WorldWideScience

Sample records for salt lake community

  1. Does road salting confound the recovery of the microcrustacean community in an acidified lake?

    Science.gov (United States)

    Jensen, Thomas Correll; Meland, Sondre; Schartau, Ann Kristin; Walseng, Bjørn

    2014-04-15

    Numerous boreal lakes across the Northern Hemisphere recovering from acidification are experiencing a simultaneous increase in chloride (Cl) concentrations from road salting. Increasing Cl may have profound effects on the lake ecosystem. We examine if an increase in Cl from road salting has modified the recovery of the microcrustacean community in an acidified boreal lake undergoing chemical recovery (study lake). Results from the study lake were compared with an acidified "reference lake". The community changed during the study period in the study lake mainly driven by the reduction in acidification pressure. Despite the community changes and an increase in species richness, the absence of several acid sensitive species, previously occurring in the lake, indicates a delayed biological recovery relative to the chemical recovery. Moreover, changes in occurrence of acid sensitive and acid tolerant species indicated that the biological recovery was slower in the study lake compared to the "reference". Although recurrent episodes of high aluminum and low pH and decreasing Ca are likely important factors for the delay, these do not explain, for instance, the shift from Cyclops scutifer to Bosmina longispina in the study lake. Although the contribution of Cl was not significant, the correlation between Cl and the variation in microcrustacean community was twice as high in the study lake compared to the "reference". We argue that small, sheltered forest lakes may be especially sensitive to increased Cl levels, through changes in pattern of stratification, thus providing a mechanism for the shift from C. scutifer to B. longispina. The reduction of the acidification pressure seems to override the Cl effects on microcrustaceans at low Cl levels in salt-affected lakes recovering from acidification. However, prognoses for growing traffic and increasing road salting raise concern for many recovering lakes located in proximity to roads and urbanized areas. Copyright © 2014

  2. Wetland Plants of Great Salt Lake, A Guide to Identification, Communities, & Bird Habitat

    OpenAIRE

    Downard, Rebekah; Frank, Maureen; Perkins, Jennifer; Kettenring, Karin; Larese-Casanova, Mark

    2017-01-01

    Wetland Plants of Great Salt Lake: a guide to identification, communities, & bird habitat is a wetland plant identification guide, resulting from collaborative research efforts about Great Salt Lake (GSL) wetland conditions and bird habitat. Dr. Rebekah Downard collected dissertation field data from GSL wetlands during 2012–2015, the majority of which informed this work. Dr. Maureen Frank contributed her guide to GSL wetland vegetation and how to manage native plants as high-quality habitat f...

  3. Salt Lake Community College Veterans Services: A Model of Serving Veterans in Higher Education

    Science.gov (United States)

    Ahern, Aaron; Foster, Michael; Head, Darlene

    2015-01-01

    This chapter outlines the birth and growth of a veterans' program in Salt Lake City, Utah, and discusses next steps in spurring additional innovations and advancements to improve service for student veterans in community colleges.

  4. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    Science.gov (United States)

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  5. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    Science.gov (United States)

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  6. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  7. Salt Lake City, Utah: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. Arcellacea (testate amoebae) as bio-indicators of road salt contamination in lakes.

    Science.gov (United States)

    Roe, Helen M; Patterson, R Timothy

    2014-08-01

    Winter deicing operations occur extensively in mid- to high-latitude metropolitan regions around the world and result in a significant reduction in road accidents. Deicing salts can, however, pose a major threat to water quality and aquatic organisms. In this paper, we examine the utility of Arcellacea (testate amoebae) for monitoring lakes that have become contaminated by winter deicing salts, particularly sodium chloride. We analysed 50 sediment samples and salt-related water property variables (chloride concentrations; conductivity) from 15 lakes in the Greater Toronto Area and adjacent areas of southern Ontario, Canada. The sampled lakes included lakes in proximity to major highways and suburban roads and control lakes in forested settings away from road influences. Samples from the most contaminated lakes, with chloride concentrations in excess of 400 mg/l and conductivities of >800 μS/cm, were dominated by species typically found in brackish and/or inhospitable lake environments and by lower faunal diversities (lowest Shannon diversity index values) than samples with lower readings. Q-R-mode cluster analysis and detrended correspondence analysis (DCA) resulted in the recognition of four assemblage groupings. These reflect varying levels of salt contamination in the study lakes, along with other local influences, including nutrient loading. The response to nutrients can, however, be isolated if the planktic eutrophic indicator species Cucurbitella tricuspis is removed from the counts. The findings show that the group has considerable potential for biomonitoring in salt-contaminated lakes, and their presence in lake sediment cores may provide significant insights into long-term benthic community health, which is integral for remedial efforts.

  9. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  10. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  11. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  12. Salt Lakes of the African Rift System: A Valuable Research ...

    African Journals Online (AJOL)

    Salt Lakes of the African Rift System: A Valuable Research Opportunity for Insight into Nature's Concenrtated Multi-Electrolyte Science. JYN Philip, DMS Mosha. Abstract. The Tanzanian rift system salt lakes present significant cultural, ecological, recreational and economical values. Beyond the wealth of minerals, resources ...

  13. Questioning the Origin of the Great Salt Lake "Microbialites"

    Science.gov (United States)

    Frantz, C.; Matyjasik, M.; Newell, D. L.; Vanden Berg, M. D.; Park, C.

    2017-12-01

    The Great Salt Lake (GSL) of Utah contains abundant carbonate mounds that have been described in the literature as "biostromes", "bioherms", "stromatolites", and "microbialites". The structures are commonly cited as being rare examples of modern lacustrine microbialites, which implies that they are actively-forming and biogenic. Indeed, at least in some regions of the lake, the mounds are covered in a mixed community of cyanobacteria, algae, insect larval casings, microbial heterotrophs, and other organisms that is thought to contribute significantly to benthic primary productivity in GSL. However, the presence of a modern surface microbial community does not implicate a biogenic or modern origin for the mounds. The few studies to date GSL microbialites indicate that they are ancient, with radiocarbon calendar ages in the late Pleistocene and Holocene ( 13 - 3 cal ka). However, could they still be actively growing, and are the surface microbial communities playing a role? Here, we present results of a suite geochemical measurements used to constrain parameters—including groundwater seepage—influencing carbonate saturation and precipitation in the vicinity of one currently-submerged "microbialite reef" on the northern shore of Antelope Island in the South Arm of GSL. Our data suggests that calcium-charged brackish groundwater input to the lake through a permeable substratum in this location results in locally supersaturated conditions for aragonite, which could lead to modern, abiogenic mineralization. In addition, a series of laboratory experiments suggest that the modern surface microbial communities that coat the mounds do not appreciably facilitate carbonate precipitation in simulated GSL conditions, although they may serve as a template for precipitation when local waters become supersaturated.

  14. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  15. L-Lake macroinvertebrate community

    International Nuclear Information System (INIS)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake's macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors

  16. L-Lake macroinvertebrate community

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.

  17. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  18. Effect of Dried Lake Salt (Kanwa) on Lipid profile and Heart ...

    African Journals Online (AJOL)

    Peripatum cardiomyopathy is a devastating form of cardiac failure affecting women mainly in their last month of pregnancy or early postpartum with high incidence in Northern Nigeria where the consumption of dried lake salt postpartum is high. The current work was designed to study the effect of dried lake salt on lipid ...

  19. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Liu, W.G.; Xiao, Y.K.; Wang, Q.Z.; Qi, H.P.; Wang, Y.H.; Zhou, Y.M.; Shirodkar, P.V.

    *Cl+ ion. Int. J. Mass Spectrom. Ion Process., 116: crysatallization of saline minerals in salt lake. J. Salt Lake 183-192. Sci., 2: 35-40 (in Chinese). Xiao, Y.K., Sun, D.P., Wang, Y.H., Qi, H.P. and Jin, L., 1992. Boron isotopic compositions of brine..., sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cos- mochim. Acta, 56: 1.561-1568. Xiao, Y.K., Jin, L., Liu. W.G., Qi, H.P., Wang, W.H. and Sun, D.P., 1994a. The isotopic compositions of chlorine in Da Qaidam Lake. Chin. Sci...

  20. Investigation of road salts and biotic stressors on freshwater wetland communities.

    Science.gov (United States)

    Jones, Devin K; Mattes, Brian M; Hintz, William D; Schuler, Matthew S; Stoler, Aaron B; Lind, Lovisa A; Cooper, Reilly O; Relyea, Rick A

    2017-02-01

    The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl 2 ), at three environmentally relevant concentrations (150, 470, and 780 mg Cl - /L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation of Climate Change Impact on Salt Lake by Statistical Methods

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2017-03-01

    Full Text Available The main purpose of this paper is to investigate climate change impact that have been occurred on Salt Lake located in the central Anatolia is one of the area that has been faced to extinction. In order to monitor current status of the Salt Lake, Landsat satellite images has been obtained between the year of 2000 and 2014 (for the months of February, May, August and November. Satellite images has been processed by using ArcGIS and ERDAS softwares and the water surface area has been determined. The time series of water surface areas has been analyzed with auto-correlation method and repeated pattern has been detected. The seasonal part of the time series which period is 1 year and causes about 400 km² fluctuations has been removed with Moving Average filter, successfully. As a result of filtration process, non-seasonal time series of water surface area of Salt Lake were obtained. It is understood from the non-seasonal time series that the water surface area showed variability between 2000 and 2010 and after 2010 it is stable until 2014. In order to explain the variability, meteorological data (precipitation and temperature of the surrounding area has been acquired from the related service. The cross-correlation analyses has been performed with the movement of the water surface area and meteorological time series. As a result of analysis, the relationship between water surface changes in Salt Lake and meteorological data have correlated up to 80%. Consequently, several conclusion have been detected that the topography of the region play a direct role of the correlation coefficients and the water surface changes are effected from the environmental events that is occurred in the south of Salt Lake sub-Basin.

  2. TOURISM PLANNING OPPORTUNITIES FOR THE SALT LAKES OF OCNELE MARI AND OCNIŢA

    Directory of Open Access Journals (Sweden)

    POPESCU ANTOANETA-CARINA

    2012-03-01

    Full Text Available Tourism Planning Opportunities for The Salt Lakes of Ocnele Mari and Ocniţa. Ocnele Mari used to be a popular balneal tourism destination in the Southern region of Romania, Oltenia. Due to the hilly climate and the two balneal establishments of Ocnele Mari and Ocniţa, tourists could find the necessary natural cure factors for rheumatic and cardiovascular diseases. However, the salt from Ocnele Mari was also used for industrial purposes, being extracted through solution mining, which proved to be detrimental to the environment. Salt underground dissolution caused land subsidence and landslide in the area, together with the formation of large salt lakes. Security became an issue, the number of tourists diminished and the balneal equipment became obsolete because of lack of modernization investment. Under these circumstances, on the basis of field work, we have reached the conclusion that a better planning of the resort and of the salt lakes would contribute to the economic development of the region.

  3. Method for estimating road salt contamination of Norwegian lakes

    Science.gov (United States)

    Kitterød, Nils-Otto; Wike Kronvall, Kjersti; Turtumøygaard, Stein; Haaland, Ståle

    2013-04-01

    Consumption of road salt in Norway, used to improve winter road conditions, has been tripled during the last two decades, and there is a need to quantify limits for optimal use of road salt to avoid further environmental harm. The purpose of this study was to implement methodology to estimate chloride concentration in any given water body in Norway. This goal is feasible to achieve if the complexity of solute transport in the landscape is simplified. The idea was to keep computations as simple as possible to be able to increase spatial resolution of input functions. The first simplification we made was to treat all roads exposed to regular salt application as steady state sources of sodium chloride. This is valid if new road salt is applied before previous contamination is removed through precipitation. The main reasons for this assumption are the significant retention capacity of vegetation; organic matter; and soil. The second simplification we made was that the groundwater table is close to the surface. This assumption is valid for major part of Norway, which means that topography is sufficient to delineate catchment area at any location in the landscape. Given these two assumptions, we applied spatial functions of mass load (mass NaCl pr. time unit) and conditional estimates of normal water balance (volume of water pr. time unit) to calculate steady state chloride concentration along the lake perimeter. Spatial resolution of mass load and estimated concentration along the lake perimeter was 25 m x 25 m while water balance had 1 km x 1 km resolution. The method was validated for a limited number of Norwegian lakes and estimation results have been compared to observations. Initial results indicate significant overlap between measurements and estimations, but only for lakes where the road salt is the major contribution for chloride contamination. For lakes in catchments with high subsurface transmissivity, the groundwater table is not necessarily following the

  4. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    Science.gov (United States)

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  5. Salamander colonization of Chase Lake, Stutsman County, North Dakota

    Science.gov (United States)

    Mushet, David M.; McLean, Kyle I.; Stockwell, Craig A.

    2013-01-01

    Salt concentrations in lakes are dynamic. In the western United States, water diversions have caused significant declines in lake levels resulting in increased salinity, placing many aquatic species at risk (Galat and Robinson 1983, Beutel et al. 2001). Severe droughts can have similar effects on salt concentrations and aquatic communities (Swanson et al. 2003). Conversely, large inputs of water can dilute salt concentrations and contribute to community shifts (Euliss et al. 2004).

  6. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  7. Heavy Metals in Salt and Water Samples from Maharloo Lake and their Comparison with Metal Concentrations in Samples from Sirjan, Lar, and Firoozabad Salt Mines

    Directory of Open Access Journals (Sweden)

    Farahnaz Sabet

    2015-03-01

    Full Text Available Maharloo Lake is one of the most important water ecosystems in Iran, which is nowadays exposed to multiple risks and threats due to poor water management, salt extraction, and heavy metal pollution. In this study, the concentrations of such heavy metals as chromium, copper, zinc, arsenic, cadmium, and lead in both water and salt samples collected from areas in the north and south of the lake were determined by atomic absorption (AA-670G after the samples had been digested. Results showed that metal concentrations in the salt samples taken from both the northern and southern areas had identical mean values in the order of Cr> Cu> As> Cd> Pb. An almost similar pattern was detected in metal concentrations in water samples taken from the same areas but with a slight difference in the way they were ordered (Cr> Cu> As> Pb> Cd. It was found that both water and salt samples collected from the northern areas had higher metal concentrations, except for that of Pb which was slightly lower. Comparison of the mean values of metal concentrations in the Salt Lake and those of Sirjan, Lar, and Firoozabad salt mines revealed that copper, cadmium, and lead had their highest concentrations in the Salt Lake while arsenic and chromium recorded their highest values in samples taken from Lar and Firoozabad salt mines, respectively. Based on these findings, it may be concluded that the increased metal concentrations observed in samples from both northern and southern areas of the lake are due to the sewage and effluents from urban, industrial, and hospital sources in Shiraz disposed into the lake as well as such other human activities as farming in the areas around the lake, especially in the northern stretches. These observations call for preventive measures to avoid further water quality degradation in the area.

  8. Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea.

    Science.gov (United States)

    Mirzoyeva, N Yu; Arkhipova, S I; Kravchenko, N V

    2018-08-01

    At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90 Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90 Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90 Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90 Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90 Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  10. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  11. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  12. The Economic Impact of Ten Cultural Institutions on the Economy of the Salt Lake SMSA.

    Science.gov (United States)

    Cwi, David

    The impact of 10 cultural institutions on the Salt Lake City economy was determined by measuring their 1978 direct and indirect financial effects. The institutions are Ballet West, Pioneer Memorial Theatre, Repertory Dance Theatre, Salt Lake City Art Center, Theatre 138, Tiffany's Attic, Utah Museum of Fine Arts, Utah Symphony, Utah Opera Company,…

  13. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  14. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  15. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y; Shirodkar, P.V.; Liu, W.G.; Wang, Y; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  16. 75 FR 57288 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2010-09-20

    ... Natural History, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice. Notice is... possession and control of the Utah Museum of Natural History, Salt Lake City, UT. The human remains and... unworked faunal bone. The associated funerary objects found with the interments indicate that the human...

  17. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Science.gov (United States)

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  18. 78 FR 2434 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service..., 2013. ADDRESSES: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT... lot of horse tack, a metal punch, 1 piece of worked wood, gunshot, two mirrors, a harness ring, an awl...

  19. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service...: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT 84108, telephone (801... fragments, 13 pieces of horse tack, 3 saddle fragments, 1 knife sheath, 1 rifle and barrel, 1 lot of bullet...

  20. Community energy plan : village of Burns Lake

    International Nuclear Information System (INIS)

    Rivard, B.

    2008-09-01

    Climate change has a significant impact on the lives of Canadians and their economies. In northern British Columbia, the ability to grow, process and transport food will likely change. The rising cost of fuel and other natural resources will create a need for more resilient communities. This report presented a community energy plan for Burns Lake in order to provide the first steps toward building on an already resilient community. The report answered questions about Burns Lake's energy consumption and greenhouse gas (GHG) emissions as well as the community's views on energy issues. The report provided background information on the Village of Burns Lake and discussed climate change in Burns Lake, energy use, and greenhouse gas emissions. The report also described community engagement by way of a questionnaire on fuel prices, homes and public opinion in Burns Lake. A strategy was also outlined. It was concluded that the village of Burns Lake is well positioned to face challenges regarding future energy use. The community is looking to the municipality for support and leadership, in order to deliver through active opportunities to reduce greenhouse gas emissions. 6 figs., 4 appendices.

  1. A review on salt lake city, Kolkata, India: Master planning and realization

    Directory of Open Access Journals (Sweden)

    Tošković Dobrivoje

    2008-01-01

    Full Text Available Motivation for construction of Salt Lake City comes from the circumstances characterizing life in Calcutta known by its social, political and cultural activities. Among many problems, the City was faced with poverty and overcrowding. West Bengal Government realized that serious steps have to be taken to resolve the situation. One of the biggest actions of the Government was creation of so called 'NEDECO' Plan for reclamation certain area of the Salted Lakes, followed by the tender for urban planning. The enterprise for water ways Ivan Milutinović was considered the most convenient for both: reclamation and planning. The Conceptualization covers the Main Aims and interests forming plan basis where three factors were selected: urban character, new vs old town, inhabitants and town growth. Follows Existing Land Use Pattern of the Municipal Area. The realization of the Salt Lake Master Plan, as a part of the Municipal Area, is shown through an Overview of Achieved Infrastructure covering Roads, Water Supply, Sewerage, Area Level Storm Water Drainage, Solid Waste Management and, finally, through the Other Municipal Services, such as: Administrative Infrastructure, Health Infrastructure, Greeneries, Water bodies, Socio-Cultural Infrastructure. .

  2. Scope of work-supplemental standards-related fieldwork - Salt Lake City UMTRA Project Site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This scope of work governs the field effort to conduct transient in situ (hereafter referred to by the trademark name HydroPunch reg-sign) investigative subsurface logging and ground water sampling, and perform well point installation services at the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Salt Lake City, Utah. The HydroPunch reg-sign and well point services subcontractor (the Subcontractor) shall provide services as stated herein to be used to investigate the subsurface, collect and analyze ground water samples, and install shallow well points

  3. 75 FR 73983 - Proposed Modification of the Salt Lake City, UT, Class B Airspace Area; Public Meetings

    Science.gov (United States)

    2010-11-30

    ... of the Salt Lake City, UT, Class B Airspace Area; Public Meetings AGENCY: Federal Aviation... Class B airspace area at Salt Lake City, UT. The purpose of these meetings is to provide interested... Road, Ogden, UT, 84405. (2) The meeting on Tuesday, February 1, 2011, will be held in the Conference...

  4. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60

  5. Assessment of the Lake Gendabi salt for trace elements and toxic heavy metals by energy dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lugendo, I.; Mohammed, N.K.; Spyrou, N.M.

    2013-01-01

    This study has analyzed samples of salts from Lake Gendabi, located in the northern part of Tanzania for metal contamination using the EDXRF spectrometry. The aim of the study was to assess the suitability of the salt from Lake Gendabi for human consumption. Seventy-five samples of salt were collected from the Lake Gendabi floor and grouped into five grades (G1, G2, G3, G4 and G5) depending on the position of the salt from the lake shore. In addition to Na and Cl, concentrations of 17 more elements were determined in all five grades of salt. These included seven toxic metals which are Al, Ni, Cr, Cd, Pb as well as Th and U which are both toxic and radioactive. The concentrations of all toxic elements found in the samples were higher than their Maximum tolerable limits set by international organizations. As this salt is used in many parts of Tanzania, it is proposed that the salt should be thoroughly purified before entering the market. Further research to include salt samples from other salt production areas in Tanzania is recommended. (author)

  6. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  7. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    Science.gov (United States)

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  8. Status and future of Lake Huron fish communities

    Science.gov (United States)

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  9. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  10. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    Science.gov (United States)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most

  11. THE EVOLUTION OF THE SALT LAKES FROM OCNA ŞUGATAG BETWEEN RISK AND CAPITALIZATION

    Directory of Open Access Journals (Sweden)

    G. ŞERBAN

    2015-10-01

    Full Text Available The diapir anticline microdepression of Ocna Şugatag underwent an accelerated transformation immediately after the end of salt mining (at the beginning of the 1960s. During this period of over 50 years of evolution, lake basins formed and disappeared, either naturally, in small sinkholes, or mostly due to the collapse of salt mine adits or chambers, which led to the creation of large-sized lake basins. There is an accelerated dynamics of these basins, as indicated by the sliding of part of the banks at a pace of 0.5-1.5 meters/year. The collapse of the mines is far from over, because the largest mines (Mihai and Dragoş are partly affected and the pillars supporting the ceiling of the adits have a small diameter. Given the present conditions, when the underground brine is used for bathing and treatment purposes, in short time it is possible that new lakes emerge, even larger than the already existing ones. From the point of view of the lake potential, there are important differences, according to the degree of salinity of the water and the more or less accelerated dynamics of the lake basins. The latest two years witnessed an important development of the tourism infrastructure in the analysed area, as well as arrangements of the lakes, which determined a significant increase in the number of tourists searching for outdoor bathing, especially during week-ends.

  12. Acoustical measurement of the Salt Lake Mormon Tabernacle

    Science.gov (United States)

    Rollins, Sarah; Leishman, Timothy W.

    2004-05-01

    An acoustical survey of the Salt Lake Mormon Tabernacle has been performed to assess the behavior of the hall in its current state. The tabernacle is a well-known historical building with a large elongated dome ceiling. This paper discusses the measurements used to characterize the hall. Several parameters derived from omnidirectional, directional, and binaural impulse response measurements are presented. Color maps of the parameters over audience seating areas reveal their spatial variations. These maps and the statistical properties of the parameters aid in clarifying the acoustical characteristics and anomalies of the hall.

  13. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere

    International Nuclear Information System (INIS)

    Li, Q.X.; Wang, Z.Y.; Han, W.; Han, E.H.

    2008-01-01

    The product formed on weathering steel exposed to salt lake atmosphere for 12 months was investigated by X-ray diffraction (XRD), infrared transmission spectroscopy (IRS), scanning electron microscopy (SEM), electron probe micro analyzer (EPMA) and electrochemical techniques. The rust was mainly composed of β-FeOOH, Fe 8 (O,OH) 16 Cl 1.3 and a little γ-FeOOH. Amorphous δ-FeOOH was only on skyward surface. The rust layer suppressed anodic reaction and facilitated the cathodic reaction. The very small value of rust resistance R r in this work indicated that the rust had poor protective ability. Cl element was rich in the whole rust layer and played an important role in accelerating the corrosion of weathering steel in salt lake atmosphere

  14. 77 FR 49712 - Amendment to Class B Airspace; Salt Lake City, UT

    Science.gov (United States)

    2012-08-17

    ... consultation with a diverse cross-section of stakeholders that participated in the Ad hoc Committee to develop... limitations, and traffic conditions. Using radar, the Salt Lake City Terminal Radar Approach Control (TRACON...-radar separation requirements. The FAA's Flight Procedures Development Team was asked to review the...

  15. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  16. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  17. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  18. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA).

    Science.gov (United States)

    Phillips, Kristen; Zaidan, Frederic; Elizondo, Omar R; Lowe, Kristine L

    2012-02-02

    La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity

  19. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah

    Directory of Open Access Journals (Sweden)

    Swati Almeida-Dalmet

    2018-01-01

    Full Text Available Haloarchaea that inhabit Great Salt Lake (GSL, a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.

  20. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  1. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  2. Crustacean plankton communities in forty-five lakes in the experimental lakes area, northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Patalas, K

    1971-01-01

    Zooplankton communities were characterized on the basis of samples taken in summer as vertical net hauls in the central part of lakes. Twenty-eight species of crustaceans were found in the 45 lakes studied. The highest number of species as well as the highest numbers of individuals (per unit of area) usually occurred in the largest deepest lakes with most transparent water.

  3. Functional diversity of macrophyte communities within and between Pyrenean lakes

    Directory of Open Access Journals (Sweden)

    Enric BALLESTEROS

    2009-02-01

    Full Text Available Submersed vegetation is a common feature in about 70% Pyrenean high mountain (>1500 m a.s.l. lakes. Isoetids and soft-water elodeids are common elements of this underwater flora and can form distinct vegetation units (i.e. patches of vegetation dominated by different species within complex mosaics of vegetation in shallow waters (<7 m. Since isoetids exert a strong influence on sediment biogeochemistry due to high radial oxygen loss, we examined the small scale characteristics of the lake environment (water and sediment associated to vegetation patches in order to ascertain potential functional differences among them. To do so, we characterised the species composition and biomass of the main vegetation units from 11 lakes, defined plant communities based on biomass data, and then related each community with sediment properties (redox and dissolved nutrient concentration in the pore water and water nutrient concentration within plant canopy. We also characterised lake water and sediment in areas without vegetation as a reference. A total of twenty-one vegetation units were identified, ranging from one to five per lake. A cluster analysis on biomass species composition suggested seven different macrophyte communities that were named after the most dominant species: Nitella sp., Potamogeton praelongus, Myriophyllum alterniflorum, Sparganium angustifolium, Isoetes echinospora, Isoetes lacustris and Carex rostrata. Coupling between macrophyte communities and their immediate environment (overlying water and sediment was manifested mainly as variation in sediment redox conditions and the dominant form of inorganic nitrogen in pore-water. These effects depended on the specific composition of the community, and on the allocation between above- and belowground biomass, and could be predicted with a model relating the average and standard deviation of sediment redox potential from 0 down to -20 cm, across macrophyte communities. Differences in pore

  4. The aspen mortality summit; December 18 and 19, 2006; Salt Lake City, UT

    Science.gov (United States)

    Dale L. Bartos; Wayne D. Shepperd

    2010-01-01

    The USDA Forest Service Rocky Mountain Research Station sponsored an aspen summit meeting in Salt Lake City, Utah, on December 18 and19, 2006, to discuss the rapidly increasing mortality of aspen (Populus tremuloides) throughout the western United States. Selected scientists, university faculty, and managers from Federal, State, and non-profit agencies with experience...

  5. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types

    DEFF Research Database (Denmark)

    Langdon, P. G.; Ruiz, Z.; Brodersen, K. P.

