450039-15,463,330) on chromosome 1, near salt-tolerance quantitative trait loci controlling the Na + : K + ratio, total Na + uptake, and total K + concentration. The strongest association region for the SSI of VI was detected in a ~ 164.2 kb interval (526662-690,854) on chromosome 2 harboring two nitrate transporter family genes (OsNRT2.1 and OsNRT2.2), which affect gene expression under salt stress. The haplotype analysis indicated that OsNRT2.2 was associated with subpopulation differentiation and its minor/rare tolerant haplotype was

  3. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages.

    Science.gov (United States)

    Ravelombola, Waltram; Shi, Ainong; Weng, Yuejin; Mou, Beiquan; Motes, Dennis; Clark, John; Chen, Pengyin; Srivastava, Vibha; Qin, Jun; Dong, Lingdi; Yang, Wei; Bhattarai, Gehendra; Sugihara, Yuichi

    2018-01-01

    This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and

  4. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  5. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    Science.gov (United States)

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  6. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  7. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    Science.gov (United States)

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  8. Expression pattern of salt tolerance-related genes in Aegilops cylindrica.

    Science.gov (United States)

    Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit

    2018-02-01

    Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.

  9. Rehabilitation of saline ecosystems through cultivation of salt tolerant plants

    International Nuclear Information System (INIS)

    Abdul, R.; Mahmood, K.

    2012-01-01

    In Pakistan, salt-affected regions have been drastically disturbed by unchecked activities of local populations. Removal of deep-rooted perennials and overgrazing destroy the native vegetation leading to rapid desertification. Shallow-rooted agricultural crops are grown on marginal soils on limited area that is not enough with respect to the spread of salinity problem. Sustainable restoration of these ecosystems requires a large scale integration of perennial plants (trees, shrubs and herbs) back in to farming systems. However, selenization processes continue because the available options for cultivation of perennial plants prove less profitable than agricultural crops. This study relates to resort the salt-affected lands for plant production and develop a technology for sustainable saline ecosystem. Plants, having salt tolerance potential, have been identified and introduced on salt-affected wastelands to develop a sustainable ecosystem with increased productivity. The biomass so produced can be used directly as forage, fuel, and even as food or feed. In addition, fish aquaculture, and some value-added products make this ecosystem more sustainable. This technology is practically demonstrated at Biosaline Research Station of Nuclear Institute for Agriculture and Biology (NIAB), Pakka Anna, Faisalabad, Pakistan. The marginally saline soils and wastelands ameliorated as a result of growing salt tolerant perennials can also be used for growing salt tolerant cultivars of conventional crops like wheat, barley and mustard. So, through proper management the saline ecosystem can become economical and profitable. (author)

  10. Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  11. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  12. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong

    2010-01-01

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

  14. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance.

  15. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. [Salt stress tolerance of cucumber-grafted rootstocks].

    Science.gov (United States)

    Wang, Li-Ping; Sun, Jin; Guo, Shi-Rong; Liu, Shu-Ren; Liu, Chao-Jie; Tian, Jing

    2012-05-01

    Taking 4 different Cucurbita maxima x C. moschata rootstocks for cucumber (Cucumis sativus) as test materials, a solution culture experiment was conducted to study their growth and antioxidative enzyme activities under the stresses of Ca(NO3)2 and NaCl, with the salt stress tolerance of the rootstocks evaluated by subordinate function. At 30 mmol x L(-1) of Ca (NO3)2 or 45 mmol x L(-1) of NaCl, the growth of the rootstock seedlings was improved; but at 60 and 120 mmol x L(-1) of Ca(NO3)2 or 90 and 180 mmol x L(-1) of NaCl, the growth and the antioxidative systems of the seedlings were inhibited, and the salt injury index of 'Qingzhen No. 1' was the smallest, with the decrement of biomass and SOD, POD and CAT activities and the increment of relative conductance being significantly lower than those of the others. Under the stress of high concentration Ca(NO3)2, the SOD, POD and CAT activities of test rootstocks were higher, and the salt injury index and relative conductance were lower, as compared with those under high concentration NaCl, suggesting that the damage of Ca(NO3)2 stress to cucumber-grafted rootstock were smaller than that of NaCl stress. Among the 4 rootstocks, 'Qingzhen No. 1' had the strongest salt stress tolerance, followed by 'Zuomu Nangua', 'Fengyuan Tiejia', and 'Chaoba Nangua'.

  17. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    Science.gov (United States)

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  18. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  19. Induced genetic variation for aluminum and salt tolerance in rice

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Yoshida, S.; Vegara, B.S.

    1989-01-01

    Full text: MNH applied to fertilized egg cells of 'Taichung 65' led to an increase in genetic variation in the progenies. Of a M 2 population of 15,000 seedlings, 2.3% were scored tolerant to salt. Tolerant plants showed less shoot and root growth inhibition. 50 variants expressed different degrees of tolerance to Al, even up to 30 ppm. The tolerance was related to longer root development. (author)

  20. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.

    Science.gov (United States)

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  2. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    Science.gov (United States)

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  3. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  4. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.

    2005-01-01

    Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their

  5. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  6. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    Science.gov (United States)

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  7. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  8. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  9. Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch ...

    African Journals Online (AJOL)

    user

    2012-07-12

    Jul 12, 2012 ... 2Department of Soil Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. 3Agriculture ... Sodium chloride is the dominant salt in saline soils but ..... which affect salt tolerance of plants. (Aliasgarzad et al., 2005; Tabatabaei, 2006). Using soil instead of perlite or other inert substrates and irrigation ...

  10. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18.

    Science.gov (United States)

    You, Jia; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2016-02-01

    A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Rapid evolution of tolerance to road salt in zooplankton.

    Science.gov (United States)

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl -  L -1 ). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl -  L -1 ). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl -  L -1 ) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl -  L -1 ). At the intermediate concentration (1300 mg Cl -  L -1 ), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl -  L -1 ) had higher survival than populations previously exposed to natural background levels (15 mg Cl -  L -1 ). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl -  L -1 ). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  12. Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042.

    Science.gov (United States)

    Gao, Xianli; Yin, Yiyun; Zhou, Cunshan

    2018-02-01

    A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.

  13. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  14. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  15. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    Science.gov (United States)

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Male Gametophytic Screening of Citrus Genotypes for Salt Stress Tolerance

    Directory of Open Access Journals (Sweden)

    A. Barandan

    2016-07-01

    Full Text Available Citrus species are classified as a sensitive group of trees to salt stress, but the levels of their sensitivity or tolerance to salt are different among cultivars. In order to evaluate the effects of salinity stress on pollen germination of some citrus cultivars, an experiment was performed in factorial, based on completely randomized design in three replications with Cleopatra mandarin (Citrus reshni and Poncirus trifoliata as tolerant and sensitive controls along with 13 genotypes. Pollen grains of these genotypes were cultured in media containing different levels of sodium chloride (0, 0.87, 1.6, 2.4, 3.1 dS/m along with 15% sucrose, 0.7% agar and 100 mg/L boric acid. In order to understand the biochemical responses of pollen grains to salt stress, they were cultured in liquid media with three levels of salinity (i.e. 0, 0.87 and 1.6 dS/m and then the amounts of total protein and enzyme activities of superoxide dismutase (SOD and ascorbate peroxidase (APX were evaluated. Significant differences of pollen germination (P ≤ 0.01 were observed in different salinity levels, but there were no significant differences in pollen tube growth. Pollen germination in Cleopatra was greater in comparison to Poncirus trifoliate, indicating that Cleopatra is a tolerant cultivar. The amounts of total protein and enzyme activities of SOD and APX were influenced by genotypes, salinity levels and their interactions (P ≤ 0.01. Considering the fastness and accuracy of this type of experiment, the evaluation of citrus pollen responses may, potentially, be hired as an initial screening criteria for detecting salt-sensitive varieties from the tolerant citrus ones.

  17. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar

    2009-12-01

    To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na(+) sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H(+)-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H(+)-pump activity.

  18. Tolerância ao sal e às altas temperaturas de estirpes de Sinorhizobium provenientes de zonas secas do Alentejo Salt and temperature tolerance of Sinorhizobium strains isolated from dry environments in Alentejo

    Directory of Open Access Journals (Sweden)

    P. Fareleira

    2007-07-01

    highly adapted to the environmental conditions present in degraded soils. Since populations of rhizobia vary in their tolerance to environmental factors, screening for resistant strains was pursued. Soil samples were collected in different regions in Southern Portugal, severely affected by drought, high temperatures, and, in some places, salinity; rhizobial strains were isolated using Medicago polymorpha as trap-host. The effects of environmental stressful conditions, such as salinity or high temperatures, in the growth of the isolated strains were studied. Among the 41 isolates that were ana-lysed here, 11 showed good growth capacity in the presence of 1.4 M sodium chloride and 10% soil extract, and 22 could grow upon incubation at 45 ºC. Three strains were able to grow under the simultaneous effects of salinity and high temperature. NMR analysis of ethanolic cell-free extracts of salt tolerant strains showed that, in most cases, cell growth in medium containing high salt concentrations resulted in the accumulation of the compatible solutes described for Sinorhizobium: the dipeptide N-acetylglutaminylglutamine amide, betaines, trehalose, glutamate, and proline. Analysis by in vivo 31P-NMR of a salt tolerant strain originated from a schistous soil with low-phosphorus content, revealed the presence of high levels of intracellular inorganic phosphate reserves (polyphosphates. This suggests a high potential for the utilization of the strain in soils affected by both salinity and phosphorus deficiency.

  19. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.

    Science.gov (United States)

    Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar

    2018-06-01

    Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.

  20. Salt Tolerance of Six Switchgrass Cultivars

    Directory of Open Access Journals (Sweden)

    Youping Sun

    2018-04-01

    Full Text Available Panicum virgatum L. (switchgrass cultivars (‘Alamo’, ‘Cimarron’, ‘Kanlow’, ‘NL 94C2-3’, ‘NSL 2009-1’, and ‘NSL 2009-2’ were evaluated for salt tolerance in two separate greenhouse experiments. In experiment (Expt. 1, switchgrass seedlings were irrigated with a nutrient solution at an electrical conductivity (EC of 1.2 dS·m−1 (control or a saline solution (spiked with salts at an EC of 5.0 dS·m−1 (EC 5 or 10.0 dS·m−1 (EC 10 for four weeks, once a week. Treatment EC 10 reduced the tiller number by 32% to 37% for all switchgrass cultivars except ‘Kanlow’. All switchgrass cultivars under EC 10 had a significant reduction of 50% to 63% in dry weight. In Expt. 2, switchgrass was seeded in substrates moistened with either a nutrient solution of EC 1.2 dS·m−1 (control or a saline solution of EC of 5.0, 10.0, or 20.0 dS·m−1 (EC 5, EC 10, or EC 20. Treatment EC 5 did not affect the seedling emergence, regardless of cultivar. Compared to the control, EC 10 reduced the seedling emergence of switchgrass ‘Alamo’, ‘Cimarron’, and ‘NL 94C2-3’ by 44%, 33%, and 82%, respectively. All switchgrass cultivars under EC 10 had a 46% to 88% reduction in the seedling emergence index except ‘NSL 2009-2’. No switchgrass seedlings emerged under EC 20. In summary, high salinity negatively affected switchgrass seedling emergence and growth. Dendrogram and cluster of six switchgrass cultivars indicated that ‘Alamo’ was the most tolerant cultivar, while ‘NSL 2009-2’ was the least tolerant cultivar at both seedling emergence and growth stages. A growth-stage dependent response to salinity was observed for the remaining switchgrass cultivars. ‘NSL 2009-1’ and ‘NL 94C2-3’ were more tolerant to salinity than ‘Cimarron’ and ‘Kanlow’ at the seedling emergence stage; however, ‘Kanlow’ and ‘Cimarron’ were more tolerant to salinity than ‘NSL 2009-1’ and ‘NL 94C2-3’ at the seedling growth

  1. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    Science.gov (United States)

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  2. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  3. Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora.

    Science.gov (United States)

    Kulkarni, S; Nautiyal, C S

    2000-04-01

    A study was conducted to examine the growth response of a rhizobial strain Rhizobium sp. NBRI330 isolated from root nodules of Prosopis juliflora growing in alkaline soil. The strain had the ability to nodulate P. juliflora. Nursery grown plants inoculated with Rhizobium sp. NBRI330 had 60.6% higher plant dry weight, as compared with uninoculated plants. The individual stress survival limit of a rhizobial strain Rhizobium sp. NBRI330 isolated from alkaline soil in a medium containing 32% (wt/vol) salt was 8 h, and at 55 degrees C up to 3 h. The length of Rhizobium sp. NBRI330 in salt-stressed cells increased significantly to 3.04 microm from 1.75 microm of non-stressed control cells. On the contrary, the length of pH-stressed cells declined to 1.40 microm. Compared with non-stressed control rod-shaped cells, the shape of temperature-stressed cells changed to spherical, of 0.42 microm diameter. High temperature (45 degrees C) was tolerated efficiently by Rhizobium sp. NBRI330 in the presence of salt at pH 12, as compared with pH 7.

  4. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    Science.gov (United States)

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  5. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  6. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  7. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Wenli Wu

    2017-06-01

    Full Text Available Brassinosteroids (BR regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR's impact on salt stress tolerance in perennial ryegrass (Lolium perenne L. The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl. The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL, malondialdehyde (MDA, and reduced photosynthetic rate (Pn. Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs. The EBR applications also alleviated decline of superoxide dismutase (SOD and catalase (CAT and ascorbate peroxidase (APX activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA and gibberellin A4 (GA4 content but reduced indole-3-acetic acid (IAA, zeatin riboside (ZR, isopentenyl adenosine (iPA, and salicylic acid (SA. Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+ content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+ in perennial ryegrass.

  8. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  9. Effect of feeding salt tolerant plants on growth and reproduction of goats

    International Nuclear Information System (INIS)

    Ali, M.; Khanum, S.A.; Naqvi, S.H.M.

    1991-01-01

    Two experiments were conducted to assess the reproductive performance of dwarf goats grazing on salt tolerant and other forages. In Experiment 1, eight female dwarf goats grouped into two treatments of four animals each were allowed to graze either kallar grass only or kallar grass and other salt tolerant forages. The protein content of kallar grass was below the critical level in winter (4.9%) and just above in the summer (8.8%). Its mineral contents were higher than the required level in all seasons. The other salt tolerant forages had higher protein and mineral contents than kallar grass. Animals restricted to kallar grass showed significant loss in liveweight only during winter; the difference between the two groups was not significant in autumn and summer. Conception rate and levels of progesterone and oestradiol 17β were normal in both groups. However, animals restricted to kallar grass only suffered from reduced lactation, abortion and mortality of their kids. In Experiment 2, twenty dwarf goats were allocated to two groups whereby one group had free access to salt tolerant forages and the other to normal forages at different sites. The oestrous cycles of the goats were synchronized by administering two intramuscular injections of 0.5 mL Estrumate 10 days apart. The pattern and concentrations of progesterone were assessed and no difference was observed between the two treatment groups. (author). 20 ref, 5 figs, 3 tabs

  10. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-11-04

    NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and

  11. New Insights on plant salt tolerance mechanisms and their potential use for breeding

    Directory of Open Access Journals (Sweden)

    Moez HANIN

    2016-11-01

    Full Text Available Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bactéria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt affected fields.

  12. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    Science.gov (United States)

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  13. Four Pathogenic Candida Species Differ in Salt Tolerance

    Czech Academy of Sciences Publication Activity Database

    Krauke, Yannick; Sychrová, Hana

    2010-01-01

    Roč. 61, č. 4 (2010), s. 335-339 ISSN 0343-8651 R&D Projects: GA MŠk(CZ) LC531 Grant - others:EC(XE) MRTN-CT-2004-512481 Institutional research plan: CEZ:AV0Z50110509 Keywords : candida species * salt tolerance * potassium homeostasis Subject RIV: EE - Microbiology , Virology Impact factor: 1.510, year: 2010

  14. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen

    2018-06-01

    Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.

  15. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    Science.gov (United States)

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Salt tolerances of some mainland tree species select as through nursery screening.

    Science.gov (United States)

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.

  17. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar

    2014-12-05

    Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity

  18. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  19. The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine vibrio isolated from Salar de Atacama

    Directory of Open Access Journals (Sweden)

    Karem Gallardo

    2016-12-01

    Full Text Available The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C in the absence of NaCl, and the range was expanded into cold temperature (4-49°C in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation.

  20. MORPHO-MOLECULAR SCREENING OF RICE (ORYZA SATIVA L. GENOTYPES AT SEEDLING STAGE FOR SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Ali Julfiker Md. Masud

    2014-10-01

    Full Text Available Providing adequate food to meet an escalating population is one of the gravest problems the humankind is now facing. To resolve this crisis identification of salt tolerant rice variety is very vital. So, in this research, ten rice genotypes were used to screen salinity tolerance at the seedling stage in hydroponic system using SSR markers. Salinity screening was done at glasshouse following IRRI standard protocol using two setups of salinized and non-salinized conditions. Genotypes under controlled condition had longer root and shoot length then salt stress genotypes. Parental polymorphism survey was done with ten SSR markers viz., RM336, RM510, RM7075, RM407, RM3201b, RM10748, AP3206f, RM3412, RM585, RM11504 and all were selected to evaluate salt tolerance in rice genotypes. The number of alleles per locus ranged from 3 (AP3206f to 9 (RM336, with an average of 6.1 alleles across 10 loci obtained in the study. The polymorphic information content values ranged from of 0.54 (AP3206f to a high of 0.86 (RM336 with an average of 0.74. The pair-wise comparisons of Nei’s (1973 genetic distance (D between varieties were computed from combined data for the 10 primers, ranged from 0.30 to 0.90 with an average of 0.86, while the similarity index based analysis ranged from 0.00 to 0.70. Finally, the FL-478, FL-378, Binadhan-8 and Binadhan-10 were selected as salt tolerant because they showed tolerance in phenotypic analysis. These phenotypically selected tolerant genotypes could be used for the selection of suitable parents and development of salt tolerant rice varieties.

  1. Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance[C][W

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar

    2009-01-01

    To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na+ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H+-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H+-pump activity. PMID:20028841

  2. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  3. Isolation of salt stress gene(s) from some haloterant streptomyces strains using polymerase chain reaction (abstract)

    International Nuclear Information System (INIS)

    Mohammad, S.H.

    2005-01-01

    We studied salt tolerance range in sixteen halotolerant streptomyces strains to isolate salt regulated genes using polymerase chain reaction (PCR) technology. A group of these strains was isolated from Sedi-creer (S. niveus Sc-2 and S. sendenensis Sc-II); El-Malahat (Alexndria) (S. graminofaciens Ma-13): Qaroon's lake (S. albovinaceus QA-44, S. luteofluorescens Qa-51, S. albidoflavous Qa-53 and S. erthaeus QA-84). The other group represents the strains isolated from different soils from Damaaita (S. violans Da-3). Ismailia (S. alboflavus-Is-10). Port said (S. bobili Ps-12) and Sinai sandy soil (streptomyces species Si-1, S. truirus Si-4, S. lateritius Si-6, S. hawaiiensis Si-8, S. muavecolor Si-9 and S. melanogenes Si-11). These strains were varied in their salt tolerance range in particular, with increasing NaCl concentration in the growth medium up to 14%. It was also noted that all the applied Streptomyces strains appeared abundant growth at NaCl concentrations of 0.05, 3.5 and 7.0%. When NaCl was added at concentration of 10.5%, all of them except S. melanogenes Si-II strain gave moderate growth. On the contrary, NaCl at concentration of 14% inhibited the growth of 50% of strains under investigation. But the other 50% of these strains gave moderate growth at the same NaCl concentration. At the molecular level, the PCR was successfully used for isolating the mtlD and P5CS genes from 3 (S. alboinaceus Qa-44, S. albidoflavus Qa-53, S. erthraeus QA-84) and 4 (S. albovunaecaus Qa-44, Streptomyces species Si-I, S. luteofluorescens Qa-51, S. latritius Si-6) strains, respectively. As PCR fragments with a size of about 1095 and 2100 bp were amplified from the DNA genome of these strains using the primer pairs (P1 and P2) and (P3 and P4), respectively. These results confirmed the ability to use PCR for isolation or detection of any gene based on its nucleotide sequencing in any microorganism. Furthermore, one can recommended the use of the applied halotolerant

  4. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Genetic engineering to develop salt tolerance in potato: a need of the present time scenario(abstract)

    International Nuclear Information System (INIS)

    Ikram ul Haq; Dahot, M.U.

    2005-01-01

    Of environmental stresses, salinity has negative impacts on agricultural yield throughout the world; affected production is 1% as compared to 3%. Soil salinity affects plant growth and development by way of osmotic stress, injurious effects of toxic Na/sup +/ and Cl/sup -/ ions and to some extent Cl/sup -/ and SO/sub 4//sup 2-/ of Mg//sup 2+/. The plant response to salinity consists of numerous processes that must function in coordination to alleviate both cellular hyper osmolarity and ion disequilibrium. However, cell biology and molecular genetics research is providing new insight into the plant response to salinity and is identifying genetic determinants involved in the salt tolerance. Recent confirmation (Arabidopsis thaliana) to salt tolerance determinants is that mediate cellular ion homeostasis. The transport systems facilitate cellular capacity to utilize Na/sup +/ for osmotic adjustment and growth and the role of the Salt-Overly-Sensitive (SOS) signal transduction pathway in the regulation of ion homeostasis and salt tolerance. The SOS signaling pathway regulates Na/sup +/ and K/sup +/ homeostasis, after Ca/sup 2+/ activation. Furthermore, overexpression of AtNHX1 enhances plant salt tolerance, presumably by increasing vacuolar Na/sup +//H/sup +/ compartmentalization that minimizes the toxic I. accumulation of the ion in the cytosol. The activation of SOS1 (Na/sup +/ efflux) and/or AtNHX1 (Na/sup +/ efflux) so by expression of such transporters enhances salt tolerance in plants. (author)

  6. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Bio-herbicide effect of salt marsh tolerant Enterobacter sp. I-3 on weed seed germination and seedling growth

    International Nuclear Information System (INIS)

    Radhakrishan, R.; Lee, I.J.

    2017-01-01

    Weeds are major challenges in crop cultivation and cause yield loss. The bacteria based bio-herbicides are emerging against chemical herbicides. This study was aimed to explore the bio-herbicide effect of salt marsh tolerant Enterobacter sp. I-3 on various weed species. The efficacy of I-3 bacterial isolates against weed growth was compared with I-4-5 bacterial strain. The bacterial strains, I-3 and I-4-5 inhibited the seed germination of Cyperus microiria Maxim. Enterobacter sp. I-3 showed higher weed control activity than I-4-5. It was confirmed with growth reduction of C. microiria Maxim. The seed germination of Digitaria sanguinalis L. weed was accelerated during the interaction of I-4-5 and it was drastically declined by I-3 bacterial culture. However, Alopecurus aequalis Sobol. seeds treated with either I-3 or I-4-5 bacterial culture showed no significant germination inhibition. The results of this study suggested that salt marsh tolerant Enterobacter sp. I-3 can be applied as bacterial herbicides to control weeds in agricultural fields. (author)

  8. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage

    Directory of Open Access Journals (Sweden)

    Sumitahnun Chunthaburee

    2016-07-01

    Full Text Available Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT, a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.

  9. Influence of intracellular Na + , K + and Cl - on the salt tolerance in ...

    African Journals Online (AJOL)

    In the process of selection for salt tolerance, it is important to understand the physiological basis of ion management executed by the cells through the exclusion, accumulation or maintenance of ratios of specific ions. Intracellular accumulation of Na+, K+ and Cl- ions in the cells in vitro was studied as a factor in salt ...

  10. Inter-Simple Sequence Repeat (ISSR Markers to Study Genetic Diversity Among Cotton Cultivars in Associated with Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Ali Akbar ABDI

    2012-11-01

    Full Text Available Developing salt-tolerant crops is very important as a significant proportion of cultivated land is salt-affected. Screening and selection of salt tolerant genotypes of cotton using DNA molecular markers not only introduce tolerant cultivars useful for hybridization and breeding programs but also detect DNA regions involved in mechanism of salinity tolerance. To study this, 28 cotton cultivars, including 8 Iranian cotton varieties were grown in pots under greenhouse condition and three salt treatments were imposed with salt solutions (0, 70 and 140 mM NaCl. Eight agronomic traits including root length, root fresh weight, root dry weight, chlorophyll and fluorescence index, K+ and Na+ contents in shoot (above ground biomass, and K+/Na+ ratio were measured. Cluster analysis of cultivars based on measured agronomic traits, showed �Cindose� and �Ciacra� as the most tolerant cultivars, and �B-557� and �43347� as the most sensitive cultivars of salt damage. A total of 65 polymorphic DNA fragments were generated at 14 inter-simple sequence repeat (ISSR loci. Plants of 28 cultivars of cotton grouped into three clusters based on ISSR markers. Regression analysis of markers in relation with traits data showed that 23, 33 and 30 markers associated with the measured traits in three salt treatments respectively. These markers might help breeders in any marker assisted selection program in order to improving cotton cultivars against salt stress.

  11. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  12. Marker assisted selection and crop management for salt tolerance: A ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... Accepted 4 July, 2011. Salinity is one of the major abiotic constraints for crop management in irrigated as well as rainfed areas ... INTRODUCTION. Salt tolerance is ... arid and arid climates (Asch et al.,1997) in general, and.

  13. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in arabidop

    KAUST Repository

    Li, Wenbo; Guan, Qingmei; Wang, Zhenyu; Wang, Yingdian; Zhu, Jianhua

    2013-01-01

    Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root

  14. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    Science.gov (United States)

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Genetic transformation of Populus tomentosa to improve salt tolerance

    Science.gov (United States)

    Ningxia Du; Xin Liu; Yun Li; Shouyi Chen; Jinsong Zhang; Da Ha; Wenguang Deng; Chunkui Sun; Yingzhi Zhang; Paula M Pijut

    2012-01-01

    Soil salinity can be a limiting factor for productivity in agriculture and forestry. In order to fully utilize saline lands productively in plantation forestry for pulp production, the genetic modification of tree species for salt tolerance may be required. The AhDREB1 gene, a DREB-like transcription factor gene, was transferred into ...

  16. Selection for salt tolerance in tidal freshwater swamp species: Advances using baldcypress as a model for restoration: Chapter 14

    Science.gov (United States)

    Krauss, Ken W.; Chambers, Jim L.; Creech, David L.

    2007-01-01

    Worldwide, the intrusion of salinity into irrigated and natural landscapes has major economic and cultural impacts and has resulted in large reductions in crop yields (Epstein et al. 1980; Flowers 2003). Losses have prompted wide-scale programs to improve the salt tolerance of many agronomic species or to identify crop species that can tolerate lands affected by low levels of salinity. Few historic research efforts have considered forest tree species in the United States, especially in nonurban areas. Newer programs have focused on identifying salt tolerance in forest tree species but have mainly limited these efforts to compiling lists of salt tolerant species to be used in afforestation projects (Gogate et al. 1984; Shrivastava et al. 1988; Beckmann 1991; Bell 1999). Gogate et al. (1984), for instance, listed 26 potential species from Australia with silvicultural application to salt affected lands in India. More comprehensive efforts have considered species lists along with specific site requirements (Bell 1999); species tolerant to saline irrigation waters on dry land, for example, will not often be tolerant of salinity increases in wetland settings. Similar ideas have spawned field trials of native and nonnative tree species in India, Pakistan, Thailand, Australia, and the United States (Thomson 1988; Beckmann 1991; Krauss et al. 2000; Conner and Ozalp 2002; Marcar and Crawford 2004; Conner and Inabinette 2005). Concerted attempts at salt tolerance improvement of forest tree species have been limited, owing in part to the diversity of regional issues that such programs must consider. Whereas food, fodder, and pulp yield may be the major improvement goal on salt affected lands in India (Mathur and Sharma 1984), identifying trees that can survive deicing salts (Townsend 1989), oil and gas brine discharges (Auchmoody and Walters 1988), or sea-level rise induced salinity changes (Pezeshki et al. 1987, 1990) are of greater interest to larger industrial nations

  17. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  18. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  19. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species

    Directory of Open Access Journals (Sweden)

    Mohamad eAl Hassan

    2016-04-01

    Full Text Available Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in ‘La Albufera’ Natural Park, near the city of Valencia (East Spain. The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves – where they are presumably compartmentalized in vacuoles – and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl- contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose accumulated at higher levels in the former species. This explains the (slightly higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level – estimated from malondialdehyde accumulation – was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides

  20. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    Science.gov (United States)

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  1. Salt tolerance in red clover (Trifolium pratense L.) seedlings

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... This study was conducted to investigate the effect of salt stress on germination of 28 red clover. (Trifolium pratense ... tolerance with the aim of improving crop plants (Zhu,. 2001) or soil .... The interaction of salinity and population in terms of PI ... in shoot growth is probably due to hormonal signals generated ...

  2. Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances

    Directory of Open Access Journals (Sweden)

    Yujing Cheng

    2014-12-01

    Full Text Available Salt stress is one of the severest growth limited-factors to agriculture production. To gain in-depth knowledge of salt-stress response mechanisms, the proteomics analysis from two maize (Zea mays L. inbred lines was carried out using two-dimensional gel electrophoresis (2-DGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS. There were 57 salt-regulated proteins identified, 21 and 36 proteins were differentially regulated in inbred lines 'Nongda 1145' (salt-resistant and 'D340' (salt-sensitive, respectively. The identified proteins were distributed in 11 biological processes and seven molecular functions. Under salt stress, proteins related to antioxidation and lignin synthesis were increased in both inbred lines. The relative abundance of proteins involved in translation initiation, elongation, and protein proteolysis increased in 'Nongda 1145' and decreased in 'D340'. In addition, the abundance of proteins involved in carbohydrate metabolism, protein refolding, ATP synthase and transcription differed between the two inbred lines. Our results suggest that the enhanced ability of salt-tolerant inbred line 'Nongda 1145' to combat salt stress occurs via regulation of transcription factors promoting increased antioxidation and lignin biosynthesis, enhanced energy production, and acceleration of protein translation and protein proteolysis.

  3. Isolation and characterization of copper tolerant bacterial isolates

    International Nuclear Information System (INIS)

    Farooq, S.; Shoeb, E.; Badar, U.; Akhtar, J.

    2008-01-01

    Twelve bacterial strains were isolated from metal contaminated sites close to the chemical factory, Purification and characterization of these strains was done. Maximum tolerable concentration (MTC) of all the isolated strains was determined against heavy metals cadmium chloride (CdCl/sub 2/), copper sulphate (CuSO/sub 4/), and nickel chloride (NiCI/sub 2/) and antibiotics kanamycin (Km), streptomycin (Sm), and chloramphenicol (Cm). Most promising strain was found to be GESSF012 which showed MTC of 4.5 mM and 1.6 mM against CdCI/sub 2/ in enriched and minimal media respectively; whereas MTC of 750 micro g/ml was against Sm. GESSF012 demonstrated the occurrence of multiple stress tolerance as this strain showed considerable tolerance against other heavy metals including CuSO/sub 4/, (3.0 mM in enriched media and 1.8 mM in minimal media) and NiCl/sub 2/, (2.0 mM in enriched media and 1.8 mM in minimal media) as well as other antibiotics Cm and Km (150 and 125 micro g/ml respectively). Plasmids were detected in most of the strains including GESSF012. (author)

  4. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    Science.gov (United States)

    Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide

  5. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    Directory of Open Access Journals (Sweden)

    Khaled M. Hazzouri

    2018-02-01

    Full Text Available Sodium (Na+ accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare. A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+ and potassium (K+ content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These

  6. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong

    2018-05-03

    Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.

  7. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Tian-Zuo Wang

    Full Text Available BACKGROUND: Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize genes of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic Arabidopsis seedlings expressing MtCaMP1 exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na(+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress. CONCLUSIONS/SIGNIFICANCE: The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na(+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na(+ under drought and salt stress would protect plants from water default and Na(+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.

  8. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  9. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  10. Arbuscular Mycorrhizal Fungi Enhance Basil Tolerance to Salt Stress through Improved Physiological and Nutritional Status

    International Nuclear Information System (INIS)

    Salwa, A.; Abeer, H.; Alqarawi, A. A.; Abdullah, E.F.; Egamberdieva, D.

    2016-01-01

    Pot experiments were conducted to evaluate the influence of salinity on some physio-biochemical traits in sweet basil (Ocimum basilicum L.) cultivars with contrasting salt stress tolerance and to determine the role of arbuscular mycorrhizal fungi (AMF) in ameliorating the salt stress in plant. Salt stress (250 mM NaCl) reduced the colonization potential of AMF and inhibited photosynthetic pigments, chlorophyll and carotenoids in plant tissue. AMF inoculated plants contained higher level of chlorophyll pigments. Salt stressed plants showed increased lipid peroxidation, antioxidant enzyme activities like superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). Plants inoculated with AMF showed lower lipid peroxidation and enhanced antioxidant enzyme activities. Moreover, the content of lipids, proline, and soluble sugars in basil plants was improved with AMF inoculation. AMF inoculation reduced accumulation of Na+ and improved nutrient acquisition. In conclusion, AMF were capable to reduce oxidative stress via supporting of the antioxidant system. Salt tolerant cultivar showed higher antioxidant enzyme activity and accumulation of osmolytes. (author)

  11. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  12. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  13. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  14. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  15. Chromium Tolerance and Bioremoval by Cyanobacteria Isolated ...

    African Journals Online (AJOL)

    Two cyanobacterial species Nostoc calcicola HH-12 and Chroococcus minutus HH-11 isolated from a textile mill oxidation pond were examined individually and as consortium for their chromium(VI) tolerance and bioremoval from aqueous solutions. Both species were tolerant to the metal and showed significant increase ...

  16. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana

    KAUST Repository

    Gu, Jinbao

    2017-12-01

    Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.

  17. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  18. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  19. Salt Tolerance Research in Date Palm Tree (Phoenix dactylifera L., Past, Present and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    2015-05-01

    Full Text Available The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed towards understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.

  20. Molecular Karyotyping and Exome Analysis of Salt-Tolerant Rice Mutant from Somaclonal Variation

    Directory of Open Access Journals (Sweden)

    Thanikarn Udomchalothorn

    2014-11-01

    Full Text Available LPT123-TC171 is a salt-tolerant (ST and drought-tolerant (DT rice line that was selected from somaclonal variation of the original Leuang Pratew 123 (LPT123 rice cultivar. The objective of this study was to identify the changes in the rice genome that possibly lead to ST and/or DT characteristics. The genomes of LPT123 and LPT123-TC171 were comparatively studied at the four levels of whole chromosomes (chromosome structure including telomeres, transposable elements, and DNA sequence changes by using next-generation sequencing analysis. Compared with LPT123, the LPT123-TC171 line displayed no changes in the ploidy level, but had a significant deficiency of chromosome ends (telomeres. The functional genome analysis revealed new aspects of the genome response to the in vitro cultivation condition, where exome sequencing revealed the molecular spectrum and pattern of changes in the somaclonal variant compared with the parental LPT123 cultivar. Mutation detection was performed, and the degree of mutations was evaluated to estimate the impact of mutagenesis on the protein functions. Mutations within the known genes responding to both drought and salt stress were detected in 493 positions, while mutations within the genes responding to only salt stress were found in 100 positions. The possible functions of the mutated genes contributing to salt or drought tolerance were discussed. It was concluded that the ST and DT characteristics in the somaclonal variegated line resulted from the base changes in the salt- and drought-responsive genes rather than the changes in chromosome structure or the large duplication or deletion in the specific region of the genome.

  1. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

    Directory of Open Access Journals (Sweden)

    Mohamad Al Hassan

    2017-08-01

    Full Text Available We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to “recovery of germination” tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves, and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl− to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the

  2. Salt tolerance of estuarine benthic macroalgae in the Kattegat-Baltic Sea area

    DEFF Research Database (Denmark)

    Larsen, A.; Sand-Jensen, K.

    2006-01-01

    Tolerance of benthic marine macroalgae to low salinities is believed to be a main determinant of their vertical distribution across the marine coastline and their horizontal distribution from oceanic regions into low-saline bays, fjords and estuaries. Salt tolerance should also be important......, Denmark (salinity: 16 psu, tide 10 cm) to maintain photosynthesis after 4 days exposure to declining salinities (16 to 0 psu). Overall, the algal community had a high short-term tolerance to low salinities because 35 of 44 species maintained more than half the photosynthetic capacity at salinities lower...

  3. Salinity stress effects on [14C-1]- and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat

    International Nuclear Information System (INIS)

    Krishnaraj, S.; Thorpe, T.A.

    1996-01-01

    The effect of salt (sodium sulfate) on carbohydrate metabolism was studied in a salt-tolerant (Kharchia-65) variety and a salt-susceptible (Fielder) variety of wheat (Triticum aestivum L.) by comparing their responses under control and stress conditions. Leaf segments of Kharchia-65 showed increased activity through both the pentose phosphate pathway (PPP) and the glycolytic pathway of glucose oxidation, with the former being comparatively more active in response to salt. In Fielder, there was an increase in PPP activity at the expense of glycolytic pathway activity. Label from glucose was found in the lipid, neutral sugar, amino acid, organic acid, and phosphate ester fractions in all treatments. On the basis of the label distribution patterns, it appears that Fielder leaves incubated with [ 14 C-6]-glucose were not able to utilize glucose efficiently under saline conditions. This finding was further supported by decreased label incorporation into all the fractions, especially the amino acid and organic acid fractions. Adenosine phosphate and reduced pyridine nucleotide concentrations were consistent with these observations. We conclude therefore that the salt-tolerant variety had an enhanced metabolic activity compared with the salt-susceptible variety, which contributed to its ability to overcome the adverse effects of salt. (author)

  4. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  5. Effect of halopriming on the induction of nacl salt tolerance in different wheat genotypes

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.; Rehmanullah, M.; Majeed, A.

    2015-01-01

    Salinity is a major environmental stress limiting plant growth and productivity of wide range of crops with impairing effects on germination and yield. The present study was conducted to assess the induction of salt tolerance in seven wheat genotypes (Bakhtawar-92, Bhakar-2002, Fakhar-e-Sarhad, Khyber-87, Nasir-2000, Pirsabak-2005, and Uqab-2000) at germination and seedling stage through halo-priming with NaCl. Seeds of each wheat genotype were halo-primed separately. Halo-primed seeds of each wheat genotype were subjected to 0.02 (control), 2, 4, 6 and 8 dS/m NaCl salinity under laboratory conditions. Germination percentage age varied significantly among various wheat genotypes; however, differences between different salt concentrations were non-significant. All the seedling growth characters (germination, plumule growth, fresh and dry weight of seedling and moisture contents) exhibited significant differences among wheat genotypes as well as under the applied salt concentration except for radicle growth which varied non-significantly under salt stress. Interaction between various wheat genotypes and salt concentration was also significant for all the seedling growth characters, while it was non-significant for germination percentage age. It is concluded that NaCl proved to be effective priming agents in inducing salt tolerance in the tested wheat genotypes. (author)

  6. Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na+ Exclusion

    Science.gov (United States)

    Rahman, Md. M.; Rahman, Md. A.; Miah, Md. G.; Saha, Satya R.; Karim, M. A.; Mostofa, Mohammad G.

    2017-01-01

    Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that

  7. Tolerance to road salt deicers in chronically exposed urban pond communities

    Science.gov (United States)

    Freshwater salinization is a concern in urban aquatic ecosystems that receive road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs and to assess the tolerance o...

  8. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  9. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    Science.gov (United States)

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  11. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    Directory of Open Access Journals (Sweden)

    Peipei Wei

    2016-07-01

    Full Text Available The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-, on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl, enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress.

  12. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to counteract koji mold, Aspergillus oryzae, in soy sauce brewing.

    Science.gov (United States)

    Nishimura, Ikuko; Shinohara, Yasutomo; Oguma, Tetsuya; Koyama, Yasuji

    2018-04-08

    In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10. We isolated and identified heptelidic acid (HA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), produced by A. oryzae RIB40 as the growth inhibitor of the salt-tolerant lactic acid bacteria. The growth inhibition of T. halophilus D10 by HA was suggested to be associated with the direct inhibition of GAPDH activity under high salt environment. The difference in the susceptibility to HA among various strains of T. halophilus was caused by the mutations in the gene encoding GAPDH.

  13. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Wang, Feibing; Zhu, Hong; Kong, Weili; Peng, Rihe; Liu, Qingchang; Yao, Quanhong

    2016-07-01

    A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase

  14. Isolation and identification of halotolerant soil bacteria from coastal Patenga area.

    Science.gov (United States)

    Rahman, Shafkat Shamim; Siddique, Romana; Tabassum, Nafisa

    2017-10-30

    Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.

  15. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  16. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    Science.gov (United States)

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  17. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    Science.gov (United States)

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L. under saline conditions.

    Directory of Open Access Journals (Sweden)

    Mahmut Can Hiz

    Full Text Available Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values was performed by qRT-PCR (Quantitative Reverse Transcription PCR analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.

  19. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses

    International Nuclear Information System (INIS)

    Ahmad, R.; Hussain, J.

    2014-01-01

    Abiotic stresses are the most important contributors towards low productivity of major food crops. Various attempts have been made to enhance abiotic stress tolerance of crop plants by classical breeding and genetic transformation. Genetic transformation with glycinebetaine (GB) synthesizing enzymes' gene(s) in naturally non accumulating plants has resulted in enhanced tolerance against variety of abiotic stresses. Present study was aimed to evaluate the performance of GB synthesizing transgenic potato plants against salt and cold stresses. Transgenic potato plants were challenged against salt and cold stresses at whole plant level. Transgenic lines were characterized to determine the transgene copy number. Different parameters like integrity, chlorophyll contents, tuber yield and vegetative biomass were studied to monitor the stress tolerance of transgenic potato plants. The results were compared with Non-transgenic (NT) plants and statistically analyzed to evaluate significant differences. Multi-copy insertion of expression cassette was found in both transgenic lines. Upon salt stress, transgenic plants maintained better growth as compared to NT plants. The tuber yield of transgenic plants was significantly greater than NT plants in salt stress. Transgenic plants showed improved membrane integrity against cold stress by depicting appreciably reduced ion leakage as compared to NT plants. Moreover, transgenic plants showed significantly less chlorophyll bleaching than NT plants upon cold stress. In addition, NT plants accumulated significantly less biomass, and yielded fewer tubers as compared to transgenic plants after cold stress treatment. The study will be a committed step for field evaluation of transgenic plants with the aim of commercialization. (author)

  20. OsPEX11, a peroxisomal biogenesis factor 11, contributes to salt stress tolerance in Oryza sativa

    Directory of Open Access Journals (Sweden)

    Cui Peng

    2016-09-01

    Full Text Available Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000, was screened and identified by yeast two-hybrid and GST pull down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type and OsPEX11-RNAi seedlings. Compared with wild type and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD and CAT and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1 and OsAKT1 involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than wild type and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.

  1. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa.

    Science.gov (United States)

    Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A; Ruan, Songlin; Zhou, Weijun

    2016-01-01

    Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H 2 O 2 -producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na + /K + ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters ( OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1 , and OsAKT1 ) involved in Na + /K + homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na + and K + regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.

  2. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  3. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in arabidop

    KAUST Repository

    Li, Wenbo

    2013-07-01

    Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/ MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS. © 2013 The Author.

  4. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  5. Forecasting the space-time stability of radioactive waste isolation in salt formations

    International Nuclear Information System (INIS)

    Anderson, E.B.; Karelin, A.I.; Krivokhatsiy, A.S.; Savonenkov, V.G.

    1992-01-01

    The possibilities to use salt formations for radioactive waste isolation are realized by creating shaft-type underground repositories in these rocks in Germany and the USA. The burial safety of low- and intermediate-level wastes for several hundred years have been substantiated for the sites chosen. Specialists of different countries presented positive properties of rock salt as a medium for isolation of radionuclides. A rich experience in building subsurface structures for different purposes in salts is accumulated in our country. Detailed investigations of salt formation have shown that far from all the saliferous areas and structures may be used for constructing burial sites. One of the reasons for this limitation is a sharp difference of individual deposits by their compositions, structures, the character of deposition and the conditions of formation. The geological criteria of safety acquire special significance in connection with the necessity to isolate radionuclides having the half-loves more than 1000 years. The time intervals required for stable isolation make up millions of years and cover great cycles of the evolution of the Earth surface and biosphere

  6. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates.

    Science.gov (United States)

    Fuochi, Virginia; Petronio, Giulio Petronio; Lissandrello, Edmondo; Furneri, Pio Maria

    2015-09-01

    There are nearly 100 trillion bacteria in the intestine that together form the intestinal microbiota. They are 'good' bacteria because they help to maintain a physiological balance and are called probiotics. Probiotics must have some important characteristics: be safe for humans, be resistant to the low pH in the stomach, as well as bile salts and pancreatic juice. Indeed, their survival is the most important factor, so that they can arrive alive in the intestine and are able to form colonies, at least temporarily. The aim of our study was the evaluation of resistance of Lactobacillus isolates from fecal and oral swabs compared to that found in a commercial product. Seven strains were randomly chosen: L. jensenii, L. gasseri, L. salivarius, L. fermentum, L. rhamnosus, L. crispatus, and L. delbrueckii. We observed a large variability in the results: L. gasseri and L. fermentum were the most resistance to low pH, while only L. gasseri showed the best survival rate to bile salts. Interestingly, the commercial product did not show tolerance to both low pH and bile salts. © The Author(s) 2015.

  7. Salt tolerant green crop species for sodium management in space agriculture

    Science.gov (United States)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  8. Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L. by Designed QTL Pyramiding

    Directory of Open Access Journals (Sweden)

    Yunlong Pang

    2017-07-01

    Full Text Available Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding “Green Super Rice” varieties with significantly improved tolerance to salt stress and grain yield. Using the F4 population derived from a cross between two selected introgression lines, we were able to develop six mostly homozygous promising high yielding lines with significantly improved salt tolerance and grain yield under optimal and/or saline conditions in 3 years. Simultaneous mapping using the same breeding population and tunable genotyping-by-sequencing technology, we identified three QTL affecting salt injury score and leaf chlorophyll content. By analyzing 32M SNP data of the grandparents and graphical genotypes of the parents, we discovered 87 positional candidate genes for salt tolerant QTL. According to their functional annotation, we inferred the most likely candidate genes. We demonstrated that designed QTL pyramiding is a powerful strategy for simultaneous improvement and genetic dissection of complex traits in rice.

  9. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  10. Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh

    Science.gov (United States)

    Sinha, D. D.; Singh, A. N.; Singh, U. S.

    2014-11-01

    Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of

  11. Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils.

    Science.gov (United States)

    Gonçalves, Susana C; Martins-Loução, M Amélia; Freitas, Helena

    2009-04-01

    Selection for metal-tolerant ecotypes of ectomycorrhizal (ECM) fungi has been reported in instances of metal contamination of soils as a result of human activities. However, no study has yet provided evidence that natural metalliferous soils, such as serpentine soils, can drive the evolution of metal tolerance in ECM fungi. We examined in vitro Ni tolerance in isolates of Cenococcum geophilum from serpentine and non-serpentine soils to assess whether isolates from serpentine soils exhibited patterns consistent with adaptation to elevated levels of Ni, a typical feature of serpentine. A second objective was to investigate the relationship between Ni tolerance and specific growth rates (micro) among isolates to increase our understanding of possible tolerance/growth trade-offs. Isolates from both soil types were screened for Ni tolerance by measuring biomass production in liquid media with increasing Ni concentrations, so that the effective concentration of Ni inhibiting fungal growth by 50% (EC(50)) could be determined. Isolates of C. geophilum from serpentine soils exhibited significantly higher tolerance to Ni than non-serpentine isolates. The mean Ni EC(50) value for serpentine isolates (23.4 microg ml(-1)) was approximately seven times higher than the estimated value for non-serpentine isolates (3.38 microg ml(-1)). Although there was still a considerable variation in Ni sensitivity among the isolates, none of the serpentine isolates had EC(50) values for Ni within the range found for non-serpentine isolates. We found a negative correlation between EC(50) and micro values among isolates (r = -0.555). This trend, albeit only marginally significant (P = 0.06), indicates a potential trade-off between tolerance and growth, in agreement with selection against Ni tolerance in "normal" habitats. Overall, these results suggest that Ni tolerance arose among serpentine isolates of C. geophilum as an adaptive response to Ni exposure in serpentine soils.