    2006-01-01

    in the original calibration or extended datasets. However, since the transfer functions are based on weighted averages of the trophic optima for the taxa present and not on community similarities, reasonable downcore inferences were produced. Ordination analyses also showed that the lakes retain their 'identity......1. Total phosphorus (TP) and chlorophyll a (Chl a) chironomid inference models ( Brodersen & Lindegaard, 1999 ; Brooks, Bennion & Birks, 2001 ) were used in an attempt to reconstruct changes in nutrients from three very different lake types. Both training sets were expanded, particularly at the low....... A response to nutrients (TP or total nitrogen (TN) ) at this site is also indirect, and the TP reconstruction therefore cannot be reliably interpreted. The third lake, March Ghyll Reservoir has little change in historic chironomid communities, suggesting that this well mixed, relatively unproductive lake has...

  6. The Labor Market Effects of the Salt Lake City Winter Olympics

    OpenAIRE

    Robert Baumann; Bryan Engelhardt; Victor Matheson

    2010-01-01

    The local, state, and federal governments, along with the Salt Lake City Organizing Committee, spent roughly $1.9 billion in direct costs related to planning and hosting the 2002 Winter Olympic Games. In this paper, we investigate whether these expenditures increased employment. At the state level, we find strong evidence it increased employment in leisure related industries in the short run and potentially in the long run. However, the results indicate it had no long term impact on employmen...

  7. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  8. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  9. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts.

    Science.gov (United States)

    Gibtan, Ashagrie; Park, Kyounghee; Woo, Mingyeong; Shin, Jung-Kue; Lee, Dong-Woo; Sohn, Jae Hak; Song, Minjung; Roh, Seong Woon; Lee, Sang-Jae; Lee, Han-Seung

    2017-01-01

    Salting is one of the oldest food preservation techniques. However, salt is also the source of living halophilic microorganisms that may affect human health. In order to determine the microbial communities of commercial salts, an investigation were done using amplicon sequencing approach in four commercial salts: Ethiopian Afdera salt (EAS), Ethiopian rock salt (ERS), Korean Jangpan salt (KJS), and Korean Topan salt (KTS). Using domain-specific primers, a region of the 16S rRNA gene was amplified and sequenced using a Roche 454 instrument. The results indicated that these microbial communities contained 48.22-61.4% Bacteria, 37.72-51.26% Archaea, 0.51-0.86% Eukarya, and 0.005-0.009% unclassified reads. Among bacteria, the communities in these salts were dominated by the phyla Proteobacteria, Bacteroidetes, Actinobacteria , and Firmicutes . Of the archaea, 91.58% belonged to the class Halobacteria , whereas the remaining 7.58, 0.83, and 0.01% were Nanoarchaea, Methanobacteria , and Thermococci , respectively. This comparison of microbial diversity in salts from two countries showed the presence of many archaeal and bacterial genera that occurred in salt samples from one country but not the other. The bacterial genera Enterobacter and Halovibrio were found only in Korean and Ethiopian salts, respectively. This study indicated the occurrence and diversity of halophilic bacteria and archaea in commercial salts that could be important in the gastrointestinal tract after ingestion.

  10. Perspective View with Landsat Overlay, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    Most of the population of Utah lives just west of the Wasatch Mountains in the north central part of the state. This broad east-northeastward view shows that region with the cities of Ogden, Salt Lake City, and Provo seen from left to right. The Great Salt Lake (left) and Utah Lake (right) are quite shallow and appear greenish in this enhanced natural color view. Thousands of years ago ancient Lake Bonneville covered all of the lowlands seen here. Its former shoreline is clearly seen as a wave-cut bench and/or light colored 'bathtub ring' at several places along the base of the mountain front - evidence seen from space of our ever-changing planet.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 5 satellite image mosaic, and a false sky. Topographic expression is exaggerated four times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif

  11. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  12. Comment and response document for the UMTRA Project vitro processing site completion report Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-03-01

    This Comment and Response Document is a series of UMTRA document review forms regarding the UMTRA Project Vitro Processing Site Completion Report for Salt Lake City, Utah in March, 1995. The completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approved design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendices to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawings, the EPA standards (40 CFR Part 192); the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objective of the remedial action at Salt Lake City is to remove the tailings from the processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. Each section is evaluated in detail to check all aspects of above report, especially the inclusion of adequate verification data. Each review form contains a section entitled State of Utah Response and Action, which is an explanation or correction of DOE criticisms of the report

  13. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina.

    Directory of Open Access Journals (Sweden)

    Enrique H Bucher

    Full Text Available Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina, the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite, and a superficial and variable water table, which may result in the periodic development of a characteristic "fluffy" surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr, and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons.

  14. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    Science.gov (United States)

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  15. Lessons from White Lake - Connecting Students to their Community through Environmental Stewardship

    Science.gov (United States)

    Tate, Susan

    2014-05-01

    White Lake and its surrounding community have been negatively affected by shoreline degradation and wildlife habitat loss caused primarily by historical logging practices, and reduced water quality from industrial pollution and storm water runoff. This led to the lake being identified as a Great Lakes Area of Concern by the United States Environmental Protection Agency three decades ago. Local community partners have worked diligently in recent years to reverse habitat loss, and repair damaged ecosystems. The "H2O White Lake" (Healthy Habitats On White Lake) project has involved over seven hundred middle school students in grades six through eight over the course of the last five years. Students begin by researching the environmental history of the watershed and then they monitor six tributaries of the lake for nutrient pollution and habitat degradation. Students use the field experience as a community inventory to identify stewardship needs, for which they then identify solutions that take into account land usage and community behaviors. Class projects have focused on stream bank restoration, storm water management, eradication of invasive species, shoreline clean-up, and community outreach and education. This year, the project culminated in the first ever White Lake Environmental Film Festival, for which students had the opportunity to create their own short documentary. This multiple year place based education project allows students to apply their classroom studies of surface water and groundwater dynamics to an authentic, real-world situation, conduct themselves as scientists, and feel valuable through connections with community partners.

  16. The offshore fish community in southern Lake Ontario, 1972-1998

    Science.gov (United States)

    Owens, Randall W.; O'Gorman, Robert; Eckert, Thomas H.; Lantry, Brian F.; Munawar, M.

    2003-01-01

    The authors document the status of Lake Ontario's open-water fish community in 1972, near the beginning of an era of massive fish stocking and when phosphorus levels in the lake from anthropogenic inputs, were near their peak. They then describe changes that occurred in the fish community in 1978-98. This was a period when large numbers of young salmonid piscivores were released annually, sea lamprey control continued to improve, and phosphorus levels were declining due to successful nutrient abatement programs. Coincident with the above, the lower food web was changed by the addition of new exotic invertebrates, the zooplankter Bythotrephes cederstroemi and particularly the zebra mussel, Dreissena polymorpha, and quagga mussel, D. bugensis. The picture of the fish community structure is drawn from records of catches in bottom trawls and gill nets during surveys of southern Lake Ontario conducted the the U.S. Geological Survey (USGS) and the New York Department of Environmental Conservation (NYDEC), from records of fish stocked in Lake Ontario by the NYDEC, and from a creel census of boat anglers returning to southern Lake Ontario ports conducted by the NYDEC.

  17. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines

    NARCIS (Netherlands)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  18. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    NARCIS (Netherlands)

    Vavourakis, C.D.; Ghai, R.; Rodriguez-valera, F.; Sorokin, D.Y.; Tringe, S.G.; Hugenholtz, P.; Muyzer, G.

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  19. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria

    International Nuclear Information System (INIS)

    Grandlic, Christopher J.; Geib, Ian; Pilon, Renee; Sandrin, Todd R.

    2006-01-01

    Rush Lake (WI, USA), the largest prairie-pothole lake east of the Mississippi River, has been contaminated with lead pollution as a result of over 140 years of waterfowl hunting. We examined: (1) the extent of lead pollution in Rush Lake sediments and (2) whether lead pollution in Rush Lake is affecting the abundance and community structure of indigenous sediment bacteria. Sediment lead concentrations did not exceed 59 mg Pb kg -1 dry sediment. No relationship was observed between sediment lead concentration and the abundance of aerobic (P = 0.498) or anaerobic (P = 0.416) heterotrophic bacteria. Similarly, lead did not appear to affect bacterial community structure when considering both culturable and nonculturable community members. In contrast, the culturable fraction of sediment bacteria in samples containing 59 mg Pb kg -1 exhibited a unique community structure. While factors other than lead content likely play roles in determining bacterial community structure in the sediments of Rush Lake, these data suggest that the culturable fraction of sediment bacterial communities is affected by elevated lead levels. - Low levels of lead pollution in Rush Lake are not impinging upon the abundance of indigenous sediment bacteria, but may be affecting the community structure of the culturable fraction of these bacteria

  20. Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Detkova, Ekaterina N.; Bej, Asim K.; Marsic, Damien; Hoover, Richard B.

    2003-02-01

    The bacterial diversity of microbial extremophiles from the meromictic, hypersaline Mono Lake and a small evaporite pool in Owens Lake of California was studied. In spite of these regions had differing mineral background and different concentrations of NaCl in water they contain the same halo- alkaliphiles anaerobic bacterial community. Three new species of bacteria were detected in this community: primary anaerobe, dissipotrophic saccharolytic spirochete Spirochaeta americana strain AspG1T, primary anaerobe which is proteolytic Tindallia californiensis strain APOT, and secondary anaerobe, hydrogen using Desulfonatronum thiodismutans strain MLF1T, which is sulfate- reducer with chemo-litho-autotrophic metabolism. All of these bacteria are obligate alkaliphiles and dependent upon Na+ ions and CO32- ions in growth mediums. It is interesting that closest relationships for two of these species were isolates from samples of equatorial African soda Magadi lake: Spirochaeta americana AspG1T has 99.4% similarity on 16S rDNA- analyses with Spirochaeta alkalica Z- 7491T, and Tindallia californiensis APOT has 99.1% similarity with Tindallia magadiensis Z-7934T. But result of DNA-DNA- hybridization demonstrated less then 50% similarity between Spirochaeta americana AspG1T and Spirochaeta alkalica Z-7491T. Percent of homology between Tindallia californiensis APOT and Tindallia magadiensis Z-7934T is only 55%. The sulfate-reducer from the alkalic anaerobic community of Magadi lake Desulfonatronovibrio hydrogenovorans Z-7935T was phylogenetically distant from this sulfate-reducer in Mono lake, but genetically closer (99.7% similarity) to the sulfate-reducer, isolated from Central Asian alkalic lake Khadyn in Siberia Desulfonatronum lacustre Z-7951T. The study of key enzymes (hydrogenase and CO- hydrogenase) in Tindallia californiensis APOT and Desulfonatronum thiodismutans MLF1T showed the presence of high activity of both the enzymes in first and only hydrogenase in second

  1. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    International Nuclear Information System (INIS)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-01-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western's net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western's purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western's net revenue is computed

  2. Water quality in Danube Delta Lakes: An assessment using benthic macroinvertebrates community

    Directory of Open Access Journals (Sweden)

    IBRAM Orhan

    2016-12-01

    Full Text Available An assessment of the ecological status of selected lakes in the Danube Delta Biosphere Reserve was done based on temporal and spatial variation of macroinvertebrate communities during 2012 and 2013. Macroinvertebrate communities and measures of these communities were evaluated and a baseline characterization of assemblages was determined for the analyzed sites. Each year, three sampling campaigns, one for each ice-free season were organized for data collection. Macroinvertebrate samples have been collected in every lake from three different stations with the use of an Ekmann dredge. The highest taxa richness are recorded in Fortuna and Isac lakes in 2013. Total abundance followed a pattern similar to taxa number with Fortuna and Isac lakes having the highest yearly values (maximum number of individuals – 225 - per sample has been recorded in September 2013, in Isac Lake.Using saprobic index as an indicator of ecological status Isac lake was classifies as moderate and other three lakes, Merhei, Furtuna and Rosu as good ecological status. Lack of correlation between diversity indices and the saprobic values suggests that other assessment methods could be more effective and provide better information than saprobic index does at least for Danube Delta.

  3. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  4. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  5. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2011-05-13

    ... of the Utah Museum of Natural History, Salt Lake City, UT. The human remains were removed from Snow.... A detailed assessment of the human remains was made by the Utah Museum of Natural History... with the human remains should contact Duncan Metcalfe, Utah Museum of Natural History, 1390 E...

  6. [Ichthyofauna and its community diversity in volcanic barrier lakes of Northeast China].

    Science.gov (United States)

    Yang, Fu-Yi; Lü, Xian-Guo; Lou, Yan-Jing; Lou, Xiao-Nan; Xue, Bin; Yao, Shu-Chun; Xiao, Hai-Feng

    2012-12-01

    Based on the investigations of fish resources in Jingpo Lake and Wudalianchi Lakes in 2008-2011 and the historical data, this paper analyzed the characteristics of ichthyofauna and its community diversity in volcanic barrier lakes of Northeast China. The ichthyofauna in the volcanic barrier lakes of Northeast China was consisted of 64 native species, belonging to 47 genera, 16 families, and 9 orders, among which, one species was the second class National protected wild animal, four species were Chinese endemic species, and five species were Chinese vulnerable species. In the 64 recorded species, there were 44 species of Cypriniformes order and 37 species of Cyprinidae family dominated, respectively. The ichthyofauna in the volcanic barrier lakes of Northeast China was formed by 7 fauna complexes, among which, the eastern plain fauna complex was dominant, the common species from the South and the North occupied 53.1%, and the northern endemic species took up 46.9%. The Shannon, Fisher-alpha, Pielou, Margalef, and Simpson indices of the ichthyofauna were 2.078, 4.536, 0.575, 3.723, and 0.269, respectively, and the abundance distribution pattern of native species accorded with lognormal model. The Bray-Curtis, Morisita-Horn, Ochiai, Sørensen, and Whittaker indices between the communities of ichthyofauna in the volcanic barrier lakes of Northeast China and the Jingpo Lake were 0.820, 0.992, 0.870, 0.862 and 0.138, respectively, and those between the communities of ichthyofauna in the volcanic barrier lakes and the Wudalianchi Lakes were 0.210, 0.516, 0.838, 0.825, and 0.175, respectively. The ichthyofauna in volcanic barrier lakes of Northeast China was characterized by the mutual infiltration between the South and the North, and the overlap and transition between the Palaeoarctic realm and the Oricetal realm. It was suggested that the ichthyofauna community species diversity in the volcanic barrier lakes of Northeast China was higher, the species structure was more

  7. Wildlife in the Upper Great Lakes Region: a community profile.

    Science.gov (United States)

    Janine M. Benyus; Richard R. Buech; Mark D. Nelson

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. The composite NORTHWOODS data base is summarized. Multiple queries of NORTHWOODS were used to profile the wildlife community of the Upper Great Lakes region.

  8. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  9. Distribution and abundance of Artemia salina in the Salt Lake Basin (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Alaş Ali

    2017-06-01

    Full Text Available In this study, the distribution and abundance of Artemia salina in 10 different stations of the Salt Lake basin were investigated. In addition, its relationship to pH, dissolved oxygen, temperature, electrical conductivity and water levels were analyzed. Field studies were carried out from July to August of 2010. Artemia salina was observed in five of these stations. Artemia salina was not seen in some stations that have high electrical conductivity. It is determined that, in the station named Tersakan Lake where electrical conductivity was 154 mS/cm, Artemia salina is more abundant when compared to the other stations. But as underground water pumps that are built for the irrigation of agricultural lands decrease water levels, Artemia salina’s life is under threat.

  10. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia)

    NARCIS (Netherlands)

    Tolomeev, A.; Sushchik, N.N.; Gulati, R.D.; Makhutova, O.N.; Kalacheva, G.S.; Zotina, T.A.

    2010-01-01

    During two vegetation seasons (2004–2005), we compared feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) populations inhabiting two neighboring salt lakes, Shira and Shunet, Khakasia, Russia, using fatty acid (FA) trophic markers. Sestonic FA composition in two lakes moderately

  11. Completion report for the UMTRA project Vitro processing site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1996-08-01

    This completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approval design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendixes to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawing and the EPA standards; the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objectives of remedial action at Salt Lake City were to remove the tailings from the former processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. The final remedial action plan, which is approved by the U.S. Department of Energy and concurred upon by the U.S. Nuclear Regulator Commission and the state of Utah, contains the conceptual design used to develop the final approved design. During remedial action construction operations, conditions were encountered that required design features that differed form the conceptual design. These conditions and the associated design changes are noted in the record drawings. All remedial action activities were completed in conformance with the specifications and drawings. In the opinion of the state of Utah, the record drawings accurately reflect existing property conditions at the processing site

  12. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia)

    OpenAIRE

    Tolomeev, A.; Sushchik, N.N.; Gulati, R.D.; Makhutova, O.N.; Kalacheva, G.S.; Zotina, T.A.

    2010-01-01

    During two vegetation seasons (2004–2005), we compared feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) populations inhabiting two neighboring salt lakes, Shira and Shunet, Khakasia, Russia, using fatty acid (FA) trophic markers. Sestonic FA composition in two lakes moderately differed, whereas levels of diatom FA markers were higher in Lake Shunet and of Cyanobacteria and green algae markers in Lake Shira. In general, markers in storage lipids—triacylglycerols (TAG) of A. sali...

  13. A MAP MASH-UP APPLICATION: INVESTIGATION THE TEMPORAL EFFECTS OF CLIMATE CHANGE ON SALT LAKE BASIN

    Directory of Open Access Journals (Sweden)

    O. S. Kirtiloglu

    2016-06-01

    Full Text Available The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI, which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google’s free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective “Map Mash-Ups” involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  14. a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin

    Science.gov (United States)

    Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.

    2016-06-01

    The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  15. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  16. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    Science.gov (United States)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  17. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  19. A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation.

    Science.gov (United States)

    Suárez, Francisco; Tyler, Scott W; Childress, Amy E

    2010-08-01

    Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  1. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  2. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    Science.gov (United States)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  3. [Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes].

    Science.gov (United States)

    Samylina, O S; Sapozhnikov, F V; Gaĭnanova, O Iu; Riabova, A V; Nikitin, M A; Sorokin, D Iu

    2015-01-01

    The composition and macroscopic structure of the floating oxygenic phototrophic communities from Kulunda steppe soda lakes (Petukhovskoe sodovoe, Tanatara VI, and Gorchiny 3) was described based on the data of the 2011 and 2012 expeditions (Winogradsky Institute of Microbiology). The algo-bacterial community with a green alga Ctenocladus circinnatus as an edificator was the typical one. Filamentous Geitlerinema sp. and Nodosilinea sp. were the dominant cyanobacteria. Apart from C. circinnatus, the algological component of the community contained unicellular green algae Dunaliella viridis and cf. Chlorella minutissima, as well as diatoms (Anomeoneis sphaerophora, Brchysira brebissonii, Brachysira zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, Nitzschia communis, and Nitzschia sp.1). The latter have not been previously identified in the lakes under study. In all lakes, a considerable increase in salinity was found to result in changes in the composition and macroscopic structure of algo-bacterial communities.

  4. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    Science.gov (United States)

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide.

  5. Assessment methodology for new cooling lakes. Volume 2. Development of empirical multivariate relationships for evaluating fish communities in new cooling lakes. Final report

    International Nuclear Information System (INIS)

    Grieb, T.M.; Porcella, D.B.; Ginn, T.C.; Lorenzen, M.W.

    1983-02-01

    Numerical classification techniques were used to define groups of lakes with distinct fish community attributes. Simple linear and multiple regression were then used to identify the important environmental variables affecting the fish communities. Next, the multivariate statistical technique of discriminant analysis was tested and shown to predict the groups of lakes (defined in the initial step of classification) using the identified environmental variables. Classification equations derived in the discriminant analysis enable the user to predict fish community characteristics of a new lake. The equations combine the information from nine limnological parameters into a single index of classification. Based on the value of this index, the lake is classified into one of four distinct groups. The fishery characteristics of the indicated group are then used to predict fish community structure and recreational fishery use. Angler-use estimates for the group are used to project multiple use benefits

  6. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  7. The Interactive Effect of Multiple Stressors on Crustacean Zooplankton Communities in Montane Lakes

    Science.gov (United States)

    Brittain, Jeffrey T.; Strecker, Angela L.

    2018-02-01

    Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance and composition of planktonic communities. This study identified responses of zooplankton communities from two lakes (fish present versus absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance of acidification and eutrophication via nitrogen addition in mesocosms. Zooplankton communities from lakes with different food web structure (i.e., fish present or absent) responded differently to the singular effects of acid and nitrogen addition. For instance, zooplankton biomass decreased in the acid treatment of the fishless lake experiment, but increased in response to acid in the fish-present experiment. In contrast, the combination of acid and nitrogen often resulted in weak responses for both lake types, resulting in nonadditive effects, i.e., the net effect of the stressors was in the opposite direction than predicted, which is known as a reversal or "ecological surprise." This experiment demonstrates the difficulty in predicting the interactive effects of multiple stressors on aquatic communities, which may pose significant challenges for habitat restoration through fish removal.

  8. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  9. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika

    NARCIS (Netherlands)

    Langenberg, V.T.; Tumba, J.M.; Tshibangu, K.; Lukwesa, C.; Chitamwebwa, D.; Bwebwa, D.; Makasa, L.; Roijackers, R.M.M.

    2008-01-01

    From 28 August to 6 September 1995, we monitored the lake-wide physical, chemical and biological properties of the pelagic waters in Lake Tanganyika. The aim of this study was to examine the spatial environmental variability and its relation to fluctuations in plankton abundance and community

  10. Adirondack lakes survey: An interpretive analysis of fish communities and water chemistry, 1984--1987

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.P. (Baker (Joan P.), Raleigh, NC (USA)); Gherini, S.A.; Munson, R.K. (Tetra Tech, Inc., Pasadena, CA (USA)); Christensen, S.W. (Oak Ridge National Lab., TN (USA)); Driscoll, C.T. (Syracuse Univ., NY (USA)); Gallagher, J. (Adirondack Lakes Survey Corp., Ray Brook, NY (USA)); Newton, R.M. (Smith Coll., Northampton, MA (USA)); Reckhow, K.H. (Duke Univ., Durham, NC (USA)); Schofield, C.L. (Co

    1990-01-01

    The Adirondack Lakes Survey Corporation (ALSC) was formed as a cooperative effort of the New York State Department of Environmental Conservation and the Empire State Electric Energy Research Corporation to better characterize the chemical and biological status of Adirondack lakes. Between 1984 and 1987, the ALSC surveyed 1469 lakes within the Adirondack ecological zone. As a follow-up to the survey, the ALSC sponsored a series of interpretive analyses of the ALSC data base. The primary objectives of these analyses were as follows: Evaluate the influence of mineral acids (from acidic deposition) and nonmineral acids (natural organic acids) on lake pH levels; classify Adirondack lakes according to lake and watershed features expected to influence their responsiveness to changes in acidic deposition; evaluate the sensitivity of Adirondack lakes to changes in environmental conditions, such as changes in mineral acids or dissolved organic carbon concentrations; identify lake characteristics important in explaining the observed present-day status of fish communities in Adirondack lakes, in particular the relative importance of lake acidity; evaluate changes that have occurred over time in Adirondack fish communities and probable causes for these trends by using the available historical data on fish communities in the Adirondacks and the ALSC data base; and determine the degree to which the existing fish resource might be at risk from continued acidic deposition, or might recover if acidity levels were reduced. The basic approach examined relationships observed in the ALSC data base among watershed characteristics, lake chemistry, and fish status. Individual reports are processed separately for the data bases.

  11. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  12. Phytoplankton community responses to acidification of Lake 223, Experimental Lakes Area, Northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.L.; Kasian, S.E.

    1986-10-01

    From 1976 to 1983 the pH of Lake 223 was artificially lowered by additions of H/sub 2/SO/sub 4/. From an initial level of 6.7, the pH was lowered at a rate of 0.5 pH units a year until it reached 5.0 and was held there for 3 yr. The decrease in pH caused major changes in the epilimnetic phytoplankton community in this lake. Biomass increased as pH decreased. Chlorophyte (Chlorella) abundance increased as pH decreased from 6.1 to 5.6 while Cyanophytes (Merismopedia and Chroococcus) and dinoflagellates (Gymnodinium and Peridinium) dominated once pH decreased below 5.6. Community diversities decreased because of these species shifts and a decrease in the number of species. The amount of edible biomass increased as the pH decreased from 6.7 to 5.6, then declined as pH decreased to 5.0. 25 refs.

  13. On the Salt Water Intrusion into the Durusu Lake, Istanbul: A Joint Central Loop TEM And Multi-Electrode ERT Field Survey

    Science.gov (United States)

    Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan

    2018-02-01

    Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.

  14. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    Science.gov (United States)

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  15. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  16. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    Science.gov (United States)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  17. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  18. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  19. Salt Lake City Area Integrated Projects: Rate adjustment: Environmental assessment

    International Nuclear Information System (INIS)

    1990-08-01

    The Department of Energy (DOE) has determined that the proposed firm power rate increase for the Salt Lake City Area Integrated Projects (Integrated Projects) power would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA, 42 USC 4321, et seq.) and, as such, does not require the preparation of an environmental impact statement (EIS). This determination is based on an environmental assessment (EA) prepared by the Western Area Power Administration (Western) dated August 1990 (DOE/EA-0457). The EA identifies and evaluates the potential environmental and socioeconomic effects of the proposed action, and based on the analysis contained therein, DOE concludes that the impacts to the human environment resulting from the implementation of the rate increase would be insignificant

  20. Revisiting the Salt Lake City Olympic scandal: Would the outcome be different today?

    Directory of Open Access Journals (Sweden)

    Mark Dodds

    2016-04-01

    Full Text Available Many international sport organizations face bribery scandals resulting from its event bidding process. The International Olympic Committee (IOC faced this type of scandal with the 2002 Olympic Winter Games. Two members of the Salt Lake City Organizing Committee (SLOC faced 15 criminal charges from providing more than US$1.2 million in cash and gifts to entice IOC members to support its bid. Ultimately both SLOC members were acquitted of all charges. Can a new interpretation of the United States’ anti-bribery law, the Foreign Corrupt Practices Act (FCPA, be effective in preventing similar sport scandals?

  1. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  2. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  3. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  4. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qingyun [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yu, Yuhe [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Deng, Ye [CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing China; Li, Xinghao [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wu, Shu [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Dai, Lili [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Zhang, Xiang [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Jinjin [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wang, Chun [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ni, Jiajia [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Xuemei [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Hu, Hongjuan [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Xiao, Fanshu [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Feng, Weisong [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ning, Daliang [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; He, Zhili [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Van Nostrand, Joy D. [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Wu, Liyou [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Zhou, Jizhong [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing China; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA

    2017-05-21

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relative abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.

  5. Species succession and sustainability of the Great Lakes fish community

    Science.gov (United States)

    Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.

  6. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    Science.gov (United States)

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  7. The Brine Shrimp Artemia Survives in Diluted Water of Lake Bunyampaka, an Inland Saline Lake in Uganda

    Directory of Open Access Journals (Sweden)

    Martin Sserwadda

    2018-02-01

    Full Text Available Ugandan aquaculture is in the process of development; however, it requires access to an affordable live food source, such as brine shrimp Artemia. This study fits within a broader feasibility study of domestic Artemia production in salt lakes. Since Uganda is a landlocked country, the only opportunity for live water food sources lies in the salt lakes in the west of the country. This study used saline water from one of these lakes, Lake Bunyampaka (salinity 72 mg L−1. Two Artemia strains, i.e., the Great Salt Lake strain, which is the dominant strain on the market, and the Vinh Chau strain, which is by far the most inoculated strain in the world, were assayed for their survival, growth, and reproduction in diluted Lake Bunyampaka water, using natural seawater as control. The organisms were fed live freshly cultured microalgae Tetraselmis suecica ad libitum. Our study revealed that the Vinh Chau strain performed especially well in Lake Bunyampaka water diluted to 50 g L−1. The data presented in this study generate the first useful information for the future inoculation of Artemia in Lake Bunyampaka in Uganda, and hence domestic Artemia production in the country; however, further larger-scale laboratory work, followed by field trials, is still needed.

  8. Abundance and diversity of aquatic macroinvertebrate communities in lakes exposed to Chernobyl-derived ionising radiation

    International Nuclear Information System (INIS)

    Murphy, J.F.; Nagorskaya, L.L.; Smith, J.T.

    2011-01-01

    Littoral (lake shore) macroinvertebrate communities were studied in eight natural lakes affected by fallout from the Chernobyl accident. The lakes spanned a range in 137 Cs contamination from 100 to 15500 kBq m -2 and estimated external dose rates ranged from 0.13 to 30.7 μGy h -1 . General linear models were used to assess whether abundance of individuals, taxon richness, Berger-Parker dominance and Shannon-Wiener diversity varied across the lakes. Step-wise multiple regressions were used to relate variation in total abundance, taxon richness, Berger-Parker dominance, Shannon-Wiener diversity, taxon richness within major groups of macroinvertebrates and abundance of the more common individual taxa to the measured environmental characteristics (conductivity, pH, total hardness and phosphate; lake area, lake maximum depth and total external dose) of the lakes. No evidence was found in this study that the ecological status of lake communities has been influenced by radioactive contamination from the Chernobyl accident. Indeed, the most contaminated lake, Glubokoye, contained the highest richness of aquatic invertebrates. Taxon richness in the eight study lakes varied from 22 (Svyatskoe no. 7) to 42 (Glubokoye) which spans a range typical for uncontaminated lakes in the region. Since 90 Sr is readily-absorbed by Mollusca, estimated dose rates to this group exceeded those for other invertebrate groups in two lakes (Perstok and Glubokoye). However this study found no association between mollusc diversity or abundance of individual snail species and variation between lakes in the external radiation dose. Indeed Glubokoye, the lake most contaminated by 90 Sr, had the highest richness of freshwater snails per sample (an average of 8.9 taxa per sample). - Highlights: → We studied the effect of radiation on macroinvertebrates in Chernobyl affected lakes. → Abundance, taxon richness, Berger-Parker dominance, Shannon-Wiener diversity evaluated. → No relationship between

  9. Zooplankton community response to experimental acidification in boreal shield lakes with different ecological histories

    Energy Technology Data Exchange (ETDEWEB)

    Derry, A.M.; Arnott, S.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology

    2007-06-15

    This study investigated the adaptive response of crustacean zooplankton to widespread regional acidification at the Killarney Provincial Park in Ontario. Mesocosm experiments were conducted in 2 circumneutral lakes with different acidification histories. A reciprocal transplant field enclosure experiment was conducted to assess whether the zooplankton community within the acid-recovering boreal shield lake showed evidence of increased acid tolerance to historical acidification following a 6 year period in which the lake's pH was 6.0. The enclosures were filled with epilimnetic water from the lake. Zooplankton from other lakes in the area were used. Zooplankton and water samples were collected from the enclosures once a week. Shannon-Wiener indices, species richness, and total abundance of the zooplankton were calculated for each sample day. Repeated measures analyses of variance (RM-ANOVAs) were used to test for the effects of the incubation lake, the zooplankton source, and the pH. Species abundance data were log{sub 10} transformed to improve homogeneity of variances and normality. Principle components analysis was conducted on species abundances to infer the influence of treatments on zooplankton community composition. Zooplankton were also transferred from 1 lake to the other in order to determine if subtle differences in local water chemistry and food conditions were limiting the recovery of species in acid-recovering lakes. The study showed that 2 key species, H. gibberum and L. minutus, contributed to community-level differences to acid tolerance of zooplankton with different acidification histories. It was concluded that zooplankton with adaptable acid tolerances may monopolize resources in acidified and acid-recovering lakes, and may contribute to the delayed recolonization of other taxa. 62 refs., 3 tabs., 6 figs.

  10. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP).

    Science.gov (United States)

    Zhao, Dayong; Huang, Rui; Zeng, Jin; Yan, Wenming; Wang, Jianqun; Ma, Ting; Wang, Meng; Wu, Qinglong L

    2012-11-01

    Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7 % of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4 % of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.

  11. Zooplankton composition and community structure in Lake Tiga ...

    African Journals Online (AJOL)

    Zooplankton in Lake Tiga was identified and its community structure assessed between March 2009 and March 2011. A total of 54 species of zooplankton was recorded, comprising two species of Protozoa, 26 species of Rotifera, eight species of Copepoda, 11 species of Cladocera, four species of Ostracoda and three ...

  12. 40 CFR 52.142 - Federal Implementation Plan for Tri-Cities landfill, Salt River Pima-Maricopa Indian Community.

    Science.gov (United States)

    2010-07-01

    ...-Cities landfill, Salt River Pima-Maricopa Indian Community. 52.142 Section 52.142 Protection of... IMPLEMENTATION PLANS Arizona § 52.142 Federal Implementation Plan for Tri-Cities landfill, Salt River Pima... the Tri-Cities landfill located on the Salt River Pima-Maricopa Indian Community near Phoenix, Arizona...

  13. Zooplankton communities in three adjacent softwater lobelia lakes of slightly differentiated morphology and trophic state

    Directory of Open Access Journals (Sweden)

    Kuczyńska-Kippen Natalia

    2017-12-01

    Full Text Available The paper presents the results of an investigation of physical-chemical features of water as well as rotifer and crustacean abundance and diversity measures, relating to the taxonomic richness and species diversity index, in three lobelia lakes differing in trophic status and morphometric features. The main purpose of this study was to establish the diversity of zooplankton communities in the open water area of lobelia lakes, including extracting species common for each lake and also to find environmental predictors which are responsible for the development of zooplankton communities. Despite the fact that the three studied lakes are of the same origin, located in the same vicinity and have generally similar environmental factors, zooplankton community structure revealed a great variation in reference to species diversity (only ca. 20% of the species were common for all lakes and particularly in inhabiting species. Obrowo Lake had the most diverse assemblages of both rotifers and crustaceans compared to Modre and Pomysko lakes. In the taxonomic structure species that are rare for the Polish fauna, such as e.g. Holopedium gibberum and Heterocope appendiculata, occurred. Even though the examined lobelia lakes are ecosystems that undergo varying human-induced impacts, they still remain taxonomically very variable aquatic ecosystems, containing rare species of very high ecological status. The observed symptoms of deterioration of water quality, reflected in the zooplankton biocoenotic features, showed that the best conditions were attributed to Obrowo Lake in comparison with the two remaining lakes – Modre and Pomysko. Total nitrogen and chlorophyll a concentration were decisive for the distribution of zooplankton species in Pomysko and Obrowo lakes, while in case of Modre lake water reactivity and conductivity were of higher impact.

  14. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length.

    Science.gov (United States)

    Hintz, William D; Mattes, Brian M; Schuler, Matthew S; Jones, Devin K; Stoler, Aaron B; Lind, Lovisa; Relyea, Rick A

    2017-04-01

    The application of road deicing salts in northern regions worldwide is changing the chemical environment of freshwater ecosystems. Chloride levels in many lakes, streams, and wetlands exceed the chronic and acute thresholds established by the United States and Canada for the protection of freshwater biota. Few studies have identified the impacts of deicing salts in stream and wetland communities and none have examined impacts in lake communities. We tested how relevant concentrations of road salt (15, 100, 250, 500, and 1000 mg Cl - /L) interacted with experimental communities containing two or three trophic levels (i.e., no fish vs. predatory fish). We hypothesized that road salt and fish would have a negative synergistic effect on zooplankton, which would then induce a trophic cascade. We tested this hypothesis in outdoor mesocosms containing filamentous algae, periphyton, phytoplankton, zooplankton, several macroinvertebrate species, and fish. We found that the presence of fish and high salt had a negative synergistic effect on the zooplankton community, which in turn caused an increase in phytoplankton. Contributing to the magnitude of this trophic cascade was a direct positive effect of high salinity on phytoplankton abundance. Cascading effects were limited with respect to impacts on the benthic food web. Periphyton and snail grazers were unaffected by the salt-induced trophic cascade, but the biomass of filamentous algae decreased as a result of competition with phytoplankton for light or nutrients. We also found direct negative effects of high salinity on the biomass of filamentous algae and amphipods (Hyalella azteca) and the mortality of banded mystery snails (Viviparus georgianus) and fingernail clams (Sphaerium simile). Clam mortality was dependent on the presence of fish, suggesting a non-consumptive interactive effect with salt. Our results indicate that globally increasing concentrations of road salt can alter community structure via both direct

  15.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    polar dinoflagellate community, and not freshwater species. Polarella glacialis Montresor, Procaccini et Stoecker, a bipolar marine species, was for the first time described in a lake habitat and was an important phototrophic component in the higher salinity lakes. In the brackish lakes, we found a new...... sibling species to the brackish-water species Scrippsiella hangoei (J. Schiller) J. Larsen, previously observed only in the Baltic Sea....

  16. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  17. [Phytoplankton community in a recreational fishing lake, Brazil].

    Science.gov (United States)

    Matsuzaki, Mayla; Mucci, José Luiz Negrão; Rocha, Aristides Almeida

    2004-10-01

    The assessment of water quality and phytoplankton community in recreational environments allows to setting management programs aiming at preventing potential harm to human health. The purpose of the present study was to describe phytoplankton seasonal changes in a freshwater system and their relation to water quality. The recreational fishing lake is located in the southern area of the city of São Paulo, Brazil. Water samples were collected in three previously selected sites in the lake throughout a year and analyzed regarding floristic composition and physical and chemical parameters. The phytoplankton qualitative analysis revealed 91 taxa distributed among eight classes: Chlorophyceae, Cyanophyceae, Euglenophyceae, Zygnemaphyceae, Bacillariophyceae, Xantophyceae, Dinophyceae, and Chrysophyceae. Some physical and chemical parameters seemed to influence phytoplankton community behavior. Chlorophyceae development was favored by local conditions. Among the species of cyanobacteria identified, Microcystis paniformis, Cylindrospermopsis raciborskii, and Anabaena species were the most important due to their ability to produce toxins, posing a high risk to public health. Some physical and chemical parameters had an impact on the structure of phytoplankton community. The presence of Microcystis paniformis, Cylindrospermopsis raciborskii and Anabaena species indicates toxic potential and likelihood of public health problems unless there is constant monitoring. Further studies are recommended to prevent hazardous effects to the environment and public health.

  18. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, N., E-mail: touzet.nicolas@itsligo.ie [Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo (Ireland); McCarthy, D.; Gill, A.; Fleming, G.T.A. [Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway (Ireland)

    2016-05-15

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  19. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    International Nuclear Information System (INIS)

    Touzet, N.; McCarthy, D.; Gill, A.; Fleming, G.T.A.

    2016-01-01

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  20. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    Science.gov (United States)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  1. Status and trends in the fish community of Lake Superior, 2012

    Science.gov (United States)

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark

    2012-01-01

    The Great Lakes Science Center has conducted daytime nearshore bottom trawl surveys of Lake Superior (15-80 m bathymetric depth zone) each spring since 1978 and an offshore survey (>80 m) since 2011 to provide long-term trends of relative abundance and biomass of the fish community. In 2012, 72 nearshore and 34 offshore stations were sampled with a 12-m Yankee bottom trawl.

  2. Radial ooids from Great Salt Lake (Utah) as paleoenvironmental archives: Insights from radiocarbon chronology and stable isotopes

    Science.gov (United States)

    Paradis, O. P.; Corsetti, F. A.; Bardsley, A.; Hammond, D. E.; Xu, X.; Walker, J. C.

    2017-12-01

    Ooids (laminated, carbonate coated grains) are ubiquitous in the geologic record in marine and lacustrine settings, and thus remain a common target for geochemical analysis to understand modern and ancient aqueous environments. However, the processes governing ooid formation remain unclear. Recently, radiocarbon dating has revealed that modern marine ooids grow slowly (Beaupre et al. 2015), and laboratory experiments have highlighted the importance of sediment transport and abrasion on net growth rates and ooid size (Trower et al. 2017). Ooid cortex structure includes micritic, tangential and/or radially oriented fabrics. Most modern marine ooids have tangential or micritic cortices, whereas many ancient ooids have radial cortices—thus, there is a need to understand how radial ooids in ancient rocks might inform us about their depositional environment. The Great Salt Lake (GSL), Utah, provides a unique environment to assess the growth rate of primary radial aragonitic ooids. Ooids collected near Antelope Island in the south arm of GSL were sieved, the 355-500 µm fraction was sequentially leached, and 14C of the evolved gas was analyzed to provide a time series of growth. The oldest inorganic carbon of this size fraction has an apparent 14C age of 6600 yr BP, with subsequent growth spanning over 6,000 years. Closed-basin lakes are particularly susceptible to a "reservoir effect" which results in anomalously old apparent radiocarbon ages. The 14C age of the modern dissolved inorganic carbon (DIC) of the south arm was measured to be 295 yr BP, a reservoir age comparable to estimates from lacustrine cave carbonates (McGee et al. 2012). Net growth rate of south arm ooids ranges between 0.01-0.025 µm per year. The δ13C of the outermost cortex suggests that the ooids resemble the modern DIC in the south arm water, suggesting ooids precipitate in equilibrium with lake water. Finer-scale structure in the δ13C of the ooid cortex through time suggests lake level changed

  3. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  4. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  5. Fluoridated salt for caries prevention and control - a 2-year field study in a disadvantaged community

    DEFF Research Database (Denmark)

    Wennhall, Inger; Hajem, Samara; Ilros, Susanna

    2014-01-01

    BACKGROUND: Salt fluoridation is considered a cost-effective community strategy for reducing caries. AIM: To evaluate the effect of school-based and domestic distribution of F-salt to schoolchildren residing in a disadvantaged community. DESIGN: Seven hundred and thirty-three schoolchildren (12...

  6. A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2005-01-01

    We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario

  7. Transactional sex in the fishing communities along Lake Victoria ...

    African Journals Online (AJOL)

    The study describes the nature, context and implications of a unique form of transactional sexual relationships in the fishing communities along Lake Victoria in Kisumu County, Kenya. We conducted 12 focus group discussions and 17 key informant interviews among fishermen, fishmongers and fish transporters in Kisumu.

  8. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia).

    Science.gov (United States)

    Namsaraev, Zorigto; Samylina, Olga; Sukhacheva, Marina; Borisenko, Gennadii; Sorokin, Dimitry Y; Tourova, Tatiana

    2018-04-16

    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  9. Geochemical investigation of UMTRAP designated site at Salt Lake City, Utah

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Salt Lake City, Utah. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the Uranium Mill Tailings Remedial Action Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples were water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The water extracts and solid samples were anlyzed for the major and trace elements. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Four major conclusions are: (1) sediments in the ditches and creeks adjacent to the site contain tailings, however, the waters were generally not contaminated; (2) tailings are mixed with the soils within a meter below the tailings in some locations, however, water-soluble contaminants decrease to below background levels within 30 cm below the tailings; (3) there has not been significant acid seepage into the soils below the tailings; and (4) salt crusts on the tailings contain trace elements, with the elements that form chloride complexes having the greatest accumulation

  10. Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China

    Directory of Open Access Journals (Sweden)

    Cai Y. J.

    2014-01-01

    Full Text Available Lake Poyang is the largest freshwater lake in China and contains unique and diverse biota within the Yangtze floodplain ecosystem. However, knowledge of its macrozoobenthic assemblages remains inadequate. To characterize the current community structure of these assemblages and to portray their decadal changes, quarterly investigations were conducted at 15 sites from February to November 2012. A total of 42 taxa were recorded, and Corbicula fluminea, Limnoperna fortunei, Gammaridae sp., Nephtys polybranchia, Polypedilum scalaenum and Branchiura sowerbyi were found to dominate the community in terms of abundance. The bivalves Corbicula fluminea, Lamprotula rochechouarti, Arconaia lanceolata and Lamprotula caveata dominated the community in biomass due to their large body size. The mean abundance of the total macrozoobenthos varied from 48 to 920 ind·m-2, the mean biomass ranged from 28 to 428 g·m-2. The substrate type affected strongly the abundance, biomass, and diversity of the macrozoobenthos, with muddy sand substrates showing the highest values. Compared with historical data, remarkable changes were observed in the abundance of macrozoobenthos and the identity of the dominant species. The mean total abundance decreased from 724 ind·m-2 in 1992 to 228 ind·m-2 in 2012. The dominant species have shifted dramatically. Large unionids were dominant before 1998, whereas pollution-tolerant species (e.g., Branchiura sowerbyi increased in dominance after 2008. Our findings should have implications for the conservation of the benthic biodiversity of this large Yangtze-connected lake.

  11. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, U.S.A

    Science.gov (United States)

    Toran, Laura; Johnson, Melanie; Nyquist, Jonathan E.; Rosenberry, Donald O.

    2010-01-01

    Electrical-resistivity surveys, seepage meter measurements, and drive-point piezometers have been used to characterize chloride-enriched groundwater in lakebed sediments of Mirror Lake, New Hampshire, U.S.A. A combination of bottom-cable and floating-cable electrical-resistivity surveys identified a conductive zone (ohm-m)">(ohm-m)(ohm-m) overlying resistive bedrock (ohm-m)">(ohm-m)(ohm-m)beneath the lake. Shallow pore-water samples from piezometers in lakebed sediments have chloride concentrations of 200–1800μeq/liter">200–1800μeq/liter200–1800μeq/liter, and lake water has a chloride concentration of 104μeq/liter">104μeq/liter104μeq/liter. The extent of the plume was estimated and mapped using resistivity and water-sample data. The plume (20×35m">20×35m20×35m wide and at least 3m">3m3m thick) extends nearly the full length and width of a small inlet, overlying the top of a basin formed by the bedrock. It would not have been possible to mapthe plume's shape without the resistivity surveys because wells provided only limited coverage. Seepage meters were installed approximately 40m">40m40m from the mouth of a small stream discharging at the head of the inlet in an area where the resistivity data indicated lake sediments are thin. These meters recorded in-seepage of chloride-enriched groundwater at rates similar to those observed closer to shore, which was unexpected because seepage usually declines away from shore. Although the concentration of road salt in the northeast inlet stream is declining, the plume map and seepage data indicate the groundwater contribution of road salt to the lake is not declining. The findings demonstrate the benefit of combining geophysical and hydrologic data to characterize discharge of a plume beneath Mirror Lake. The extent of the plume in groundwater beneath the lake and stream indicate there will likely be a long-term source of chloride to the lake from groundwater.

  12. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  13. Satellite Observations of Tropospheric BrO over Salt Lakes and Northern High Latitudes from EOS/OMI and SNPP/OMPS

    Science.gov (United States)

    Kurosu, T. P.; Stutz, J.; Brockway, N.; Saiz-Lopez, A.; Suleiman, R. M.; Natraj, V.; Jaross, G.; Seftor, C. J.

    2017-12-01

    We present observations of tropospheric bromine monoxide (BrO) derived from two satellite instruments: the Ozone Monitoring Instrument (OMI) on EOS-Aura, and the Nadir Mapper component of the Ozone Mapping and Profiler Suite (OMPS) on Suomi/NPP. BrO observations from OMPS constitute a new and experimental measurement that we first report on here and compare with the standard BrO data product from OMI. BrO is a halogen oxide present mostly in the lower stratosphere, where it catalytically destroys ozone with about 25 times the efficiency of ClO. BrO also has a tropospheric component, where it is released from sea surfaces, at the interface of ocean water and sea ice in the polar spring, in volcanic plumes, and in the vicinity of salt lakes. Tropospheric BrO has been linked to mercury (Hg) deposition through BrO-induced conversion of gaseous Hg to reactive Hg, which is then deposited on the surface and enters the food chain, ultimately affecting human health. As part of NASA's Aura Science Team, we are developing an OMI Tropospheric BrO data product that provides a unique global data set on BrO spatial and vertical distribution in the troposphere and stratosphere. Information of this kind is currently unavailable from any of the past and present bromine-monitoring instruments. In this presentation, we focus on multi-year time series of BrO released from a range of salt lakes - the Rann of Kutch, Salar de Uyuni, the Aral Sea, and others. We quantify the amount of bromine released from the lakes and investigate the possibility of lake desiccation monitoring based on independent BrO observations. The quality and limits of OMI and OMPS tropospheric BrO observations is investigated by comparison with ground-based MAX-DOAS observations over central Greenland.

  14. Profiling of Sediment Microbial Community in Dongting Lake before and after Impoundment of the Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-06-01

    Full Text Available The sediment microbial community in downstream-linked lakes can be affected by the operation of large-scale water conservancy projects. The present study determined Illumina reads (16S rRNA gene amplicons to analyze and compare the bacterial communities from sediments in Dongting Lake (China before and after impoundment of the Three Gorges Dam (TGD, the largest hydroelectric project in the world. Bacterial communities in sediment samples in Dongting Lake before impoundment of the TGD (the high water period had a higher diversity than after impoundment of the TGD (the low water period. The most abundant phylum in the sediment samples was Proteobacteria (36.4%–51.5%, and this result was due to the significant abundance of Betaproteobacteria and Deltaproteobacteria in the sediment samples before impoundment of the TGD and the abundance of Gammaproteobacteria in the sediment samples after impoundment of the TGD. In addition, bacterial sequences of the sediment samples are also affiliated with Acidobacteria (11.0% on average, Chloroflexi (10.9% on average, Bacteroidetes (6.7% on average, and Nitrospirae (5.1% on average. Variations in the composition of the bacterial community within some sediment samples from the river estuary into Dongting Lake were related to the pH values. The bacterial community in the samples from the three lake districts of Dongting Lake before and after impoundment of the TGD was linked to the nutrient concentration.

  15. Slippery Slope? Assessing the Economic Impact of the 2002 Winter Olympic Games in Salt Lake City, Utah

    OpenAIRE

    Robert Baade; Robert Baumann; Victor Matheson

    2008-01-01

    This paper provides an empirical examination of the 2002 Winter Olympic Games in Salt Lake City, Utah. Our analysis of taxable sales in the counties in which Olympic events took place finds that some sectors such as hotels and restaurants prospered while other retailers such as general merchandisers and department stores suffered. Overall the gains in the hospitality industry are lower than the losses experienced by other sectors in the economy. Given the experience of Utah, potential Olympic...

  16. Salt toxicosis in waterfowl in North Dakota

    Science.gov (United States)

    Windingstad, Ronald M.; Kartch, Fred X.; Stroud, Richard K.; Smith, Milton R.

    1987-01-01

    About 150 waterfowl died and another 250 became weak and lethargic from suspected salt poisoning after using White Lake, a highly saline lake in Mountrail County, North Dakota. Frigid temperatures made fresh water unavailable, forcing the birds to ingest the saline waters with resultant toxic effects. Sick birds recovered when removed from the salt water and released into fresh water marshes. Brain sodium levels were higher in dead geese submitted for necropsy than in controls.

  17. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    Science.gov (United States)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  18. The influence of social capital towards the quality of community tourism services in Lake Toba Parapat North Sumatera

    Science.gov (United States)

    Revida, Erika; Yanti Siahaan, Asima; Purba, Sukarman

    2018-03-01

    The objective of the research was to analyze the influence of social capital towards the quality of community tourism service In Lake Toba Parapat North Sumatera. The method used the combination between quantitative and qualitative research. Sample was taken from the Community in the area around Lake Toba Parapat North Sumatera with sample of 150 head of the family. The sampling technique was Simple Random Sampling. Data collection techniques used documentary studies, questionnaires, interview and observations, while the data analysis used were Product Moment and Simple Linear Regression analysis. The results of the research showed that there were positive and significant influence between Social Capital and the Quality of Community Tourism Services in Lake Toba Parapat North Sumatera. This research recommend the need to enhance Social Capital such as trust, norms and network and the quality of community tourism services such as Tangibles, Reliability, Responsiveness, Assurance, and Empathy by giving communications, information and education continuously from the families, institutions formal and informal, community leaders, religious figures and all communities in Lake Toba Parapat North Sumatera.

  19. Chlorine-36 investigations of salt lakes

    International Nuclear Information System (INIS)

    Chivas, A.R.; Kiss, E.

    1987-01-01

    The first chlorine-36 measurements are reported for surficial halite in lakes from a west-to-east traverse in Western Australia and from Lake Amadeus NT. Measurements of chlorine-36 were made using a 14 MV tandem accelerator. Isotopic chlorine ratios ranged from 8 to 53 x 10 exp-15, with no clear evidence for bomb-spike chlorine-36. The Western Australian samples have values close to secular equilibrium values for typical granite and groundwaters in this rock type. Studies are aimed at calculating the residence time of chloride in the surficial environment. 1 tab

  20. Combined effects of road salt and an insecticide on wetland communities.

    Science.gov (United States)

    Stoler, Aaron B; Walker, Brent M; Hintz, William D; Jones, Devin K; Lind, Lovisa; Mattes, Brian M; Schuler, Matthew S; Relyea, Rick A

    2017-03-01

    As the numbers of chemical contaminants in freshwater ecosystems increase, it is important to understand whether contaminants interact in ecologically important ways. The present study investigated the independent and interactive effects of 2 contaminants that frequently co-occur in freshwater environments among higher latitudes, including a commonly applied insecticide (carbaryl) and road salt (NaCl). The hypothesis was that the addition of either contaminant would result in a decline in zooplankton, an algal bloom, and the subsequent decline of both periphyton and periphyton consumers. Another hypothesis was that combining the contaminants would result in synergistic effects on community responses. Outdoor mesocosms were used with communities that included phytoplankton, periphyton, zooplankton, amphipods, clams, snails, and tadpoles. Communities were exposed to 4 environmentally relevant concentrations of salt (27 mg Cl - L -1 , 77 mg Cl - L -1 , 277 mg Cl - L -1 , and 727 mg Cl - L -1 ) fully crossed with 4 carbaryl treatments (ethanol, 0 µg L -1 , 5 µg L -1 , and 50 µg L -1 ) over 57 d. Contaminants induced declines in rotifer and cladoceran zooplankton, but only carbaryl induced an algal bloom. Consumers exhibited both positive and negative responses to contaminants, which were likely the result of both indirect community interactions and direct toxicity. In contrast to the hypothesis, no synergistic effects were found, although copepod densities declined when high concentrations of both chemicals were combined. The results suggest that low concentrations of salt and carbaryl are likely to have mostly independent effects on aquatic communities. Environ Toxicol Chem 2017;36:771-779. © 2016 SETAC. © 2016 SETAC.