  12. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance.

    Science.gov (United States)

    Xia, Keke; Wang, Bo; Zhang, Jiewei; Li, Yuan; Yang, Hailian; Ren, Dongtao

    2017-08-01

    Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca 2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca 2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca 2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca 2+ may be involved in regulating this process. © 2017 John Wiley & Sons Ltd.

  13. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  14. Influence of salicylic acid on in vitro propagation and salt tolerance ...

    African Journals Online (AJOL)

    Salicylic acid (SA) has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA concentrations (0, 0.5, and 1 mM) on in vitro shoot apices of two Hibiscus species, Hibiscus moscheutos (cv 'Luna Red') and Hibiscus acetosella, grown under various salt ...

  15. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum Seedlings and Identification of Salt Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Jiangtao Liu

    2016-03-01

    Full Text Available Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS. We further identified 1663 differentially-expressed genes (DEGs between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO, using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  16. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  17. Isolation of Arachis hypogaea Na + /H + antiporter and its ...

    African Journals Online (AJOL)

    The plant Na+/H+ antiporter gene plays a major role in salt tolerance. ... gene was isolated from peanut (Arachis hypogaea) in the present work. ... These results implied that the AhNHX1 plays an important role under salt stress in peanut.

  18. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  19. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent

    Directory of Open Access Journals (Sweden)

    Shazia Akhtar, Muhammad Mahmood-ul-Hassan, Rizwan Ahmad, Vishandas Suthor and Muhammad Yasin

    2013-05-01

    Full Text Available Considering the importance of filamentous fungi for bioremediation of wastewater and contaminated soils, this study was planned to investigate the metal tolerance potential of indigenous filamentous fungi. Nineteen fungal strains were isolated from soils irrigated with untreated municipal/industrial effluent using dilution technique and 10 prominent isolates were used for metal tolerance. The isolated fungal isolates were screened for metal tolerance index (MTI at I mM cadmium (Cd, nickel (Ni and copper (Cu concentrations and for minimum inhibitory concentration (MIC and metal tolerance by growing on potato dextrose agar plates amended with varying amounts of Cd, Cu and Ni. Seven out of 10 isolated fungi belonged to the genera Aspergillus and three belonged to Curvularia, Acrimonium and Pithyum. The results revealed that the order of tolerance of isolates for metals was Cd > Cu > Ni and Aspergillus sp. were more tolerant than other fungi. Tolerance ranged from 900 – 9218 mg L-1 for Cd, followed by 381 - 1780 mg L-1 for Cu and 293-1580 mg L-1for Ni. The isolated fungi exhibiting great tolerance to metals (Cd, Cu and Ni can be used successfully for bioremediation of metals from contaminated soil and wastewaters.

  20. Physiological Basis for the Tolerance of Yeast Zygosaccharomyces bisporus to Salt Stress

    Directory of Open Access Journals (Sweden)

    Akshya Sharma

    2017-10-01

    Full Text Available Zygosaccharomyces bisporus is a moderately halotolerant yeast isolated from highly sugary and salty foods. We performed various evident biochemical and in vivo experiments as first of its kind to sketch out the possible overlay of salt tolerance mechanism in this model organism. The growth and survival curve analysis revealed that 1.0 M NaCl concentration (sublethal enacts growth inhibitory effects with prompting immediate delay in cell division cycle; however, yeast cells adopted modified stress physiologically with further stretched stress spans which was accompanied by an upsurge in the level of cellular metabolites such as trehalose (reserve carbohydrate and chiefly glycerol (polyols as major compatible osmolytes, suggesting their role in defense mechanism against osmotic stress. To further elucidate the relation of osmotic stress cell physiology to salinity, thiobarbituric acid reactive substances, protein carbonyl, and reduced glutathione content were measured in salt-stressed cells demonstrating positive correlation of reactive oxygen species generation in Z. bisporus with an elevated concentration of lipid and protein oxidation, thereby damaging cell membrane and eventually causing cell death. We assessed NaCl exposure sourcing increased intracellular reactive oxygen species concentration, by an electron transfer-based colorimetric cupric-reducing antioxidant capacity assay justifying that cellular total antioxidant capacity which uses all the combined antioxidant activities present within vitamins, proteins, lipids, and glutathione reverses these deleterious stress effects. Henceforth, performance of Z. bisporus MTCC 4801 mounted because of stress regime seems to be multifactorial.

  1. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    OpenAIRE

    Qiyan Jiang; Zheng Hu; Hui Zhang; Youzhi Ma

    2014-01-01

    The transcription factor dehydration-responsive element binding protein (DREB) is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L.) and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed...

  2. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.

    Science.gov (United States)

    An, Tianchen; Dong, Zhu; Lv, Junchen; Liu, Yujun; Wang, Manchuriga; Wei, Shuangshuang; Song, Yanting; Zhang, Yingxia; Deng, Shiming

    2015-04-01

    A cellulase with wide range of pH resistance and high salt tolerance was isolated from the digestive gland of the oyster Crassostrea rivularis living in mangrove forests. The 27 kDa cellulase named as CrCel was purified 40.6 folds by anion exchange chromatography and extraction from the gel after non-reducing sodium dodecylsufate-polyacrylamide gel electrophoresis. The specific activity of the purified cellulase was 23.4 U/mg against carboxymethyl cellulose (CMC). The N-terminal amino acid sequence of CrCel was determined to be NQKCQANSRV. CrCel preferably hydrolyzes β-1,4-glucosidic bonds in the amorphous parts of cellulose materials and displays degradation activity toward xylan. The Km and Vmax values of CrCel for CMC were determined to be 2.1% ± 0.4% and 73.5 ± 3.3 U mg(-1), respectively. The optimal pH value and temperature of CrCel were 5.5 and 40°C, respectively. The enzyme was stable in a wide range of pH, retaining over 60% activity after incubation for 80 min in the pH range of 3.0-9.0. In addition, CrCel showed remarkable tolerance to salt and remained active at high NaCl concentrations, but also retained over 70% activity after incubation in 0.5-2 M NaCl for up to 24 h. On the basis of the N-terminal sequence alignment and its similar properties to other animal cellulases, CrCel was regarded as a member of glycosyl hydrolase family 45 β-1,4-glucanases. CrCel is the first reported cellulase isolated from mangrove invertebrates, which suggests that it may participate in the assimilation of cellulolytic materials derived from the food sources of the oyster and contribute to the consumption of mangrove primary production. The unique properties of this enzyme make it a potential candidate for further industrial application. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  3. Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus).

    Science.gov (United States)

    Lin, Grace; Chua, Elaine; Orban, Laszlo; Yue, Gen Hua

    2016-01-01

    In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9-14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes 'switches' control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture.

  4. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  5. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  6. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    Science.gov (United States)

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  7. [Tolerance of the association sucralfate / Cu-Zn salts in radiation dermatitis].

    Science.gov (United States)

    De Rauglaudre, G; Courdi, A; Delaby-Chagrin, F; d'Hombres, A; Hannoun-Levi, J-M; Moureau-Zabotto, L; Richard-Tallet, A; Rouah, Y; Salem, N; Thomas, O; Nocera, T; Mery, S; Merial-Kieny, C

    2008-01-01

    The aim of this study was to evaluate the tolerance of topical application of the combination sucralfate / copper zinc salts in radiation dermatitis in women suffering from breast cancer and treated by radiotherapy. 47 patients (average age : 57,5 years) that have to be treated by radiation therapy on non lesional areas, were included into this open multicentric study. They had to apply Cicalfate cream twice a day, from the fi rst radiation therapy session and during 10 weeks. Patients were treated by photon- or electrontherapy (72 % et 28 %, respectively; cumulated total dose : 58,6Gy). Tolerance was considered to be excellent. The radiation dermatitis (score NCIC > or = 2) was noted at the 3rd week of radiotherapy only in 5 % of the subjects and in 53 % of the subjects, the last week of treatment. Pruritus was significantly increased at D21. Pain and discomfort were increased at D28, but remained low intensity. The soothing effect of the combination of sucralfate/ copper zinc salts were considered satisfying or very satisfying by investigators and patients during the study, varying from 94 to 100 % of satisfaction. The impact of radiation therapy on the patients'quality of life, assessed by DLQI, evaluated at the end of the study was not statistically different from the score calculated at D7 (DLQI=0,8 et D7 versus DLQI=1 at D70). Thus, topical application of the combination sucralfate / copper zinc salts can be used in the indication radiation dermatitis.

  8. Use of physio-biochemical traits to evaluate the salt tolerance of five opuntia species in the algerian steppes

    International Nuclear Information System (INIS)

    Lallouche, B.; Boutekrabt, A.; Hadjkouider, B.; Riahi, L.; Lamine, S.

    2017-01-01

    In this study, twelve physio-biochemical parameters were estimated to assess the behavior of five Opuntia species in the Algerian steppes (Opuntia ficus indica f. inermis, O. amyclea, O. streptacantha, O. robusta and O. engelmanii).Herein, the salt stress was induced using three levels of NaCl (200 mM, 400 mM and 600 mM). Based on the analysis of variance (ANOVA), the chlorophyll level for both young cladode and aged cladode was found to be the most discriminant parameter under salt stress concentrations 200 and 400 mM. The species were clustered in three groups with O. ficus indica f. inermis and O. amyclea being the most tolerant to salinity. For a salt concentration of 600 mM, the ANOVA showed that the chlorophyll content in aged cladode was the most discriminant parameter. The Biplot-based species analysis revealed that O. engelmanii was the most salt tolerant species. However, O. amyclea and O. robusta were found to be the most sensitive. In conclusion, total chlorophyll contents for young cladode and aged cladode, chlorophyll a of aged cladode, and root total soluble sugars can be used as key parameters to identify the salt tolerance for Opuntia species. (author)

  9. Interpopulation differences in the salt tolerance of two Cladophora species

    Science.gov (United States)

    Thomas, D. N.; Collins, J. C.; Russell, G.

    1990-02-01

    The effects of changes in external salinity upon Baltic and U.K. populations of Cladophora rupestris (L) Kütz and C. glomerata (L) Kütz have been studied. Rates of net photosynthesis after salinity treatment (0-102‰) were used as a measure of salinity tolerance. There were very pronounced differences in the salt tolerance of the two C. glomerata populations, whereas Baltic and U.K. C. rupestris differed significantly only in responses to extreme hyposaline treatment. The effect of salinity on the thallus content of K + and Na + was measured. There were significant differences in the ratios of these ions in populations of both species. The populations also differed significantly in the dimensions of their cells and cellular volume.

  10. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive).

    Science.gov (United States)

    Rossi, Lorenzo; Borghi, Monica; Francini, Alessandra; Lin, Xiuli; Xie, De-Yu; Sebastiani, Luca

    2016-10-01

    Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na + exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO.

    Science.gov (United States)

    Irvine, Jennifer C; Kemp-Harper, Barbara K; Widdop, Robert E

    2011-05-01

    Nitroxyl (HNO) displays distinct pharmacology to its redox congener nitric oxide (NO(•)) with therapeutic potential in the treatment of heart failure. It remains unknown if HNO donors are resistant to tolerance development following chronic in vivo administration. Wistar-Kyoto rats received a 3-day subcutaneous infusion of one of the NO(•) donors, glyceryl trinitrate (GTN) or diethylamine/NONOate (DEA/NO), or the HNO donor Angeli's salt (AS). GTN infusion (10 μg/kg/min) resulted in significantly blunted depressor responses to intravenous bolus doses of GTN, demonstrating tolerance development. By contrast, infusion with AS (20 μg/kg/min) or DEA/NO (2 μg/kg/min) did not alter their subsequent depressor responses. Similarly, ex vivo vasorelaxation responses in isolated aortae revealed that GTN infusion elicited a significant 6-fold decrease in the sensitivity to GTN and reduction in the maximum response to acetylcholine (ACh). Chronic infusion of AS or DEA/NO had no effect on subsequent vasorelaxation responses to themselves or to ACh. No functional cross-tolerance between nitrovasodilators was evident, either in vivo or ex vivo, although an impaired ability of a nitrovasodilator to increase tissue cGMP content was not necessarily indicative of a reduced functional response. In conclusion, HNO donors may represent novel therapies for cardiovascular disease with therapeutic potential over clinically used organic nitrates.

  12. Advanced Backcross QTL Analysis for the Whole Plant Growth Duration Salt Tolerance in Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    CHAI Lu; LI Zhi-kang; ZHANG Jian; PAN Xiao-biao; ZHANG Fan; ZHENG Tian-qing; ZHAO Xiu-qing; WANG Wen-sheng; Ali Jauhar; XU Jian-long

    2014-01-01

    Salinity is a major factor limiting rice yield in coastal areas of Asia. To facilitate breeding salt tolerant rice varieties, the whole-plant growth duration salt tolerance (ST) was genetically dissected by phenotyping two sets of BC2F5 introgression lines (ILs) for four yield traits under severe natural salt stress and non-stress ifled conditions using SSR markers and the methods of advanced backcross QTL (AB-QTL) analysis and selective introgression. Many QTLs affecting four yield traits under salt stress and non-stress conditions were identiifed, most (>90%) of which were clustered in 13 genomic regions of the rice genome and involved in complex epistasis. Most QTLs affecting yield traits were differentially expressed under salt stress and non-stress conditions. Our results suggested that genetics complementarily provides an adequate explanation for the hidden genetic diversity for ST observed in both IL populations. Some promising Huanghuazhan (HHZ) ILs with favorable donor alleles at multiple QTLs and signiifcantly improved yield traits under salt stress and non-stress conditions were identiifed, providing excellent materials and relevant genetic information for improving rice ST by marker-assisted selection (MAS) or genome selection.

  13. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  14. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  16. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra.

    Directory of Open Access Journals (Sweden)

    Weidong Gao

    Full Text Available Late embryogenesis abundant (LEA genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA was transformed into Xiaohei poplar (Populussimonii × P. nigra via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR and ribonucleic acid (RNA gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11 showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  17. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

    Science.gov (United States)

    Gao, Weidong; Bai, Shuang; Li, Qingmei; Gao, Caiqiu; Liu, Guifeng; Li, Guangde; Tan, Feili

    2013-01-01

    Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  18. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  19. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes.

    Science.gov (United States)

    Singh, Jogendra; Singh, Vijayata; Sharma, P C

    2018-05-01

    The growth of chickpea ( Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.

  20. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai; Zheng, Zhimin; Chinnusamy, Viswanathan; Zhu, Jianhua; Cui, Xinping; Iida, Kei; Zhu, Jian-Kang

    2010-01-01

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL

  1. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao

    2017-09-09

    Long non-coding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis thaliana lncRNA, Drought induced RNA (DRIR), as a novel positive regulator of plant response to drought and salt stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression of the DRIR gene than the wild type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates plant response to abiotic stress by modulating the expression of a series of genes involved in stress response.

  2. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  3. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  4. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+ /K+ and antioxidant competence.

    Science.gov (United States)

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.

  5. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress

    Directory of Open Access Journals (Sweden)

    Hongyu Ma

    2014-09-01

    Full Text Available Salinity stress is one of the major abiotic stresses that limit agricultural yield. To understand salt-responsive protein networks in soybean seedling, the extracted proteins from seedling roots of two different genotypes (Lee 68 and Jackson were analyzed under salt stress by two-dimensional polyacrylamide gel electrophoresis. Sixty-eight differentially expressed proteins were detected and identified. The identified proteins were involved in 13 metabolic pathways and cellular processes. Proteins correlated to brassinosteroid and gilbberellin signalings were significantly increased only in the genotype Lee 68 under salt stress; abscisic acid content was positively correlated with this genotype; proteins that can be correlated to Ca2+ signaling were more strongly enhanced by salt stress in the seedling roots of genotype Lee 68 than in those of genotype Jackson; moreover, genotype Lee 68 had stronger capability of reactive oxygen species scavenging and cell K+/Na+ homeostasis maintaining in seedling roots than genotype Jackson under salt stress. Since the genotype Lee 68 has been described in literature as being tolerant and Jackson as sensitive, we hypothesize that these major differences in the genotype Lee 68 might contribute to salt tolerance. Combined with our previous comparative proteomics analysis on seedling leaves, the similarities and differences between the salt-responsive protein networks found in the seedling leaves and roots of both the genotypes were discussed. Such a result will be helpful in breeding of salt-tolerant soybean cultivars.

  6. A simple, rapid method to isolate salt glands for three-dimensional visualization, fluorescence imaging and cytological studies

    Directory of Open Access Journals (Sweden)

    Lim Tit-Meng

    2010-10-01

    Full Text Available Abstract Background Some plants inhabiting saline environment remove salts via the salt glands embedded in the epidermal tissues. Cytological studies of salt glands will provide valuable information to our understanding of the secretory process. Previous studies on salt gland histology relied mainly on two-dimensional microscopic observations of microtome sections. Optical sectioning properties of confocal laser scanning microscope offer alternative approach for obtaining three-dimensional structural information of salt glands. Difficulty in light penetration through intact leaves and interference from neighbouring leaf cells, however, impede the acquiring of good optical salt gland sections and limit its applications in salt gland imaging. Freeing the glands from adjacent leaf tissues will allow better manipulations for three-dimensional imaging through confocal laser scanning microscopy. Results Here, we present a simple and fast method for the isolation of individual salt glands released from the interference of neighbouring cells. About 100-200 salt glands could be isolated from just one cm2 of Avicennia officinalis leaf within hours and microscopic visualization of isolated salt glands was made possible within a day. Using these isolated glands, confocal laser scanning microscopic techniques could be applied and better resolution salt gland images could be achieved. By making use of their intrinsic fluorescent properties, optical sections of the gland cells could be acquired without the use of fluorescent probes and the corresponding three-dimensional images constructed. Useful cytological information of the salt gland cells could also be obtained through the applications of fluorescent dyes (e.g., LysoTracker® Red, FM®4-64, Texas Red®. Conclusions The study of salt glands directly at the glandular level are made possible with the successful isolation of these specialized structures. Preparation of materials for subsequent microscopic

  7. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    Science.gov (United States)

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  8. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba

    Science.gov (United States)

    Shaneka S. Lawson; Charles H. Michler

    2014-01-01

    One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital...

  9. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    Science.gov (United States)

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  10. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    Science.gov (United States)

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  11. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).

    Science.gov (United States)

    Pandit, Awadhesh; Rai, Vandna; Bal, Subhashis; Sinha, Shikha; Kumar, Vinod; Chauhan, Mahesh; Gautam, Raj K; Singh, Rakesh; Sharma, Prakash C; Singh, Ashok K; Gaikwad, Kishor; Sharma, Tilak R; Mohapatra, Trilochan; Singh, Nagendra K

    2010-08-01

    Identification of genes for quantitative traits is difficult using any single approach due to complex inheritance of the traits and limited resolving power of the individual techniques. Here a combination of genetic mapping and bulked transcriptome profiling was used to narrow down the number of differentially expressed salt-responsive genes in rice in order to identify functional polymorphism of genes underlying the quantitative trait loci (QTL). A population of recombinant inbred lines (RILs) derived from cross between salt-tolerant variety CSR 27 and salt-sensitive variety MI 48 was used to map QTL for salt ion concentrations in different tissues and salt stress susceptibility index (SSI) for spikelet fertility, grain weight, and grain yield. Eight significant QTL intervals were mapped on chromosomes 1, 8, and 12 for the salt ion concentrations and a QTL controlling SSI for spikelet fertility was co-located in one of these intervals on chromosome 8. However, there were total 2,681 genes in these QTL intervals, making it difficult to pinpoint the genes responsible for the functional differences for the traits. Similarly, transcriptome profiling of the seedlings of tolerant and sensitive parents grown under control and salt-stress conditions showed 798 and 2,407 differentially expressed gene probes, respectively. By analyzing pools of RNA extracted from ten each of extremely tolerant and extremely sensitive RILs to normalize the background noise, the number of differentially expressed genes under salt stress was drastically reduced to 30 only. Two of these genes, an integral transmembrane protein DUF6 and a cation chloride cotransporter, were not only co-located in the QTL intervals but also showed the expected distortion of allele frequencies in the extreme tolerant and sensitive RILs, and therefore are suitable for future validation studies and development of functional markers for salt tolerance in rice to facilitate marker-assisted breeding.

  12. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  13. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.

    Science.gov (United States)

    Yang, Guiyan; Yu, Lili; Zhang, Kaimin; Zhao, Yulin; Guo, Yucong; Gao, Caiqiu

    2017-04-01

    Dehydration-responsive element-binding (DREB) transcription factors are important abiotic stress tolerance related genes, and some reports on the roles of DREB have primarily addressed herbal plants. To explore the abiotic stress tolerance role of DREB (ThDREB) from Tamarix hispida, a ThDREB gene with a complete ORF of 783 bp that encodes a 28.74 kDa protein with 260 amino acids, was isolated and functionally annotated. ThDREB expression was highly induced by NaCl, PEG, NaHCO 3 and CdCl 2 treatments, and the highest expression level (369.2-fold of control) was found for the roots that were under NaCl stress for 6 h. The tobacco plants that were transformed by ThDREB were conferred with higher germination rates, fresh weights and root lengths than the wild type (WT) tobacco plants under NaCl and mannitol treatments. The total chlorophyll content (tcc), superoxide dismutase (SOD) and peroxidase (POD) activities were also higher in the transgenic lines in comparison with the WT, and the malondialdehyde (MDA) and H 2 O 2 content, electrolyte leakage (EL) rate and ROS as tracked by staining were generated to a lesser degree in ThDREB transgenic plants than in the WT under NaCl and mannitol stress. Furthermore, the transient overexpression analysis of ThDREB in T. hispida also improved plant salt and drought tolerance in comparison with the empty vector-transformed lines. Our results indicated that ThDREB expression could effectively improve tolerance to salt and drought stress by enhancing the antioxidase activity that keeps the ROS at a low accumulation level and makes them easy to scavenge. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi.

    Science.gov (United States)

    Li, Qingtian; Liu, Jia; Tan, Dunxian; Allan, Andrew C; Jiang, Yuzhuang; Xu, Xuefeng; Han, Zhenhai; Kong, Jin

    2013-10-18

    In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.

  15. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  16. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat (Triticum aestivum Genotypes with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Abiotic stress exerts significant impact on plant’s growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329 revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg and function in salt-sensitive (HD-2329 genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.

  17. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C. dactylon) and their physiological responses to salt and drought stress.

    Science.gov (United States)

    Lu, Shaoyun; Peng, Xinxiang; Guo, Zhenfei; Zhang, Gengyun; Wang, Zhongcheng; Wang, Congying; Pang, Chaoshu; Fan, Zhen; Wang, Jihua

    2007-08-01

    A protocol was established for in vitro selection of salinity tolerant somaclonal variations from suspension cultured calli of triploid bermudagrass cv. TifEagle. To induce somaclonal variations the calli were subcultured for 18 months and were then subject to three-round selections for salt-tolerant calli by placing on solid medium containing 0.3 M NaCl for 10 days followed by a recovery for 2 weeks. The surviving calli were regenerated on regeneration medium containing 0.1 M NaCl. Three somaclonal variant lines (2, 71, and 77) were obtained and analyzed. The selected somaclonal lines showed higher relative growth and less injury than TifEagle under salt stress, indicating that they increased salt tolerance. In addition, they had higher relative water content and lower electrolyte leakage than TifEagle after withholding irrigation, indicating that they also increased drought tolerance. The three somaclonal variant lines had higher proline content than TifEagle under normal growth condition. The line 71 had a higher K(+)/Na(+) ratio, whereas the lines 2 and 77 had higher CAT activity under control and salt stress conditions, indicating that different mechanisms for salt tolerance might exist in these three lines.

  18. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong

    2018-07-01

    PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.

  19. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    Science.gov (United States)

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  1. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  2. Isolation of cowpea genes conferring drought tolerance ...