  1. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    Science.gov (United States)

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)).

  2. Egg banks in hypersaline lakes of the South-East Europe

    Science.gov (United States)

    Moscatello, Salvatore; Belmonte, Genuario

    2009-01-01

    The cyst banks of 6 coastal hypersaline lakes of South-East Europe have been investigated. The study concerned the bottom sediments of Khersonesskoe and Koyashskoe lakes in the Crimea (Ukraine), Nartë saltworks (Albania), Vecchia Salina at Torre Colimena (Apulia, Italy), Pantano Grande and Pantano Roveto at Vendicari (Sicily, Italy). A total of 19 cyst types were recognised. The cyst banks of lakes were found to be well separated in the representation derived from a statistical multivariate data analysis. For all the lakes examined a comparison was possible between the resting community in sediments (cyst bank) and the active one in the water. The cyst banks contained more species than those recorded over a multi-year sampling effort in the water column. The study of cyst hatching, performed on 5 cyst types under lab conditions, demonstrated that cysts do not hatch under the same conditions. Furthermore, each cyst type shows a wide range of preferential hatching conditions, which allow us to confirm the ecological generalism of salt lake species. PMID:19292906

  3. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    Science.gov (United States)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  4. Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Külli Kangur

    2013-06-01

    Full Text Available The fish kill in lake Peipsi (Estonia/Russia during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, Osmerus eperlanus eperlanus m. spirinchus (Pallas, the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva. Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, e.g. smelt and vendace Coregonus albula (L., the abundance of bottom-dwelling fishes such as ruffe Gymnocephalus cernuus (L. and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication.

  5. The zooplankton community of Lake Abo Zaabal, a newly-formed ...

    African Journals Online (AJOL)

    Cladocera were seldom recorded. Hexarthra, Brachionus and Rotaria were the dominant rotifer taxa. Several characteristics — including the community composition, the dominance of small ciliates and nauplii, the abundance of Cyanobacteria, and the absence of macrophytes — indicated that it is a severely eutrophic lake.

  6. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  7. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  8. Impact analysis and community development needs at the salt site

    International Nuclear Information System (INIS)

    Gray, S.; Boryczka, M.; Hines, B.

    1984-01-01

    The Office of Nuclear Waste Isolation (ONWI) has developed a socioeconomic program for a nuclear waste repository constructed in salt. The program is comprised of three elements: impact assessment, impact mitigation, and impact monitoring. The first element, impact assessment, is the focus of ONWI's current activities. Socioeconomic data has been collected for seven salt sites in Texas, Utah, Mississippi and Louisiana. Demographic, economic, community service, governmental and social structure information has been assembled into data base reports for each site area. These socioeconomic reports will be the basis for analyzing community-related impacts. Socioeconomic effects are currently being evaluated for the environmental assessment document required by the Nuclear Waste Policy Act. The approach to evaluating socioeconomic impacts for the environmental assessment impact includes developing the data base necessary for evaluation; assessing impacts of baseline population projected by the states; assessing project-related impacts through the use of an inmigration model and responding to socioeconomic issues raised in public meetings and hearings. The siting, construction, and operation of nuclear repositories will involve an extended period of time and an increased workforce, which can result in some impacts similar to those of other large development projects. The communities affected by a repository site will face increased demands for housing, community services (transportation, sewer and water, schools, etc.) and land, as well as a desire to maintain the community's ''character''. The management of this expansion and other related community impacts should be structured to meet community needs and goals. The management process should include the formation of an impact management comment, a public participation program, and a technical assistance program

  9. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  10. Bacterial community composition in the water column of a lake formed by a former uranium open pit mine.

    Science.gov (United States)

    Edberg, Frida; Andersson, Anders F; Holmström, Sara J M

    2012-11-01

    Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.

  11. Benthic microalgae community response to flooding in a tropical salt flat

    Directory of Open Access Journals (Sweden)

    L. S. M. Masuda

    Full Text Available Abstract This research evaluated the effect of flooding on the microphytobenthos community structure in a microbial mat from a tropical salt flat. Field samples were collected during four consecutive days: on the first three days the salt flat was dry, on the fourth day it was flooded by rain. In order to evaluate the community maintained in flood conditions, samples from this area were collected and kept in the laboratory for 10 days with sea water. The results of total abundance of microphytobenthos varied from 4.2 × 108 to 2.9 × 109 organisms L–1, total density increased one order of magnitude under the effect of water for both situations of precipitation in the salt flat and in experimental conditions, an increase due to the high abundance of Microcoleus spp. Shannon index (H’ was higher during the desiccation period. Our data suggest that changes in the abundance of organisms were due to the effect of water. The dominance of the most abundant taxa remained the same under conditions of desiccation and influence of water, and there is probably a consortium of microorganisms in the microbial mat that helps to maintain these dominances.

  12. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  13. Characterize the hydrogeological properties and probe the stress field in Salt Lake Valley, Utah using SAR imagery

    Science.gov (United States)

    Hu, X.; Lu, Z.; Barbot, S.; Wang, T.

    2017-12-01

    Aquifer skeletons deform actively in response to the groundwater redistribution and hydraulic head changes with varied time scales of delay and sensitivity, that can also, in some instances, trigger earthquakes. However, determining the key hydrogeological properties and understanding the interactions between aquifer and seismicity generally requires the analysis of dense water level data combined with expensive drilling data (borehole breakouts). Here we investigate the spatiotemporal correlation among ground motions, hydrological changes, earthquakes, and faults in Salt Lake Valley, Utah, based on InSAR observations from ENVISAT ASAR (2004-2010) and Sentinel-1A (2015-2016). InSAR results show a clear seasonal and long-term correlation between surface uplift/subsidence and groundwater recharge/discharge, with evidence for an average net uplift of 15 mm/yr for a period of 7 years. The long-term uplift, remarkably bounded by faults, reflects a net increase in pore pressure associated with prolonged water recharge probably decades ago. InSAR-derived ground deformation and its correlation with head variations allow us to quantify hydrogeological properties - decay coefficient, storage coefficient, and bulk compressibility. We also model the long-term deformation using a shallow vertical shearing reservoir to constrain its thickness and strain rate. InSAR-derived deformation help reveal the coupled hydrological and tectonic processes in Salt Lake Valley: the embedded faults disrupt the groundwater flow and partition the hydrological units, and the pore pressure changes rearrange the aquifer skeleton and modulate the stress field, which may affect the basin-wide seismicity.

  14. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  15. Nitrogen deposition effects on diatom communities in lakes from three National Parks in Washington State

    Science.gov (United States)

    Sheibley, Richard W.; Enache, Mihaela; Swarzenski, Peter W.; Moran, Patrick W.; Foreman, James R.

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (−1 year−1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969–1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980–2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969–1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha−1 year−1 for wet deposition for this lake.

  16. The Arsenic Cycle in Searles Lake, California: An Arsenic-Rich, Salt-Saturated Soda Lake. II. Isolation of Arsenic-Metabolizing Microbes.

    Science.gov (United States)

    Switzer Blum, J.; Hoeft, S. E.; Stolz, J. F.; Langley, S.; Beveridge, T. J.; Kulp, T. R.; Oremland, R. S.

    2004-12-01

    The motivation for isolating arsenic-metabolizing prokaryotes from Searles Lake was to characterize the physiology of microbes that can cope simultaneously with at least 3 environmental extremes: saturating salt concentration, high pH, and high dissolved inorganic arsenic. A secondary motivation was to find extremely halophilc Archaea that could respire As(V), as this has only been reported for the Crenarchaea. Enrichment cultures of arsenate [As(V)]-respirers were established by inoculating Searles Lake mud into an anaerobic, alkaline (pH = 9.8) artificial medium containing 346 g/L dissolved salts, with lactate as the electron donor and As(V) as the electron acceptor. After about 6 months of bi-weekly transfers, the enrichment was purified by serial dilution, with the highest growth-positive dilution tube exhibiting motile cells having uniform morphology (curved rods). This culture, strain SLAS-1, grew by oxidizing lactate to acetate plus carbon dioxide while reducing As(V) to arsenite [As(III)]. The doubling time was 48 hours at 346 g/L salinity, and nearly equivalent growth rates were observed over a salinity range of 200 to 346 g/l, with no growth evident below 200 g/L. The pH range was 8.5 to 10, with an optimum at 9.5. Strain SLAS-1 has an unusual motility that can be characterized as a "fish-like" swimming motion. Thin section electron micrographs revealed the presence of an internal cytoplasmic filament that runs the full length of the microorganism. We suggest that this filament may be involved in cellular motility. However, taxonomic classification of SLAS-1 made by 16S rRNA gene sequences aligned it in the order Haloanaerobacteriales of the Domain Bacteria. In a further effort to isolate haloalkaliphilic Archaea, a similar enrichment strategy was employed as above, but cell-wall antibiotics were added to the medium to discourage the growth of Bacteria. An enrichment culture, designated Serl-Ab, was established that oxidized lactate to acetate plus carbon

  17. Pseudomonas salina sp. nov., isolated from a salt lake.

    Science.gov (United States)

    Zhong, Zhi-Ping; Liu, Ying; Hou, Ting-Ting; Liu, Hong-Can; Zhou, Yu-Guang; Wang, Fang; Liu, Zhi-Pei

    2015-09-01

    A Gram-staining-negative, facultatively aerobic bacterium, strain XCD-X85(T), was isolated from Xiaochaidan Lake, a salt lake (salinity 9.9%, w/v) in Qaidam basin, Qinghai province, China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain XCD-X85(T) were non-endospore-forming rods, 0.4-0.6 μm wide and 1.0-1.6 μm long, and motile by means of a single polar flagellum. Strain XCD-X85(T) was catalase- and oxidase-positive. Growth was observed in the presence of 0-12.0% (w/v) NaCl (optimum, 1.0-2.0%) and at 4-35 °C (optimum, 25-30 °C) and pH 6.5-10.5 (optimum, pH 8.0-8.5). Strain XCD-X85(T) contained (>10%) summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C12 : 0, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the predominant fatty acids. The major respiratory quinone was ubiquinone 9 (Q-9). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 57.4 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain XCD-X85(T) was associated with the genus Pseudomonas, and showed highest 16S rRNA gene sequence similarities to Pseudomonas pelagia CL-AP6(T) (99.0%) and Pseudomonas bauzanensis BZ93(T) (96.8%). DNA-DNA relatedness of strain XCD-X85T to P. pelagia JCM 15562(T) was 19 ± 1%. On the basis of the data presented above, it is concluded that strain XCD-X85(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas salina sp. nov. is proposed. The type strain is XCD-X85(T) ( = CGMCC 1.12482(T) = JCM 19469(T)).

  18. Plant community structure in an oligohaline tidal marsh

    Science.gov (United States)

    Brewer, J.S.; Grace, J.B.

    1990-01-01

    An oligohaline tidal marsh on the northern shore of Lake Pontchartrain, LA was characterized with respect to the distributions and abundances of plant species over spatial and temporal gradients using Detrended Correspondence Analysis (DCA). In addition, the species distributions were correlated to several physical environmental factors using Detrended Canonical Correspondence Analysis (DCCA). The distributions of species were best correlated with distance from Lake Pontchartrain, and to a lesser extent with elevation and substrate organic matter. They were least correlated with mean soil salinity (referred to here as background salinity). Of the three mid-seasonal dominant species, the perennial grass, Spartina patens, is the most salt tolerant and was found closest to the lake. Further inland the dominant perennial was Sagittaria lancifolia, which has a salt tolerance less than that of Spartina patens. The perennial sedge, Cladium jamaicense, which is the least salt tolerant of the three, was dominant furthest inland. Background salinity levels were generally low (interactions likely also play a role in structuring the plant community. The distributions of several annuals depended on the size and life history of the mid-seasonal dominant perennials. Most of the annuals frequently co-occurred with Sagittaria lancifolia, which was the shortest in stature and had the least persistent canopy of the three mid-seasonal dominant perennials.

  19. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  20. Salt lake Laguna de Fuente de Piedra (S-Spain) as Late Quaternary palaeoenvironmental archive

    Science.gov (United States)

    Höbig, Nicole; Melles, Martin; Reicherter, Klaus

    2014-05-01

    This study deals with Late Quaternary palaeoenvironmental variability in Iberia reconstructed from terrestrial archives. In southern Iberia, endorheic basins of the Betic Cordilleras are relatively common and contain salt or fresh-water lakes due to subsurface dissolution of Triassic evaporites. Such precipitation or ground-water fed lakes (called Lagunas in Spanish) are vulnerable to changes in hydrology, climate or anthropogenic modifications. The largest Spanish salt lake, Laguna de Fuente de Piedra (Antequera region, S-Spain), has been investigated and serves as a palaeoenvironmental archive for the Late Pleistocene to Holocene time interval. Several sediment cores taken during drilling campaigns in 2012 and 2013 have revealed sedimentary sequences (up to 14 m length) along the shoreline. A multi-proxy study, including sedimentology, geochemistry and physical properties (magnetic susceptibility) has been performed on the cores. The sedimentary history is highly variable: several decimetre thick silty variegated clay deposits, laminated evaporites, and even few-centimetre thick massive gypsum crystals (i.e., selenites). XRF analysis was focussed on valuable palaeoclimatic proxies (e.g., S, Zr, Ti, and element ratios) to identify the composition and provenance of the sediments and to delineate palaeoenvironmental conditions. First age control has been realized by AMS-radiocarbon dating. The records start with approximately 2-3 m Holocene deposits and reach back to the middle of MIS 3 (GS-3). The sequences contain changes in sedimentation rates as well as colour changes, which can be summarized as brownish-beige deposits at the top and more greenish-grey deposits below as well as highly variegated lamination and selenites below ca. 6 m depth. The Younger Dryas, Bølling/Allerød, and the so-called Mystery Interval/Last Glacial Maximum have presumably been identified in the sediment cores and aligned to other climate records. In general, the cores of the Laguna de

  1. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  2. Public health assessment for Petrochem Recycling Corporation/Ekotek, Salt Lake City, Salt Lake County, Utah, Region 8. CERCLIS No. UTD093119196. Preliminary report

    International Nuclear Information System (INIS)

    1993-01-01

    The Petrochem/EkoTek site was operated by several owners as a refinery from 1953 until 1978 and as a hazardous waste storage/treatment facility and a petroleum recycling facility from 1978 through 1988. Removal of essentially all petroleum products and hazardous wastes in tanks and drums was accomplished from 1988 - 1991. The process that will lead to the complete clean-up of the facility is ongoing. The site was added to the National Priorities List (NPL) in October 1992. Contaminants in the soil are arsenic, barium, cadmium, chromium, lead, manganese, mercury, chlordane, dieldrin, polychlorinated biphenyls (PCBs), bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, pentachlorophenol, and heptachlor epoxide. Children who ingest regularly large amounts (five grams or more a day) of soil contaminated with the highest levels of arsenic and cadmium have some risk for adverse health effects. The arsenic levels are typical for the Salt Lake City area. The maximum levels of barium could also cause health effects in children according to animal studies. There are four ways that humans may have been exposed: surface water, groundwater, soil gas, and waste materials. Surface-water runoff probably transported unknown concentrations of site contaminants to businesses west of the site. Residences and businesses within 1 mile of the site use municipal water for drinking water

  3. Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China.

    Science.gov (United States)

    Tian, Wang; Zhang, Huayong; Zhang, Jian; Zhao, Lei; Miao, Mingsheng; Huang, Hai

    2017-04-01

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, especially in aquatic ecosystems due to the ecophysiological characteristics of plankton. Recently, ecologists have obtained conflicting conclusions while analyzing the influence of species diversity on plankton resource use efficiency (RUE) and community turnover. In this study, both phytoplankton and zooplankton communities were investigated seasonally from 2011 to 2013 in Lake Nansihu, a meso-eutrophic and recovering lake in China. The effects of phytoplankton diversity on RUE of phytoplankton (RUE PP ), zooplankton (RUE ZP ), and community turnover were analyzed. Results showed that both phytoplankton species richness and evenness were positively correlated with RUE PP . RUE ZP had a negative relationship with phytoplankton species richness, but a weak unimodal relationship with phytoplankton evenness. Cyanobacteria community had the opposite influence on RUE PP and RUE ZP . Thus, cyanobacteria dominance will benefit RUE PP in eutrophic lakes, but the growth and reproduction of zooplankton are greatly limited. The strong negative relationship between total phosphorus and RUE ZP confirmed these results. Phytoplankton community turnover tended to decrease with increasing phytoplankton evenness, which was consistent with most previous studies. The correlation coefficient between phytoplankton species richness and community turnover was negative, but not significant (p > 0.05). Therefore, phytoplankton community turnover was more sensitive to the variation of evenness than species richness. These results will be helpful in understanding the effects of species diversity on ecosystem functioning in aquatic ecosystems.

  4. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  5. Local wisdom in preservation of Lake Toba ecosystems (study on Toba Lake community in the Village of Silalahi I, Sub District of Silahisabungan, Dairi Regency, North Sumatera Province)

    Science.gov (United States)

    Hamdani Harahap, R.; Humaizi

    2018-03-01

    This study aims to analyze the perception of Batak Toba community in Silalahi I Village, Silahisabungan Subdistrict to the existence of Lake Toba, local wisdom owned by Batak Toba community in Silalahi I Village, Silahisabungan Sub District in order to preserve Lake Toba and recommend policy to revitalize it which is still running, which runs partially or which has not been done at all. The type of research used in this research is descriptive research with qualitative analysis. Data collection was conducted by interviews with key informants and informants i.e. community leaders, religious leaders and customary leaders in the study sites. The results showed that the perception of the Silalahi I Village community of Silahiabungan subdistrict to the existence of Lake Toba is a source of life. That means Lake Toba is a source of sustenance, a source of livelihood such as a place to fish, where to put floating net cages and as a sustenance of tourism activities. The form of local wisdom in preserving the area of Lake Toba is the existence of some sacred places such as Nauli basa, Partonunan stone (Deang Namora), that the entire area of Lake Toba called Tao Silalahi controlled by aunty (Namboru) Deang Namora is a purified area so prohibited spit, wearing jewelry, doing immoral, bathing over 6 o’clock, bringing and eating pork or dogs, bathing naked in the lake, laughing until laughing, and for women if there is a long hair should tie and If you want to take a bath must first permit the grandmother (oppung) guard lake. All local wisdom is still done because they still believe, although there is also rarely done. An effective way to revitalize the existing wisdom locals is to continue to perform the ritual or ceremony of the Statue of Silahisabungan once a year, and continue to obey the advice given by the King of Silahisabungan called Poda sagu-sagu marlangan.

  6. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach

    Directory of Open Access Journals (Sweden)

    Abercrombie Mary I

    2010-01-01

    Full Text Available Abstract Background Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated. Methods Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age. Results Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm. Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations. Conclusions Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.

  7. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  8. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2014-01-01

    Full Text Available The main purpose of this paper is to investigate multitemporal land surface temperature (LST changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI, vegetation condition index (VCI, and temperature vegetation index (TVX were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2 values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2∘C in the Salt Lake Basin area during the 28-year period (1984–2011. Analysis of air temperature data also showed increases at a rate of 1.5–2∘C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  9. Seasonal variation of plankton communities influenced by environmental factors in an artificial lake

    Science.gov (United States)

    Li, Xuemei; Yu, Yuhe; Zhang, Tanglin; Feng, Weisong; Ao, Hongyi; Yan, Qingyun

    2012-05-01

    We evaluated the seasonal variation in plankton community composition in an artificial lake. We conducted microscopic analysis and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA and 18S rRNA genes to characterize the plankton community. The clustering of unweighted pair group method with arithmetic mean (UPGMA) was then used to investigate the similarity of these plankton communities. DGGE fingerprinting revealed that samples collected at the different sites within a season shared high similarity and were generally grouped together. In contrast, we did not observe any seasonal variation based on microscopic analysis. Redundancy analysis (RDA) of the plankton operational taxonomic units (OTUs) in relation to environmental factors revealed that transparency was negatively correlated with the first axis ( R=-0.931), and temperature and total phosphorus (TP) were positively correlated with the first axis ( R=0.736 and R=0.660, respectively). In conclusion, plankton communities in the artificial lake exhibited significant seasonal variation. Transparency, phosphorus and temperature appear to be the major factors driving the differences in plankton composition.

  10. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  11. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  12. Detection of 12.5% and 25% Salt Reduction in Bread in a Remote Indigenous Australian Community

    Science.gov (United States)

    McMahon, Emma; Clarke, Rozlynne; Jaenke, Rachael; Brimblecombe, Julie

    2016-01-01

    Food reformulation is an important strategy to reduce the excess salt intake observed in remote Indigenous Australia. We aimed to examine whether 12.5% and 25% salt reduction in bread is detectable, and, if so, whether acceptability is changed, in a sample of adults living in a remote Indigenous community in the Northern Territory of Australia. Convenience samples were recruited for testing of reduced-salt (300 and 350 mg Na/100 g) versus Standard (~400 mg Na/100 g) white and wholemeal breads (n = 62 for white; n = 72 for wholemeal). Triangle testing was used to examine whether participants could detect a difference between the breads. Liking of each bread was also measured; standard consumer acceptability questionnaires were modified to maximise cultural appropriateness and understanding. Participants were unable to detect a difference between Standard and reduced-salt breads (all p values > 0.05 when analysed using binomial probability). Further, as expected, liking of the breads was not changed with salt reduction (all p values > 0.05 when analysed using ANOVA). Reducing salt in products commonly purchased in remote Indigenous communities has potential as an equitable, cost-effective and sustainable strategy to reduce population salt intake and reduce risk of chronic disease, without the barriers associated with strategies that require individual behaviour change. PMID:26999196

  13. Succession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion

    Directory of Open Access Journals (Sweden)

    Muhe Diao

    2017-12-01

    Full Text Available Although bacteria play key roles in aquatic food webs and biogeochemical cycles, information on the seasonal succession of bacterial communities in lakes is still far from complete. Here, we report results of an integrative study on the successional trajectories of bacterial communities in a seasonally stratified lake with an anoxic hypolimnion. The bacterial community composition of epilimnion, metalimnion, and hypolimnion diverged during summer stratification and converged when the lake was mixed. In contrast, bacterial communities in the sediment remained relatively stable over the year. Phototrophic Cyanobacteria and heterotrophic Actinobacteria, Alphaproteobacteria and Planktomycetes were abundant in the aerobic epilimnion, Gammaproteobacteria (mainly Chromatiaceae dominated in the metalimnion, and Chlorobi, Betaproteobacteria, Deltaproteobacteria, and Firmicutes were abundant in the anoxic sulfidic hypolimnion. Anoxic but nonsulfidic conditions expanded to the surface layer during fall turnover, when the epilimnion, metalimnion and upper hypolimnion mixed. During this period, phototrophic sulfur bacteria (Chromatiaceae and Chlorobi disappeared, Polynucleobacter (Betaproteobacteria and Methylobacter (Gammaproteobacteria spread out from the former meta- and hypolimnion to the surface layer, and Epsilonproteobacteria dominated in the bottom water layer. Cyanobacteria and Planktomycetes regained dominance in early spring, after the oxygen concentration was restored by winter mixing. In total, these results show large spatio-temporal changes in bacterial community composition, especially during transitions from oxic to anoxic and from sulfidic to nonsulfidic conditions.

  14. Diatom Assemblage in the Lake of Gaber Oun, Southern Libya

    Directory of Open Access Journals (Sweden)

    Abdelkader Elzen

    2012-07-01

    Full Text Available The lake of Gaber Oun in the southern district of Libya was studied to assess the diatom community composition in the littoral zone. Planktic and attached diatoms were listed and information on the constituent species made known (images are shown. Some criteria of the water characteristics are also given such as the pH, which is an average of 8.3, electrical conductivity which accounted for 1.4 µSim/cm1- and total dissolved salts (TDS of 189.0 mg/L1-.

  15. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    Science.gov (United States)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  16. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  17. Alternative management techniques for the uranium mill tailings site at Salt Lake City, UT

    International Nuclear Information System (INIS)

    Rogers, V.C.; Goldsmith, W.A.; Haywood, F.F.; Gantner, G.K.

    1976-01-01

    The concentrations of 226 Ra and other uranium-chain radionuclides present in tailings piles at uranium-milling sites are on the order of 10 3 times higher than those usually found in soil-surface minerals. The public radiation exposure attributable to these sites is primarily due to inhalation of 222 Rn progeny. This paper presents the radiological assessment of the uranium-milling site at Salt Lake City, Utah. Adverse health effects are estimated from present and projected public radiation exposures. Three alternative remedial action measures can be used to reduce radiation exposures: (1) decontamination of offsite areas contaminated by tailings materials; (2) covering the tailings with contamination-free material; and (3) removal of the tailings to a more remote location. These three measures are examined in terms of costs incurred and serious health effects avoided

  18. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    Science.gov (United States)

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking

  19. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  20. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  1. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  2. The bacterial community composition of the surface microlayer in a high mountain lake.

    Science.gov (United States)

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  3. Remedial actions at the former Vitro Chemical Company site, South Salt Lake, Salt Lake County, Utah. Volume I. Text. Final Environmental Impact Statement

    International Nuclear Information System (INIS)

    1984-07-01

    This statement evaluates the environmental impacts associated with the cleanup of those residues remaining at the abandoned uranium-mill-tailings site located in South Salt Lake, Utah, and hereinafter called the Vitro site. The site is a 128-acre property owned by the Central Valley Water Reclamation Facility (CVWRP) Board which also operates a sewage treatment plant adjacent to the northern boundaries of the Vitro site. The site contains approximately 2.5 million cubic yards of contaminated residues and soil; the residues were produced by the Vitro Chemical Company of America which processed uranium ore for sale to the US Atomic Energy Commission on the site from 1951 to 1964. This statement evaluates three alternatives for minimizing the public health hazards associated with the Vitro site contaminated materials: (1) no action; (2) stabilization of the contaminated material on the Vitro site; and (3) decontamination of the Vitro site and disposal of the contaminated material at a site located about one mile south of Clive, Utah. Alternative 3 is DOE's preferred alternative. An assessment of the impacts of these three alternatives was made in terms of effects on radiation levels, air quality, soils and mineral resources, surface- and ground-water resources, ecosystems, land use, sound levels, historical and cultural resources, populations and employment, economic structures, and transportation networks

  4. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  5. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  6. SALT LAKES OF THE AFRICAN RIFT SYSTEM: A VALUABLE ...

    African Journals Online (AJOL)

    dell

    rift lake locations fitting the description. “endorheic” (closed) ... updating, as well as harness the scholarship ... Ionic concentrations are location and season .... Progress and effects of weathering of Lake Natron Basin rock formations; a hill in.

  7. Seasonal effects in a lake sediment archaeal community of the Brazilian Savanna.

    Science.gov (United States)

    Rodrigues, Thiago; Catão, Elisa; Bustamante, Mercedes M C; Quirino, Betania F; Kruger, Ricardo H; Kyaw, Cynthia M

    2014-01-01

    The Cerrado is a biome that corresponds to 24% of Brazil's territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra's amoA gene. The principal coordinate analysis (PCoA) test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  8. Summary of the engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1981-04-01

    This report is a summary of a parent report (issued under separate cover) entitled Engineering Assessment of Inactive Uranium Mill Tailings for Vitro Site, Salt Lake City, Utah. Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option 1), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present

  9. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter?

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    2013-01-01

    a better understanding of fish communities. We compare fish community composition, richness, and diversity in 56 Danish lakes using data obtained by gillnetting in different lake zones and near-shore electrofishing, respectively. On average, electrofishing captured more species than offshore gillnets......, but not more than littoral gillnets. Overall, the different fish sampling methods showed consistency as to fish community structure, but noticeable differences in community–environment relationships. Lake area was the best predictor for fish species richness in the littoral samplings, while it was poor...... community, as all methods miss some important species that other methods capture. However, electrofishing seems to be a fast alternative to gillnets for monitoring fish species richness and composition in littoral habitats of Danish lakes....

  10. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2017-01-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index, varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity, i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  11. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  12. Increasing Awareness and Use of Iodised Salt in a Marginalised Community Setting in North-West Pakistan

    Directory of Open Access Journals (Sweden)

    Nicola Lowe

    2015-11-01

    Full Text Available Iodine deficiency is still prevalent in parts of Pakistan, despite the introduction of a national Iodine Deficiency Disorder Control Programme in 1994. The purpose of this study was to gain an understanding of the knowledge, attitudes and practice regarding the use of iodised salt in a brick kiln community, and to use this information to design an intervention to increase its consumption. A cross-sectional survey was used to assess the use of iodised salt and focus group discussions explored the attitudes and barriers to its use. Thematically analysed transcripts informed the design of a 4-month intervention. Iodised salt sales and urine iodine concentration (UIC were monitored to assess the effectiveness of the intervention. At baseline, 2.6% of households reported use of iodised salt and barriers included its higher cost and belief about a negative impact on reproduction. During the intervention, sales of salt labelled as iodised increased by 45%, however this was not reflected in an increase in UIC. This study highlighted the positive impact of education and awareness raising on iodised salt consumption in a hard to reach, marginalised community. However, issues regarding adequate iodisation by local producers and appropriate storage also need to be urgently addressed at a provincial level.

  13. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  14. Invertebrate communities associated with Bangia atropurpurea and Cladophora glomerata in western Lake Erie

    Science.gov (United States)

    Chilton, E.W.; Lowe, R.L.; Schurr, K.M.

    1986-01-01

    The appearance of the marine alga Bangia atropurpurea (Rhodophyta) in Lake Erie has been followed by its rapid dispersal throughout the eulittoral zone of the lake. Bangia was extensively sampled to determine its suitability as a habitat for littoral organisms. Present data indicate that the only organisms capable of maintaining populations on Bangia filaments are larval Chironomidae. Cladophora supports a larger and more diverse community. It is concluded that the mucilaginous cell wall of Bangia provides a less stable substrate for attached or clinging organisms than does the cellulose cell wall of Cladophora. The presence of Bangia in the littoral zone of Lake Erie results in a reduction of the quantity and diversity of algal epiphytes and may negatively impact the littoral food web.

  15. Hydrogeological impacts of road salt from Canada's busiest highway on a Lake Ontario watershed (Frenchman's Bay) and lagoon, City of Pickering.

    Science.gov (United States)

    Meriano, Mandana; Eyles, Nick; Howard, Ken W F

    2009-06-26

    The quantity of deicing salt applied to paved surfaces in urban watersheds in cold regions has had a significant and cumulative effect on groundwater quality. Whereas road deicing salt is known in general to impact groundwater and surface water quality, quantitative information on the impact of large transport routes is lacking. In this study, we provide a chloride mass balance for an urban stream crossed by a large transport route in south-central Ontario, Canada and quantify likely long-term impacts of salt loading on surface and groundwater resources. The chloride mass balance, supported by hydrochemical analysis, reveals that approximately 50% of the total road salt applied to Pine Creek (1700 tonnes per winter) is removed annually via overland flow with the remainder accumulating in the shallow subsurface resulting in severe degradation of groundwater quality. Moreover, results show that road salt migration is the primary reason for enhanced mineral weathering in the shallow aquifer. During the 2004-05 salting season, runoff and baseflow transport of road salts were responsible for chloride concentrations in the stream of up to 2000 mg L(-1), and delivered approximately 850 tonnes of chloride (about 1400 tonnes of salt) to a shallow (<3.5 m) semi-enclosed lagoon on the shore of Lake Ontario (Frenchman's Bay; 0.85 km(2)). The total chloride delivery to the lagoon from its entire watershed is estimated at 3700 tonnes each year with up to 48% of the total load delivered by baseflow, the remainder from surface water runoff. Present day groundwater chloride concentrations are estimated to be about 80% of long-term concentrations when the system reaches steady state.

  16. Hydrogeological impacts of road salt from Canada's busiest highway on a Lake Ontario watershed (Frenchman's Bay) and lagoon, City of Pickering

    Science.gov (United States)

    Meriano, Mandana; Eyles, Nick; Howard, Ken W. F.

    2009-06-01

    The quantity of deicing salt applied to paved surfaces in urban watersheds in cold regions has had a significant and cumulative effect on groundwater quality. Whereas road deicing salt is known in general to impact groundwater and surface water quality, quantitative information on the impact of large transport routes is lacking. In this study, we provide a chloride mass balance for an urban stream crossed by a large transport route in south-central Ontario, Canada and quantify likely long-term impacts of salt loading on surface and groundwater resources. The chloride mass balance, supported by hydrochemical analysis, reveals that approximately 50% of the total road salt applied to Pine Creek (1700 tonnes per winter) is removed annually via overland flow with the remainder accumulating in the shallow subsurface resulting in severe degradation of groundwater quality. Moreover, results show that road salt migration is the primary reason for enhanced mineral weathering in the shallow aquifer. During the 2004-05 salting season, runoff and baseflow transport of road salts were responsible for chloride concentrations in the stream of up to 2000 mg L - 1 , and delivered approximately 850 tonnes of chloride (about 1400 tonnes of salt) to a shallow (< 3.5 m) semi-enclosed lagoon on the shore of Lake Ontario (Frenchman's Bay; 0.85 km 2). The total chloride delivery to the lagoon from its entire watershed is estimated at 3700 tonnes each year with up to 48% of the total load delivered by baseflow, the remainder from surface water runoff. Present day groundwater chloride concentrations are estimated to be about 80% of long-term concentrations when the system reaches steady state.

  17. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  18. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus.

    Science.gov (United States)

    Raeymaekers, Joost A M; Hablützel, Pascal I; Grégoir, Arnout F; Bamps, Jolien; Roose, Anna K; Vanhove, Maarten P M; Van Steenberge, Maarten; Pariselle, Antoine; Huyse, Tine; Snoeks, Jos; Volckaert, Filip A M

    2013-02-14

    Adaptation to different ecological environments is thought to drive ecological speciation. This phenomenon culminates in the radiations of cichlid fishes in the African Great Lakes. Multiple characteristic traits of cichlids, targeted by natural or sexual selection, are considered among the driving factors of these radiations. Parasites and pathogens have been suggested to initiate or accelerate speciation by triggering both natural and sexual selection. Three prerequisites for parasite-driven speciation can be inferred from ecological speciation theory. The first prerequisite is that different populations experience divergent infection levels. The second prerequisite is that these infection levels cause divergent selection and facilitate adaptive divergence. The third prerequisite is that parasite-driven adaptive divergence facilitates the evolution of reproductive isolation. Here we investigate the first and the second prerequisite in allopatric chromatically differentiated lineages of the rock-dwelling cichlid Tropheus spp. from southern Lake Tanganyika (Central Africa). Macroparasite communities were screened in eight populations belonging to five different colour morphs. Parasite communities were mainly composed of acanthocephalans, nematodes, monogeneans, copepods, branchiurans, and digeneans. In two consecutive years (2011 and 2012), we observed significant variation across populations for infection with acanthocephalans, nematodes, monogeneans of the genera Gyrodactylus and Cichlidogyrus, and the copepod Ergasilus spp. Overall, parasite community composition differed significantly between populations of different colour morphs. Differences in parasite community composition were stable in time. The genetic structure of Tropheus populations was strong and showed a significant isolation-by-distance pattern, confirming that spatial isolation is limiting host dispersal. Correlations between parasite community composition and Tropheus genetic differentiation were

  19. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    Science.gov (United States)

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  1. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China.

    Science.gov (United States)

    Tang, Xiangming; Li, Linlin; Shao, Keqiang; Wang, Boweng; Cai, Xianlei; Zhang, Lei; Chao, Jianying; Gao, Guang

    2015-01-01

    To elucidate the relationship between particle-attached (PA, ≥ 5.0 μm) and free-living (FL, 0.2-5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37,985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes.

  2. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenglong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Jia, Yongzhong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); Zhang, Chao [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Liu, Hong [Qinghai Salt Chemical Products Supervision and Inspection Center, 816000 Golmud (China); Jing, Yan, E-mail: 1580707906@qq.com [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China)

    2015-01-15

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO{sub 4} and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO{sub 4}{sup −} amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO{sub 4}{sup −})/n(Li{sup +}) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C{sub 4}mim][PF{sub 6}] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.

  3. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  4. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  5. Phytoplankton community of Reis lake in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    ISE G. SILVA

    2013-06-01

    Full Text Available Reis Lake is located in the municipality of Caracaraí, state of Roraima (Brazil and is subject to fluctuations in water level. The aim of this study was to analyze the structure of the phytoplankton community on the nictemeral and seasonal scales and determined the influence of limnological variables. Sampling was performed in the rainy season (June/2006 and dry season (November/2006, considering two nictemeral cycles. The phytoplankton community was assessed with regard to composition and density, abiotic variables were analyzed simultaneously. The lake had low concentrations of oxygen, clinograde profile and water stratified during the day and homogenous at night, with low concentrations of nutrients and waters ranging from slightly acidic to alkaline. The phytoplankton was represented by 43 taxa, 35 species in the dry season and 29 species in the rainy season. Low densities of phytoplankton occurred in both nictemeral cycles, with accentuated vertical gradient. The highest densities were recorded in the dry season. Reis Lake exhibits characteristics that classify it as a polymythic and oligotrophic environment. The variability in the data was more important seasonally than on the nictemeral scale, supporting the hypothesis of the influence of the hydrological cycle on the dynamics of phytoplankton communities in floodplain lakes.O lago dos Reis está localizado no município de Caracaraí, no estado de Roraima (Brasil e está sujeito a flutuações no nível da água. O objetivo do estudo foi analisar a estrutura da comunidade fitoplanctônica nas escalas nictemeral e sazonal e determinar a influência de variáveis limnológicas nesta comunidade. As amostragens foram realizadas nos periodos chuvoso e seco, considerando dois ciclos nictemeral. A comunidade fitoplanctônica foi avaliada no que diz respeito à composição e densidade, simultaneamente, variáveis abióticas foram analisadas. O lago apresentou baixas concentrações de oxig

  6. Angler-caught piscivore diets reflect fish community changes in Lake Huron

    Science.gov (United States)

    Roseman, Edward F.; Schaeffer, Jeff; Bright, Ethan; Fielder, David G.

    2014-01-01

    Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered theirdiets in response to unprecedented declines in Lake Huron's main-basin prey fish community.Diets varied by predator species, season, and location but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986) examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs, especially if prey fish remain at low levels.

  7. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2014-01-01

    Full Text Available The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra’s amoA gene. The principal coordinate analysis (PCoA test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  8. A Functional Approach to Zooplankton Communities in Mountain Lakes Stocked With Non-Native Sportfish Under a Changing Climate

    Science.gov (United States)

    Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.

    2018-03-01

    Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.

  9. Macrophyte Species Drive the Variation of Bacterioplankton Community Composition in a Shallow Freshwater Lake

    Science.gov (United States)

    Zeng, Jin; Bian, Yuanqi; Xing, Peng

    2012-01-01

    Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance. PMID:22038598

  10. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria 28 years after lake restoration

    Directory of Open Access Journals (Sweden)

    Hansjörg THIES

    2002-02-01

    Full Text Available Phytoplankton community and limnochemistry of Piburger See, a small soft-water, meromictic lake situated at 913 m a.s.l. in a crystalline area of the Central Eastern Alps of Tyrol (Austria, were investigated 28 years after the beginning of lake restoration. Although long-term data of the lake show a declining trend in total phosphorus concentrations and phytoplankton biovolume, the response of Piburger See to the restoration measures carried out in 1970 was delayed by about 20 years. At present the lake is approaching its former oligotrophic level. The most evident difference between the past and present phytoplankton species composition of Piburger See is the actual absence of the Cyanophycean Oscillatoria limosa C. A. Agardh, which markedly increased during the first two decades after the lake restoration (1970-1987. The phytoplankton biovolume recorded in 1998 was lower than in the 1970s and 1980s, while seasonal patterns were similar to those recorded before and later on in the lake restoration. The lowest annual phytoplankton biovolume in 1998 occurred in early winter, while the absolute maximum was observed in metalimnetic water layers in late spring. In 1998 the intra-annual patterns of phytoplankton biovolume and chlorophyll-a compare well. Phytoplankton succession started in early 1998 under ice with coccal green algae followed by flagellated Chrysophyceae during spring. The mid-summer phytoplankton community was dominated by centric Bacillariophyceae, which were later replaced by coccal Cyanophyceae. During autumn, Dinophyceae and Chrysophyceae prevailed. Epilimnetic dominance of centric diatoms during mid summer appears to be a new feature, which in 1998 was related to a strong depletion of dissolved silica and nitrate. Long-term water chemistry and phytoplankton data were checked against local weather data in order to explain the delay in the re-oligotrophication process of Piburger See. However, no clear relationship could be

  11. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  12. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid heat

  13. Sandy Lake Health and Diabetes Project: A Community-Based Intervention Targeting Type 2 Diabetes and Its Risk Factors in a First Nations Community

    Science.gov (United States)

    Kakekagumick, Kara E.; Naqshbandi Hayward, Mariam; Harris, Stewart B.; Saksvig, Brit; Gittelsohn, Joel; Manokeesic, Gary; Goodman, Starsky; Hanley, Anthony J.

    2013-01-01

    The Sandy Lake Health and Diabetes Project (SLHDP) was initiated in 1991 as a partnership between Sandy Lake First Nation and researchers interested in addressing the high rates of type 2 diabetes mellitus (T2DM) in the community. Following the expressed wishes of the community, the SLHDP has encompassed a variety of community-wide interventions and activities including: community surveys to document T2DM prevalence and risk factors, the Northern Store program aimed at increasing the availability and knowledge of healthy food options, a home visit program for the prevention and management of T2DM, a local diabetes radio show, a school diabetes curriculum for grades 3 and 4, a community-wide walking trail to encourage increased physical activity, youth diabetes summer camps, and a variety of community events focusing on nutrition and physical activity. Over the 22 year existence of the SLHDP, the community has taken ownership of the program and activities have evolved in alignment with community needs and priorities. This paper discusses the history, implementation, evaluation, and outcomes of the SLHDP and describes its sustainability. The SLHDP is a model of culturally appropriate participatory research that is iterative, with reciprocal capacity building for both key community stakeholders and academic partners. PMID:24302919

  14. Sandy Lake Health and Diabetes Project: A community-based intervention targeting type 2 diabetes and its risk factors in a First Nations community

    Directory of Open Access Journals (Sweden)

    Kara Elizabeth Kakekagumick

    2013-11-01

    Full Text Available The Sandy Lake Health and Diabetes Project (SLHDP was initiated in 1991 as a partnership between Sandy Lake First Nation and researchers interested in addressing the high rates of type 2 diabetes mellitus (T2DM in the community. Following the expressed wishes of the community, the SLHDP has encompassed a variety of community-wide interventions and activities including: community surveys to document T2DM prevalence and risk factors, the Northern Store program aimed at increasing the availability and knowledge of healthy food options, a home visit program for the prevention and management of T2DM, a local diabetes radio show, a school diabetes curriculum for grades 3 and 4, a community-wide walking trail to encourage increased physical activity, youth diabetes summer camps, and a variety of community events focusing on nutrition and physical activity. Over the twenty-two year existence of the SLHDP, the community has taken ownership of the program and activities have evolved in alignment with community needs and priorities. This paper discusses the history, implementation, evaluation and outcomes of the SLHDP and describes its sustainability. The SLHDP is a model of culturally appropriate participatory research that is iterative, with reciprocal capacity building for both key community stakeholders and academic partners.

  15. The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China

    Science.gov (United States)

    Zhao, Wen; Zhao, Yuanyi; Wang, Qiaohan; Zheng, Mianping; Wei, Jie; Wang, Shan

    2016-11-01

    The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at -2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identified. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included Holophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and Arctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×107 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1-3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass (including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was significantly negatively correlated with salinity.

  16. Identification of ecological thresholds from variations in phytoplankton communities among lakes: contribution to the definition of environmental standards.

    Science.gov (United States)

    Roubeix, Vincent; Danis, Pierre-Alain; Feret, Thibaut; Baudoin, Jean-Marc

    2016-04-01

    In aquatic ecosystems, the identification of ecological thresholds may be useful for managers as it can help to diagnose ecosystem health and to identify key levers to enable the success of preservation and restoration measures. A recent statistical method, gradient forest, based on random forests, was used to detect thresholds of phytoplankton community change in lakes along different environmental gradients. It performs exploratory analyses of multivariate biological and environmental data to estimate the location and importance of community thresholds along gradients. The method was applied to a data set of 224 French lakes which were characterized by 29 environmental variables and the mean abundances of 196 phytoplankton species. Results showed the high importance of geographic variables for the prediction of species abundances at the scale of the study. A second analysis was performed on a subset of lakes defined by geographic thresholds and presenting a higher biological homogeneity. Community thresholds were identified for the most important physico-chemical variables including water transparency, total phosphorus, ammonia, nitrates, and dissolved organic carbon. Gradient forest appeared as a powerful method at a first exploratory step, to detect ecological thresholds at large spatial scale. The thresholds that were identified here must be reinforced by the separate analysis of other aquatic communities and may be used then to set protective environmental standards after consideration of natural variability among lakes.

  17. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: Geochemical controls on microbial community structure and function

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2015-10-01

    Full Text Available Yellowstone Lake (Yellowstone National Park, WY, USA is a large high-altitude (2200 m, fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake (Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007 - 2008 using a remotely operated vehicle (ROV. Sublacustrine thermal vent waters (circa 50 - 90 oC contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5 - 6 were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot’s Crater (pH 5 - 6. Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S, hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.

  18. Contrasting the genetic patterns of microbial communities in Soda lakes with and without cyanobacterial bloom

    OpenAIRE

    Andreote, A. P. D.; Dini-Andreote, F.; Rigonato, J.; Machineski, G. S.; Souza, B. C. E.; Barbiéro, Laurent; Rezende, A. T.; Fiore, M. F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved...

  19. Effects of exotic fish farms on bird communities in lake and marine ecosystems

    Science.gov (United States)

    Jiménez, Jaime E.; Arriagada, Aldo M.; Fontúrbel, Francisco E.; Camus, Patricio A.; Ávila-Thieme, M. Isidora

    2013-08-01

    Salmon farming is a widespread activity around the world, also known to promote diverse environmental effects on aquatic ecosystems. However, information regarding the impact of salmon farming on bird assemblages is notably scarce. We hypothesize that salmon farming, by providing food subsidies and physical structures to birds, will change their local community structure. To test this hypothesis, we conducted a seasonal monitoring of bird richness, abundance, and composition at paired salmon pen and control plots in two marine and two lake sites in southern Chile, from fall 2002 to summer 2004. Overall, salmon farming had no significant effects on species richness, but bird abundance was significantly and noticeably higher in salmon pens than in controls. Such aggregation was mainly accounted for by the trophic guilds of omnivores, diving piscivores, carrion eaters, and perching piscivores, but not by invertebrate feeders, herbivores, and surface feeders. Species composition was also significantly and persistently different between salmon pens and controls within each lake or marine locality. The patterns described above remained consistent across environment types and seasons indicating that salmon farming is changing the community structure of birds in both lake and marine habitats by promoting functional and aggregation responses, particularly by favoring species with broader niches. Such local patterns may thus anticipate potential threats from the ongoing expansion of the salmon industry to neighboring areas in Chile, resulting in regional changes of bird communities, toward a less diverse one and dominated by opportunistic, common, and generalist species such as gulls, vultures, and cormorants.

  20. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    Science.gov (United States)

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  1. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  2. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  3. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    Science.gov (United States)

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish

    Science.gov (United States)

    Bunnell, D.B.; Hunter, R. Douglas; Warner, D.M.; Chriscinske, M.A.; Roseman, E.F.

    2011-01-01

    Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91-m depth sites in northern Lake Huron, U.S.A., for each month, May-October 2007. Daily consumption was compared to daily zooplankton production. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant - eating only 3% of all zooplankton consumed. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi-, meta- and

  5. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland)

    OpenAIRE

    Mateusz Wilk; Agnieszka Banach; Julia Pawłowska; Marta Wrzosek

    2014-01-01

    The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2). The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the E...

  6. Establishment of a fish community in the hayden-rhodes and salt-gila aqueducts, Arizona

    Science.gov (United States)

    Mueller, G.

    1996-01-01

    Fish populations were studied in the Central Arizona Project's canal system during the first 4 years of aqueduct operation (1986-1989). Ichthyoplankton entering the canal from Lake Havasu averaged 1 larva/m3 during April-June 1987 and 1988. Larval fish densities increased significantly in downstream samples, substantiating diver observations that fish were spawning in the canal system. Of the 16 fish species collected, 14 were assumed to have originated from Lake Havasu and 2 were introduced by anglers from their bait buckets. Initially, the fish community was dominated numerically by threadfin shad Dorosoma petenense (>88%), centrarchids (< 10%), cyprinids (<2%), and striped bass Morone saxatilis (<1%). However, as annual water diversions increased from 13 x 108 m3 in 1986 to 9.4 x 108 m3 in 1989, community composition shifted from clupeids to centrarchids (70%). Fish densities dropped from an estimated 1,260 fish/ha in 1986 to 17 fish/ha in 1989, and biomass dropped from 116 to 73 kg/ha. Declines were attributed to higher operational velocities, associated scour, deprivation, and predation. Although initial populations adjusted downward to planned operational conditions, the fish community continued to represent a potentially valuable, but as yet unused, resource.

  7. Small mammal community succession on the beach of Dongting Lake, China after the Three Gorges Project.

    Science.gov (United States)

    Zhang, Meiwen; Wang, Yong; Li, Bo; Guo, Cong; Huang, Guoxian; Shen, Guo; Zhou, Xunjun

    2014-06-01

    Although the Three Gorges Project (TGP) may have affected the population structure and distribution of plant and animal communities, few studies have analyzed the effect of this project on small mammal communities. Therefore, the present paper compares the small mammal communities inhabiting the beaches of Dongting Lake using field investigations spanning a 20-year period, both before and after the TGP was implemented. Snap traps were used throughout the census. The results indicate that the TGP caused major changes to the structure of the small mammal community at a lake downstream of the dam. First, species abundance on the beaches increased after the project commenced. The striped field mouse (Apodemus agrarius) and the Norway rat (Rattus norvegicus), which rarely inhabited the beach before the TGP, became abundant (with marked population growth) once water was impounded by the Three Gorges Reservoir. Second, dominant species concentration indices exhibited a stepwise decline, indicating that the community structure changed from a single dominant species to a more diverse species mix after TGP implementation. Third, the regulation of water discharge release by the TGP might have caused an increase in the species diversity of the animal community on the beaches. A significant difference in diversity indices was obtained before and after the TGP operation. Similarity indices also indicate a gradual increase in species numbers. Hence, a long-term project should be established to monitor the population fluctuations of the Yangtze vole (Microtus fortis), the striped field mouse and the Norway rat to safeguard against population outbreaks (similar to the Yangtze vole outbreak in 2007), which could cause crop damage to adjacent farmland, in addition to documenting the succession process of the small mammal community inhabiting the beaches of Dongting Lake. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley

  8. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    Science.gov (United States)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  9. Lithium recovery from salt lake brine by H2TiO3.

    Science.gov (United States)

    Chitrakar, Ramesh; Makita, Yoji; Ooi, Kenta; Sonoda, Akinari

    2014-06-21

    The details of the ion exchange properties of layered H2TiO3, derived from the layered Li2TiO3 precursor upon treatment with HCl solution, with lithium ions in the salt lake brine (collected from Salar de Uyuni, Bolivia) are reported. The lithium adsorption rate is slow, requiring 1 d to attain equilibrium at room temperature. The adsorption of lithium ions by H2TiO3 follows the Langmuir model with an adsorptive capacity of 32.6 mg g(-1) (4.7 mmol g(-1)) at pH 6.5 from the brine containing NaHCO3 (NaHCO3 added to control the pH). The total amount of sodium, potassium, magnesium and calcium adsorbed from the brine was lithium ions from the brine containing competitive cations such as sodium, potassium, magnesium and calcium in extremely large excess. The results indicate that the selectivity order Li(+) ≫ Na(+), K(+), Mg(2+), Ca(2+) originates from a size effect. The H2TiO3 can be regenerated and reused for lithium exchange in the brine with an exchange capacity very similar to the original H2TiO3.

  10. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    Science.gov (United States)

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  11. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  14. The predictability of a lake phytoplankton community, over time-scales of hours to years

    DEFF Research Database (Denmark)

    Thomas, Mridul K.; Fontana, Simone; Reyes, Marta

    2018-01-01

    monitoring data (biological, physical and chemical) to assess the predictability of phytoplankton cell density in one lake across an unprecedented range of time-scales. Communities were highly predictable over hours to months: model R2 decreased from 0.89 at 4 hours to 0.74 at 1 month, and in a long......Forecasting changes to ecological communities is one of the central challenges in ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited our ability to assess how predictable communities are. Here, we used a machine learning approach and environmental...

  15. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model

    OpenAIRE

    J. T. Kelly; P. V. Bhave; C. G. Nolte; U. Shankar; K. M. Foley

    2009-01-01

    Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (C...

  16. Influence of a carp invasion on the zooplankton community in Laguna Medina, a Mediterranean shallow lake

    OpenAIRE

    Norbert, Florian; López-Luque, raquel; Ospina-Álvarez, Natalia; Hufnagel, Levente; Green, Andy J.

    2016-01-01

    The common carp (Cyprinus carpio) is a highly invasive species and an ecological engineer. It has been repeatedly shown to increase nutrient concentrations and phytoplankton biomass while destroying submerged macrophytes, although there are few studies from the Mediterranean region. We studied its impact on the zooplankton community in Laguna de Medina lake, a shallow lake in Jerez de la Frontera, south-west Spain. Carp were removed with rotenone in 2007 but returned in 2010-2011. ...

  17. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows.

    Science.gov (United States)

    Li, Xiaohua; Liu, Chong; Chen, Yongxing; Shi, Rongguang; Cheng, Zhenhua; Dong, Hongmin

    2017-08-01

    We evaluated the effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of dairy cows over a whole lactation period. Ten Holstein cows fed a total mixed ration (TMR) diet were randomly allocated into two groups, one supplied with mineral salts as the treatment group and the other as the control group. The methane measurement showed that the ingestion of mineral salts lowered enteric methane emissions significantly (P methane emissions by mineral salt intake could be attributed to decreased density of methanogenic archaea and that fluctuations in methane emission over the lactation period might be related to Methanobrevibacter diversity. © 2016 Japanese Society of Animal Science.