    African Journals Online (AJOL)

    The main objective of this study was to identify and isolate the genes conferring drought tolerance in cowpea. A cDNA library enriched for cowpea genes expressed specifically during responses to drought was constructed. A procedure called suppression subtractive hybridisation (SSH) was successfully employed to obtain ...

  3. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi

    2013-10-01

    GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-07-01

    Full Text Available The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the

  5. Enhancing and accelarating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes

    NARCIS (Netherlands)

    Sluis, van der C.; Tramper, J.; Wijffels, R.H.

    2001-01-01

    In soy-sauce processes salt-tolerant yeasts are very important for the flavour formation. This flavour formation is, however, slow and poorly understood. In the last decades, a concerted research effort has increased the understanding and resulted in the derivation of mutants with an enhanced

  6. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Trait-based model development to support breeding programs. A case study for salt tolerance and rice.

    Science.gov (United States)

    Paleari, Livia; Movedi, Ermes; Confalonieri, Roberto

    2017-06-28

    Eco-physiological models are increasingly used to analyze G × E × M interactions to support breeding programs via the design of ideotypes for specific contexts. However, available crop models are only partly suitable for this purpose, since they often lack clear relationships between parameters and traits breeders are working on. Taking salt stress tolerance and rice as a case study, we propose a paradigm shift towards the building of ideotyping-specific models explicitly around traits involved in breeding programs. Salt tolerance is a complex trait relying on different physiological processes that can be alternatively selected to improve the overall crop tolerance. We developed a new model explicitly accounting for these traits and we evaluated its performance using data from growth chamber experiments (e.g., R 2 ranged from 0.74 to 0.94 for the biomass of different plant organs). Using the model, we were able to show how an increase in the overall tolerance can derive from completely different physiological mechanisms according to soil/water salinity dynamics. The study demonstrated that a trait-based approach can increase the usefulness of mathematical models for supporting breeding programs.

  8. Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India

    Directory of Open Access Journals (Sweden)

    Swarnendu Roy

    2017-09-01

    Full Text Available The salt tolerance of 12 native forage grasses from the eastern part of Terai-Duar grasslands was assessed using a rapid method of leaf disc senescence bioassay. Samples of these grasses were grown in untreated water as well as 100 and 200 mM NaCl solutions for periods of 3, 6 and 9 days. Discs of fresh leaf were then placed in untreated water as well as in 100 and 200 mM NaCl solutions for 96 hours. Quantitative effects were measured as the effects on chlorophyll concentration in leaves in response to exposure to the varying solutions. From these results, the salt sensitivity index (SSI of the individual grasses was determined. The SSI values indicated that Imperata cylindrica, Digitaria ciliaris and Cynodon dactylon were most salt-tolerant of all grasses tested. Further characterization of the grasses was done by observing the changes in 6 biomarkers for salinity tolerance: relative water content, total sugar concentration, proline concentration, electrolyte leakage, membrane lipid peroxidation and H2O2 concentration following exposure to 100 and 200 mM NaCl concentrations for 3, 6 and 9 days. Finally, hierarchical cluster analysis using the software CLUSTER 3.0 was used to represent the inter-relations among the physiological parameters and to group the grasses on the basis of their salinity tolerance. The overall results indicated that Imperata cylindrica, Eragrostis amabilis, Cynodon dactylon and Digitaria ciliaris were potentially salt-tolerant grasses and should be planted on saline areas to verify our results. On the other hand, Axonopus compressus, Chrysopogon aciculatus, Oplismenus burmanni and Thysanolaena latifolia were found to be highly salt-sensitive and would be unsuitable for use in saline areas. 

  9. The Effects of Cation Ratios on Root Lamella Suberization in Rice (Oryza sativa L. with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    M. R. Momayezi

    2012-01-01

    Full Text Available Rice is an important produced cereal in the world. We evaluated the effect of salt compositions including NaCl and Na2SO4 on suberin lamellae as a major barrier to radial ion and water movements in two rice genotypes representing contrasting salt tolerance levels under salinity stress. Two rice genotypes, Fajr as salt tolerant and Khazar as salt sensitive, were transplanted in sand culture under glasshouse condition. Rice seedlings were treated with five salt compositions including NaCl, Na2SO4, 1 : 1, 1 : 2, and 2 : 1 molar ratios for 40 days. It was proven that suberin lamellae in endodermis of root cell wall were thickened with Na2SO4 treatment. The results demonstrated that the number of passage cells was higher in Fajr genotype than that in Khazar genotype under saline condition. Calcium concentration in root tissue decreased as the SO42- concentration in root media increased. It can be concluded that Fajr genotype is able to keep some passage cells open to maintain Ca2+ uptake. The Ca2+/Na+ ratio in shoot tissue can be also a reliable index for the early recognition of salt stress in these rice genotypes.

  10. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  11. Ethanol and sugar tolerance of wine yeasts isolated from fermenting ...

    African Journals Online (AJOL)

    Seventeen wine yeasts isolated from fermenting cashew apple juice were screened for ethanol and sugar tolerance. Two species of Saccharomyces comprising of three strains of S. cerevisiae and one S. uvarum showed measurable growth in medium containing 9% (v/v) ethanol. They were equally sugar-tolerant having ...

  12. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  13. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.

    Science.gov (United States)

    Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping

    2018-06-01

    Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Halotolerant streptomycetes isolated from soil at Taif region ...

    African Journals Online (AJOL)

    This study focuses on isolation and purification of some halotolerant streptomycetes from soil and sea water of western region, KSA as a source of salt tolerance gene(s). A few numbers (32) of streptomycetes-like colonies (SLC) were isolated and purified from two regions. From Jeddah, a number of 22 out of the 32 SLC ...

  15. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  16. Viability of Lactic Acid Bacteria Isolated from Kombucha Tea Against Low pH and Bile Salt

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Puspawati

    2016-03-01

    Full Text Available Kombucha tea is a functional drink fermented by various types of microbes. Kombucha tea is also a source of lactic acid bacteria that can maintain the balance of the microflora of the digestive tract which can improve the health of the human body. Lactic acid bacteria can act as a probiotic if it is able to survive to the human gastrointestinal tract, where in order to reach the digestive tract, lactic acid bacteria has to be resistant to the low pH in the stomach and bile salts. The purpose of this study was to determine the level of resistance of lactic acid bacteria in kombucha tea against low pH and bile salts. This study uses 20 isolates, each of these isolates were tested to the resistance of low pH 2.0 and 0.5 % bile salts with incubation time of 4 hours. The results indicated that from 20 isolates of lactic acid bacteria that were obtained from kombucha tea, 15 isolates were resistant to low pH and 13 isolates were resistant to bile salts. The isolates have a huge potential to be developed as a probiotic candidate that can contribute greatly to the health of the digestive tract.

  17. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  19. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  20. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  1. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Chu

    Full Text Available WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41 was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS scavenging and the expression of antioxidant genes.

  2. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.

    2018-03-01

    Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.

  3. Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2013-09-01

    Full Text Available The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant and Inqlab-91 (salt-tolerant cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls and evaluated under saline (15 dS m-1 and nonsaline (2.84 dS m-1 conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

  4. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  5. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Xiaomin Deng

    Full Text Available Calcineurin B-like protein-interacting protein kinases (CIPKs have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV, abscisic acid (ABA and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+/Na(+ ratios and Ca(2+ content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT and peroxidase (POD under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS homeostasis.

  6. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  8. Evaluation of salt tolerance in wheat genotypes using growth and carbon isotopes discrimination technique

    International Nuclear Information System (INIS)

    Shirazi, M.U.; Khan, M.A.; Mujtaba, S.M.; Shereen, A.

    2015-01-01

    Studies were conducted in green house to select suitable salt tolerant wheat genotypes on the basis of growth performance and carbon isotopes discrimination (CID) technique. Nine newly developed double haploids (DH) wheat genotypes were tested under gravel culture, along with salt tolerant (LU-26s) and high yielding (Sarsabz) checks. The crop was irrigated by non-saline (control) and saline (12dS/m) water and raised up to maturity, growth parameters (i.e. plant height, plant biomass, productive tillers, spike length, number of spiklets/spike, number of grains / spike, grain weight/ spike and grain yield/ 15 plants) were recorded after harvesting. Plant samples (straw) were collected and were analyzed for carbon isotopic ratio (C12/ C13) from IAEA laboratories Vienna Austria. The data showed that there was significant decrease in all the growth parameters due to salinity. On the basis of performance in different growth parameters it was found that wheat genotypes V3-DH, V9-DH, V10-DH, V13-DH, and LU-26s had good response at 12dSm-1, thus can be categorized as better performing genotypes. Studies on carbon isotopes discrimination (CID) showed a decreasing trend under salinity. Mean CID values were 20.86 and 17.49 under two environments (non saline and saline, respectively), showing an overall 19% decrease under salinity. Generally the wheat genotypes having higher grain yield also had high carbon isotopes discrimination (CID). The relationship between grain yield and CID was positive (R2 = 0.695). The genotypes V10-DH, V13-DH with lower decrease in CID (i.e. 1.2 and 11.0%, respectively), also had high grain yield under salinity. Therefore the studies suggest that we can include CID technique as one of the selection criteria for salt tolerance. (author)

  9. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity.

    Science.gov (United States)

    Zhao, Jian; Barkla, Bronwyn J; Marshall, Joy; Pittman, Jon K; Hirschi, Kendal D

    2008-02-01

    Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.

  10. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Chao-Zeng Zhai

    Full Text Available Oxidative stress caused by accumulation of reactive oxygen species (ROS is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9 are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP using glutathione (GSH or thioredoxin (Trx as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2 involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.

  11. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections.

    Directory of Open Access Journals (Sweden)

    Nyuk Ling Ma

    Full Text Available Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14 and most susceptible line (SS2-18 to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX and catalase (CAT were significantly higher in the sensitive line while superoxide dismutase (SOD was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.

  12. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  13. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.

    Science.gov (United States)

    Jha, Bhavanath; Agarwal, Pradeep K; Reddy, Palakolanu Sudhakar; Lal, Sanjay; Sopory, Sudhir K; Reddy, Malireddy K

    2009-04-01

    Salinity severely affects plant growth and development causing crop loss worldwide. We have isolated a large number of salt-induced genes as well as unknown and hypothetical genes from Salicornia brachiata Roxb. (Amaranthaceae). This is the first description of identification of genes in response to salinity stress in this extreme halophyte plant. Salicornia accumulates salt in its pith and survives even at 2 M NaCl under field conditions. For isolating salt responsive genes, cDNA subtractive hybridization was performed between control and 500 mM NaCl treated plants. Out of the 1200 recombinant clones, 930 sequences were submitted to the NCBI database (GenBank accession: EB484528 to EB485289 and EC906125 to EC906292). 789 ESTs showed matching with different genes in NCBI database. 4.8% ESTs belonged to stress-tolerant gene category and approximately 29% ESTs showed no homology with known functional gene sequences, thus classified as unknown or hypothetical. The detection of a large number of ESTs with unknown putative function in this species makes it an interesting contribution. The 90 unknown and hypothetical genes were selected to study their differential regulation by reverse Northern analysis for identifying their role in salinity tolerance. Interestingly, both up and down regulation at 500 mM NaCl were observed (21 and 10 genes, respectively). Northern analysis of two important salt tolerant genes, ASR1 (Abscisic acid stress ripening gene) and plasma membrane H+ATPase, showed the basal level of transcripts in control condition and an increase with NaCl treatment. ASR1 gene is made full length using 5' RACE and its potential role in imparting salt tolerance is being studied.

  14. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  15. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  16. Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises.

    Science.gov (United States)

    Fernández Márquez, Ma Luisa; Grande Burgos, Ma José; López Aguayo, Ma Carmen; Pérez Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2017-04-01

    A collection of 120 bacterial isolates from small medium enterprises involved in the production of cow milk and the manufacture of goat cheese were screened for sensitivity to biocides benzalkonium chloride (BC), cetrimide (CT), hexadecylpyridinium chloride (HDP), triclosan (TC), hexachlorophene (CF) and poly-(hexamethylen guanidinium) hydrochloride (PHMG). Nineteen isolates were selected according to biocide tolerance and identified by 16S rDNA sequencing as Lactococcus sp. (6) Enterococcus sp. (1), Lactobacillus sp. (4), Bacillus sp. (1) Escherichia sp. (5), Enterobacter sp. (1) and Helicobacter sp. (1). These were further characterised regarding antimicrobial resistance phenotype and genotype. Several isolates were multiply (3 or more) tolerant to biocides or resistant to antibiotics, but only two Escherichia sp. isolates and Enterobacter sp. were multiply resistant to biocides and antibiotics. Statistical analysis of biocide tolerance and antibiotic resistance revealed significant positive correlations between different biocides and between biocides and antibiotics. The biocide tolerance genes most frequently found were qacEΔ1 and qacA/B. The sulfonamide resistance gene sul1 was found in two Escherichia sp. isolates and in Enterobacter sp., all of which also carried qacEΔ1. Beta-lactam (bla CTX-M , bla PSE ) and tetracycline resistance genes [tet(A), tet(C) and tet(D)] were detected. Efflux pump genes acrB and mdfA were found in most Gram-negative isolates. Results from the study suggest that exposure to biocides can indirectly select for antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Identification and Selection for Salt Tolerance in Alfalfa (Medicago sativa L. Ecotypes via Physiological Traits

    Directory of Open Access Journals (Sweden)

    Hassan MONIRIFAR

    2009-12-01

    Full Text Available Salt stress is a serious environmental problem throughout the world which may be partially relieved by breeding cultivars that can tolerate salt stress. Plant breeding may provide a relatively cost effective short-term solution to the salinity problem by producing cultivars able to remain productive at low to moderate levels of salinity. Five alfalfa cultivars, �Seyah-Roud�, �Ahar-Hourand�, �Oskou�, �Malekan� and �Sefida-Khan� were assessed for salt tolerance at mature plant stage. A greenhouse screening system was used to evaluate individual alfalfa plants grown in perlit medium, and irrigated with water containing different amounts of NaCl. Three salt levels were achieved by adding 0, 100 and 200 mM NaCl to Hoagland nutrient solution, respectively. Forage yield, sodium and potassium contents and K/Na ratio was determined. Also, leaf samples were analyzed for proline and chlorophyll contents. The ecotypes Seyha-Roud and �Sefida-Khan� had comparatively less sodium contents than �Oskou�, �Ahar-Hourand� and �Malekan� ecotypes, also potassium content increased under saline condition. Forage yield of different alfalfa ecotypes was significantly influenced by the salinity. The ecotypes �Malekan�, Ahar- Hourand and �Oskou� were successful in maintaining forage yield under salinity stress. Sodium contents increased due to salinity in all alfalfa ecotypes however ecotypes �Ahar-Hourand� and �Malekan� maintained the highest leaf Na concentration. They showed higher content of K than other ecotypes but had lower K/Na ratio. It was concluded that, two ecotypes �Malekan� and �Ahar-Hourand� were better.

  18. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    Science.gov (United States)

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; Pdiabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. © 2016 American Heart Association, Inc.

  20. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  1. Reconsolidation of salt as applied to permanent seals for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Callahan, G.D.; Van Sembeek, L.L.

    1993-01-01

    Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work

  2. A1 and A2, two novel haloarchaeal isolates from bore cores of ancient Alpine rock salt deposits

    Science.gov (United States)

    Gruber, C.; Pfaffenhuemer, M.; Weidler, G.; Radax, C.; Stan-Lotter, H.

    2003-04-01

    Previously several novel halophilic archaea, for instance Haloccocus salifodinae BIp and Halococcus dombrowskii, were isolated from Permo-Triassic rock salt (age 200 - 250 million years) in our laboratory. By using molecular methods we found evidence for the presence of numerous additional haloarchaeal taxa. We investigated freshly drilled salt cores from a depth of about 600 m below surface in the salt mine of Altaussee, Austria, which were dissolved immediately in sterile water. After plating the dissolved salts on high salt nutrient agar, we were able to isolate, following incubation for 3 months, two red pigmented colonies, which were designated A1 and A2 and cultivated for further investigation. A1 and A2 showed the same antibiotic susceptibility as Halobacterium salinarum DSM 3754 and Halobacterium sp. NRC-1, which were cultivated from surface waters. Additionally, the cell morphology of the new isolates was highly similar to both reference strains. According to 16S rRNA gene sequences, whole cell protein patterns following SDS polyacrylamide gel electrophoresis, and restriction digestion patterns of their DNA following pulsed field gel electrophoresis, the isolates A1 and A2 could not be distinguished. 16S rRNA gene sequences indicated that the closest relative of strains A1 and A2 was Halobacterium salinarum DSM 3754 (sequence similarity 97,1%). Our results suggest that the isolates A1 and A2 might constitute a new haloarchaeal species, entrapped in ancient rock salt.

  3. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  4. 40 CFR 180.1144 - Candida oleophila isolate I-182; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Candida oleophila isolate I-182... RESIDUES IN FOOD Exemptions From Tolerances § 180.1144 Candida oleophila isolate I-182; exemption from the requirement of a tolerance. Candida oleophila isolate I-182, when used as a post-harvest biological fungicide...

  5. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  6. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  7. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    International Nuclear Information System (INIS)

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-01-01

    Highlights: ► AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. ► AtPP2CG1 up-regulates the expression of marker genes in different pathways. ► AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2–3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter–GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  8. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  9. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Xiao, Tangfu; Jia, Yanlong; Ning, Zengping; Sun, Min; Liu, Yizhang; Jiang, Tao

    2015-11-01

    Little is known about the biosorption and bioaccumulation capacity of thallium (Tl) by microorganisms that occur in Tl-polluted soil. The present study focused on characterizing the biosorption and bioaccumulation of Tl by Tl-tolerant fungi isolated from Tl-polluted soils. Preliminary data showed a positive correlation between the biomass and the biosorbed Tl content. The Tl-tolerant strains were capable of bioaccumulating Tl, up to 7189 mg kg(-1) dry weight. The subcellular distribution of Tl showed obvious compartmentalization: cytoplasm ≫ cell wall > organelle. The majority of Tl (up to 79%) was found in the cytoplasm, suggesting that intracellular compartmentalization appeared to be responsible for detoxification. These findings further suggest the applicability of the fungal isolates for cleanup of Tl in Tl-polluted water and soil.

  10. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    Ahmad, R.; Hassan, M.M.U.

    2015-01-01

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  11. Tolerância à salinidade em feijão (Phaseolus vulgaris L Salt tolerance in bean (Paseolus vulgaris cell culture

    Directory of Open Access Journals (Sweden)

    F. Broetto

    1995-04-01

    Full Text Available Uma das aplicações das técnicas da cultura de tecidos no melhoramento é a identificação de linhas de células que apresentam tolerância à salinidade. Vários autores obtiveram linhas de células tolerantes ao estresse salino; e estudo de mecanismos bioquímicos da tolerância a sais em plantas tem demonstrado altas correlações entre estes e o acúmulo de macromoléculas em tecido de plantas superiores. Para verificar essas correlações em feijão (Phaseolus vulgaris cv IAC carioca, calos oriundos de eixos embrionários foram cultivados em meio sólido, suplementado com NaCl nas concentrações de 0 a 60 mM. Após 13 dias de incubação, os calos foram coletados e analisados quanto ao crescimento relativo, teor de proteínas, teor de prolina e atividade da peroxidase. Os parâmetros analisados mostraram decréscimo no crescimento relativo e no de proteínas em resposta ao NaCl. Paralelamente, observou-se aumento significativo no conteúdo de prolina e atividade da enzima peroxidase.One of the applications of the tissue culture technique in plant improvement is the identification of cell lines which show salinity tolerance. Several authors were able to obtain saline stress-tolerant cell lines and show that mechanisms of tolerance to salts have a strong correlation between this phenomenon and a high macromolecule concentration in plant tissues. Callus obtained from embrionic axis of Phaseolus vulgarís cv. IAC carioca in solid medium, supplemented with 0 to 60 mM NaCl, as the salt treatment, were used. Callus harvesting was done on the 13th day, when they were processed for relative growth, protein, proline content and peroxidase acivity. The results show both, a decrease of the relative growth and of protein content in response to the NaCl treatment, as compared to controls. However, there was a significant increase on the proline content and on the peroxidase activity.

  12. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Michael J. Van Oosten

    2017-07-01

    Full Text Available Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP, a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl, respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching, protection of the photosynthetic system (improving quantum yield of photosystem II and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots. To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions.Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  13. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    Science.gov (United States)

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  15. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  16. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  17. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  18. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; García-Ramírez, Liliana; Pantoja, Omar

    2005-11-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.

  19. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  20. Studying the possibility of isolating and characterizing genes responsible for salinity tolerance in some gamma irradiation-induced potato mutants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Daoude, A; Al-Safadi, B; Al-Nabulsi, I; Mir Ali, N [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2008-07-15

    Random Amplified Polymorphic DNA(RAPD) and Inter-Simple Sequence Repeat (ISSR) were deployed to study the genetic relatedness of nineteen different potato lines previously obtained by gamma irradiation and believed to be salt tolerant. The lines which belong to three different cultivars, Spunta, Draga and Diamant were confirmed to be salt tolerant in comparison with their controls. Twenty seven random primers and twenty five ISSR oligonucleotides were utilized to determine the genetic relatedness and to amplify DNA fragments involved in salt tolerance. ISSR clustering and Percent disagreement values (PDV) resembled that of the RAPDs for all studied lines. Consequently, RAPD and ISSR were reliable and could be used to determine the genetic relatedness of potato lines belonging to the same cultivar. Moreover, twenty unique DNA fragments were amplified using RAPD or ISSR in the tolerant mutant lines but not in their respective controls. The fragments were gel excised, reamplified and cloned in a cloning vector using QIAGEN A-addition and PCR cloning Kits. However, Blast data base search with the fragments sequences did not reveal any significant homology indicating the weakness of both the RAPD and ISSR techniques in identifying specific targets.(Authors)

  1. Studying the possibility of isolating and characterizing genes responsible for salinity tolerance in some gamma irradiation-induced potato mutants

    International Nuclear Information System (INIS)

    Al-Daoude, A.; Al-Safadi, B.; Al-Nabulsi, I.; Mir Ali, N.

    2008-07-01

    Random Amplified Polymorphic DNA(RAPD) and Inter-Simple Sequence Repeat (ISSR) were deployed to study the genetic relatedness of nineteen different potato lines previously obtained by gamma irradiation and believed to be salt tolerant. The lines which belong to three different cultivars, Spunta, Draga and Diamant were confirmed to be salt tolerant in comparison with their controls. Twenty seven random primers and twenty five ISSR oligonucleotides were utilized to determine the genetic relatedness and to amplify DNA fragments involved in salt tolerance. ISSR clustering and Percent disagreement values (PDV) resembled that of the RAPDs for all studied lines. Consequently, RAPD and ISSR were reliable and could be used to determine the genetic relatedness of potato lines belonging to the same cultivar. Moreover, twenty unique DNA fragments were amplified using RAPD or ISSR in the tolerant mutant lines but not in their respective controls. The fragments were gel excised, reamplified and cloned in a cloning vector using QIAGEN A-addition and PCR cloning Kits. However, Blast data base search with the fragments sequences did not reveal any significant homology indicating the weakness of both the RAPD and ISSR techniques in identifying specific targets.(Authors)

  2. Development of salt tolerant potato and sugarcane through in vitro techniques

    International Nuclear Information System (INIS)

    Asad, S.; Iqbal, M.J.; Saif-Ur-Rasheed, M.; Zafar, Y.; Malik, K.A.