  18. Efficiency of temporary storage of geothermal waters in a lake system: Monitoring the changes of water quality and bacterial community structures.

    Science.gov (United States)

    Szirányi, Barbara; Krett, Gergely; Kosáros, Tünde; Janurik, Endre; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2017-12-01

    Disposal of used geothermal waters in Hungary often means temporary storage in reservoir lakes to reduce temperature and improve water quality. In this study, the physical and chemical properties and changes in the bacterial community structure of a reservoir lake system in southeast region of Hungary were monitored and compared through 2 years, respectively. The values of biological oxygen demand, concentrations of ammonium ion, total inorganic nitrogen, total phosphorous, and total phenol decreased, whereas oxygen saturation, total organic nitrogen, pH, and conductivity increased during the storage period. Bacterial community structure of water and sediment samples was compared by denaturing gradient gel electrophoresis (DGGE) following the amplification of the 16S rRNA gene. According to the DGGE patterns, greater seasonal than spatial differences of bacterial communities were revealed in both water and sediment of the lakes. Representatives of the genera Arthrospira and Anabaenopsis (cyanobacteria) were identified as permanent and dominant members of the bacterial communities.

  19. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Wilk

    2014-06-01

    Full Text Available The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2. The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the European Union. On the examined plant debris 73 taxa of fungi were recorded (3 basidiomycetes, 13 ascomycetes, 2 zygomycetes, 43 anamorphic ascomycetes, 12 unidentified. Two of them, Dicranidion sp. and Wentiomyces sp. are presented here as new to Poland. Among the plant species examined, the litter of Rhododendron tomentosum harbored the highest number of fungal taxa (16. The highest percents of substrate-specific microfungi (i.e. recorded only on one plant species was noted on R. tomentosum (81.3 %, and Pteridium aquilinum (75%. It is emphasized that the lake area should be protected not only because of rare plant community but also because of the uniqueness and diversity of mycobiota.

  20. Converting an estuary to Lake Grevelingen: Environmental review of a coastal engineering project

    Science.gov (United States)

    Saeijs, H. L. F.; Stortelder, P. B. M.

    1982-09-01

    To guarantee protection from storm floods in the southwestern part of the Netherlands, the length of exposed coastline is being greatly reduced by the construction of dams and a storm surge barrier. As part of the Delta Project, the mouth of the Grevelingen estuary was closed in 1971. Due to the closure, tidal movement was eliminated, which resulted in changes in environmental factors such as transparency and chloride and phosphate concentration. The number of plant and animal groups decreased. Large areas of sand flats and salt marshes, which were formerly exposed to the tides, were left “high and dry.” This resulted in enormous changes for the communities living in these areas. The development of a new ecological system and the changed potential afforded by the water and land areas for human use, emphasized the need for physical planning. The potential uses (functions) of the new system are discussed in this article. Special attention is given to the demand for recreational facilities and nature conservation and to the balanced realization of these main functions. The methods applied in choosing between alternatives in physical planning are explained. Water quality and ecosystem management are discussed. One of the main management objectives is the prevention of a further decrease in the chloride concentration and the number of species. A sluice was, therefore, put into operation in 1978, by means of which water was exchanged between the North Sea and Lake Grevelingen. The responses observed are discussed here. In the near future, a crucial decision will have to be made: Will Lake Grevelingen remain a salt-water lake or will it become a fresh-water lake?

  1. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  2. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  3. Interactions between fishes and the structure of fish communities in Dutch shallow, eutrophic lakes

    NARCIS (Netherlands)

    Lammens, E.

    1986-01-01

    This thesis describes the structure of fish communities in Tjeukemeer (21 km 2) and some other surrounding very eutrophic lakes and emphasizes the interactions of the fishes with each other and their food organisms (predation and (exploitative) competition). It is a compilation of seven

  4. Present and past microbial life in continental salt pan sediments in Southern Africa

    Science.gov (United States)

    Genderjahn, Steffi; Mangelsdorf, Kai; Alawi, Mashal; Kallmeyer, Jens; Wagner, Dirk

    2015-04-01

    The southwestern African region is characterized by strong climate variability. To get a better understanding on the climate evolution and environmental condition in Namibia and South Africa, terrestrial climate archives are investigated. Since there are almost no lakes, continental salt pans represent the only terrestrial geoarchives with the potential to preserve climate signals during sediment deposition. Climate has a strong impact on the salt pan ecosystem, causing adaptation of salt pan microorganisms to varying temperature, precipitation and salinity conditions. To reconstruct climate variability during the Holocene, the composition, diversity and abundance of indigenous microbial communities with depth and related to different soil parameters are investigated. We are using a combined approach of microbiological and lipid biomarker analyses to demonstrate the response of the microbial communities due to environmental changes. For microbiological analyses outcrops were conducted or short cores (0-100 cm) were drilled at four different salt pans in Aminuis, Koes and Witpan region having rather different geochemical properties. The current work focused on changes within the microbial communities due to the impact of long-term climate variation and the associated environmental changes and is part of the project 'Signals of climate and landscape change preserved in southern African GeoArchives' in the scope of the SPACES program, which is funded by the German Federal Ministry of Education and Research (BMBF). For a quantitative characterization of microbial communities molecular techniques such as polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) based on the 16S rRNA genes are used. Moreover, 454 sequencing technique is utilized to describe the diversity and abundance of microorganisms in detail. Soil parameters are described by standard soil scientific methods. Furthermore, microbial lipid biomarker analyses were done to characterize living

  5. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    Science.gov (United States)

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.

  6. Hydrogeologic characterization of the former Vitro processing site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1993-01-01

    During fiscal year (FY) 1992, the US Department of Energy received Congressional direction to investigate whether contamination from former processing activities is present in groundwater and soils at the former Vitro processing site in Salt Lake City, Utah. A total of $100,000 was appropriated for this activity. The surface of the Vitro site was cleaned up by the state of Utah under the Uranium Mill Tailings Remedial Action (UMTRA) Project during the mid- to late 1980s. The basis for the directive was the desire of the site owners, the Central Valley Water Reclamation Facility (CVWRF), to develop the site. This report, as well as the final Vitro Site Certification Report and the Clive Completion Report (both to be prepared and submitted by the state of Utah), will have to be reviewed and concurred with by the US Nuclear Regulatory Commission (NRC) prior to release of the Vitro site for restricted development. The groundwater and soil investigation was performed by the Technical Assistance Contractor (TAC) to the DOE UMTRA Project Office during FY92. The investigation at the Vitro site consisted of the installation of monitoring wells and soil borings, aquifer testing, and the collection and analyses of groundwater and soil samples. This report presents the results of this hydrogeologic investigation

  7. Speciation of cadmium mixed ligand complexes in salt water lakes

    Directory of Open Access Journals (Sweden)

    John L. Kituyi

    2003-06-01

    Full Text Available Amalgam voltammetry has been used to study heavy metal interaction in model lake water in KNO3 at 23 oC at concentration levels of genuine lake water. The hanging drop amalgam electrode was prepared in situ before exchanging the medium for the sample solution. Half-wave potentials at two metal ion concentrations were measured, one at the actual concentration in the lake while the other at a much lower one. The experimentally determined shifts in half-wave potentials are used to compute several formation constants. At the natural [CO32-] of 0.5 M in the lake, the main contributor to the speciation of cadmium is [Cd(CO3Cl2]2-. At high [Cd2+], the DPASV detects the presence of free Cd2+ ions, hence, potential polluting effect, while the amalgam reports [Cd(CO32Cl] 3- to be dominant above [CO32-] = 0.8 M. There is a variation in the number of complexes detected, their stabilities and percentage distribution in the two methods. Cd2+ ion concentration also affects the number of complexes formed and their stabilities.

  8. 78 FR 53466 - Announcement of Funding Awards for Transformation Initiative: Sustainable Communities Research...

    Science.gov (United States)

    2013-08-29

    ... Pao, General Deputy Assistant Secretary for Policy Development and Research. Attachment List of... University of Utah at Salt Lake City, Ms. Shauna Peterson, 1471 East Federal Way, Salt Lake City, UT. Grant...

  9. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    Science.gov (United States)

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  10. Update of “Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran”

    Directory of Open Access Journals (Sweden)

    Alireza Asem

    2016-03-01

    Full Text Available Urmia Lake, an endorheic salt lake in northwestern Iran, was registered in the Ramsar Convention on Wetlands as a wetland of international importance, also a UNESCO biosphere reserve. In this review, we have updated our last checklist in 2014 with available information on the biodiversity of the lake.

  11. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  12. Salt on roads and the environment (VB)

    DEFF Research Database (Denmark)

    Hessberg, Philipp von; Jørgensen, Michael Søgaard

    2000-01-01

    This report descripes the extent of use of salt on roads in Denmark and the environmental consequences of this. Alternative strategies for reducing the risk of greasy roads and different ways of alleviating the vegetation are also discussed.The different consequences for the environment...... that this report discusses are:- The ground water.- Lakes and streams.- Plants and trees along roads.The consequences for the economy through usage of salt on roads has not been carried out....

  13. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat.

    Science.gov (United States)

    dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo

    2017-09-01

    Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    International Nuclear Information System (INIS)

    Radl, Viviane; Pritsch, Karin; Munch, Jean Charles; Schloter, Michael

    2005-01-01

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment

  15. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    Energy Technology Data Exchange (ETDEWEB)

    Radl, Viviane [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)]. E-mail: barbosa@gsf.de; Pritsch, Karin [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Munch, Jean Charles [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Schloter, Michael [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)

    2005-09-15

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment.

  16. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  17. Perceptions about interventions to control schistosomiasis among the Lake Victoria island communities of Koome, Uganda.

    Directory of Open Access Journals (Sweden)

    Richard E Sanya

    2017-10-01

    Full Text Available Praziquantel-based mass treatment is the main approach to controlling schistosomiasis mansoni in endemic areas. Interventions such as provision and use of safe water, minimising contact with infested water, disposal of stool in latrines and snail control provide key avenues to break the transmission cycle and can sustain the benefits of mass treatment in the long term. Efforts are also being made to develop a schistosomiasis vaccine which, if effective, might reduce the incidence of re-infection after treatment. However, any interventions deployed need to be acceptable to, and sustainable by, the target communities.In this qualitative study, we investigated the perceptions of six Lake Victoria island communities of Koome, Uganda, about interventions to control Schistosoma mansoni infection and their willingness to participate in Schistosoma vaccine trials. Thirty-two in-depth interviews, 12 key informant interviews and 10 focus group discussions were conducted. Data were analysed using a thematic content approach.Intestinal schistosomiasis was not regarded as a serious health problem because a mass treatment programme is in place. However, the communities lack safe water sources and latrines. Mass treatment with praziquantel, safe water supplies and use of toilets were deemed the most acceptable interventions by the participants. The communities are willing to participate in Schistosoma vaccine trials.Knowledge of a community's perception about interventions to control schistosomiasis can be valuable to policy makers and programme implementers intending to set up interventions co-managed by the community members. In this study, the views of the Lake Victoria island communities of Koome are presented. This study also provides data to guide further work on alternative interventions such as Schistosoma vaccine trials in these communities.

  18. Perceptions about interventions to control schistosomiasis among the Lake Victoria island communities of Koome, Uganda.

    Science.gov (United States)

    Sanya, Richard E; Tumwesige, Edward; Elliott, Alison M; Seeley, Janet

    2017-10-01

    Praziquantel-based mass treatment is the main approach to controlling schistosomiasis mansoni in endemic areas. Interventions such as provision and use of safe water, minimising contact with infested water, disposal of stool in latrines and snail control provide key avenues to break the transmission cycle and can sustain the benefits of mass treatment in the long term. Efforts are also being made to develop a schistosomiasis vaccine which, if effective, might reduce the incidence of re-infection after treatment. However, any interventions deployed need to be acceptable to, and sustainable by, the target communities. In this qualitative study, we investigated the perceptions of six Lake Victoria island communities of Koome, Uganda, about interventions to control Schistosoma mansoni infection and their willingness to participate in Schistosoma vaccine trials. Thirty-two in-depth interviews, 12 key informant interviews and 10 focus group discussions were conducted. Data were analysed using a thematic content approach. Intestinal schistosomiasis was not regarded as a serious health problem because a mass treatment programme is in place. However, the communities lack safe water sources and latrines. Mass treatment with praziquantel, safe water supplies and use of toilets were deemed the most acceptable interventions by the participants. The communities are willing to participate in Schistosoma vaccine trials. Knowledge of a community's perception about interventions to control schistosomiasis can be valuable to policy makers and programme implementers intending to set up interventions co-managed by the community members. In this study, the views of the Lake Victoria island communities of Koome are presented. This study also provides data to guide further work on alternative interventions such as Schistosoma vaccine trials in these communities.

  19. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  20. Preliminary isotopic study of Lake Asal system (Republic of Djibouti)

    International Nuclear Information System (INIS)

    Fontes, J.C.; Zuppi, G.M.; Florkowski, T.; Pouchan, P.

    1979-01-01

    The saline Lake Asal at 155 m below sea level in the Afar Rift (Republic of Djibouti) is fed mainly by sea water. In spite of the intense evaporation (about 3 m annually), the 18 O and deuterium enrichments of the lake water are relatively low, because of the reduced activity of water as a consequence of the high salt content. Isotopic balance of the lake, as well as lithium and sulphate balances, support the hypothesis of leakages from the lake of about 15 to 20% of the inflow. (author)

  1. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia.

    Science.gov (United States)

    Afonina, Ekaterina Yu; Tashlykova, Natalya A

    2018-02-01

    The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia) during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae ( Merismopedia elegans , Anabaenopsis elenkinii , Arthrospora fusiformis , Spirulina major , Lyngbya sp., Oscillatoria sp.) and green algae ( Monoraphidium minutum , Tetrastrum komarekii , Ankyra ocellata , Oocystis sp.) were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis , B. variabilis , Hexarthra mira (Rotifera), Daphnia magna , Moina brachiata , M. mongolica (Cladocera), Arctodiaptomus bacillifer , Mixodiaptomus incrassatus , Metadiaptomus asiaticus (Copepoda) dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae , some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major , Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  2. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  3. Fish communities of the Wilderness Lakes System in the southern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Alexis A. Olds

    2016-08-01

    Full Text Available The Wilderness Lakes System, a temporarily open and closed estuary with three associated lakes situated in the southern Cape region of South Africa, was sampled using a range of sampling gears to assess the fish community. A total of 25 species were sampled throughout the system, with the highest diversity in the Touw Estuary (23 species and the lowest in Langvlei (11 species. Estuary-associated marine species (13 species dominated species richness with smaller proportions of estuarine resident (7 species, freshwater (3 species and catadromous species (2 species. Estuarine resident species dominated the catch numerically. The size–class distribution of euryhaline marine species indicated that upon entering the Touw Estuary as juveniles, the fish move up the system towards Rondevlei where they appear to remain. Three freshwater species were recorded in the system, all of which are alien to the Wilderness Lakes System. Decreasing salinity in the upper lakes appears to be a driving factor in the distribution and increasing abundance of the freshwater fishes. Sampling followed a drought, with the system experiencing substantially increased levels of mouth closure compared to a similar study conducted in the 1980s. The timing of mouth opening and the degree of connectivity between the lakes influence the nursery function of the system as a whole. Management actions need to focus on improving ecological functioning of this system, in particular how mouth opening is managed, to facilitate nursery function and limit the establishment of invasive species. Conservation implications: Key management actions are required to improve fish recruitment potential into and within the system. These include maintenance of adequate marine inflow through adherence to artificial mouth breaching protocols and improving connectivity between the lakes through sediment removal from localised deposition points within the connecting channels.

  4. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    Science.gov (United States)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  5. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

    NARCIS (Netherlands)

    Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, Steven A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; Conde-Porcuna, J-M.; Mazzeo, N.; Iglesias, C.; Reizenstein, M.; Malmquist, H.J.; Liu, Z.; Balayla, D.; Lazzaro, X.

    2010-01-01

    Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation

  6. The limnology of L Lake: Results of the L-Lake monitoring program, 1986--1989

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A.

    1991-12-15

    L Lake was constructed in 1985 on the upper regions of Steel Creek, SRS to mitigate the heated effluents from L Reactor. In addition to the NPDES permit specifications (Outfall L-007) for the L-Reactor outfall, DOE-SR executed an agreement with the South Carolina Department of Health and Environmental Control (SCDHEC), that thermal effluents from L-Reactor will not substantially alter ecosystem components in the approximate lower half of L Lake. This region should be inhabited by Balanced (Indigenous) Biological Communities (BBCs) in accordance with Section 316(a) of the Pollution Control (Clean Water) Act (Public Law 92-500). In response to this requirement the Environmental Sciences Section/Ecology Group initiated a comprehensive biomonitoring program which documented the development of BBCs in L Lake from January 1986 through December 1989. This report summarizes the principal results of the program with regards to BBC compliance issues and community succession in L Lake. The results are divided into six sections: water quality, macronutrients, and phytoplankton, aquatic macrophytes, zooplankton, benthic macroinvertebrates, fish, and community succession. One of the prime goals of the program was to detect potential reactor impacts on L Lake.

  7. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Engel, Annette Summers; Liu, Chang; Paterson, Audrey T; Anderson, Laurie C; Turner, R Eugene; Overton, Edward B

    2017-10-15

    Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria , Firmicutes , Bacteroidetes , and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria ( Rhizobiales ), Chloroflexi ( Dehalococcoidia ), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial

  8. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10 -8  m 2  s -3 , 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10 -5  m 2  s -3 , 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10 -4  m 2  s -3 , 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  9. Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California

    Science.gov (United States)

    Oremland, R.S.

    1990-01-01

    Two types of diazotrophic microbial communities were found in the littoral zone of alkaline hypersaline Mono Lake, California. One consisted of anaerobic bacteria inhabiting the flocculent surface layers of sediments. Nitrogen fixation (acetylene reduction) by flocculent surface layers occurred under anaerobic conditions, was not stimulated by light or by additions of organic substrates, and was inhibited by O2, nitrate, and ammonia. The second community consisted of a ball-shaped association of a filamentous chlorophyte (Ctenocladus circinnatus) with diazotrophic, nonheterocystous cyanobacteria, as well as anaerobic bacteria (Ctenocladus balls). Nitrogen fixation by Ctenocladus balls was usually, but not always, stimulated by light. Rates of anaerobic dark fixation equaled those in the light under air. Fixation in the light was stimulated by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and by propanil [N-(3,4-dichlorophenyl)propanamide]. 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea-elicited nitrogenase activity was inhibited by ammonia (96%) and nitrate (65%). Fixation was greatest when Ctenocladus balls were incubated anaerobically in the light with sulfide. Dark anaerobic fixation was not stimulated by organic substrates in short-term (4-h) incubations, but was in long-term (67-h) ones. Areal estimates of benthic N2 fixation were measured seasonally, using chambers. Highest rates (~29.3 ??mol of C2H4 m-2 h-1) occurred under normal diel regimens of light and dark. These estimates indicate that benthic N2 fixation has the potential to be a significant nitrogen source in Mono Lake.

  10. Protozooplankton in the Deep Oligotrophic Traunsee (Austria) Influenced by Discharges of Soda and Salt Industries

    International Nuclear Information System (INIS)

    Sonntag, Bettina; Posch, Thomas; Klammer, Susanne; Griebler, Christian; Psenner, Roland

    2002-01-01

    Traunsee is a deep oligotrophic lake in Austria characterised by an artificial enrichment of chloride in the hypolimnion (up to 170 mg L -1 ) caused by waste disposal of soda and salt industries. Protists were collected monthly over one year, observed alive and after Quantitative Protargol Staining (ciliates) or via epifluorescence microscopy (heterotrophic flagellates). Three sites within the lake (0-40 m depths) were compared to deeper water layers from 60-160 m depths where chloride concentrations and conductivity were increased. In addition, we observed the protozooplankton of two neighbouring lakes, i.e. reference systems, during one sampling occasion. In Traunsee the abundance of ciliates was low (200-36 600 cells L -1 ) in contrast to high species diversity (at least 60 different species; H S = 2.6) throughout the year. The main pelagic species in terms of abundance were small oligotrichs and prostomatids like Rimostrombidium brachykinetum/hyalinum, Balanion planctonicum and Urotricha spp. throughout the investigation period. Among free-living heterotrophic flagellates, which occurred at densities of 40-2800 cells mL -1 , small morphotypes dominated in the pelagial. No differences at the community level between the three lakes could be observed and pelagic ciliates and flagellates seemed not to be affected by increased chloride concentrations or by enhanced conductivity

  11. Protozooplankton in the Deep Oligotrophic Traunsee (Austria) Influenced by Discharges of Soda and Salt Industries

    Energy Technology Data Exchange (ETDEWEB)

    Sonntag, Bettina, E-mail: bettina.sonntag@uibk.ac.at; Posch, Thomas [University of Innsbruck, Institute of Zoology and Limnology (Austria); Klammer, Susanne [University of Innsbruck, Institute of Microbiology (Austria); Griebler, Christian [University of Tuebingen, Centre for Applied Earth Science (Germany); Psenner, Roland [University of Innsbruck, Institute of Zoology and Limnology (Austria)

    2002-07-15

    Traunsee is a deep oligotrophic lake in Austria characterised by an artificial enrichment of chloride in the hypolimnion (up to 170 mg L{sup -1}) caused by waste disposal of soda and salt industries. Protists were collected monthly over one year, observed alive and after Quantitative Protargol Staining (ciliates) or via epifluorescence microscopy (heterotrophic flagellates). Three sites within the lake (0-40 m depths) were compared to deeper water layers from 60-160 m depths where chloride concentrations and conductivity were increased. In addition, we observed the protozooplankton of two neighbouring lakes, i.e. reference systems, during one sampling occasion. In Traunsee the abundance of ciliates was low (200-36 600 cells L{sup -1}) in contrast to high species diversity (at least 60 different species; H{sub S} = 2.6) throughout the year. The main pelagic species in terms of abundance were small oligotrichs and prostomatids like Rimostrombidium brachykinetum/hyalinum, Balanion planctonicum and Urotricha spp. throughout the investigation period. Among free-living heterotrophic flagellates, which occurred at densities of 40-2800 cells mL{sup -1}, small morphotypes dominated in the pelagial. No differences at the community level between the three lakes could be observed and pelagic ciliates and flagellates seemed not to be affected by increased chloride concentrations or by enhanced conductivity.

  12. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.

  13. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  14. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Afonina

    2018-02-01

    Full Text Available The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae (Merismopedia elegans, Anabaenopsis elenkinii, Arthrospora fusiformis, Spirulina major, Lyngbya sp., Oscillatoria sp. and green algae (Monoraphidium minutum, Tetrastrum komarekii, Ankyra ocellata, Oocystis sp. were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis, B. variabilis, Hexarthra mira (Rotifera, Daphnia magna, Moina brachiata, M. mongolica (Cladocera, Arctodiaptomus bacillifer, Mixodiaptomus incrassatus, Metadiaptomus asiaticus (Copepoda dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae, some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major, Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  15. Network Skewness Measures Resilience in Lake Ecosystems

    Science.gov (United States)

    Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.

    2017-12-01

    Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.

  16. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  17. Rapid evolution of tolerance to road salt in zooplankton.

    Science.gov (United States)

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl -  L -1 ). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl -  L -1 ). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl -  L -1 ) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl -  L -1 ). At the intermediate concentration (1300 mg Cl -  L -1 ), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl -  L -1 ) had higher survival than populations previously exposed to natural background levels (15 mg Cl -  L -1 ). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl -  L -1 ). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  18. Spatial Distribution of Bacterial Communities Driven by Multiple Environmental Factors in a Beach Wetland of the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Xia eDing

    2015-02-01

    Full Text Available The spatial distributions of bacterial communities may be driven by multiple environmental factors. Thus, understanding the relationships between bacterial distribution and environmental factors is critical for understanding wetland stability and the functioning of freshwater lakes. However, little research on the bacterial communities in deep sediment layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from a beach wetland of the Poyang Lake along both horizontal (distance to the water-land junction and vertical (sediment depth gradients to assess the effects of sediment properties on bacterial community structure and diversity. Our results showed that bacterial diversity increased along the horizontal gradient and decreased along the vertical gradient. The heterogeneous sediment properties along gradients substantially affected the dominant bacterial groups at the phylum and species levels. For example, the NH4+ concentration decreased with increasing depth, which was positively correlated with the relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant bacterial groups showed that the top layer had a different bacterial community structure than the deeper layers. Principal component analysis revealed that both gradients, not each gradient independently, contributed to the shift in the bacterial community structure. A multiple linear regression model explained the changes in bacterial diversity and richness along the depth and distance gradients. Overall, our results suggest that spatial gradients associated with sediment properties shaped the bacterial communities in the Poyang Lake beach wetland.

  19. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  20. Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland

    Directory of Open Access Journals (Sweden)

    Zhiwei Ge

    2017-01-01

    Full Text Available Aquatic plants play an essential role and are effective in mitigating lake eutrophication by forming complex plant-soil system and retaining total nitrogen (TN and phosphorus (TP in soils to ultimately reduce their quantities in aquatic systems. Two main vegetation types (Phragmites australis community and P. australis + Typha latifolia community of Qin Lake wetland were sampled in this study for the analysis of TN and TP contents and reserves in the wetland soils. The results showed that (1 the consumption effect of Qin Lake wetland on soluble N was much more significant than on soluble P. (2 The efficiency of TN enrichment in wetland soil was enhanced by vegetation covering of P. australis and T. latifolia. (3 Wetland soil P was consumed by P. australis community and this pattern was relieved with the introduction of T. latifolia. (4 According to the grey relativity analysis, the most intensive interaction between plants and soil occurred in summer. In addition, the exchange of N in soil-vegetation system primarily occurred in the 0–15 cm soil layer. Our results indicated that vegetation covering was essential to the enrichment of TN and TP, referring to the biology-related fixation in the wetland soil.

  1. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  2. Conference Proceedings: Seed Ecology III - The Third International Society for Seed Science Meeting on Seeds and the Environment - "Seeds and Change"; June 20-June 24, 2010; Salt Lake City, Utah, USA

    Science.gov (United States)

    Rosemary Pendleton; Susan Meyer; Bitsy Schultz

    2010-01-01

    Seed Ecology III was held in Salt Lake City, Utah in June 2010, sharing the latest research on all aspects of seed ecology. Our meeting was organized around the theme "Seeds and Change." We welcomed contributions in any area of seed ecology. Our agenda also aimed to create bridges between seed ecology and plant conservation, restoration ecology, and global...

  3. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by

  4. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  5. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    Science.gov (United States)

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  6. Holiday CO2: Inference from the Salt Lake City data

    Science.gov (United States)

    Ryoo, J.; Fung, I. Y.; Ehleringer, J. R.; Stephens, B. B.

    2013-12-01

    A network of high-frequency CO2 sensors has been established in Salt Lake City (SLC), Utah (http://co2.utah.edu/), and the annual/monthly pattern of CO2 variability is consistent with a priori estimates of CO2 fluxes (McKain et al., 2012). Here we ask if short-term changes in anthropogenic sources can be detected, and present a case study of Thanksgiving holiday, when traffic and energy use patterns are expected to be different from that during the rest of the month. CO2 mole fraction is much higher during the Thanksgiving holidays than the other days in November 2008 for all 5 sites in SLC, and a similar pattern is found in other years. Taking into account that the wind speed is relatively low in downtown SLC compared to the other SLC sites, the downtown site is further investigated to minimize the meteorological influence on CO2. In order to understand the relative contributions to the high level of CO2 during the Thanksgiving holidays, we carried out a multiple linear regression (MLR) analysis of the rate of CO2 change against various sources. Mobile CO2 sources are assumed to be proportional to local traffic data and residential CO2 sources are assumed to depend exponentially on temperature. Vulcan data were used to specify the other anthropogenic sources (commercial, industrial, nonroad, electricity, aircraft, and cement). The MLR analysis shows that during the Thanksgiving holidays CO2 contributions from residential and commercial CO2 are larger than that during the rest of November, and mobile sources represent only a relatively small contribution. The study demonstrates the feasibility of detecting changes in urban source contributions using high-frequency measurements in combination with daily PBL height and local traffic volume data.

  7. Toxicological evaluation of a lake ecosystem contaminated with crude oil

    International Nuclear Information System (INIS)

    Twigg, D.; Ramey, B.

    1995-01-01

    Winona Lake on the Daniel Boone National Forest in Powell County, Kentucky, was used from the mid 1950's to 1987 as a water source for water-injection oil drilling and as a brine disposal site. The lake was contaminated with excessive amounts of crude oil. A multi phase investigation was conducted, including chemical analysis of water and sediment, water toxicity tests using a cladoceran, Ceriodaphnia dubia, sediment toxicity tests using an amphipod, Hyalella azteca, and a faunal survey of the communities of the lake and stream both above and below the lake. The sediment was laden with petroleum hydrocarbons (4.1 parts per thousand), while the water showed no contamination. The C dubia test results showed no significant water toxicity. The contaminated sediment adjacent to the dam produced 75% mortality in H. azteca. The faunal survey indicated little or no impact on the upstream and downstream communities but the lake community was highly impacted, especially the benthos. Pollution tolerant Chaoborus sp. were the only organisms collected from sediment samples dredged from the lake. Contamination was limited to the sediment within the lake but the impact on the entire lake community was severe

  8. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, Vitro Processing Site. Revision 0

    International Nuclear Information System (INIS)

    1996-03-01

    Ground water elevations of the shallow unconfined aquifer have been monitored at the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing site, Salt Lake City, Utah, for the purposes of characterizing ground water flow conditions and evaluating the effects of irrigation of the golf driving range. Data collected, to date, show that the water table reached its highest level for the year during March and April 1995. From May through July 1995, the water table elevations decreased in most monitor wells due to less precipitation and higher evapotranspiration. Review and evaluation of collected data suggest that irrigation of the golf driving range will have negligible effects on water levels and ground water flow patterns if rates of irrigation do not significantly exceed future rates of evapotranspiration

  9. Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal

    Science.gov (United States)

    Zemskaya, Tamara I.; Sitnikova, Tatiana Y.; Kiyashko, Sergei I.; Kalmychkov, Gennady V.; Pogodaeva, Tatiana V.; Mekhanikova, Irina V.; Naumova, Tatiana V.; Shubenkova, Olga V.; Chernitsina, Svetlana M.; Kotsar, Oleg V.; Chernyaev, Evgeny S.; Khlystov, Oleg M.

    2012-12-01

    Macro- and meiofaunal communities were examined at four geomorphologically distinct sites with different gas- and oil-bearing fluid characteristics in the northern, central and southern basins of Lake Baikal. All sites had elevated concentrations of bicarbonate, nitrate, sulphate and chloride ions in pore fluids, with highest values at the Frolikha vent. Elevated levels of iron ions were found in pore waters of the St. Petersburg methane seep and the Gorevoy Utes oil seep. The chemical composition of pore waters at the Malenky mud volcano was similar to that reported in earlier work. Consistent with published data, the Frolikha vent (northern basin) and the St. Petersburg methane seep (central basin) were characterised by methane of mixed genesis (thermogenic + biogenic), whereas the methane source was mainly thermogenic at the Gorevoy Utes oil seep (central basin) and biogenic at the Malenky mud volcano (southern basin). In contrast to marine seep ecosystems, the macrofauna was dominated only by amphipods, giant planarians and oligochaetes, whereas bivalves were absent; the meiofauna was similar to its marine counterpart, being dominated by nematodes, cyclops, harpacticoids and ostracods. A statistically significant positive relationship was revealed between faunal abundance and the availability of bacterial mats on seep sediments. Moreover, ANOVA tests showed significant increases in both meiozoobenthic and macrozoobenthic densities at "hot spot" vent/seep sites relative to discharge-free reference sites. The isotopic composition of carbon and nitrogen at various trophic levels of these benthic vent/seep communities was found to differ markedly from that reported by earlier studies for the pelagic and other benthic food webs in Lake Baikal. As in marine seeps, the macrofauna had variable isotopic signatures. Light δ13C and δ15N values suggest the utilization of chemosynthetically fixed and/or methane-derived organic matter. By contrast, the heavy δ13C

  10. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  11. Freshwater lakes--a potential source for aquaculture activities--a model study on Perumal Lake, Cuddalore, Tamil Nadu.

    Science.gov (United States)

    Usha, R; Ramalingam, K; Bharathi Rajan, U D

    2006-10-01

    The freshwater Perumal lake located at Cuddalore was assessed for its suitability and potential for aquaculture practices. Various hydrobiological parameters determined reveals that the various physicochemical characteristics are with in normal range of values. The DO level, BOD and COD values determined in the lake revealed the consequences of community activities and pollution possibilities. The primary productivity data revealed maximum productivity during March which infer that the lake is unaffected by anthropogenic disturbance and community contamination. The bacterial count remained higher during the monsoon periods, which characterize profuse rainfall and storm water discharge into the lake. The microfauna includes zooplankter such as cladocerans, copepods, rotifers and ostracods. Benthos include carps, catfishes, mullets and prawns. The above study revealed that the various parameters in the lake conform to the levels suited for freshwater fish culture and represents a resource for scientific management.

  12. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    Science.gov (United States)

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  13. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain

    Science.gov (United States)

    Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier

    2018-03-01

    This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.

  14. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Jeppesen, E.; Zanden, M. J. V.

    2003-01-01

    Benthic community responses to lake eutrophication are poorly understood relative to pelagic responses. We compared phytoplankton and periphyton productivity along a eutrophication gradient in Greenland, U.S., and Danish lakes. Phytoplankton productivity increased along the phosphorus gradient (t...

  15. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    Science.gov (United States)

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  16. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    Science.gov (United States)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  17. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  18. Eutrophication and Dreissena invasion as drivers of biodiversity: a century of change in the mollusc community of Oneida Lake.

    Directory of Open Access Journals (Sweden)

    Vadim A Karatayev

    Full Text Available Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species. By the 1960s, lake turbidity increased during a period of anthropogenic eutrophication, resulting in a 38% decline in species richness and a 95% reduction in abundance of native gastropods grazing on benthic algae. Following the invasion of Dreissena spp. in 1991 and subsequent increases in water clarity, native gastropod species richness expanded by 37% and abundance increased 20-fold by 2012. In contrast, filter-feeding unionids were unaffected by increased turbidity during the period of eutrophication but were extirpated by dreissenids. Through contrasting effects on turbidity, eutrophication and Dreissena spp. have likely driven the observed changes in native grazing gastropods by affecting the abundance of light-limited benthic algae. Given the high species richness and ecological importance of benthic grazers, monitoring and managing turbidity is important in preserving molluscan diversity.

  19. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    Science.gov (United States)

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  20. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, Mary E. [Univ. of Washington, Seattle, WA (United States); Chistoserdova, Ludmila [Univ. of Washington, Seattle, WA (United States); Kalyuzhnaya, Marina G. [Univ. of Washington, Seattle, WA (United States); Orphan, Victoria J. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Beck, David A. [Univ. of Washington, Seattle, WA (United States)

    2014-08-07

    The research conducted as part of this project contributes significantly to the understanding of the microbes and their activities involved in methane metabolism in freshwater lake sediments and in the environment in a more global sense. Significant new insights have been gained into the identity of the species that are most active in methane oxidation. New concepts have been developed based on the new data on how these organisms metabolize methane, impacting not only environmental microbiology but also biotechnology, including biotechnology of next generation biofuels. Novel approaches have been developed for studying functional microbial communities, via holistic approaches, such as metagenomics, metatrancriptomics and metabolite analysis. As a result, a novel outlook has been obtained at how such communities operate in nature. Understanding methane-oxidizing communities in lakes and other environments is of significant benefit to the public, in terms of methane emission mitigation and in terms of potential biotechnological applications.

  1. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities

    International Nuclear Information System (INIS)

    Blasius, B.J.; Merritt, R.W.

    2002-01-01

    Short-term exposure to road salt did not significantly affect stream macro-invertebrate communities. - Field and laboratory experiments were conducted to examine the effects of road salt (NaCl) on stream macroinvertebrates. Field studies investigated leaf litter processing rates and functional feeding group composition at locations upstream and downstream from point source salt inputs in two Michigan, USA streams. Laboratory studies determined the effects of increasing NaCl concentrations on aquatic invertebrate drift, behavior, and survival. Field studies revealed that leaves were processed faster at upstream reference sites than at locations downstream from road salt point source inputs. However, it was sediment loading that resulted in partial or complete burial of leaf packs, that affected invertebrate activity and confounded normal leaf pack colonization. There were no significant differences that could be attributed to road salt between upstream and downstream locations in the diversity and composition of invertebrate functional feeding groups. Laboratory drift and acute exposure studies demonstrated that drift of Gammarus (Amphipoda) may be affected by NaCl at concentrations greater than 5000 mg/l for a 24-h period. This amphipod and two species of limnephilid caddisflies exhibited a dose response to salt treatments with 96-h LC 50 values of 7700 and 3526 mg NaCl/l, respectively. Most other invertebrate species and individuals were unaffected by NaCl concentrations up to 10,000 mg/l for 24 and 96 h, respectively

  2. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France)

    Science.gov (United States)

    Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.

    2000-10-01

    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic

  3. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake--Dianchi--was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ demonstrated that ammonia-oxidizing bacteria (AOB were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria.

  4. Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake,China

    Institute of Scientific and Technical Information of China (English)

    Jiajia Ni; Yuhe Yu; Weisong Feng; Qingyun Yan; Gang pan; Bo Yang; Xiang Zhang; Xuemei Li

    2010-01-01

    It is important to assess the effect on zooplankton when perform the environmental protection or restoration technology,especially removing algal blooms,because algae were the major primary producer in algal lakes.The influence on zooplankton community after half a year of algal blooms removed by chitosan-modified soils in Taihu Lake was assessed and the rationality of carrying out the process semiannually was evaluated in the present study.Morphological composition and genetic diversity of zooplankton community were investigated by microscope checkup and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE).A total of 44 zooplankton taxa (23 protozoa,17 rotifers,3 copepoda and 1 cladocera) were detected by microscope checkup,and a total of 91 bands (28 bands amplified by primers F1427-GC and R1616,63 bands amplified by primers Fung-G-C and NS1) were detected by PCR-DGGE.The results of cluster analysis or detrended correspondence analysis indicated that there was no considerable difference in morphological composition of zooplankton and DGGE profiles between experimental and control sites,and DGGE profiles could represent the biologic diversity.The study showed that zooplankton community could recover original condition after half year of algal blooms removed by chitosan-modified soils and it was acceptable to apply this process semiannually.In addition,the results revealed that PCR-DGGE could be applied to investigate the impacts of the environmental protection or restoration engineering on zooplankton community diversity.

  5. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  6. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake.

    Directory of Open Access Journals (Sweden)

    Haiyuan Cai

    Full Text Available Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (>100 µm, medium (10-100 µm and small (0.2-10 µm size aggregates. Species richness and library coverage indicated that pyrosequencing recovered a large bacterial diversity. The community of each size aggregate was highly organized, indicating highly specific conditions within the Microcystis phycosphere. While the communities of medium and small-size aggregates clustered together in August and September samples, large- and medium-size aggregate communities in the October sample were grouped together and distinct from small-size aggregate community. Pronounced changes in the absolute and relative percentages of the dominant genus from the two most important phyla Proteobacteria and Bacteroidetes were observed among the various size aggregates. Bacterial species on large and small-size aggregates likely have the ability to degrade high and low molecular weight compounds, respectively. Thus, there exists a spatial differentiation of bacterial taxa within the phycosphere, possibly operating in sequence and synergy to catalyze the turnover of complex organic matters.

  7. Food quantity affects the sensitivity of Daphnia to road salt.

    Science.gov (United States)

    Brown, Arran H; Yan, Norman D

    2015-04-07

    Road deicing operations have raised chloride (Cl) levels in many temperate lakes in Europe and North America. These lakes vary widely in trophic status, but to date, no one has quantified the interaction between food quantity and road salt toxicity. We examined the effects of food quantity (particulate algal C concentration (C)) on the chronic toxicity of Cl to Daphnia in soft-water bioassays. There was a strong positive linear relationship (r(2) = 0.92 for NaCl and r(2) = 0.96 for CaCl2) between food quantity and Cl LC50. As food quantity increased from 0.2 to 1.0 mg C/L (levels characteristic of oligotrophic to eutrophic lakes, respectively), the chronic Cl LC50 increased from 55.7 to 284.8 mg Cl/L. Salt type (NaCl or CaCl2) did not affect the Cl LC50, Daphnia life history parameters, or the intrinsic rate of population increase (r). The life history parameter most sensitive to Cl was neonate production. Cl did not inhibit egg production, nor was the maternal lipid investment in eggs changed, but egg viability and the subsequent release of live neonates decreased as Cl levels increased and food decreased. Our results suggest the trophic status of lakes should be considered when assessing ecological threat from Cl.

  8. Iowa Lakes Community College: Partnerships for Academic and Economic Success in a Rapidly Evolving Wind-Energy Industry

    Science.gov (United States)

    Mohni, Mary; Rogers, Jolene; Zeitz, Al

    2007-01-01

    Iowa Lakes Community College responded to a national need for wind-energy technicians. The Wind-Energy and Turbine Program aligned industry and academic competencies with experiential learning components to foster exploration of additional renewable energy applications. Completers understand both the physical and academic rigor a career in wind…

  9. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  10. Solar and atmospheric forcing on mountain lakes.

    Science.gov (United States)

    Luoto, Tomi P; Nevalainen, Liisa

    2016-10-01

    We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Challenges in Developing Ecotourism in The Region of Lake Sentani Papua

    Directory of Open Access Journals (Sweden)

    Yannice Luma Marnala Sitorus

    2017-03-01

    Full Text Available The concept of community-based ecotourism is one of the sustainable development concepts suitable to be applied to traditional regions with nature tourism potential. Differences in culture between traditional communities and the outside world are not an obstacle in developing the region because with their local wisdom traditional communities can participate in protecting and managing their natural surrounding and at the same time become an attraction for other communities. However, outside societies can influence the culture of the traditional communities that originally tends to be oriented on biocentrism to shift towards anthropocentrism. This can eventually hamper the continuity of ecotourism development. This can be seen from the traditional communities at Lake Sentani, the case study of the author. The study is based on literature and secondary data and used descriptive analysis. The traditional communities of Sentani do not yet fully participate in the development of tourism in its surroundings. Their involvement in tourism development is more focused on ceremonial activities such as can be seen at the Lake Sentani Festival which is organized every year by the government. Besides this, after coming into contact with modern life the traditional communities of Lake Sentani rarely perform their daily activities based on local wisdom aimed at natural conservation of the lake. The development of urban areas in the surroundings also influences changes in land use in the Lake Sentani region which then causes among others erosion, sedimentation, and pollution of the lake water. Socio-economic and cultural changes in the traditional communities of Sentani and the growth of development also contribute towards ecological change in the area of Lake Sentani, the place they live in.

  12. Characterizing anthropogenic impacts on two mid-altitude Himalayan lakes in the Western Himalaya: A look at shifts in water chemistry and phytoplankton communities

    Science.gov (United States)

    Marcus, T. S.; Tiwari, S.; Bhatt, J. P.; Pandit, M. K.; Varner, R. K.

    2017-12-01

    The Himalayan region is globally regarded for its natural mountain ecosystems but increased agricultural expansion and urbanization have resulted in greater nutrient loading in Himalayan water bodies causing widespread fish kills and shrinking lakes. Despite concerns for environmental degradation, lack of empirical investigations and quantitative data are major constraints in understanding these events. To determine the impact of human development on Himalayan lakes, we investigated Rewalsar, a spring-fed lake and Kareri a glacial-fed lake in the state of Himachal Pradesh. Rewalsar is surrounded by a rapidly growing town and agricultural fields while Kareri Lake is situated in a relatively remote area. Measurements were made in the spring periods of 2013 and 2016. Water samples were collected 1m below the lake surface and analyzed for major ions, nitrates, phosphates, DO, pH, temperature, turbidity, and TDS. Alagal samples were collected from each lake and species counted and identified using standard taxonomic literature. Statistical analysis was performed using PC-ORD. Results showed a significant change in water chemistry and phytoplankton communities with Rewalsar Lake showing an increase in pollutant tolerant algae over the sample period. Principle component analysis showed that the 2016 data from Kareri Lake had phytoplankton communities and chemical data resembling the urban lake of Rewalsar. Kareri Lake had the highest DO (10 mg/ml) while Rewalsar showed the lowest DO at 3 mg/ml in 2016, a decrease from 8 mg/ml in 2013. With a total oxygen demand (TOD) of 6.5 mg/ml in Rewalsar, the decreasing DO value is likely the cause of the increasing annual fish kills as reported by local governments. TDS measurements were highest in Rewalsar Lake compared to the TDS levels of Kareri, indicating a higher amount of surface runoff from the surrounding area in Rewalsar. Nitrate and phosphate levels also increased over this time period. Our multi-year investigation also

  13. Expected Impact of Agricultural Nonpoint Sources Special Land Treatment (AgNPS-SALT) Projects

    OpenAIRE

    Anonymous

    2006-01-01

    This set of reports describes the computer based evaluation of 6 AgNPS-SALT Projects in Missouri and assesses the use of SWAT as an evaluation tool. The analyses estimates nutrient, sediment, and pesticide loading reductions for each project. Titles include: Final Report, Computer Based Evaluation of the AgNPS-SALT Project (19-06); Long Branch Lake Watershed, Computer Based Evaluation of the AgNPS-SALT Project (20-06); Upper and Lower Big Maries River Watersheds Computer Based Evaluation of t...

  14. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas

  15. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  16. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Bowen, M. [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake.

  17. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Bowen, M.

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ''Balanced Biological Community'' (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake

  18. The response of zooplankton communities to the 2016 extreme hydrological cycle in floodplain lakes connected to the Yangtze River in China.

    Science.gov (United States)

    Zhang, Kun; Xu, Mei; Wu, Qili; Lin, Zhi; Jiang, Fangyuan; Chen, Huan; Zhou, Zhongze

    2018-06-04

    The Huayanghe Lakes play an important role in the Yangtze floodplain in China and had extremely high water levels during the summer of 2016. Monitoring data was collected in an effort to understand the impact of this change on the crustacean zooplankton composition and abundance and the biomass variation in the Huayanghe Lakes between a regular hydrological cycle (RHC) and an extreme hydrological cycle (EHC). The crustacean zooplankton community composition, abundance, and biomass in the floodplain lakes were markedly affected by the water-level disturbance. The number of species was lower in the RHC, but the mean density and biomass decreased from 93.84 ± 13.29 ind./L and 6.11 ± 0.89 mg/L, respectively, in the RHC to 66.62 ± 10.88 ind./L and 1.22 ± 0.26 mg/L, respectively, in the EHC. Pearson correlations and redundancy analyses revealed the environmental factors with the most significant impact on the crustacean zooplankton community differed between the RHC and EHC cycles. Little previous information exists on the zooplankton in these lakes, and the present study provides data on the zooplankton composition, abundance, and biomass, both at baseline and in response to hydrological changes.

  19. The composition of fish communities of nine Ethiopian lakes along a north-south gradient: threats and possible solutions

    NARCIS (Netherlands)

    Vijverberg, J.; Dejen, E.; Getahun, A.; Nagelkerke, L.A.J.

    2012-01-01

    Fish populations of nine Ethiopian freshwater lakes were quantitatively sampled with a standardized protocol, using multi-mesh gill nets. In total, 27 species were identified, but only 14 species were common. Based on the common species, the fish communities showed large differences in their species

  20. THE SOMEŞAN PLATEAU LAKES: GENESIS, EVOLUTION AND TERRITORIAL REPARTITION

    Directory of Open Access Journals (Sweden)

    Victor SOROCOVSCHI

    2010-06-01

    Full Text Available The present paper analyzes the genesis of the lake depressions in the Someşan Plateau and the way they evolved in time and space, as well as the morphometric elements characteristic of the different genetic types of lakes. The natural lakes in this region are few and their dimensions are small; they generally appear solitarily and only rarely as lake complexes. In this category have been included the valley lakes, the lakes formed in abandoned meanders and the lakes formed in areas with landslides. The artificial lakes are more numerous and include several genetic types. The most representative are the remnant lakes formed in the depressions resulted from the exploitation of different construction materials (kaolin sands, lime stones and the anthropic salty lakes lakes formed in abandoned salt mines from the diapir area of the Hills of Dej. The rapid evolution of these types of lakes has been highlighted through the comparative analysis of the morphometric elements obtained on the basis of topometric and bathymetric measurements. The lakes arranged for pisciculture include several subtypes (ponds, fish ponds that have been identified and characterized for the fist time, their morphometric elements being determined using digital data bases, satellite images and detailed topometric maps.

  1. Phytoplankton Communities in Green Bay, Lake Michigan after Invasion by Dreissenid Mussels: Increased Dominance by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bart T. De Stasio

    2014-11-01

    Full Text Available Biological invasions of aquatic systems disrupt ecological communities, and cause major changes in diversity and ecosystem function. The Laurentian Great Lakes of North America have been dramatically altered by such invasions, especially zebra (Dreissena polymorpha and quagga (D. rostriformis bugensis mussels. Responses to mussel invasions have included increased water clarity, and decreased chlorophyll and phytoplankton abundance. Although not all systems have responded similarly, in general, mussels have changed nutrient dynamics and physical habitat conditions. Therefore examination of different impacts can help us further understand mechanisms that underlie ecosystem responses to biological invasions. To aid our understanding of ecosystem impacts, we sampled established locations along a well-studied trophic gradient in Green Bay, Lake Michigan, after the 1993 zebra mussel invasion. A strong trophic gradient remained during the period sampled after the mussel invasion (2000–2012. However, mean summer chlorophyll increased and other measures of phytoplankton biomass (microscope and electronic cell counting did not change significantly. Multivariate analyses of phytoplankton community structure demonstrate a significant community shift after the invasion. Cyanobacteria increased in dominance, with Microcystis becoming the major summer taxon in lower Green Bay. Diatom diversity and abundance also increased and Chlorophyta became rare. Phytoplankton responses along the trophic gradient of Green Bay to zebra mussel invasion highlight the importance of mussel effects on nutrient dynamics and phytoplankton diversity and function.

  2. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    Science.gov (United States)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  3. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  4. Bottom-up effects on biomass versus top-down effects on identity: a multiple-lake fish community manipulation experiment

    NARCIS (Netherlands)

    Lemmens, P.; Declerck, S.A.J.; Tuytens, K.; Vanderstukken, M.; De Meester, L.

    2018-01-01

    The extent to which ecosystems are regulated by top-down relative to bottom-up control has been a dominant paradigm in ecology for many decades. For lakes, it has been shown that predation by fish is an important determinant of variation in zooplankton and phytoplankton community characteristics.

  5. Sulphur isotope measurements on sulphates from Antarctic atmospheric precipitations, lake waters and salt efflorescences: a contribution to the study of the natural sulphur cycle

    International Nuclear Information System (INIS)

    Wand, U.; Maass, I.; Haendel, D.

    1987-01-01

    Sulphur isotope analyses are an important tool for the study of the natural sulphur cycle. However, on the northern hemisphere such studies particularly of the atmospheric component of the cycle are seriously hampered and in many regions practically impossible because of the high emission rate of anthropogenic sulphur. Only in remote areas of the world such as the Antarctic 34 S analyses can be used with success to identify the various natural sulphur sources (marine, biogenic and volcanic sources). We report here preliminary results of 34 S isotope measurements on sulphates from recent atmospheric precipitations (snow), lake waters and salt efflorescences sampled in the Schirmacher Oasis and the Wohlthat Massif, central Queen Maud Land, East Antarctica. Except for 4 efflorescence samples the sulphates investigated in this work are enriched in 34 S relative to the meteoritic sulphur standard (CDT). On an average the sulphates of our study area are isotopically lighter than those from the McMurdo region, South Victoria land. The latter region is characterized by the predominance of salts of marine origin. (author)

  6. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    Science.gov (United States)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  7. Use of PFU protozoan community structural and functional characteristics in assessment of water quality in a large, highly polluted freshwater lake in China.

    Science.gov (United States)

    Xu, Muqi; Cao, Hong; Xie, Ping; Deng, Daogui; Feng, Weisong; Xu, Jian

    2005-07-01

    Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S(eq), G and T90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.

  8. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution.

    Science.gov (United States)

    Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B; Nguyen, Phu; Karimi, Neamat; Heidary, Parisa; Karimi, Nima; Saemian, Peyman; Sehatkashani, Saviz; Tajrishy, Massoud; Sorooshian, Armin

    2018-08-15

    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km 2 , but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Carbon dioxide and submersed macrophytes in lakes: linking functional ecology to community composition.

    Science.gov (United States)

    Titus, John E; Pagano, Angela M

    2017-12-01

    Evaluating plant community response to atmospheric CO 2 rise is critical to predicting ecosystem level change. Freshwater lakes offer a model system for examining CO 2 effects as submersed macrophyte species differ greatly in their growth responses to CO 2 enrichment, and free CO 2 concentrations among these habitats show a wide range of natural, spatial variation. We determined free CO 2 concentrations in the water column and sediment porewater in littoral zones with pH macrophyte communities coupled with greenhouse-derived growth responses to CO 2 enrichment of constituent species to test two hypotheses: (1) CCRI, which is higher for communities dominated by species with greater growth responses to CO 2 enrichment, is positively correlated to free [CO 2 ] in the water column, and (2) in natural communities, the percent of sediment CO 2 -using species, which are relatively unresponsive to CO 2 enrichment, is negatively correlated to free [CO 2 ]. A significant positive correlation (P = 0.003) between our physiologically based CCRI and the concentration of free CO 2 in the water column supported our primary hypothesis that sites with higher levels of free CO 2 are dominated by species with greater growth responses to CO 2 enrichment. Our CCRI is also highly significantly correlated (P macrophyte community composition. Further, we demonstrate the utility of a physiologically-based index of community composition, our CCRI, as an ecologically valid measure of community response to CO 2 . © 2017 by the Ecological Society of America.