    1997-01-01

    Improvement of sugarcane and potato in Pakistan is hampered by their intricate flowering behavior under natural day-length conditions. The improvement of these crops for their salt tolerance can be carried out by tissue culture mediated techniques. To induce variation in sugarcane, five-week old white yellow nodular embryogenic calli were irradiated with 5, 20, 40 and 60 Gy gamma rays. After one month, the calli were cultured on regeneration media, and plant hardening procedures were optimized. Irradiated and non-irradiated calli were subjected to various levels of salt stress and plant regeneration was investigated. Although growth of sugarcane calli was observed at 200 mM NaCl, regeneration was inhibited even at 50 mM NaCl in the medium. The regenerants from gamma irradiated material are under field evaluation. Variation was detected in both irradiated and salt treated calli by DNA fingerprinting using random amplified polymorphic DNA (RAPD) markers. In potato, 6-7 weeks old in vitro grown plants with single shoots having 8-10 buds were irradiated with 20 Gy gamma rays. Shoot formation was successful only from 50% of the axillary buds. The cultures were subjected to four levels of salinity (50, 100, 150 and 200 mM Nacl). Shoot-tip necrosis was observed along with significant reduction in shoot height. (author). 13 refs, 3 figs, 4 tabs

  3. Development of salt tolerant potato and sugarcane through in vitro techniques

    Energy Technology Data Exchange (ETDEWEB)

    Asad, S; Iqbal, M J; Saif-Ur-Rasheed, M; Zafar, Y; Malik, K A [Plant Biotechnology Div., National Inst. of Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    1997-07-01

    Improvement of sugarcane and potato in Pakistan is hampered by their intricate flowering behavior under natural day-length conditions. The improvement of these crops for their salt tolerance can be carried out by tissue culture mediated techniques. To induce variation in sugarcane, five-week old white yellow nodular embryogenic calli were irradiated with 5, 20, 40 and 60 Gy gamma rays. After one month, the calli were cultured on regeneration media, and plant hardening procedures were optimized. Irradiated and non-irradiated calli were subjected to various levels of salt stress and plant regeneration was investigated. Although growth of sugarcane calli was observed at 200 mM NaCl, regeneration was inhibited even at 50 mM NaCl in the medium. The regenerants from gamma irradiated material are under field evaluation. Variation was detected in both irradiated and salt treated calli by DNA fingerprinting using random amplified polymorphic DNA (RAPD) markers. In potato, 6-7 weeks old in vitro grown plants with single shoots having 8-10 buds were irradiated with 20 Gy gamma rays. Shoot formation was successful only from 50% of the axillary buds. The cultures were subjected to four levels of salinity (50, 100, 150 and 200 mM Nacl). Shoot-tip necrosis was observed along with significant reduction in shoot height. (author). 13 refs, 3 figs, 4 tabs.

  4. GmSALT3, which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl– Exclusion prior to Na+ Exclusion but does not Improve Early Vigour under Salinity

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-09-01

    Full Text Available Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3 has the potential to improve soybean yields in salinized conditions. To evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions, three sets of near isogenic lines (NILs, with genetic similarity 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties, 85-140 (salt-sensitive, S and Tiefeng 8 (salt-tolerant, T by using marker-assisted selection. Each NIL; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigour under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl– in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl– than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl– accumulation in soybean, and contributes to improved soybean yield through maintaining a

  5. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  6. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  7. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    International Nuclear Information System (INIS)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs

  8. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  9. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  10. In vitro induction, isolation, and selection of potato mutants tolerant to salinity

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2008-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, and Spunta were irradiated with gamma ray doses of 25, 30, and 35 Gy. Growing plantlets were subsequently propagated to obtain enough explants for in vitro selection of plants tolerant to salinity. Around 1300 MV 4 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on an MS medium supplemented with NaCl in varying concentrations ranging from 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Salt tolerant plantlets were acclimatized and transferred to pots and grown under greenhouse conditions. Mutant and control plants were later subjected to a second selection pressure by irrigating them with water containing NaCl in concentrations ranging from 50 to 250 mM. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant was tolerant and no plants from cultivar Draga were tolerant. The average number of produced minitubers per plant varied in the mutant plants from eight to 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  11. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    Science.gov (United States)

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  12. Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.

    Science.gov (United States)

    Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello

    2017-01-24

    Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  13. Salting by vacuum brine impregnation in nitrite-free lonza: effect on Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Annalisa Serio

    2017-01-01

    Full Text Available Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or straindependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  14. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  15. Probiotic attributes of Lactobacillus strains isolated from food and of human origin.

    Science.gov (United States)

    Gaudana, Sandeep B; Dhanani, Akhilesh S; Bagchi, Tamishraha

    2010-06-01

    Lactobacilli isolated from various sources were identified on the basis of 16S-23S rRNA gene intergenic region amplification and subsequent sequencing of the smaller intergenic region. An in vitro analysis of probiotic properties including binding, ability to tolerate different concentrations of bile, survival in acidic buffer and antimicrobial activity of four different isolates and two standard strains (Lactobacillus plantarum American Type Culture Collection (ATCC) 8014 and L. rhamnosus GG (LGG)) was carried out. The ability of each isolate to stimulate Caco-2 cells, human peripheral blood mononuclear cells (PBMC) and THP-1 cells resulting in immunomodulation of these cells was analysed. Isolates L. rhamnosus CS25 and L. delbrueckii M and standard strain ATCC 8014 showed broad antimicrobial activity, and isolates CS25 (percentage of survival 6.9 % at pH 2.5, 5.1 % at pH 2.0) and L. plantarum CS23 (5.7 % at pH 2.5, 4.9 % at pH 2.0) have shown good tolerance to acidic pH. Isolate CS23 showed a good survival (14 %) after 2 h incubation in de Man, Rogosa and Sharpe (MRS) medium containing 3 % bile salts. Isolates CS23, CS25 and L. fermentum ASt1 could stimulate Caco-2 cells, human PBMC and THP-1 cells for a strong and varied immunomodulatory response in these cells. Though LGG showed poor antimicrobial activity as well as bile and acid tolerance, it was found to be the best binding strain tested. Child faecal isolate CS23 from the present study showed high binding ability (seventeen bacteria/Caco-2), high tolerance to acidic pH and bile salts and significant immunomodulation; therefore it is a good potential probiotic candidate.

  16. Isolation, Identification, and Evaluation of Novel Probiotic Strains Isolated from Feces of Breast-Fed Infants.

    Science.gov (United States)

    Panya, Marutpong; Lulitanond, Viraphong; Rattanachaikunsopon, Pongsak; Srivoramas, Thanyakarn; Chaiwong, Tarinee

    2016-01-01

    To isolate, identify, and evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from the feces of breast-fed infants. The probiotic tests included investigation of hemolysis activity, survival in simulated gastrointestinal tract conditions (acid and bile salt tolerance), susceptibility to antibiotics, and ability to inhibit selected bacterial pathogens (Escherichia coli O157:H7, Vibrio cholerae and Salmonella enterica subsp enterica serovar Typhimurium). The bacterial species identification was performed by both carbohydrate utilization and partial 16S ribosomal RNA sequencing. Five of fifty LAB isolates (UBU-03, UBU-06, UBU-09, UBU-34, and UBU-37) showed good probiotic properties. These five isolates showed non-hemolysis type (gamma-hemolysis), susceptibility to all antibiotics tested except for vancomycin, ability to survive in the simulated gastrointestinal conditions of both acid and bile salt solution, and ability to inhibit growth of E. coli O157: H7 and V. cholerae. Bacterial species identification revealed that all five isolates were firmly identified as Lactobacillus rhamnosus species. The L. rhamnosus strains that were isolated and characterized in this study could be considered as probiotic strains, and then used for further probiotic characterization in human cell cultures or animal models.

  17. [Isolation, identification and lead adsorption study of lead-resistant Lactobacillus casei strains from feces of healthy newborns].

    Science.gov (United States)

    Shen, Wei; Yu, Qin-Fei; Wang, Yu-Hao; Zhang, Yi-Duo; Meng, Xiao-Jing; Fan, Hong-Ying

    2016-12-20

    To isolate and identify lead-resistant Lactobacillus casei strains with lead adsorption ability from the stool of healthy newborns as a new source of bacteria for developing lead-eliminating food products. MRS was used to isolate lead-resistant bacteria from the feces of 30 healthy and full-term neonates. A phylogenetic tree was constructed based on the morphological characteristics and 16S rRNA sequences of the isolated bacteria. Physiological and biochemical characterizations of the bacteria were performed according to the Berger's Systematic Bacteriology Handbook, followed by antimicrobial susceptibility test and acid-tolerant bile salt test. The adsorption capacity of Pb 2+ of the bacteria was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Three strains of Lactobacillus casei were isolated, which were resistant to penicillin and ceftriaxone and could tolerate the exposure to 500 mg/L Pb 2+ . Acid-tolerant bile salt test showed that the bacteria were resistant to culture in the presence of artificial gastric juice (pH 2.0) for 3 h, and their survival rate reached 62.5% following exposure to 0.3% bile salt for 8 h. The bacteria showed a Pb 2+ adsorption rate of 90.4% at a low Pb 2+ concentration (1 mg/L) and of 86.27% at a high Pb 2+ concentration (50 mg/L). Three Lactobacillus casei strains lead adsorption ability were isolated from the feces of newborns. These bacterial strains provide a new solution to alleviate lead poisoning by probiotic dietary.

  18. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  19. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis.

    Science.gov (United States)

    Lu, Pu; Magwanga, Richard Odongo; Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-04-12

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 ( TOM1 ), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum , 9 in Gossypium arboreum , and 11 in Gossypium raimondii . The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton

  20. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pu Lu

    2018-04-01

    Full Text Available Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1, a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H2O2. The low malondialdehyde (MDA level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant

  1. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    Directory of Open Access Journals (Sweden)

    Udupa Sripada M

    2010-01-01

    Full Text Available Abstract Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.. In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM, water stress (-1.5 MPa, high temperature (40°C and low pH (3.5, respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline. The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P Conclusion High degree of phenotypic and genotypic diversity is present in S

  2. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  3. Identification of Important Physiological Traits and Moderators That Are Associated with Improved Salt Tolerance in CBL and CIPK Overexpressors through a Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yuanchun Ma

    2017-05-01

    Full Text Available The CBL-CIPK pathway is a plant-specific Ca2+ sensor relaying pathway that has been shown to be involved in plant response to salt stress. Over-expression of CBL-CIPK network genes has been reported to increase salt tolerance in many studies. The studies on the overexpression of CBL-CIPK network genes, however, have used various indices to evaluate the effect of these genes on salt tolerance and have indicated a variety of roles for the major CBL-CIPK pathway genes. Therefore, it is of great interest to analyze the various effects resulting from the overexpression CBL-CIPK pathway genes and their relation to salt tolerance. The meta-analysis conducted in the present study investigated how over-expression of CBLs or CIPKs in transgenic plants affects the response to salt stress and identified the increase or decrease that occurs in these experimental variables when foreign CIPK or CBL genes are overexpressed in transgenic plants. The data from the collective studies on over-expression of CIPKs indicated that 6 of the 11 examined parameters (main effects increased by 22% or more, while two of the six examined parameters increased by at least 78% in transgenic plants overexpressing CBL genes. In addition to analyzing the impact of overexpression on the main effects, eight different modifying parameters were also analyzed. Results indicated that several moderators impact the extent to which overexpression of CBLs and CIPKs affect the main parameters. The majority of CBLs have been obtained from dicotyledonous plants and most of the CBLs and CIPKs have been expressed in dicotyledonous plants. In comparison to homologous expression, the meta-analysis indicated that heterogeneous expression of CBLs resulted in greater increases in seed germination. The results of the meta-analysis provide information that could be useful in designing research to examine the mechanisms by which CBL-CIPK pathway genes increase salt tolerance in plants.

  4. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    Science.gov (United States)

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  5. Bioremediation potential of a newly isolate solvent tolerant strain Bacillus thermophilus PS11

    Directory of Open Access Journals (Sweden)

    PAYEL SARKAR

    2012-01-01

    Full Text Available The increased generation of solvent waste has been stated as one of the most critical environmental problems. Though microbial bioremediation has been widely used for waste treatment but their application in solvent waste treatment is limited since the solvents have toxic effects on the microbial cells. A solvent tolerant strain of Bacillus thermophilus PS11 was isolated from soil by cyclohexane enrichment. Transmission electron micrograph of PS11 showed convoluted cell membrane and accumulation of solvents in the cytoplasm, indicating the adaptation of the bacterial strain to the solvent after 48h of incubation. The strain was also capable of growing in presence of wide range of other hydrophobic solvents with log P-values below 3.5. The isolate could uptake 50 ng/ml of uranium in its initial 12h of growth, exhibiting both solvent tolerance and metal resistance property. This combination of solvent tolerance and metal resistance will make the isolated Bacillus thermophilus PS11 a potential tool for metal bioremediation in solvent rich wastewaters.

  6. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates.

    Science.gov (United States)

    Ruytinx, Joske; Craciun, Adrian R; Verstraelen, Karen; Vangronsveld, Jaco; Colpaert, Jan V; Verbruggen, Nathalie

    2011-04-01

    The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.

  7. Detecting differences in some elite wheat lines for salt tolerance through multi parameters evaluation i. morphological and yield parameters

    International Nuclear Information System (INIS)

    Akram, M.; Afzal, M.; Ashraf, M.

    2011-01-01

    Salt tolerance potential of a newly developed wheat genotype (N-9760: V3) was assessed by comparing it with a known salt tolerant line (N-1073:V2) and a commercial cultivar (Inqlab: V1) using various growth parameters measured at the vegetative and maturity stages, The objectives were to know qualitative and quantitative tolerance status and possible utilization of the new genotype as well as to examine as to whether the parameters used to assess the tolerance at vegetative and maturity stages are affected differentially by various salinity levels. The experiment was conducted in pots using four salinity levels (EC 1.5, 5, 10 and 15 dS m/sup -1/). Root and shoot length, root and shoot fresh and dry weight, number of leaves and leaf area were recorded at the vegetative stage, while plant height, number of tillers, spike length and grain yield plant/sup -1/ were recorded at the maturity stage. Fresh weight of shoots, fresh and dry weights of roots, plant height, number of productive tillers and grain yield were least affected in V3 while shoot length, shoot fresh weight, number of leaves, leaf area and spike length were least affected in V2 by EC 15 dS m/sup -1/. Both genotypes appeared tolerant but all the parameters studied at both stages were affected differentially by salinity levels and genotypes hence, testing of every new genotype appeared essential. (author)

  8. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  10. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice.

    Science.gov (United States)

    Xiang, Dian-Jun; Man, Li-Li; Zhang, Chun-Lan; Peng-Liu; Li, Zhi-Gang; Zheng, Gen-Chang

    2018-02-07

    Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these

  11. Regeneration and acclimatization of salt-tolerant arachis hypogaea plants through tissue culture

    International Nuclear Information System (INIS)

    Ghauri, E.G.

    2006-01-01

    Excised embryos of Arachis hypogaea were cultured on Murashige and Skoog's medium (MS medium) supplemented with different combinations of growth hormones. The highest frequency of callus proliferation (80%) was recorded on MS medium mixed with 1.0 mg/1 of 2,4-D and 0.5 mg/1 of BAP. These cultures were treated with 0.65 mg/l of trans-4-hydroxy-L-proline (HyP) a:1d various concentrations (0.1-0.5%) of NaCl. In all cases the presence of salt reduced the fresh mass of callus. Shoot regeneration in the cultures took place when transferred to MS medium supplemented with 1.0 mg/1 of kinetin (Kin) and 0.5 mg/1 of 6-benzyl aminopurine (BAP). Percentage of shoot regeneration decreased with the increase of NaCl (0.1- 0.5%) in the shoot regeneration medium. Root formation in these cultures took place when the cultures were nurtured on MS medium free of growth hormones. Regeneration, hardening and acclimatization of the salt tolerant plants was conducted. (author)

  12. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  13. Production of transgenic banana plants conferring tolerance to salt stress (abstract)

    International Nuclear Information System (INIS)

    Ismail, I.A.; Salama, M.; Hamid, A.A.; Sadiq, A.S.

    2005-01-01

    Production of bananas is limited in areas that have soils with excess sodium. In this study, a transformation system in banana Grand Nain cultivar was established using the apical meristem explant and plasmid pAB6 containing the herbicide-resistant gene (bar) as a selectable marker and gus reporter gene. The micro projectile bombardment transformation system using 650 psi was successfully used for introducing the studied genes in banana explants. The expression of the introduced genes was detected using leaf painting and GUS histochemical tests, respectively. The present results showed that among the selection stage, 36.5% of the bombarded explants survived on the BI3 medium supplemented with 3 mg/L bialaphos, while, 26.6% of the tested explants showed a positive reaction in the GUS assay. To detect the presence of bar and gus genes the PCR was successfully used. These results encourage the idea of possibility of banana crop improvement using in vitro technique through micro projectile bombardment. Therefore, the plasmid pNM1 that carries the bar and P5CS (delta 1 l-pyrroline-5-carboxylate synthetase for proline accumulation) genes was introduced in banana Grand Nain cultivar to produce transgenic plants expressing the salt tolerance gene. Results showed that the majority of herbicide-resistant banana plaptlets were successfully acclimatized. In studying the effects of different salt concentrations on the produced transgenic banana plants, results showed lower decrease in the percentage of survived plants, pseudostem diameter and leaf area with an increase of salt concentrations in case of transgenic plants compared with the controls. (author)

  14. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    Science.gov (United States)

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    Science.gov (United States)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  16. Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo

    2007-08-01

    Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.

  17. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    Science.gov (United States)

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  18. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  19. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.

    Science.gov (United States)

    Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A

    2017-06-01

    Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Selection for autochthonous bifidobacteial isolates adapted to simulated gastrointestinal fluid

    Directory of Open Access Journals (Sweden)

    H Jamalifar

    2010-03-01

    Full Text Available "nBackground and the purpose of the study: Bifidobacterial strains are excessively sensitive to acidic conditions and this can affect their living ability in the stomach and fermented foods, and as a result, restrict their use as live probiotic cultures. The aim of the present study was to obtain bifidobacterial isolates with augmented tolerance to simulated gastrointestinal condition using cross-protection method. "nMethods: Individual bifidobacterial strains were treated in acidic environment and also in media containing bile salts and NaCl. Viability of the acid and acid-bile-NaCl tolerant isolates was further examined in simulated gastric and small intestine by subsequent incubation of the probiotic bacteria in the corresponding media for 120 min. Antipathogenic activities of the adapted isolates were compared with those of the original strains. "nResults and major conclusion: The acid and acid-bile-NaCl adapted isolates showed improved viabilities significantly (p<0.05 in simulated gastric fluid compared to their parent strains. The levels of reduction in bacterial count (Log cfu/ml of the acid and acid-bile-NaCl adapted isolates obtained in simulated gastric fluid ranged from 0.64-3.06 and 0.36-2.43 logarithmic units after 120 min of incubation. There was no significant difference between the viability of the acid-bile-NaCl-tolerant isolates and the original strains in simulated small intestinal condition except for Bifidobacterium adolescentis (p<0.05. The presence of 15 ml of supernatants of acid-bile-NaCl-adapted isolates and also those of the initial Bifidobacterium strains inhibited pathogenic bacterial growth for 24 hrs. Probiotic bacteria with improved ability to survive in harsh gastrointestinal environment could be obtained by subsequent treatment of the strains in acid, bile salts and NaCl environments.

  1. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  2. Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance

    Czech Academy of Sciences Publication Activity Database

    Dibalová-Čuláková, Hana; Alonso-del-Real, J.; Querol, A.; Sychrová, Hana

    2018-01-01

    Roč. 268, Mar 2 (2018), s. 27-34 ISSN 0168-1605 R&D Projects: GA ČR(CZ) GA15-03708S Institutional support: RVO:67985823 Keywords : fermentation * salt tolerance * alkali-metal-cation exporter * non-conventional yeasts * Nhal antiporter * Ena ATPase Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.339, year: 2016

  3. Association mapping of soybean seed germination under salt stress.

    Science.gov (United States)

    Kan, Guizhen; Zhang, Wei; Yang, Wenming; Ma, Deyuan; Zhang, Dan; Hao, Derong; Hu, Zhenbin; Yu, Deyue

    2015-12-01

    Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.

  4. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    Science.gov (United States)

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.

  5. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  6. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium.

    Science.gov (United States)

    Zhang, Yan-Min; Zhang, Hong-Mei; Liu, Zi-Hui; Li, Hui-Cong; Guo, Xiu-Lin; Li, Guo-Liang

    2015-02-01

    Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.

  7. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  8. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  9. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Stress-tolerant mutants induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Abe, Tomoko; Yoshida, Shigeo; Bae, Chang-Hyu; Ozaki, Takuo

    2000-01-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M 1 seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M 3 progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to 14 N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M 1 progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M 1 seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  11. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Natália R. Barboza

    2017-10-01

    Full Text Available Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn, is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil. Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II, up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  12. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression

    Directory of Open Access Journals (Sweden)

    G.H.M. eSagor

    2016-02-01

    Full Text Available The link between polyamine oxidases (PAOs, which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5 or the peroxisomal PAO pathway (pao2 pao3 pao4 silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5 decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81% and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.

  13. Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt

    International Nuclear Information System (INIS)

    Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.

    1987-01-01

    This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985)

  14. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  15. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  17. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  18. Evaluation and Exploration of Favorable QTL Alleles for Salt Stress Related Traits in Cotton Cultivars (G. hirsutum L.)

    Science.gov (United States)

    Du, Lei; Cai, Caiping; Wu, Shuang; Zhang, Fang; Hou, Sen; Guo, Wangzhen

    2016-01-01

    Soil salinization is one of the major problems in global agricultural production. Cotton is a pioneer crop with regard to salt stress tolerance, and can be used for saline-alkali land improvement. The large-scale detection of salt tolerance traits in cotton accessions, and the identification of elite quantitative trait loci (QTLs)/genes for salt-tolerance have been very important in salt tolerance breeding. Here, 43 advanced salt-tolerant and 31 highly salt-sensitive cultivars were detected by analyzing ten salt tolerance related traits in 304 upland cotton cultivars. Among them, 11 advanced salt-tolerance and eight highly salt-sensitive cultivars were consistent with previously reported results. Association analysis of ten salt-tolerance related traits and 145 SSRs was performed, and a total of 95 significant associations were detected; 17, 41, and 37 of which were associated with germinative index, seedling stage physiological index, and four seedling stage biochemical indexes, respectively. Of these associations, 20 SSR loci were simultaneously associated with two or more traits. Furthermore, we detected 117 elite alleles associated with salt-tolerance traits, 4 of which were reported previously. Among these loci, 44 (37.60%) were rare alleles with a frequency of less than 5%, 6 only existed in advanced salt-tolerant cultivars, and 2 only in highly salt-sensitive cultivars. As a result, 13 advanced salt-tolerant cultivars were selected to assemble the optimal cross combinations by computer simulation for the development of salt-tolerant accessions. This study lays solid foundations for further improvements in cotton salt-tolerance by referencing elite germplasms, alleles associated with salt-tolerance traits, and optimal crosses. PMID:26943816

  19. Stress tolerant virulent strains of Cronobacter sakazakii from food

    Directory of Open Access Journals (Sweden)

    Md Fakruddin

    2014-01-01

    Full Text Available BACKGROUND: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. RESULT: Six (6 Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer, extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. CONCLUSION: Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  20. Mutations induced by gamma irradiation in rice breeding for salt tolerance

    International Nuclear Information System (INIS)

    Nguyen Thi Lang; Bui Minh Tam; Bui Chi Buu

    2011-01-01

    New breeding lines were developed through mutagenesis of known varieties using radiation. Development of 10 local varieties from the Vietnamese traditional variety . Seeds of 10 varieties were gamma-irradiated and the generated plantlets were advanced to M 2 and screened for salinity tolerance at seedling stage during both M 2 and M 5 generations. Putative salt tolerant mutants were identified and further advanced and evaluated for agronomic and adaptive traits. The experiment comprised of 12 lines were laid out in a randomized block design replicated three times at 8 different locations at Dong Xuan season from Mekong delta . Analysis of variance indicated the presence of significant genetic variability among the genotypes for grain yield under all the five location . All analyses of variance for yield that were pooled over the five locations. Genotypes x Environment (G x E) interactions were also found significant and the mean squares due to environment were highly significant indicating sufficient diversity among the environments. Three lines OM 5928(db), AS996(db3), As996(db1). Among the lines, AS996(DB1) performed better by yielding highly in all the locations both stability at Dong Xuan and HeThu seasons. This varieties is good for multiplication in the future. (author)

  1. Stress-tolerant mutants induced by heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomoko; Yoshida, Shigeo [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Bae, Chang-Hyu [Sunchon National University, Sunchon (Korea); Ozaki, Takuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wang, Jing Ming [Akita Prefectural Univ. (Japan)

    2000-07-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M{sub 1} seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M{sub 3} progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to {sup 14}N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M{sub 1} progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M{sub 1} seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  2. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  3. EVOLUTIONARY AND ECOLOGICAL ASPECTS OF PLANT STRESS TOLERANCE

    Directory of Open Access Journals (Sweden)

    Abdulmalik G. Yusufov

    2018-01-01

    Full Text Available Abstract. Aim. The aim is to study the threshold sensitivity to salinization of the environment of individual isolated structures for evaluating the salt tolerance of plants. Methods. Comparison of the reaction to salinization of seeds, sprouts, epicotyls, leaves, cotyledons and flowers in species of cultural and natural flora. The following parameters were taken into account in the work: the life span, the time and capacity of for mation of roots and buds, and the wet and dry biomass of species. The results were processed by Statara version 3.0 Shareware (Statistic 5.0 by the parameters of the interaction of roots and shoots. Results. Plant individuals are characterized by the presence of structures that differ in specialization and life span. The question of the correspondence of reactions of structures with the salt tolerance of plants needs to be studied. The stability of the individual as an integral system is determined by the interaction of organs and structures with each other and with other components of the complex community. It evolves in the course of evolution by selecting individuals in the formation of stable plant communities. Quantitative methods of autoecology and genetics of populations are used to understand its mechanisms and role. Conclusion. The structure of an individual plant in an isolated culture is characterized by the specific reaction to salinization of the environment. In this case, the reaction of seeds, sprouts and isolated epicotyls corresponds most closely to the stability of the individual under the stress.

  4. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    Science.gov (United States)

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers' participatory varietal selection (FPVS) resulted in the identification of a short duration (110-115 days), high yielding and disease resistant salt-tolerant rice genotype 'CSR-89IR-8', which was later released as 'CSR43' in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill -1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha -1  N, and the lowest was US$ 0.4 at 150 kg ha -1  N. Above 150 kg ha -1 , the additional net gain became negative, indicating decreasing returns from additional N. Hence, 150

  5. Tolerância de bactérias diazotróficas simbióticas à salinidade in vitro Tolerance of diazotrophic symbiotic bacteria to salinity

    Directory of Open Access Journals (Sweden)

    Rafaela Simão Abrahão Nóbrega

    2004-08-01

    Full Text Available A busca de estirpes de bactérias diazotróficas simbióticas tolerantes à salinidade, em conjunto com a seleção de hospedeiros, tem por objetivo aumentar o desempenho da simbiose e manter a produtividade vegetal de forma sustentada em condições de estresse salino. Doze estirpes de bactérias diazotróficas de diferentes procedências foram estudadas quanto à tolerância a diferentes concentrações de NaCl em meios de cultura 79 e LB. As estirpes que apresentaram maior tolerância à salinidade (30 g L-1 em meio 79 foram: BR 6806 e BR 4007, ambas de crescimento rápido isoladas de solos do nordeste brasileiro, UFLA 03-51 e UFLA 03-65, de crescimento rápido e UFLA 03-84, de crescimento lento, sendo as três últimas oriundas da região Amazônica. Essas também estiveram entre as mais tolerantes em meio de cultura LB. A estirpe UFLA 03-84, selecionada em trabalhos prévios por sua alta eficiência para caupi (Vigna unguiculata, pode ser indicada para estudos de inoculação, visando a aumentar o rendimento dessa cultura em solos salinos. Os meios de cultura 79 e LB foram eficientes para avaliar a tolerância relativa de rizóbio a NaCl, mas o meio 79 é mais indicado, pois permite o crescimento de todas as estirpes. Pelos resultados, infere-se haver relação entre tolerância in vitro à salinidade e origem dos microssimbiontes, pois as estirpes BR 4007 e BR 6806, oriundas do Ceará, estiveram entre as mais tolerantes.Tolerance to salinity of diazotrophic bacteriaand their host species could increase plant growth and sustainability in salt stressed soils. Twelve diazotrophic bacteria strains were studied regarding their tolerance to different NaCl concentrations in 79 and LB media. More tolerant (30 g L-1 strains in 79 medium were: the fast growers BR 6806 and BR 4007, isolated from northeast Brazil, UFLA 03-51 and UFLA 03-65, and slow growing strain UFLA03-84, being these last three isolated from Amazon region. These strains were among

  6. A tolerant lactic acid bacteria, Lactobacillus paracasei, and its immunoregulatory function.

    Science.gov (United States)

    Kou, Xiaohong; Chen, Qiong; Ju, Xiaoying; Liu, Huiping; Chen, Wenrong; Xue, Zhaohui

    2014-11-01

    The aim of the present investigation was to isolate a probiotic strain from 23 samples of yurts cheese and 21 samples of kumiss (collected from scattered households in Xinjiang and Inner Mongolia), and from eN-Lac Capsules, a health-promoting product. The isolates were subjected to biochemical characterization analysis and were tested for tolerance to low pH, sodium salt, bile salt, pepsin, and trypsin. 16S DNA sequence analysis was conducted to identify the strain. The possible dose-dependent role of strain LP2 in immunomodulation was investigated using the ICR mouse model (from the Institute of Cancer Research). Daily, we conducted clinical observations, a carbon clearance test, a spleen lymphocyte proliferation test, and measurements of body mass and lymphoid organ index. Natural killer cell activity and delayed-type hypersensitivity reaction were determined. The results showed that 3 selected strains (LP2, LP4, and LP9) had high tolerance to low pH, sodium chloride, and bile salt and were not significantly different from Lactobacillus paracasei in terms of morphology, colony, and biochemistry characterizations. A further tolerance test showed that LP2 had the highest survival rate (90%) under the conditions of pH 3.0, 0.3% bile salt, 10 mg/mL pepsin, and 10 mg/mL trypsin for 24 h. The sequence heterogeneities within the 16S rDNA genes molecularly elucidated that the LP2 belongs to the L. paracasei family, on the basis of a homology of 99.6%. A significant enhanced footpad swelling reaction and natural killer cell activity in the middle-dose (10(8) cfu/mL) and the high-dose (10(9) cfu/mL) groups were observed but without obvious dose dependence (P < 0.05). Lymphocyte proliferation was also increased significantly in a dose-dependent manner (P < 0.01) compared with that of the control group, indicating a positive immunoregulatory effect.

  7. Selection and characterizations of radiation-induced salinity-tolerant lines in rice

    International Nuclear Information System (INIS)

    Lee, I.S.; Kim, D.S.; Lee, S.J.; Song, H.S.; Lim, Y.P.; Lee, Y.I.

    2003-01-01

    NaCl tolerant cell lines were selected from irradiated callus, which were generated from seed cultures. M 1 -regenerates were obtained from the salt-tolerant callus cultured on the auxin-free medium for 30 days. Some regenerants were more tolerant than the parent variety (Dongjinbyeo) on a medium containing 0.75 % NaCl. Seeds (M 3 5,000 lines) derived from M 2 lines were grown to the 3 leaf stage. M 3 lines were soaked with a 0.75 % salt solution for 3 weeks and 350 salt-tolerant genotypes were selected. Among the M 3 350 lines, forty tolerant lines were selected from a saline field (10~14 mS) near the sea coast. Of the forty lines, two lines (18-1 and 50-1) showed more improved plant height, panicle length, tillering number, spikelet number and yield than those of the original variety. Thirty primers were screened and two RAPD markers were identified, which appeared in both the salt-tolerant lines (18-1 and 50-1). From DNA-hybridization experiments, it appeared that the fragment arose from the middle-repetitive copy sequences. The transcript involved in the marker showed a higher expression in the salt-tolerant lines than the sensitive lines. The salt-tolerant lines would be useful as a resource for salt-tolerant breeding. (author)

  8. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  9. Comparison of an antioxidant system in tolerant and susceptible wheat seedlings in response to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Feki, K.; Tounsi, S.; Brini, F.

    2017-07-01

    It has been demonstrated previously that the physiological and molecular analysis of seedlings of the tolerant (Om Rabia3) and susceptible (Mahmoudi) Tunisian wheat genotypes were different at short and long-term response to salinity. In this study, we examined the antioxidant defence system in seedlings of these two cultivars at short-term response to different NaCl concentrations. The findings showed that high salinity tolerance of cv. Om Rabia3, as manifested by lower decrease in its dry biomass, was associated with lower malondialdehyde and hydrogen peroxide contents, lower accumulation of the superoxide (O2⎯) in the roots and the shoots, and also lower decrease in ascorbate content than those in cv. Mahmoudi. Moreover, the expression of some genes coding for antioxidant enzymes such as the catalase, the superoxide dismutase and the peroxidase were enhanced by NaCl stress especially in the salt-tolerant cultivar. In parallel, their activities were increased in response to the same condition of stress and especially in the cv. Om Rabia3. Taken together, these data suggested that the capacity to limit oxidative damage is important for NaCl tolerance of durum wheat.

  10. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    Science.gov (United States)

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  11. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  12. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  13. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    Science.gov (United States)

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Isolation, characterization and partial purification of alpha-amylase from a marine bacillus NH-25

    International Nuclear Information System (INIS)

    Ahmad, M.; Zohra, R.R.

    2012-01-01

    Total 399 marine strains were isolated from the sea water sample and screened for thermostable amylase production. Out of these 52 were to have amylogenic activity. Among them 2 isolates were able to grow and produce amylase at 55 degree C. Strain NH-25 tolerates 30% salt, a wide j-H range (4-8) and retained 64% activity at 50 degree C after 60 minutes. (author)

  15. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Jinhui; Fan, Pengxiang; Jia, Weitao; Nie, Lingling; Jiang, Ping; Chen, Xianyang; Lv, Sulian; Wan, Lichuan; Chang, Sandra; Li, Shizhong; Li, Yinxin

    2015-02-26

    microRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far. Deep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5'-RACE. Our results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable

  16. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    Science.gov (United States)

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  17. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2015-05-01

    High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.

  18. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    International Nuclear Information System (INIS)

    Wang, Han; Song, Gangbing

    2011-01-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H ∞ formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions

  19. The dispersal and impact of salt from surface storage piles the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Reith, C.C.; Louderbough, E.T.

    1986-01-01

    A comprehensive program of ecological studies occurs at the Waste Isolation Pilot Plant (WIPP) in an effort to detect and quantify impacts of excavated salt which is stored on the surface in two piles: one having originated in 1980, the other in 1984. Both piles are surrounded by berms which channel runoff to holding ponds, so nearly all dispersal is due to the resuspension, transport, and deposition of salt particles by wind. Ecological parameters which have been monitored since 1984 include: visual evidence (via photography), soil properties, microbial activity, leaf-litter decomposition, seedling emergence, plant foliar cover, and plant species diversity. These are periodically assessed at experimental plots near the salt piles, and at control plots several kilometers away

  20. Heavy Metal Tolerance and Removal Capacity of Trichoderma species Isolated from Mine Tailings in Itogon, Benguet

    Directory of Open Access Journals (Sweden)

    Myra Tansengco

    2017-11-01

    Full Text Available Waste from mining industries contains various heavy metals that can pollute the environment. Bioremediation using efficient fungi can help in eliminating these heavy metal contaminants. This study focused on the isolation, identification, and characterization of heavy metal-resistant fungi from mine tailings in Itogon, Benguet. Isolation of fungi was done by serial dilution and spread plate techniques on potato dextrose agar (PDA with an individual heavy metal, i.e. chromium (Cr, copper (Cu, lead (Pb, zinc (Zn, and nickel (Ni. Of the 29 fungal isolates, four species were selected and molecularly identified as Trichoderma virens, T. harzianum, T. saturnisporum, and T. gamsii. Growth tolerance on PDA with increasing concentrations (200-1000 ppm of an individual heavy metal indicated the following trend: T. virens > T. harzianum > T. gamsii > T. saturnisporum. Growth test indicates that all Trichoderma isolates can tolerate high levels of Cr and Pb, however tolerance to Cu, Zn, and Ni was species specific. Shakeflask culture using T. virens showed high lead removal (91-96% over broad pH range while and at neutral pH, T. virens had 70% and 63% reductions for Cu and Cr, respectively. Results of this study highlights the potential of Trichoderma isolates for biological wastewater treatment in mining industries.

  1. Molecular markers associated with salt tolerance in Egyptian wheats ...

    African Journals Online (AJOL)

    Salinity affects plant growth by the osmotic stress of the salt around the roots, as well as by toxicity caused by excessive accumulation of salt in leaves. In the present study, seven common (Triticum aestivum) and two durum (T. turgidum ssp. Durum) wheat genotypes were subjected to salt stress for 2 weeks. Salt stress ...

  2. Rock salt as a medium for long-term isolation of radioactive wastes - a reassessment

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1985-01-01

    Rock salt has been regarded as a suitable medium for the permanent disposal of high and medium level radioactive wastes since the National Academy of Sciences recommended it in 1957. As a result of detained site-specific studies conducted for the Waste Isolation Pilot Plant (WIPP) project in New Mexico, however, several potential problems which are unique to bedded salt deposits have emerged. These include 1) the need to delineate the extent and rate of past dissolution and projections for the future, 2) the origin and significance of brines often found underlying the salt beds, 3) the rate and volume of migration of brine from the salt crystals towards the heat producing waste canisters, 4) the creep rates and implications for retrievability, and 5) the existence of potash and oil and gas resources with implications of human intrusion in the future. These questions will also be faced for sites in salt domes with added complications due to more complex structure and hydrology. The experience at WIPP shows that the site characterization process for high level waste repositories in bedded or dome salt should aim at identifying the important issues of site suitability early in the process and a clear program should be established to address these issues

  3. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Yue, Jing; Li, Cong; Liu, Yuwei; Yu, Jingjuan

    2014-01-01

    Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.

  4. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica promotes high salt tolerance in transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jing Yue

    Full Text Available Remorin proteins (REMs form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE and one ABA responsive element (ABRE. An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.

  5. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  6. Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter

    Czech Academy of Sciences Publication Activity Database

    Rosas-Santiago, P.; Zimmermannová, Olga; Vera-Estrella, R.; Sychrová, Hana; Pantoja, O.

    2016-01-01

    Roč. 1858, č. 1 (2016), s. 67-74 ISSN 0005-2736 Institutional support: RVO:67985823 Keywords : Erv14p * Nha1p * protein–protein interaction * mislocalization * salt-tolerance * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.498, year: 2016

  7. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  8. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  9. Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain.

    Science.gov (United States)

    Fang, Zhen; Zhang, Juan; Du, Guocheng; Chen, Jian

    2016-06-14

    The keratinase from Stenotrophomonas maltophilia (KerSMD) is known for its high activity and pH stability in keratin degradation. However, catalytic efficiency and detergent tolerability need to be improved in order to be used for industrial application. In this work, we obtained several keratinase variants with enhanced catalytic efficiency, thermophilicity, and anti-salt and detergent tolerability by partially truncating the PPC domain of KerSMD. The variants all showed improved catalytic efficiency to synthetic substrate AAPF, with the V355 variant having the highest kcat /Km value of 143.6 s(-1) mM(-1). The truncation of keratinase had little effect on alkaline stability but obviously decreased collagenase activity, developing its potential application in leather treatment. The variants V380, V370, and V355 were thermophilic, with a 1.7-fold enhancement of keratinlytic activity at 60 °C when compared to the wild type. The entire truncation of PPC domain obtained the variant V355 with improved tolerance to alkalinity, salt, chaotropic agents, and detergents. The V355 variant showed more than a 40% improvement in activity under 15% (w/v) NaCl or 4% (w/v) SDS solution, showing excellent stability under harsh washing and unhairing conditions. Our work investigated how protein engineering affects the function of PPC domain of KerSMD.

  10. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  11. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  12. Determination of the Relationship Between Seed and Seedling Leaf Characteristics and Salt Tolerance in Watermelon [Citrullus lanatus (Thunb. Mansf.] Genotypes

    Directory of Open Access Journals (Sweden)

    Özlem ÜZAL

    2017-10-01

    Full Text Available In order to determine the relationships between salt tolerance, seed and seedling characteristics, 16 watermelon genotypes collected from various regions of Turkey, and 3 standard and 2 F1 hybrid varieties were used as material in the study. The seedlings were grown in Hoaglands nutrient solution in aqua culture in an atmospheric controlled climatic environment, and 100 mM NaCl salt stress was applied when the seedlings had 4-5 true leaves,. It has been understood that watermelon genotypes have different responses to salt stress in seedling growth and ion uptake. The watermelon genotypes 18, 22, 28, 31 and 41, with large seed weights and large cotyledon leaves were less affected from salt damage by being more selective in ion uptake. Watermelon genotypes 33, 38, 39, 40 and 44 with low seed weights and cotyledon leaf weights were not selective on ion uptake and were more affected by salt damage. It has been observed that the parameters used in the study have a high correlation with each other.

  13. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  14. Incorporation of natural radionuclides and rare earth element into a salt tolerant plant

    International Nuclear Information System (INIS)

    Summerton, A.P.

    1992-01-01

    A highly salt tolerant shrub, samphire (Halosarcia halocnemoides), found growing in the solid alkaline residues in an evaporation pond at a former uranium and monazite treatment plant, has been analysed for natural radionuclides and rare earths. The data obtained have been copared with that for plants from the local natural environment. Vegetation-to-soil concentration ratios have been determined. The radionuclide concentration ratios for samples from the contaminated site are similar to those from the natural environment. Significant differences have been noted in the case of the rare earth elements with an apparent preferential incorporation of the light rare earth elements into the plant growing in the chemical residues. (author) 10 refs.; 1 fig.; 2 tabs

  15. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    Science.gov (United States)

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effective salt criteria in callus-cultured tomato genotypes.

    Science.gov (United States)

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  17. Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics.

    Science.gov (United States)

    Mandal, Hemanti; Jariwala, Ruchi; Bagchi, Tamishraha

    2016-04-01

    This study was conducted to select Lactobacillus strains from various sources on the basis of their probiotic attributes, such as acid and bile tolerance, binding to intestinal cells, and antimicrobial activity. Twelve isolates were obtained from human and food sources and were evaluated against standard probiotic Lactobacillus rhamnosus GG (LGG). Isolates were also studied for their antibiotic susceptibility. Isolate Lactobacillus fermentum GPI-6 showed the best survival profile at 0.3% and 1% bile salt, as compared with LGG. Isolates Lactobacillus plantarum GRI-2 and Lactobacillus salivarius GPI-4 showed no reduction in survival rate at pH 2.5. As expected, isolates showed strain-specific differences when comparing various attributes. Isolates GPI-4, GPI-7, and FA-5 showed better adhesion to HT-29, while isolate GPI-4 adhered better to Caco-2 cells than did LGG. However, when studying their ability to compete with Escherichia coli O26:H11, isolates GPI-6 and GPI-7 significantly inhibited E. coli adhesion to both HT-29 and Caco-2 cells compared with LGG. In conclusion, isolates GPI-4, GPI-7, and FA-5 showed excellent binding ability and antagonistic activity and better tolerance to acidic pH (pH 2.5) and to different bile salt concentrations in comparison with LGG, and hence, they could be considered as potential probiotic candidates.

  18. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum.

    Science.gov (United States)

    Liang, Qian-Yu; Wu, Yin-Huan; Wang, Ke; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Zhang, Lei; Jiang, Bei-Bei

    2017-07-06

    WRKY transcription factors play important roles in plant growth development, resistance and substance metabolism regulation. However, the exact function of the response to salt stress in plants with specific WRKY transcription factors remains unclear. In this research, we isolated a new WRKY transcription factor DgWRKY5 from chrysanthemum. DgWRKY5 contains two WRKY domains of WKKYGQK and two C 2 H 2 zinc fingers. The expression of DgWRKY5 in chrysanthemum was up-regulated under various treatments. Meanwhile, we observed higher expression levels in the leaves contrasted with other tissues. Under salt stress, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) enzymes in transgenic chrysanthemum were significantly higher than those in WT, whereas the accumulation of H 2 O 2 , O 2 - and malondialdehyde (MDA) was reduced in transgenic chrysanthemum. Several parameters including root length, root length, fresh weight, chlorophyll content and leaf gas exchange parameters in transgenic chrysanthemum were much better compared with WT under salt stress. Moreover, the expression of stress-related genes DgAPX, DgCAT, DgNCED3A, DgNCED3B, DgCuZnSOD, DgP5CS, DgCSD1 and DgCSD2 was up-regulated in DgWRKY5 transgenic chrysanthemum compared with that in WT. These results suggested that DgWRKY5 could function as a positive regulator of salt stress in chrysanthemum.

  19. Evaluation of rice germplasm under salt stress at the seedling stage through SSR markers

    Directory of Open Access Journals (Sweden)

    M. Al-Amin

    2013-06-01

    Full Text Available Twenty eight rice germplasms were used for identification of salt tolerant rice genotypes at the seedling stage at the experimental farm and Biotechnology laboratory of the Bangladesh Institute of Nuclear Agriculture (BINA, Mymensingh during February 2009 to October 2009. Phenotyping for salinity screening of the rice genotypes was done using salinized (EC level 12 dS m-1 nutrient solution in hydroponic system. Genotypes were evaluated for salinity tolerance on 1-9 scale based on seedling growth parameters following modified Standard Evaluation Scoring (SES of IRRI. Phenotypically, on the basis of SES and % total dry matter (TDM reduction of the genotypes viz. PBSAL-614, PBSAL-613, PBSAL-730, Horkuch, S-478/3 Pokkali and PBSAL (STL-15 were found to be salt tolerant; on the other hand Iratom-24, S-653/32, S-612/32, S-604/32, S-633/32, Charnock (DA6, BINA Dhan-6 and S-608/32 were identified as salt susceptible. For genotyping, ten SSR markers were used for polymorphism, where 3 primers (RM127, RM443 and RM140 were selected for evaluation of salt tolerance. In respect of Primer RM127, 7 lines were found salt tolerant and 11 lines were moderately tolerant and 10 lines were susceptible. Nine tolerant, 9 moderately tolerant and 10 susceptible lines were found when the primer RM140 was used and primer RM443 identified 8 lines as tolerant, 9 lines as moderately tolerant and 11 lines as susceptible. Thus, the salt tolerant lines can be used in further evaluation for salinity tolerance and the SSR markers used in this study are proving valuable for identifying salt tolerant genes in marker assisted breeding.

  20. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    Science.gov (United States)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  1. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  2. Assessment of salt tolerance of some newly developed and candidate wheat (triticum aestivum l.) cultivars using gas exchange and chlorophyll fluorescence attributes

    International Nuclear Information System (INIS)

    Kanwal, H.; Shahbaz, M.; Ashraf, M.

    2011-01-01

    The present study was aimed to assess salt tolerance of some newly developed and candidate cultivars of wheat using gas exchange and chlorophyll fluorescence parameters. Ten wheat cultivars including five newly developed (S-24, Saher-2006, Fsd-2008, Lasani and Inqlab-91) and five candidate (P .B-18, M.P-65, S.H-20, AARI-10 and G.A-20) were grown in sand culture. Salt stress (150 mM NaCl in Hoagland's nutrient solution) was applied at the seedling stage. A significant reduction in plant biomass production was recorded in all wheat cultivars. Cultivars S-24, Saher-2006 and Fsd-2008 showed less reduction in biomass production as compared with the other cultivars. Different gas exchange attributes such as leaf net photosynthetic rate (A), transpiration rate ( E), and stomatal conductance (gs) were also adversely affected due to salt stress and were positively associated with the plant biomass production of the genotypes under saline stress. More negative effects in relation to these gas exchange attributes were recorded in cvs. Lasani, G.A-20 and ARRI-10 than those in the other cultivars. Leaf maximum chlorophyll fluorescence (Fm), maximum fluorescence at steady state (Fms ), and photochemical fluorescence quenching (Qp) increased while maximum quantum yield (Fv/Fm), quantum yield of electron transport (Qp), electron transport rate ( ETR ) and non-photochemical quenching (Qn) decreased due to imposition of salt stress. The adverse effects of salt stress on these chlorophyll fluorescence attributes were minimum in cultivars S-24, Saher-2006 and Fsd-2008. A significant positive correlation was recorded between biomass production, different gas exchange attributes and chlorophyll fluorescence parameters. Overall, cvs. S-24, Saher-2006 and Fsd-2008 were ranked as salt tolerant on the basis of their performance in biomass production, gas exchange attributes and chlorophyll fluorescence parameters. (author)

  3. Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

    2010-12-15

    This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

  4. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress.

    Science.gov (United States)

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd.

  5. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  6. Screening of salinity tolerant jute (corchorus capsularis and c. olitorius) genotypes via phenotypic and phsiology-assisted procedures

    International Nuclear Information System (INIS)

    Hongyu, M.A.; Wang, Z.; Wang, X.

    2011-01-01

    To obtain salt tolerant genotypes, salt tolerance of 10 jute genotypes of different origins was evaluated by relative salt harm rate at germination stage and by index of salt harm at seedling stage, respectively. The results indicated that salt tolerance of germination stage of jute was consistent with that of seedling stage, with a markedly significant (P < 0.01) correlation of 0.8432 (n =10). Two high salt tolerant genotypes (Huang No.1 and 9511) and two salt sensitive genotypes (Mengyuan and 07-21) were screened out by these methods. Further activity analysis of POD, SOD and CAT and determination of MDA content at seedling stage validated that genotypes Huang No.1 and 9511 were more salt tolerant than genotypes Mengyuan and 07-21. Our results indicated that the combination of relative salt harm rate at germination stage and index of salt harm at seedling stage can be used to evaluate salt tolerance of jute genotypes. (author)

  7. Isolation and characterization of Arabidopsis mutants with enhanced tolerance to oxidative stress

    NARCIS (Netherlands)

    Qureshi, Muhammad K.; Radeva, Vesela; Genkov, Todor; Minkov, Ivan; Hille, Jacques; Gechev, Tsanko S.; Liu, J.-H.

    We have previously reported a method for isolation of mutants with enhanced tolerance to the fungal AAL toxin and given a detailed characterization of atr1 (AAL toxin resistant, Gechev et al. in Biochem Biophys Res Commun 375:639-644, 2008). Herewith, we report eight more mutants with enhanced

  8. Highlighting the mechanisms by which proline can confer tolerance to salt stress in cakile maritima

    International Nuclear Information System (INIS)

    Messedi, D.; Farhani, F.; Hamed, K.B.; Trabelsi, N.; Ksouri, R.; Chedly Abdelly, C.; Athar, H.U.R.

    2016-01-01

    Cakile maritima is an oleaginous halophyte growing in the sandy dunes along the Tunisian coast. In order to investigate the role of proline in inducing high salinity tolerance (200 and 400 mM NaCl) in this halophyte, we studied several aspects of the salt responses of C. maritma under exogenous proline supply (20 mM). Salinity levels above 100 mM, reduced growth, photosynthetic activity, and quantum yield of photosystem II (FPSII), while increasing the non photochemical quenching (NPQ). Significant inhibition of the linear electron transport rate (ETR) was also observed in plants grown at 400 mM NaCl. In addition, polyphenol content, total antioxidant and DPPH scavenging activities increased due to increasing salinity stress, and the concentration of malondialdehyde (MDA) also increased. The application of proline counteracted all these adverse effects of salt stress in plants grown at 200 mM NaCl, while it improved some of these physiological attributes at 400 mM NaCl. In addition, contribution of Na+ for the osmotic adjustment decreased in the leaves of salt treated plants supplied with proline exogenously. Exogenous application of proline induced the accumulation of potassium, proline and soluble carbohydrates in salt stressed plants, particularly at 400 mM. This explained the reason of growth enhancement induced by proline application. All together, our Results showed that the beneficial effect of exogenous proline on the response of C. maritima to salinity was due to its role in the protection of chloroplast structures, antioxidant defenses and osmotic adjustment. (author)

  9. The response of transgenic Brassica species to salt stress: a review.

    Science.gov (United States)

    Shah, Nadil; Anwar, Sumera; Xu, Jingjing; Hou, Zhaoke; Salah, Akram; Khan, Shahbaz; Gong, Jianfang; Shang, Zhengwei; Qian, Li; Zhang, Chunyu

    2018-06-01

    Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.

  10. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    Directory of Open Access Journals (Sweden)

    Adassa Gama Tavares

    2015-09-01

    Full Text Available Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl, potassium chloride (KCl, lactic acid (LA and acetic acid (AA after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC of Origanum vulgare L. essential oil (OVEO. The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation.

  11. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  12. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  13. Test Results and Comparison of Triaxial Strength Testing of Waste Isolation Pilot Plant Clean Salt

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Stuart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined, the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.

  14. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.

    Science.gov (United States)

    Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao

    2017-10-01

    Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO 2 NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO 2 NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO 2 NPs (0, 500 mg kg -1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO 2 NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO 2 NPs shortened the root apoplastic barriers which allowed more Na + transport to shoots and less accumulation of Na + in plant roots. The altered Na + fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of calcium on the salt tolerance of different wheat (triticum aestivum l.) genotypes

    International Nuclear Information System (INIS)

    Arshad, M.; Saqib, M.; Akhtar, J.

    2012-01-01

    In saline soil conditions the availability and uptake of Ca/sup 2+/ is reduced that results in the loss of membrane integrity and other disorders associated with Ca/sup 2+/ deficiency in plants. A wheat genotype efficient in uptake and utilization of calcium under saline conditions may be better able to withstand saline conditions in the field. Very little information is available on wheat response to salinity and low Ca/sup 2+/ as screening of wheat genotypes has usually been done against salinity alone. The present study was designed to evaluate the performance of different wheat genotypes against salinity at low and adequate calcium supply. The experiment was conducted in hydroponics with four treatments including T1: non-saline with adequate Ca/sup 2+/, T2: non-saline with low Ca/sup 2+/ (level of calcium was 1/4 of the adequate level), T3: saline (125 mM NaCl) with adequate Ca/sup 2+/ and T4: saline with low calcium. All the physical growth parameters including shoot length, root length, and shoot and root fresh weights were decreased significantly due to salinity and low calcium alone as well as in combination. Reduction was more pronounced under the combined stress of salinity and low calcium and different genotypes differed significantly in different stress treatments for shoot and root fresh weight production. In saline treatment (T3), the genotypes 25-SAWSN-39 and 25-SAWSN-31 showed better growth performance and accumulated lower Na+ and higher Ca/sup 2+/ where as the genotypes 25-SAWSN-35 and 25-SAWSN-47 showed less growth and had less accumulation of Ca/sup 2+/ and high accumulation of Na+. In salinity + low calcium treatment the genotype 25-SAWSN-39 behaved as a tolerant genotype where as 25-SAWSN-31 behaved similar to the sensitive genotype and these differences were due to high accumulation of Ca/sup 2+/ in 25-SAWSN-39 and vice versa. This study shows that the salt tolerance of wheat genotypes differs with the availability and accumulation of calcium

  16. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan

    Directory of Open Access Journals (Sweden)

    Pilla Sankara Krishna

    2015-12-01

    Full Text Available We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000.

  17. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  19. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes.

    Science.gov (United States)

    Morais, Maria Cristina; Panuccio, Maria Rosaria; Muscolo, Adele; Freitas, Helena

    2012-06-01

    Salt tolerance of two co-occurring legumes in coastal areas of Portugal, a native species--Ulex europaeus, and an invasive species--Acacia longifolia, was evaluated in relation to plant growth, ion content and antioxidant enzyme activities. Plants were submitted to four concentrations of NaCl (0, 50, 100 and 200 mM) for three months, under controlled conditions. The results showed that NaCl affects the growth of both species in different ways. Salt stress significantly reduced the plant height and the dry weight in Acacia longifolia whereas in U. europaeus the effect was not significant. Under salt stress, the root:shoot ratio (W(R):W(S)) and root mass ratio (W(R):W(RS)) increased as a result of increasing salinity in A. longifolia but the same was not observed in U. europaeus. In addition, salt stress caused a significant accumulation of Na+, especially in U. europaeus, and a decrease in K+ content and K+/Na+ ratio. The activities of antioxidant enzymes were higher in A. longifolia compared to U. europaeus. In A. longifolia, catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2.) activities increased significantly, while ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POX, EC 1.11.1.7) activities remained unchanged in comparison with the control. In U. europaeus, NaCl concentration significantly reduced APX activity but did not significantly affect CAT, GR and POX activities. Our results suggest that the invasive species copes better with salinity stress in part due to a higher rates of CAT and GR activities and a higher K+/Na+ ratio, which may represent an additional advantage when competing with native species in co-occurring salty habitats. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary

    Energy Technology Data Exchange (ETDEWEB)

    Austin, B.; Allen, D.A.; Mills, A.L.; Colwell, R.R.

    1977-01-01

    A total of 230 strains of metal-tolerant bacteria from water and sediment samples collected in Chesapeake Bay were isolated on medium containing cobalt, lead, mercury, or molybdenum. In addition, a set of 71 cultures were simultaneously isolated on glucose tryptone yeast extract agar medium without metals. Twenty-three reference strains were also included in the numerical taxonomy study of these bacteria, bringing the grand total of strains examined to 324. All strains were examined for 112 biochemical, cultural, morphological, and physiological characters. The taxonomic data obtained were analyzed by computer and the simple matching (S/sub SM/) and Jaccard (S/sub J) coefficients were calculated. Clustering achieved by unweighted average linkage is presented and, from sorted similarity matrices and dendrograms, 294 strains, i.e., 97% of the total, were recovered in 12 phenetic groups defined at the 75 to 80% similarity level. Among the strains there were nine phena presumptively identified as Bacillus, Erwinia, Mycobacterium, Pseudomonas, and coryneforms. From the results of the taxonomic study, it is concluded that metal tolerance in estuarine water and sediment bacteria occurs among a restricted range of taxa distributed throughout the estuarine environment. 61 references, 1 figure, 6 tables.

  1. Monitoring the Short-Term Response to Salt Exposure of Two Genetically Distinct Phragmites australis Clones with Different Salinity Tolerance Levels

    DEFF Research Database (Denmark)

    Achenbach, Luciana; Brix, Hans

    2014-01-01

    work was conducted at the laboratory of the Institute of Bioscience, Aarhus University, Denmark. Methods: The light-saturated photosynthetic rate (Pmax), stomata conductance (gs) and transpiration rate (E) were measured over different periods of salt exposure (15, 70 and 240 minutes) and at different...... in the 15-minute experiment. The Greeny-type also recovered after the 70-minute exposure, but not the Land-type. We conclude that the response to osmotic stress is genotype-dependent and that the salt-tolerant clone possesses very efficient signaling pathways to detect changes in the soil water potential...

  2. Effects of Two Salts Compounds on Mycelial Growth, Sporulation, and Spore Germination of Six Isolates of Botrytis cinerea in the Western North of Algeria

    Directory of Open Access Journals (Sweden)

    Boualem Boumaaza

    2015-01-01

    Full Text Available Six isolates of Botrytis cinerea were isolated from leaves and stems of different tomato varieties taken from four areas in the northwest of Algeria where tomato is mostly grown in greenhouses and high tunnels. The purpose of this research was to determine the effect of two salts, NaCl and CaCl2, on three stages of Botrytis cinerea’s life cycle. All isolates tested were stimulated in 50 to 150 ppm; NaCl was the most effective treatment to increase mycelial growth at two tested concentrations. However, at 300 ppm concentration, CaCl2 completely inhibited the growth of mycelium; they reach 34.78% for the isolate TR46 and 26.72% for isolate F27. The sodium and calcium salts stimulated conidia production in liquid culture. We noticed that the effect of calcium chloride on sporulation was average while sodium chloride. In the medium containing 50 ppm, calcium chloride and sodium chloride increased the germination capacity of most isolates compared with the control. Other calcium salts, at 100 or 300 ppm, decreased the germination percentage of the conidia. With the exception of sodium salts, the inhibitions of germination reduce at 150 or 300 compared with the control. Conidial germination was slightly inhibited by sodium chloride only when the concentration was over 300 ppm.

  3. Expression of miRNAs confers enhanced tolerance to drought and salt stress in Finger millet (Eleusine coracona

    Directory of Open Access Journals (Sweden)

    Nageshbabu R.

    2013-08-01

    Full Text Available Plants respond to the environmental cues in various ways, recent knowledge of RNA interference in conferring stress tolerance had become a new hope of developing tolerant varieties. Here we attempt to unfold the molecular mechanism of stress tolerance through miRNA profiling and expression analysis in Finger millet (Eleusine coracona under salt and drought stress conditions. The expression analysis of 12 stress specific conserved miRNAs was studied using semi-quantitative real time PCR and Northern blot assay. Our studies revealed that, although most of the miRNAs responded to the stresses, the expression of particular miRNA differed with the nature of stress and the tissue. The expression analysis was correlated with the existing data of their target genes. Abiotic stress up-regulated miRNAs are expected to target negative regulators of stress responses or positive regulators of processes that are inhibited by stresses. On the other hand, stress down-regulated miRNAs may repress the expression of positive regulators and/or stress up-regulated genes. Thus the current study of miRNAs and their targets under abiotic stress conditions displays miRNAs may be good candidates to attribute the stress tolerance in plants by transgenic technology.

  4. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Ashok A. Nikam

    2015-02-01

    Full Text Available Gamma ray-induced in vitro mutagenesis and selection for salt (NaCl tolerance were investigated in sugarcane (Saccharum officinarum L.. Embryogenic callus cultures were irradiated (10 to 80 Gy and subjected to in vitro selection by exposure of irradiated callus to NaCl (0, 50, 100, 150, 200, and 250 mmol L− 1. Increasing NaCl concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+ and K+ concentration. Higher accumulation of proline and glycine betaine was observed in NaCl stressed callus irradiated at 20 Gy. Na+ concentration increased and K+ concentration decreased with increasing salt level. Irradiated callus showed 50–60% regeneration under NaCl stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%, number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.

  5. [Effects of salt stress on germination and in vitro growth of pistachio (Pistacia vera L.)].

    Science.gov (United States)

    Benmahioul, Benamar; Daguin, Florence; Kaid-Harche, Meriem

    2009-08-01

    In order to study the salinity tolerance of pistachio (Pistacia vera L.), embryos developed from mature seeds were isolated and cultured in vitro and subjected to different NaCl concentrations (0, 42.8, 85.5, 171.1 and 256.6 mM) for 30 days. The results showed that in vitro germination of embryonic axes was not affected by the salt concentration. However, the germinated embryo survival rates decreased from 100% for the control to 62.9% for the highest salt concentration (256.6 mM). In addition, the plantlet growth (length of aerial and root parts, number of leaf produced per embryo, as well as the production of total fresh and dry matter for both aerial parts and roots) showed significant differences according the various salt concentrations.

  6. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil.

    Science.gov (United States)

    Park, Ki-Hyun; Lee, O-Mi; Jung, Ho-Il; Jeong, Jin-Ha; Jeon, Young-Dong; Hwang, Dae-Youn; Lee, Chung-Yeol; Son, Hong-Joo

    2010-04-01

    We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.

  7. Genetic Approaches to Develop Salt Tolerant Germplasm

    KAUST Repository

    Tester, Mark A.

    2015-08-19

    Forty percent of the world\\'s food is produced under irrigation, and this is directly threatened by over-exploitation and changes in the global environment. One way to address this threat is to develop systems for increasing our ability to use lower quality water, in particular saline water. Low cost partial desalination of brackish water, use of saline water for cooling and increases in the salinity tolerance of crops can all contribute to the development of this new agricultural system. In this talk, the focus will be on the use of forward genetic approaches for discovery of genes related to salinity tolerance in barley and tomatoes. Rather than studying salinity tolerance as a trait in itself, we dissect salinity tolerance into a series of components that are hypothesised to contribute to overall salinity tolerance (following the paradigm of Munns & Tester, 2008). For example, one significant component of tolerance of most crop plants to moderate soil salinity is due to the ability to maintain low concentrations of Na+ in the leaves, and much analysis of this aspect has been done (e.g. Roy et al., 2013, 2014). A major site for the control of shoot Na+ accumulation is at the plasma membrane of the mature stele of the root. Alleles of HKT, a major gene underlying this transport process have been characterized and, in work led by Dr Rana Munns (CSIRO), have now been introgressed into commercial durum wheat and led to significantly increased yields in saline field conditions (Munns et al., 2012). The genotyping of mapping populations is now highly efficient. However, the ability to quantitatively phenotype these populations is now commonly limiting forward progress in plant science. The increasing power of digital imaging and computational technologies offers the opportunity to relieve this phenotyping bottleneck. The Plant Accelerator is a 4500m2 growth facility that provides non-destructive phenotyping of large populations of plants (http

  8. Glutaminase-producing Meyerozyma (Pichia) guilliermondii isolated from Thai soy sauce fermentation.

    Science.gov (United States)

    Aryuman, Phichayaphorn; Lertsiri, Sittiwat; Visessanguan, Wonnop; Niamsiri, Nuttawee; Bhumiratana, Amaret; Assavanig, Apinya

    2015-01-02

    In this study, 34 yeast isolates were obtained from koji and moromi samples of Thai soy sauce fermentation. However, the most interesting yeast strain was isolated from the enriched 2 month-old (M2) moromi sample and identified as Meyerozyma (Pichia) guilliermondii EM2Y61. This strain is a salt-tolerant yeast that could tolerate up to 20% (w/v) NaCl and produce extracellular and cell-bound glutaminases. Interestingly, its glutaminases were more active in 18% (w/v) NaCl which is a salt concentration in moromi. The extracellular glutaminase's activity was found to be much higher than that of cell-bound glutaminase. The highest specific activity and stability of the extracellular glutaminase were found in 18% (w/v) NaCl at pH4.5 and 37°C. A challenge test by adding partially-purified extracellular glutaminase from M. guilliermondii EM2Y61 into 1 month-old (M1) moromi sample showed an increased conversion of L-glutamine to L-glutamic acid. This is the first report of glutaminase producing M. guilliermondii isolated from the moromi of Thai soy sauce fermentation. The results suggested the potential application of M. guilliermondii EM2Y61 as starter yeast culture to increase l-glutamic acid during soy sauce fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    Science.gov (United States)

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  10. Probiotic Properties of Lactobacilli Isolated from Thai Traditional Food

    OpenAIRE

    KLAYRAUNG, Srikanjana; VIERNSTEIN, Helmut; SIRITHUNYALUG, Jakkapan; OKONOGI, Siriporn

    2008-01-01

    Certain properties relevant to probiotic action, e.g. resistance to acid, bile tolerance, adhesive properties, antibacterial activity, and antibiotic susceptibility were investigated of lactobacilli isolated from four kinds of Thai traditional fermented foods. Media of pH = 2.0–7.0 and bile salt concentrations of 0.3–1.0% were used as stress conditions. The adhesive properties were assessed by determination of bacterial hydrophobicity. Antibacterial activity of the probiotic lactobacilli was ...

  11. Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk

    Science.gov (United States)

    Jatmiko, Yoga Dwi; Howarth, Gordon S.; Barton, Mary D.

    2017-11-01

    This study aimed to characterize the probiotic properties of lactic acid bacteria from the naturally fermented milk of Indonesia, namely dangke and dadih. Fifty-one representative lactic acid bacteria belonging to the species Lactobacillus Plantarum, Lactococcus lactis subsp. lactis and Enterococcus faecium were evaluated in vitro for potential probiotic properties based on their bile salt resistance, low pH tolerance, antimicrobial activity, antibiotic susceptibility and adherence to Caco-2 colon cancer cells. In addition, bacteriocin related gene (plantaricin A), bile salt hydrolase (bsh) and mannose-specific adhesin (msa) genes in the genome of lactobacilli were also examined. None of the dangke isolates, which belonged to the species L. lactis subsp. lactis tolerated low pH. However, eight of the isolates were able to grow in the presence of bile salts. It was observed that L. plantarum strain S1.30 and SL2.7 from dadih tolerated low pH, survived bile salt concentrations and were resistant to vancomycin. Furthermore, these strains also contained bacteriocin regulating gene (plantaricin A) and msa and bsh genes in their genome. However, only the strain S1.30 exhibited optimal antimicrobial activity against the selected pathogens and was able to adhere to Caco-2 cells by up to 82.24±0.14%. Antagonistic activity of L. lactis subsp. lactis from dadih and dangke was not detected. However, 73.94±1.26% adherence to Caco-2 cells was demonstrated by L. lactis subsp. lactis strain SL3.34 sourced from dangke. These results suggest that Lactobacillus plantarum strain S1.30 associated with dadih fulfilled the in vitro probiotic criteria and could be exploited for further in vivo evaluation. In addition, dadih was an effective probiotic carrier compared to dangke.

  12. Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

    International Nuclear Information System (INIS)

    Yap, C.K.; Yazdani, M.; Abdullah, F.; Tan, S.G.

    2011-01-01

    The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/ L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC 50 value of the isolate was 287.73 mg/ L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/ g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4 %, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem. (author)

  13. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-12-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

  14. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    Directory of Open Access Journals (Sweden)

    Sonika Gupta

    2016-01-01

    Full Text Available The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  15. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    Science.gov (United States)

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  16. Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property.

    Science.gov (United States)

    Anandharaj, Marimuthu; Sivasankari, Balayogan

    2014-08-01

    The objective of this study was to evaluate the probiotic properties of Lactobacillus strains isolated from mother's milk and their effects on cholesterol assimilation. In this study 120 isolates from mother's milk were phenotypically and genotypically characterized. Among these, only 6 predominant strains were identified as Lactobacillus spp. The following parameters were selected as important test variables in model stomach passage survival trials: acid and bile tolerance, antimicrobial activity, antibiotic susceptibility and cholesterol reduction. Results showed that the considerable variation existed among six strains. Moreover, the strain HMI68 is the most acid-tolerant and the HMI28 and HMI74 is the most acid-sensitive of all strains tested. HMI118 did not grow at 0.5% and 1% bile concentration after 5 h but the HMI68 and HMI43 showed some tolerance to such bile concentration. The differences found in the growth rate were not significant (P > 0.05). HMI68 showed resistance to most of the antibiotics as well as antagonistic activity against the tested pathogens. The amount of cholesterol reduction is increased when the media supplemented with bile salts. HMI68 assimilate 61.05 ± 0.05 μg/ml cholesterol with the presence of 0.3% bile salt this could be significantly decreased by 25.41 ± 1.09 μg/ml without bile salt. HMI68 was identified to be Lactobacillus oris HMI68 and 16S rRNA sequence was deposited in the National Center for Biotechnological Information (GenBank). For the first time the cholesterol-reducing property of L. oris isolated from mother's milk were investigated in this study. Therefore the effective L. oris HMI68 strain was regarded as a candidate probiotic. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    Cam Van, Do Thi

    2013-08-01

    Compost and residues from biogas plant have been increasingly recognized as potting substrates in horticulture. To investigate the suitability of both materials to grow salt tolerant plants in 2010 a pot experiment was conducted in the greenhouse of INRES-Plant nutrition, University of Bonn. Ryegrass (Lolium perenne L.), rape (Brassica napus) and sunflower (Helianthus annuus) were chosen as experimental plants. To reduce the high salt content compost and residues from biogas plant were leached. To improve physical characteristics of raw materials, additives including Perlite, Styromull, Hygromull, Lecaton, Peat, Cocofiber were incorporated into compost or residues from biogas plant with the volumetric ratio of 4:1. Plant growth (DM) and nutrient uptake (N, P, K, Mg, Ca, Na and S) of the experimental plants grown in compost-based or residue-based substrates with and without additives and standard soil as a control were determined. Preliminary results reveal that origin compost and residues from biogas plant without leaching are suitable potting substrates for those plants. For compost leaching may not be recommended while for residues from biogas plant the effect of leaching was not distinct and needs further investigations. The incorporation of additives into the basic materials partially resulted in higher plant dry matter yield and nutrient uptake. However, differences between the additives on both parameters were mainly insignificant. Incorporation of Hygromull or Peat, especially into residues from biogas plant favored plant growth and enhanced total nutrient uptake. In 2011, pot experiments were continued with the salt-sensitive ornamental plants, Pelargonium (Pelargonium zonale Toro) and Salvia (Salvia splendens). Two separate experiments were carried out for the mixtures of compost and additives (SPS standard soil type 73 based on Peat, Hygromull or Cocofiber) with different volumetric ratios (4:1, 1:1, 1:4) and the mixtures of Peat incorporated with small

  18. Identification of halophile bacteria from salt deserts of Iran and study some of their physiological traits

    Directory of Open Access Journals (Sweden)

    Maryam Safdarian

    2017-06-01

    Full Text Available Introduction: Halophiles and halotolerant microorganisms are some of the extremophiles that are able to grow in medium containing sodium chloride and have adapted to life in salinity environments. Halophiles bacteria in saline soils by maintaining the food chain, decomposition of organic matter and improvement of soil structure and fertility improve soil conditions. Materials and methods: In order to isolate the halotoletant bacteria, from the halophyte rhizosphere, four desert areas in Golestan province were sampled. To check the Extremophile of isolates, their resistance was tested for resistant to salinity, drought, temperature and PH. Also, plant growth promoting traits were measured. Results: Fromforty-five strains which were isolated, three strains (G3, G6 and G14 have demonstrated the ability of resistance to 35% salt. Isolates G6 and G3 phosphate solubiliziation power of 301 and 201 ppm, respectively. Isolated G6 micrograms produced auxin 20/7 Mg/ ml. G14 and G6 grow at 50 °C, pH = 10 and osmotic potential -0 /7MPa. While G3 strain grows at 50 °C, pH = 7/ 5 and osmotic potential -0/49. The three strains of the bacterial genera Bacillus and Pseudomonas, respectively. Discussion and conclusion: In this study, isolates due to the growth in concentrations of salt and saturated salt tolerance of extreme environmental conditions and are likely halotolerant or halophile bacteria and its potential for use in various fields of biotechnology including biotech, industrial enzyme production and biological fertilizers for saline soil improvement.

  19. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  20. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Comparison of Microbiological and Probiotic Characteristics of Lactobacilli Isolates from Dairy Food Products and Animal Rumen Contents

    Directory of Open Access Journals (Sweden)

    Neethu Maria Jose

    2015-04-01

    Full Text Available Lactobacilli are employed in probiotic food preparations and as feed additives in poultry and livestock, due to health benefits associated with their consumption. The objective of this study was to evaluate and compare the probiotic potential of ten lactobacilli strains isolated from commercial dairy food products and animal rumen contents in New Zealand. Genetic identification of the isolates revealed that all belonged to the genus Lactobacillus, specifically the species L. reuteri, L. rhamnosus and L. plantarum. All isolates did not show any haemolytic behaviour. Isolates of dairy origin showed better tolerance to low pH stress. On the other hand, rumen isolates exhibited a higher tolerance to presence of bile salts. All isolates exhibited resistance to aminoglycoside antibiotics, however most were sensitive to ampicillin. Isolates of rumen origin demonstrated a higher inhibitory effect on Listeria monocytogenes, Enterobacter aerogenes and Salmonella menston. Bacterial adherence of all isolates increased with a decrease in pH. This screening study on lactobacilli isolates has assessed and identified potential probiotic candidates for further evaluation.

  2. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  3. Acclimation improves salt stress tolerance in Zea mays plants.

    Science.gov (United States)

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Isolation and characterization of pigmented bacteria showing antimicrobial activity from Malaysian marine environment

    Directory of Open Access Journals (Sweden)

    Ahmad, A.

    2013-01-01

    Full Text Available Aims: Natural products play a prominent role in the discovery of leads for the development of drugs in the treatment ofhuman diseases. Much of nature remains to be explored, especially marine and microbial environments.Methodology and results: Fifty-five pigmented marine bacteria were isolated from sponges, seawater, mangrovesediment, sea cucumber and mussel from different coastal area of Malaysia. The antimicrobial activities of thesebacteria were investigated by disk diffusion method against pathogenic bacteria. Out of 55 isolates, 18 isolates exhibitedantimicrobial activity, which based on morphological characterization, 53% of them were Gram positive and 47% wereGram negative. All active isolates were able to tolerate more than 4% NaCl in the nutrient agar medium that indicatedthey were autochthonous to marine environment and moderate salt tolerant in nature. Molecular identification of isolatesby the strong antimicrobial activities indicates that isolates WPRA3 (JX020764 and SM11-3j belong to genus Serratiaand isolate SDPM1 (JQ083392 belongs to genus Zooshikella.Conclusion, significance and impact of study: The results of present study revealed that the active isolates arepotential producer of antimicrobial secondary metabolites and might be utilized as drug candidate.

  5. Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum.

    Science.gov (United States)

    Yousfi, Fatma-Ezzahra; Makhloufi, Emna; Marande, William; Ghorbel, Abdel W; Bouzayen, Mondher; Bergès, Hélène

    2016-01-01

    WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat ( Triticum turgidum L . ssp. durum ). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum . The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis -regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots

  6. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  7. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. The study of salinity and drought tolerance of Sinorhizobium meliloti isolated from province of Kerman in vivo condition

    Directory of Open Access Journals (Sweden)

    mahboobe abolhasani zeraatkar

    2009-06-01

    Full Text Available It is well known that the host plant inoculation by native strains with high efficiency has a positive effect on plant yield and biological nitrogen fixation process. The main aim of this investigation was to based on salinity and drought experiments, four isolates of Sinorhizobium meliloti (S27K and S36K tolerant isolates, S109K semi-sensitive isolate, S56K sensitive isolate were selected for plant inoculation which was under drought stress in greenhouse condition. This experiment was carried out by using a factorial model in completely randomized design. Results showed that inoculation of alfalfa plants with high salinity and drought tolerant of Sinorhizobium meliloti bacteria could increased biological nitrogen fixation process (symbiotic efficiency, percent crude protein and yield of alfalfa under salinity and drought conditions significantly. There were not any significant differences between S27K and S36K isolates and positive control (no nitrogen limitation. Symbiotic efficiency increased 3.4 times higher than alfalfa plants were inoculated by sensitive isolates S56K when alfalfa plants were inoculated by S27K and S36K isolates.

  9. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  10. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  11. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  12. Properties of Halococcus salifodinae, an Isolate from Permian Rock Salt Deposits, Compared with Halococci from Surface Waters

    Directory of Open Access Journals (Sweden)

    Helga Stan-Lotter

    2013-02-01

    Full Text Available Halococcus salifodinae BIpT DSM 8989T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl, whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing hypotheses on prokaryotic evolution, such as the molecular clock concept, or the net-like history of genome evolution. A comparison of available taxonomic characteristics from strains of Hcc. salifodinae and other Halococcus species, most of them originating from surface waters, is presented. The cell wall polymer of Hcc. salifodinae was examined and found to be a heteropolysaccharide, similar to that of Hcc. morrhuae. Polyhydroxyalkanoate granules were present in Hcc. salifodinae, suggesting a possible lateral gene transfer before Permian times.

  13. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  14. Evaluation of rice genotypes to salt stress in different growth stages ...

    African Journals Online (AJOL)

    Tolerant genotypes were tested in young seedling stage in hydroponic system and then reproductive stage in 2010. Results show that vegetative growth was less affected by salt stress comparison to reproductive stage. Na and Na-K ratio in tolerant genotypes were lower than suspectible genotypes in salt condition in ...

  15. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  16. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  17. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    Science.gov (United States)

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value  0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  19. Study of Tannin- degrading bacteria isolated from Pistachio soft hulls and feces of goat feeding on it

    Directory of Open Access Journals (Sweden)

    Arezoo Tahmourespour

    2017-01-01

    Full Text Available Introduction: Tannins (tannic acid are toxic, high molecular weight and water- soluble polyphenols that are present in many plants such as pistachio and its by- products. Wide ranges of microorganisms including bacteria tolerate tannin and degrade it. The aim of this study was to isolate and characterize tannin- tolerant bacteria from pistachio soft hulls (P- SH and feces of goat before and after feeding on this by- product as tannin rich diet. Materials and methods: Tannin tolerant bacteria were isolated from enrichment cultures of samples in medium containing tannic acid as a sole source of carbon and energy. Tannin hydrolyzing ability of isolates was confirmed by observation of clear zones around the colonies. The increasing concentrations of tannin on minimal salt medium (MSM agar plates were used to test the maximum tolerable concentrations (MTCs. Furthermore, in the supplemented media tannin concentrations were measured by bovine serum albumin (BSA precipitation assay during time intervals. Results: Tannin- degrading bacterial population of P- SH was about only 10.3% of total population. More than 50 percent of tannin degrading strains were isolated from goat feces after grazing on tannin rich diet. Isolated bacteria were Gram- negative and positive rod species belonging to Klebsiella, Pseudomonas, Bacillus, Escherichia and Enterobacter genera. Among the isolated bacteria 71.4% could tolerate the concentration of 64 g/l of tannin in their media while only 7.2% were able to tolerate the maximum tannin concentration of 16 g/l. Bacterial isolates of goat feces could degrade tannin more than 72% after 72 h of incubation. In the case of soft P- SH isolates, the biodegradation percentage was between 17- 75%. Discussion and conclusion: Feeding of tannin rich diet induced a shift in digestive system microbial profile with increased population of tannin tolerant bacteria. The ability of isolated strains provides novel insights for the role they can

  20. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.

    Science.gov (United States)

    Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui

    2015-05-22

    Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. Copyright © 2015. Published by Elsevier B.V.

  1. Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation1[W][OA

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-01-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419

  2. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  3. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  4. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  5. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  6. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  7. to salt stress

    African Journals Online (AJOL)

    Tony

    2012-02-14

    Feb 14, 2012 ... 3Inner Mongolia Industrial Engineering Research, Center of University for Castor, Tongliao 028042, ... strengthen and improve salt stress tolerance in plants. .... 2 µl cDNA, 1 µl each of 4 µM forward and reverse primer, 0.2 µl.

  8. Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development.

    Science.gov (United States)

    Chanratana, Mak; Han, Gwang Hyun; Roy Choudhury, Aritra; Sundaram, Seshadri; Halim, Md Abdul; Krishnamoorthy, Ramasamy; Kang, Yeongyeong; Sa, Tongmin

    2017-11-21

    Salinity is one of the major factors contributing to the loss of crop productivity and thereby impacting livelihood of people in more than 100 countries of the world and the area of land affected by salinity is increasing day by day. This will worsen due to various factors such as drought that might result in high soil salinity. Use of plant growth promoting rhizobacteria is one of the promising eco-friendly strategies for salinity stress management as part of sustainable agricultural practices. However, it requires selecting rhizobacteria with good survivability and adaptation to salt stress. In this study we report aggregation of Methylobacterium oryzae CBMB20 cells grown in media containing high C/N ratio (30:1) than in media containing low C/N ratio (7:1). Aggregated Methylobacterium oryzae CBMB20 cells exhibited enhanced tolerance to UV irradiation, heat, desiccation, different temperature regimes, oxidative stress, starvation and supported higher population in media. Poly-β-hydroxybutyrate accumulation, exopolysaccharide production, proline accumulation and biofilm formation were good at 100 mM salt concentration with good microbial cell hydrophobicity at both 50 and 100 mM than other concentrations. Both the aggregated and non-aggregated cells grown under 0-200 mM salt concentrations produced IAA even at 200 mM salt concentration with a peak at 100 mM concentration with aggregated cells producing significantly higher quantities. ACC deaminase activity was observed in all NaCl concentrations studied with gradual and drastic reduction in aggregated and non-aggregated cells over increased salt concentrations.

  9. Creep tests on clean and argillaceous salt from the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Mellegard, K.D.; Pfeifle, T.W.

    1993-05-01

    Fifteen triaxial compression creep tests were performed on clean and argillaceous salt from the Waste Isolation Pilot Plant (WIPP). The temperatures in the tests were either 25 degrees C or 100 degrees C while the stress difference ranged from 3.5 MPa to 21.0 MPa. In all tests, the confining pressure was 15 MPa. Test duration ranged from 23 to 613 days with an average duration of 300 days. The results of the creep tests supplemented earlier testing and were used to estimate two parameters in the Modified Munson-Dawson constitutive law for the creep behavior of salt. The two parameters determined from each test were the steady-state strain rate and the transient strain limit. These estimates were combined with parameter estimates determined from previous testing to study the dependence of both transient and steady-state creep deformation on stress difference. The exponents on stress difference determined in this study were found to be consistent with revised estimates of the exponents reported by other investigators

  10. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report

  11. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  12. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci

    Science.gov (United States)

    2013-01-01

    Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in

  13. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp. and mapping of sex-determining loci

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2013-01-01

    Full Text Available Abstract Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex

  14. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables

  15. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress.

  16. Response of Tomato Genotypes to Induced Salt Stress | Agong ...

    African Journals Online (AJOL)

    Thirteen tomato (Lycopersicon esculentum L.) genotypes were subjected to salt treatment under hydroponics and their responses monitored in a set of two experiments with the objective of advancing them as potential salt tolerant tomato scion and/or rootstocks. Salt applications ranged from 0 to 2% NaCl, with the resultant ...

  17. Enterotoxin Producing Ability And Antimicrobial Susceptibility Of Coagulase-Negative Staphylococci Isolated From Goat Milk Cheese And Salted Yoghurt In Turkey

    Directory of Open Access Journals (Sweden)

    S. Pehlivanlar Onen

    2017-10-01

    Full Text Available The aim of this study was to determine enterotoxin producing ability and antimicrobial susceptibility of coagulase negative staphylococci CNS in goats bulk milk cheese and salted yoghurt. CNS strains were identified by using GP card in VITEK 2 system. The presence of enterotoxins was determined by enzyme immunoassay test by using RIDASCREEN test kit. Antibiotic susceptibility in CNS strains was detected by using AST-P640 card in VITEK 2 system. A total of 100 CNS strains were isolated in 22 55 bulk milk samples and in 23 57.5 cheese samples. Staphylococcus spp. could not be isolated from salted yoghurt samples. The most encountered species were S. caprae 51.9 S. chromogenes 11.5 and S. xylosus 9.6 from milk samples and S. saprophyticus 60.4 S. xylosus 12.5 and S. haemolyticus 8.3 from cheese samples. Four CNS strains 4 isolated from samples were capable of producing enterotoxin. While all isolates were resistant to at least one antibiotic 74 of CNS strains showed resistance to two or more antibiotics. Enterotoxin production ability and high antibiotic resistance of the CNS strains isolated from goat bulk milk and cheese can lead to a risk for public health.

  18. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    Science.gov (United States)

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  20. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2009-04-01

    Full Text Available Abstract Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v of (AB600 = 0.5 inoculum size, in a culture medium (pH 7.0 and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg. The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic

  1. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract.

    Science.gov (United States)

    Charteris, W P; Kelly, P M; Morelli, L; Collins, J K

    1998-05-01

    An in vitro methodology which mimics in vivo human upper gastrointestinal transit was developed. The transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species was determined by exposing washed cell suspensions at 37 degrees C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and sodium chloride (0.5% w/v), and a simulated small intestinal juice (pH 8.0), containing pancreatin USP (1 g l-1) and sodium chloride (5 g l-1), and monitoring changes in total viable count periodically. The methodology was also employed to determine the effect of adding milk proteins (1 g l-1), hog gastric mucin (1 g l-1) and soyabean trypsinchymotrypsin inhibitor [SBTCI] (1 g l-1) on transit tolerance. The majority (14 of 15) of isolates lost > 90% viability during simulated gastric transit. Only one isolate, Lactobacillus fermentum KLD, was considered intrinsically resistant. The addition of milk proteins, singly and in combination, generally improved gastric transit tolerance. In this regard, two isolates, Lact. casei 212.3 and Bifidobacterium infantis 25962, exhibited 100% gastric transit tolerance in the presence of milk proteins. In general, the addition of hog gastric mucin did not influence simulated gastric transit tolerance of lactobacilli but tended to increase that of bifidobacteria. However, it increased that of Lact. casei 242 and Lact. salivarius 43338 but diminished that of B. bifidum 2715 and B. animalis Bo. Selected bile salts-resistant isolates were intrinsically tolerant to simulated small intestinal transit. Only Lact. casei F19 and B. adolescentis 15703T showed significant reduction in viability after 240 min. In general, the addition of milk proteins and SBTCI did not affect simulated small intestinal transit tolerance. However, they significantly improved the intrinsic resistance of Lact. casei F19 but diminished that of B. breve 15700T. It is concluded that, whereas the majority of bile salts-resistant lactobacilli and

  2. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  3. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    Science.gov (United States)

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by

  4. Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt

    International Nuclear Information System (INIS)

    Brodsky, N.S.

    1994-03-01

    Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25 degrees C

  5. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  6. Glucose-6-phosphate dehydrogenase is required for hpa1xoo (harpin protein fragment)-mediated salt stress tolerance in transgenic arabidopsis thaliana

    International Nuclear Information System (INIS)

    Sang, S.L.; Xie, L.L.; Cui, X.W.; Wang, Z.Y.

    2018-01-01

    Harpin induces salicylic acid and abscisic acid signaling in plants under biotic and abiotic stress, respectively. Our previous report showed that the effective harpin fragment Hpa1xoo enhanced H2O2 production and pathogen resistance in a transgenic Arabidopsis mutant. In this study, we examined contents of thiobarbituric acid reactive substance (TBARS), H2O2 and glutathione, and glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR) and glutathione peroxidase (GPX) enzyme activity in Hpa1xoo-expressing Arabidopsis under salt stress. The results revealed increased amounts of TBARS and H2O2 in wild-type (WT) compared to mutant plants under salt stress conditions. In contrast, increased levels were observed in the mutant under stress-free conditions. Moreover, a higher reduced glutathione (GSH) content and ratio of GSH/oxidized glutathione (GSSG) was observed in mutant compared to WT plants under both stress-free and salt stress conditions. In addition, mutant plants exhibited significantly higher G6PDH, GR and GPX activity than WT plants under salt stress. Suppression of G6PDH activity via 6-aminonicotinamide (6-AN, a specific inhibitor of G6PDH) was partly reversed by L-buthionine-sulfoximine (BSO, a specific inhibitor of GSH regeneration) and aggravated by GSH. Combined with previous reports, these findings suggest that the G6PDH enzyme plays a key role in harpin fragment (Hpa1xoo)-mediated salt stress tolerance in transgenic Arabidopsis. (author)

  7. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.

    Science.gov (United States)

    Sarkar, Soumik; Seenivasan, Subbiah; Asir, Robert Premkumar Samuel

    2010-02-15

    Biodegradation of miticide propargite was carried out in vitro by selected Pseudomonas strains isolated from tea rhizosphere. A total number of 13 strains were isolated and further screened based on their tolerance level to different concentrations of propargite. Five best strains were selected and further tested for their nutritional requirements. Among the different carbon sources tested glucose exhibited the highest growth promoting capacity and among nitrogen sources ammonium nitrate supported the growth to the maximum. The five selected Pseudomonas strain exhibited a range of degradation capabilities. Mineral salts medium (MSM) amended with glucose provided better environment for degradation with the highest degradation potential in strain SPR 13 followed by SPR 8 (71.9% and 69.0% respectively).

  8. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  9. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Science.gov (United States)

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  10. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Directory of Open Access Journals (Sweden)

    Xinqi Fan

    Full Text Available WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III, as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  11. What molecular mechanism is adapted by plants during salt stress ...

    African Journals Online (AJOL)

    What molecular mechanism is adapted by plants during salt stress tolerance? ... Salt stress harmfully shocks agricultural yield throughout the world affecting production whether it is for subsistence or economic outcomes. ... from 32 Countries:.

  12. Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport

    Directory of Open Access Journals (Sweden)

    S Hosseini

    2014-08-01

    Full Text Available Vibrio species are important seafood-borne pathogens that are responsible for 50-70% of gasteroenteritis. The present study was carried out in order to determine the prevalence of Vibrio species and the distribution of tdh, tlh and trh virulence genes in Vibrio parahaemolyticus isolated from fresh and salted shrimp samples. Totally, 60 fresh and salted shrimp samples were collected from the Genaveh seaport. Microbial culture was used to isolate Vibrio species. In addition, the presences of Vibrio parahaemolyticus, Vibrio cholera, Vibrio vulnificus and Vibrio harveyi and the virulence genes of V. parahaemolyticus were studied using the PCR method. Results showed that 20% of fresh and 23.33% of salted shrimp samples were positive for Vibrio species. In studied samples, V. vulnificus had the highest prevalence rate (8.33%, while V. cholera had the lowest prevalence rate (1.66%. From a total of 4 detected V. parahaemolyticus, all of them had tlh gene (100%. The distribution of tdh and trh genes in isolated V. parahaemolyticus strains were 50% and 25%, respectively. High prevalence of Vibrio species and especially virulent V. parahaemolyticus in samples confirmed the lack of hygienic condition in the production and distribution centers of shrimp.

  13. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate

    Directory of Open Access Journals (Sweden)

    Sharvari Vijaykumar Gaidhani

    2014-01-01

    Full Text Available Background & objectives: Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Methods: Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Results: Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32 - 4000 and 4 - 256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10 5 -10 6 cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. Interpretation & conclusions: The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  14. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  15. Isolation, characterization and phylogenetic analysis of halophilic archaea from a salt mine in central Anatolia (Turkey).

    Science.gov (United States)

    Yildiz, Evrim; Ozcan, Birgul; Caliskan, Mahmut

    2012-01-01

    The haloarchaeal diversity of a salt mine, a natural cave in central Anatolia, was investigated using convential microbiological and molecular biology methods. Eight halophilic archaeal isolates selected based on their colony morphology and whole cell protein profiles were taxonomically classified on the basis of their morphological, physiological, biochemical properties, polar lipid and protein profiles and 16S rDNA sequences. From the 16S rDNA sequences comparisons it was established that the isolates CH2, CH3 and CHC resembled Halorubrum saccharovorum by 98.8%, 98.9% and 99.5%, respectively. There was a 99.7% similarity between the isolate CH11 and Halobacterium noricense and 99.2% between the isolate CHA1 and Haloarcula argentinensis. The isolate CH8K and CH8B revealed a similarity rate of 99.8% and 99.3% to Halococcus dombrowskii, respectively. It was concluded that the isolates named CH2, CH3 and CHC were clustered in the genus Halorubrum and that CHA1 and CH7 in the genus Haloarcula, CH8K and CH8B in the genus Halococcus and CH11 in the genus Halobacterium.

  16. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    Science.gov (United States)

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  17. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hurtado, L.D.

    1998-06-01

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics

  18. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19), thioredoxin-disulfide (TrxB), a hypothetical protein Cj0706......RT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced...

  19. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress.

    Science.gov (United States)

    Sarkar, Anumita; Ghosh, Pallab Kumar; Pramanik, Krishnendu; Mitra, Soumik; Soren, Tithi; Pandey, Sanjeev; Mondal, Monohar Hossain; Maiti, Tushar Kanti

    2018-01-01

    Agricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production. Several salt-tolerant bacterial strains displaying ACC deaminase activity were isolated from rice fields, and their plant growth-promoting (PGP) properties were determined. Among them, strain P23, identified as an Enterobacter sp. based on phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry data and the 16S rDNA sequence, was selected as the best-performing isolate for several PGP traits, including phosphate solubilization, IAA production, siderophore production, HCN production, etc. Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, and this effect was correlated with a decrease in antioxidant enzymes and stress-induced ethylene. Isolation of an acdS mutant strain enabled concluding that the reduction in stress-induced ethylene content after inoculation of strain P23 was linked to ACC deaminase activity. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules.

    Science.gov (United States)

    Beghalem, Hamida; Aliliche, Khadidja; Chriki, Ali; Landoulsi, Ahmed

    2017-10-01

    In the current study, bacterial diversity was investigated in root nodules of Sulla pallida and Sulla capitata. The isolates were analyzed on the basis of their phenotypic and molecular characteristics. The phylogenetic analysis based on 16S rRNA and housekeeping genes (recA and atpD) showed that the isolated bacteria related to Sinorhizobium, Neorhizobium, Phyllobacterium, Arthrobacter, Variovorax and Pseudomonas genera. This is the first report of Neorhizobium genus associated with Hedysarum genus. Phenotypically, all strains tolerate the elevated temperature of 40 °C, and salt stress at a concentration of 2%. In addition, the isolates failed to induce nodulation on their original host; and the symbiotic genes could not be amplified, suggesting that these strains are endophytic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.