  10. Coastal salt-marshes in Albania

    OpenAIRE

    JULIAN SHEHU; ALMA IMERI; RUDINA KOCI; ALFRED MULLAJ

    2014-01-01

    The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds) and often h...

  11. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process : Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products

  12. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M.; Bakker, Elisabeth S.; Blindow, Irmgard; Davidson, Thomas A.; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H.; Janssen, Annette B. G.; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L.; Mooij, Wolf M.; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D.

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  13. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes.

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  14. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Science.gov (United States)

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  15. Satellite lakes as reservoirs of fish species diversity

    OpenAIRE

    Nkalubo, W.; Wandera, S.B.; Namulemo, G.

    2010-01-01

    Satellite lakes and rivers in the Victoria and Kyoga basins provide a sanctuary for endangered native fish species. The structural heterogeneity of macrophyte covering these lakes has made it possible for most of the biodiversity to be kept intact. The Kyoga minor lakes have the highest fish species diversity especially of the haplochromines. Most fish communities of these satellite lakes are composed of native species.

  16. Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes

    Directory of Open Access Journals (Sweden)

    Tomasz Mieczan

    2015-12-01

    Full Text Available Complex interactions between zooplankton and microbial food webs are vital to the ecosystem ecology of shallow lakes. However, little is known about how horizontal changes in environmental conditions may influence microbial and metazoan communities in shallow lakes. The specific goals of the study were i to describe environmental variables responsible for the distribution of bacteria, flagellates, ciliates and crustaceans in an adjacent canal, ecotone and reservoir (littoral-pelagic zone in two different types of lakes (Ceratophyllum-dominated and Potamogeton-dominated lakes; ii to determine whether the contact zone waters differ in hydrochemical and biological terms from the waters of the canal and the open water zone; iii and to evaluate the influence of particular macro-habitats (canal, canal/reservoir, littoral and pelagic zone on the interactions between components of the planktonic food web. We studied four shallow, eutrophic lakes in Polesie Lubelskie (eastern Poland. The highest diversity and abundance of microorganisms and crustaceans were observed in the canal-reservoir contact zone, while the lowest values were noted in the pelagic zone. Hence, the contact zone in the investigated lakes could fulfil the function of an ecotone, distinguished by a significant increase in biodiversity, abundance, and species specificity of micro- and macroorganisms. Weak relations between food web components were found in the Ceratophyllum-dominated lakes, where environmental variables explained the bulk of the total variance in plankton abundance, whereas in the Potamogeton-dominated lakes, where environmental variables had a minor role in the total variance in plankton abundance, strong predator-prey relations were noted. Spatial structure of habitats proved to be another important factor for relationships between food web components, as our study indicated that habitat complexity can reduce negative correlations between food web components. Our study

  17. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ''Balanced Biological Community'' (BBC) in at least 50% of the lake

  18. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake.

  19. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1996-03-01

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants' effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site

  20. Evaluation of the effects of water hardness and chemical pollutants on the zooplankton community in uranium mining lakes with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Nascimento, M.R. [Brazilian Nulcear Energy Commission/Pocos de Caldas Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Institute (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil)

    2014-07-01

    Several mining lakes are characterized by the inorganic pollution of its waters, known as acid mine drainage (AMD). The current study was developed in order to evaluate the effect of water hardness and chemical pollutants on the richness and density of the zoo-planktonic community species. A seasonal study was conducted in a uranium mining lake affected by AMD. In environmental conditions of extremely high hardness water values (960.3 to 1284,9 mg/l), zoo-planktonic species have indicated resistance to the combined effect of elevated average concentrations of chemical pollutants such as Al (81.9 mg/l), Zn (15.5 mg/l), Mn (102.8 mg/l), U (2.9 mg/l) and low pH values (average = 3.8). Thus, in environments of extreme chemical conditions, such as a uranium mining lake affected by AMD, the hardness showed to be the best predictor of the zoo-planktonic community richness, indicating a protective effect of ions Ca{sup +2} over in special to Bosminopsis deitersi, Bosmina sp., Keratella americana and K. cochlearis. Document available in abstract form only. (authors)

  1. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    Science.gov (United States)

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  2. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Science.gov (United States)

    2010-03-02

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of intent. SUMMARY... cooperation with UDOT, intends to prepare an EIS on a proposal to analyze and address the regional..., 4700 South, Bangerter Highway and Redwood Road. To provide for local and regional travel demands, the...

  3. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  4. Rare elements in sediments of brine lakes of Sasykkul'skaya depression (East Pamir)

    International Nuclear Information System (INIS)

    Volkova, N.I.; Pachadzhanov, D.N.; Ozerov, A.M.; AN Uzbekskoj SSR, Tashkent

    1993-01-01

    Contents of wide range of chemical elements have been determined for the first time in chemical-terigenous sediments of brine lakes of Sasykkul'skaya depression. It has been shown that the global evolution of sedimentation process in salt-forming basin of Sasykkul'skaya depression resulted in pronounced separation of chemical elements to accumulating and dispersing in lake sediments ones from one hand and to the elements with halophobe and halophile properties-from another. It has been stated that lake sediments are enriched in B, Mo, W, U, Th

  5. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Science.gov (United States)

    2010-04-01

    ...). (a)(1) General. Any lake made by extending on a substratum of alumina, blanc fixe, gloss white, clay... two or more of these (i) one of the straight colors hereinbefore listed in this subpart, which color... salt prepared from one of the straight colors hereinbefore listed in this subpart by combining such...

  6. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Science.gov (United States)

    2010-04-30

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), USDOT. ACTION: Notice of Intent. SUMMARY... . SUPPLEMENTARY INFORMATION: The FHWA, in cooperation with UDOT, will prepare an EIS for a proposal to address... (WFRC). Improvements are necessary to meet the projected travel demand in 2030 in the project area and...

  7. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    Science.gov (United States)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO 4 in Meridiani Planum, (2) excessively low K + concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water

  8. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  9. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    Science.gov (United States)

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to

  10. Managing ecosystems without prior knowledge: pathological outcomes of lake liming

    Directory of Open Access Journals (Sweden)

    David G. Angeler

    2017-12-01

    Full Text Available Management actions often need to be taken in the absence of ecological information to mitigate the impact of pressing environmental problems. Managers counteracted the detrimental effects of cultural acidification on aquatic ecosystems during the industrial era using liming to salvage biodiversity and ecosystem services. However, historical contingencies, i.e., whether lakes were naturally acidic or degraded because of acidification, were largely unknown and therefore not accounted for in management. It is uncertain whether liming outcomes had a potentially detrimental effect on naturally acidic lakes. Evidence from paleolimnological reconstructions allowed us to analyze community structure in limed acidified and naturally acidic lakes, and acidified and circumneutral references. We analyzed community structure of phytoplankton, zooplankton, macroinvertebrates (littoral, sublittoral, profundal, and fish between 2000 and 2004. Naturally acidic limed lakes formed communities that were not representative of the other lake types. The occurrence of fish species relevant for ecosystem service provisioning (fisheries potential in naturally acidic limed lakes were confounded by biogeographical factors. In addition, sustained changes in water quality were conducive to harmful algal blooms. This highlights a pathological outcome of liming lakes when their naturally acidic conditions are not accounted for. Because liming is an important social-ecological system, sustained ecological change of lakes might incur undesired costs for societies in the long term.

  11. Numerical Simulations of an Inversion Fog Event in the Salt Lake Valley during the MATERHORN-Fog Field Campaign

    Science.gov (United States)

    Chachere, Catherine N.; Pu, Zhaoxia

    2018-01-01

    An advanced research version of the Weather Research and Forecasting (WRF) Model is employed to simulate a wintertime inversion fog event in the Salt Lake Valley during the Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaign during January 2015. Simulation results are compared to observations obtained from the field program. The sensitivity of numerical simulations to available cloud microphysical (CM), planetary boundary layer (PBL), radiation, and land surface models (LSMs) is evaluated. The influence of differing visibility algorithms and initialization times on simulation results is also examined. Results indicate that the numerical simulations of the fog event are sensitive to the choice of CM, PBL, radiation, and LSM as well as the visibility algorithm and initialization time. Although the majority of experiments accurately captured the synoptic setup environment, errors were found in most experiments within the boundary layer, specifically a 3° warm bias in simulated surface temperatures compared to observations. Accurate representation of surface and boundary layer variables are vital in correctly predicting fog in the numerical model.

  12. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  13. Effects of migratory geese on plant communities of an Alaskan salt marsh

    Science.gov (United States)

    Zacheis, Amy B.; Hupp, Jerry W.; Ruess, Roger W.

    2001-01-01

    1. We studied the effects of lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) on two salt marsh plant communities in Cook Inlet, Alaska, a stopover area used during spring migration. From 1995 to 1997 we compared plant species composition and biomass on plots where geese were excluded from feeding with paired plots where foraging could occur. 2. Foraging intensity was low (650-1930 goose-days km-2) compared to other goose-grazing systems. 3. Canada geese fed mainly on above-ground shoots of Triglochin maritimum, Puccinellia spp. and Carex ramenskii, whereas the majority of the snow goose diet consisted of below-ground tissues of Plantago maritima and Triglochin maritimum. 4. Plant communities responded differently to goose herbivory. In the sedge meadow community, where feeding was primarily on above-ground shoots, there was no effect of grazing on the dominant species Carex ramenskii and Triglochin maritimum. In the herb meadow community, where snow geese fed on Plantago maritima roots and other below-ground tissues, there was a difference in the relative abundance of plant species between treatments. Biomass of Plantago maritima and Potentilla egedii was lower on grazed plots compared with exclosed, whereas biomass of Carex ramenskii was greater on grazed plots. There was no effect of herbivory on total standing crop biomass in either community. The variable effect of herbivory on Carex ramenskii between communities suggests that plant neighbours and competitive interactions are important factors in a species' response to herbivory. In addition, the type of herbivory (above- or below-ground) was important in determining plant community response to herbivory. 5. Litter accumulation was reduced in grazed areas compared with exclosed in both communities. Trampling of the previous year's litter into the soil surface by geese incorporated more litter into soils in grazed areas. 6. This study illustrates that even light herbivore

  14. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    Science.gov (United States)

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  15. Real-estate lakes

    Science.gov (United States)

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    Since the dawn of civilization waterfront land has been an irresistible attraction to man. Throughout history he has sought out locations fronting on oceans, rivers, and lakes. Originally sought for proximity .to water supply and transportation, such locations are now sought more for their esthetic qualities and for recreation. Usable natural waterfront property is limited, however, and the more desirable sites in many of our urban areas have already been taken. The lack of available waterfront sites has led to the creation of many artificial bodies of water. The rapid suburbanization that has characterized urban growth in America since the end of World War II, together with increasing affluence and le-isure time, has created a ready market for waterfront property. Accordingly, lake-centered subdivisions and developments dot the suburban landscape in many of our major urban areas. Literally thousands of lakes surrounded by homes have materialized during this period of rapid growth. Recently, several "new town" communities have been planned around this lake-centered concept. A lake can be either an asset or a liaoility to a community. A clean, clear, attractively landscaped lake is a definite asset, whereas a weed-choked, foul-smelling mudhole is a distinct liability. The urban environment poses both problems and imaginative opportunities in the development of lakes. Creation of a lake causes changes in all aspects of the environment. Hydrologic systems and ecological patterns are usually most severely altered. The developer should be aware of the potential changes; it is not sufficient merely to build a dam across a stream or to dig a hole in the ground. Development of Gl a successful lake requires careful planning for site selection and design, followed by thorough and cc ntinual management. The purpose of this report is to describe the characteristics of real-estate lakes, to pinpoint potential pmblems, and to suggest possible planning and management guidelines

  16. Climate Change Adaptation Decision Making for Glacial Lake Outburst Floods From Palcacocha Lake in Peru

    Science.gov (United States)

    Cuellar, A. D.; McKinney, D. C.

    2014-12-01

    Climate change has accelerated glacial retreat in high altitude glaciated regions of Peru leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, avalanche into the lake or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Palcacocha Lake in the Peruvian Andes has experienced accelerated growth since it burst in 1941 and threatens the major city of Huaraz and surrounding communities. Since the 1941 flood stakeholders have advocated for projects to adapt to the increasing threat posed by Palcacocha Lake. Nonetheless, discussions surrounding projects for Palcacocha have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects. This work presents the first step to rationally analyze the risks posed by Palcacocha Lake and the various adaptation projects proposed. In this work the authors use decision analysis to asses proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding. Flood characteristics are used in the HEC-FIA software to estimate fatalities and injuries from an outburst flood, which we convert to monetary units using the value of a statistical life. We combine the monetary consequences of a GLOF with the cost of the proposed projects and a diffuse probability distribution for the likelihood of an event to estimate the expected cost of the adaptation plans. From this analysis we found that lowering the lake level by 15 meters has the least expected cost of any proposal despite uncertainty in the effect of lake lowering on flooding downstream.

  17. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    Science.gov (United States)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  18. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines

    Directory of Open Access Journals (Sweden)

    Charlotte Dafni Vavourakis

    2016-02-01

    Full Text Available Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first ‘metagenomic snapshots’ of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha- and Gammaproteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter and Rhodobaca and chemolithotrophic sulfur oxidizers (Thioalkalivibrio were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a ‘salt

  19. Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along Lake Michigan shores.

    Science.gov (United States)

    Olapade, Ola A; Depas, Morgan M; Jensen, Erika T; McLellan, Sandra L

    2006-03-01

    A high biomasses of Cladophora, a filamentous green alga, is found mainly during the summer along the shores of Lake Michigan. In this study, the abundance and persistence of the fecal indicator bacterium Escherichia coli and sulfate-reducing bacteria (SRB) on Cladophora mats collected at Lake Michigan beaches were evaluated using both culture-based and molecular analyses. Additionally, 16S rRNA gene cloning and sequencing were used to examine the bacterial community composition. Overall, E. coli was detected in all 63 samples obtained from 11 sites, and the average levels at most beaches ranged from 2,700 CFU/100 g (wet weight) of Cladophora to 7,500 CFU/100 g of Cladophora. However, three beaches were found to have site average E. coli densities of 12,800, 21,130, and 27,950 CFU/100 g of Cladophora. The E. coli levels in the lake water collected at the same time from these three sites were less than the recommended U.S. Environmental Protection Agency limit, 235 CFU/100 ml. E. coli also persisted on Cladophora mats in microcosms at room temperature for more than 7 days, and in some experiments it persisted for as long as 28 days. The SRB densities on Cladophora mats were relatively high, ranging from 4.4x10(6) cells/g (6.64 log CFU/g) to 5.73x10(6) cells/g (6.76 log CFU/g) and accounting for between 20% and 27% of the total bacterial counts. Partial sequences of the 16S rRNA gene clones revealed a phylogenetically diverse community, in which the Cytophaga-Flavobacterium-Bacteroides cluster and the low-G+C-content gram-positive bacteria were the dominant organisms, accounting for 40% and 12.8%, respectively, of the total clone library. These results further reveal the potential public health and ecological significance of Cladophora mats that are commonly found along the shoreline of Lake Michigan, especially with regard to the potential to harbor microorganisms associated with fecal pollution and odor-causing bacteria.

  20. 21 Years of Investing in a Clear, Healthy Lake Tahoe

    Science.gov (United States)

    Community Information Fact Sheet with information about Lake Tahoe's history, the roles of EPA, state, and local government in protecting the Lake Tahoe Basin, priorities for the next 20 years, as well as actions that you can take to protect Lake Tahoe.

  1. The reproductive biology of an open-water spawning Lake Malawi ...

    African Journals Online (AJOL)

    The reproductive biology of an open-water spawning Lake Malawi cichlid, Copadichromis chrysonotus. Lance W. Smith. Abstract. Copadichromis chrysonotus is a zooplanktivorous cichlid member of the diverse fish community inhabiting Lake Malawi's rocky, littoral habitat. Like most Lake Malawi cichlids, this species' ...

  2. Hydro biological investigations of lake Drukshiai

    International Nuclear Information System (INIS)

    Mazheikaite, S.; Sinkevichiene, Z.; Marchiulioniene, D.; Astrauskas, A.; Barshiene, J.

    1998-01-01

    Purposes of this research were to investigate changes in the physical, chemical and tropic conditions of Lake Drukshiai caused by the combined effect of Ignalina NPP and how it effects on structures and function of biocenoses; to estimate the influence of phytocenoses, zoocenoses and bacteriocenoses on the quality of water in Lake Drukshiai; to estimate the eco toxicological state of Lake Drukshiai. According to the complex hydro biological investigations on Lake Drukshiai - Ignalina NPP cooler great changes in planktonic organism community, tendencies of those changes in different ecological zones were evaluated in 1993 - 1997. The amount of species of most dominant planktonic organisms in 1993 - 1997 decreased 2-3 times in comparison with that before Ignalina NPP operation: phytoplankton from 116 to 40 - 50, zooplankton - from 233 to 139. The organic matter increasing tendency was determined in bottom sediments of the lake. The highest amount of it was evaluated in the south - eastern part of the lake. 69 water macrophyte species were found in bottom sediments during the investigation period. 16 species were not found in this lake earlier. Abundance of filamentous green algae was registered.The rates of fish communities successional transformation were ten times in excess of those of the given processes in natural lakes. Moreover the comparison of results on Lake Drukshiai bioindication analysis with changes of comparable bio markers which were obtained from other water systems of Lithuania, Switzerland, Sweden and Poland, including those with active nuclear power plants in their environment was carried out. It was determined that the functional and structural changes in Lake Drukshiai biota are mostly caused by chemical pollution. It was found out that the frequency of cytogenetic damage emerged as a specific radionuclide - caused effect in aquatic organisms inhabiting Lake Drukshiai, is slightly above the background level and is 5 times lower than the same

  3. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario.

    Science.gov (United States)

    Ibsen, Michael; Fernando, Dinesh M; Kumar, Ayush; Kirkwood, Andrea E

    2017-05-01

    The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.

  4. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake

    Directory of Open Access Journals (Sweden)

    Tomasz Mieczan

    2012-07-01

    Full Text Available We studied the role of natural (common reed and artificial substrata (bamboo in structuring the abundance and taxonomic composition of periphyton assemblages. Investigations were conducted in a shallow, hypertrophic lake situated in the area of Polesie Lubelskie (Eastern Poland. Periphyton communities (algae, ciliates, small metazoa and chironomids on both types of substratum were sampled monthly, from May to November of 2007. Water samples for chemical analysis were collected together with biological samples. We selected the group of ten environmental variables which are the most important in determining the habitat conditions in highly eutrophic lakes: temperature, Secchi disc visibility, conductivity, dissolved oxygen, periphytic chlorophyll-a, N-NO3, N-NH4, TP, P-PO4 and total organic carbon (TOC. The abundances of periphytic algae, ciliates, metazoa and chironomids were significantly affected by season and substrate. On natural substrata, in all studied months, periphyton communities showed higher abundances. The results of PCA analysis confirmed the distinction between periphyton communities on natural and artificial substrata. The Monte Carlo permutation test showed that the periphyton communities on common reed were the most significantly affected by temperature, N-NO3, Secchi disc visibility and TOC. The communities on artificial substrata were significantly influenced by temperature, P-PO4 and TOC. On natural substrata biomass of periphytic algae was significantly negatively correlated with abundances of all groups of potential grazers (ciliates, metazoa, chironomids. On artificial substrata the relations between components of periphytic food web were stronger; correlation coefficients between algae, protists and chironomids were significant at P<0.01. The results of analysis indicate that periphytic algae can play an important role as food source for higher trophic levels. These interactions are less significant on natural (reed

  5. Structural Composition of Protozooplankton Communities in Relation to Environmental Factors in Shallow Lakes and Reservoirs of Rīga, Latvia

    Directory of Open Access Journals (Sweden)

    Buholce Linda

    2015-08-01

    Full Text Available Protozooplankton are dominant grazers of phytoplankton and an important component of the microbial food web, as a link between pico and nanoplankton to higher trophic levels. Their fast growing rate, relative abundance, biomass and diversity are used as indicators of organic and toxic pollution. The impact of urbanisation on ecosystems and their sustainability and biodiversity have recently been much studied. We studied the protozooplankton ciliate communities during the vegetation period from April to October in two small lakes (Bābelītis, Gaiļezers and two reservoirs (Bolderāja, Saurieši. The largest peak of biomass (15.7 × 102 mg/l was found in Gaiļezers Lake in August and of abundance (60.2 × 103 org/l in Bābelītis Lake in July. The lowest biomass (0.006 mg/l and abundance (0.12 × 103 org/l were found in the Saurieši Reservoir station. The most abundant ciliates were from the order Oligotrichida.

  6. Cholera outbreak in districts around Lake Chilwa, Malawi: Lessons ...

    African Journals Online (AJOL)

    Cholera is endemic in Malawi with seasonal outbreaks during the wet season. People living around Lake Chilwa rely on the lake for their water supply. From May 2009 to May 2010, a cholera outbreak occurred in fishing communities around Lake Chilwa. This paper describes the outbreak response and lessons learned for ...

  7. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    Science.gov (United States)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  8. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    Science.gov (United States)

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  9. The offshore benthic fish community

    Science.gov (United States)

    Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael

    2014-01-01

    Lake Ontario’s offshore benthic fish community includes primarily slimy sculpin, lake whitefish, rainbow smelt, lake trout, burbot, and sea lamprey. Of these, lake trout have been the focus of an international restoration effort for more than three decades (Elrod et al. 1995; Lantry and Lantry 2008). The deepwater sculpin and three species of deepwater ciscoes (Coregonus spp.) that were historically important in the offshore benthic zone became rare or were extirpated by the 1960s (Christie 1973; Owens et al. 2003; Lantry et al. 2007b; Roth et al. 2013). Ecosystem changes continue to influence the offshore benthic fish community, including the effects of dreissenid mussels, the near disappearance of burrowing amphipods (Diporeia spp.) (Dermott et al. 2005; Watkins et al. 2007), and the increased abundance and expanded geographic distribution of round goby (see Nearshore Fish Community chapter) (Lantry et al. 2007b). The fish-community objectives for the offshore benthic fish community, as described by Stewart et al. (1999), are:

  10. Engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1981-04-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present

  11. A Reassessment of U-Th and 14C Ages for Late-Glacial High-Frequency Hydrological Events at Searles Lake, California

    Science.gov (United States)

    Lin, J.C.; Broecker, W.S.; Hemming, S.R.; Hajdas, I.; Anderson, Robert F.; Smith, G.I.; Kelley, M.; Bonani, G.

    1998-01-01

    U-Th isochron ages of tufas formed on shorelines suggest that the last pluvial event in Lake Lahontan and Searles Lake was synchronous at about 16,500 cal yr B.P. (equivalent to a radiocarbon age of between 14,000 and 13,500 yr B.P.), whereas the timing of this pluvial event determined by radiocarbon dating is on the order of 1000 yr younger. The timing of seven distinct periods of near desiccation in Searles Lake during late-glacial time has been reinvestigated for U-Th age determination by mass spectrometry. U-Th dating of evaporite layers in the interbedded mud and salt unit called the Lower Salt in Searles Lake was hampered by the uncertainty in assessing the initial 230Th/232Th of the samples. The resulting ages, corrected by a conservative range of initial 230Th/ 232Th ratios, suggest close correlation of the abrupt changes recorded in Greenland ice cores (Dansgaard-Oeschger events) and wet-dry conditions in Searles Lake between 35,000 and 24,000 Cal yr B.P. ?? 1998 University of Washington.

  12. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  13. Harvesting more than vegetables: the potential weight control benefits of community gardening.

    Science.gov (United States)

    Zick, Cathleen D; Smith, Ken R; Kowaleski-Jones, Lori; Uno, Claire; Merrill, Brittany J

    2013-06-01

    We examined the association of participation in community gardening with healthy body weight. We examined body mass index (BMI) data from 198 community gardening participants in Salt Lake City, Utah, in relationship to BMI data for 3 comparison groups: neighbors, siblings, and spouses. In comparisons, we adjusted for gender, age, and the year of the BMI measurement. Both women and men community gardeners had significantly lower BMIs than did their neighbors who were not in the community gardening program. The estimated BMI reductions in the multivariate analyses were -1.84 for women and -2.36 for men. We also observed significantly lower BMIs for women community gardeners compared with their sisters (-1.88) and men community gardeners compared with their brothers (-1.33). Community gardeners also had lower odds of being overweight or obese than did their otherwise similar neighbors. The health benefits of community gardening may go beyond enhancing the gardeners' intake of fruits and vegetables. Community gardens may be a valuable element of land use diversity that merits consideration by public health officials who want to identify neighborhood features that promote health.

  14. Speciation of cadmium mixed ligand complexes in salt water lakes ...

    African Journals Online (AJOL)

    The experimentally determined shifts in half-wave potentials are used to compute several formation constants. At the natural [CO32-] of 0.5 M in the lake, the main contributor to the speciation of cadmium is [Cd(CO3Cl2)]2-. At high [Cd2+], the DPASV detects the presence of free Cd2+ ions, hence, potential polluting effect, ...

  15. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    Science.gov (United States)

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  16. Early warnings of hazardous thunderstorms over Lake Victoria

    Science.gov (United States)

    Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick H. M.; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole P. M.; Seneviratne, Sonia I.

    2017-07-01

    Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on numerical weather prediction, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the type of input dataset. We then optimise the configuration and show that false alarms also contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.

  17. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  18. Cum grano salis - NAA of selected salts

    International Nuclear Information System (INIS)

    Steinhauser, G.; Sterba, J.H.; Poljanc, K.; Bichler, M.; Buchtela, K.

    2006-01-01

    The aim of this study was to investigate the trace element concentrations of salt samples from different regions, in particular Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine. Investigated types of salt were Rock-, Sea-, Lake-, and Evaporated Salt. The main objective was to find out whether the consumption of salt can contribute significantly to the daily human requirements of trace elements. Therefore, trace element concentrations in the untreated samples were compared to those of specially treated samples, simulating digestive uptake using a simple model. Salt is a non-trivial matrix for Neutron Activation Analysis (NAA) because of very high background activities from 38 Cl and 24 Na, as well as the bremsstrahlung of 32 P (originating from 35 Cl(n,α) 32 P). Because of this fact, detection limits in salt are higher compared to other matrices. Nevertheless, several elements could be detected, namely Al, Ba, Br, (Ca), Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in single samples. In most samples the concentrations of trace elements in salt were too low to show biological effects. Salt can therefore only significantly contribute the essential elements sodium, chlorine, and, if added on purpose, fluorine and iodine to human nutrition. The contribution of all other traces in salt to the average daily human requirements can be neglected. Thus, from an analytical point of view, there is no health reason to use unpurified salt. There are, however, a few drawbacks to the use of unpurified salt, as hygroscopic compounds like MgCl 2 , and even toxic heavy metals like chromium or thorium. Especially rare earth element (REE) concentrations can often be used to obtain a chemical fingerprint, which can be used to identify the origin of an unknown sample. In the case of this study, the sample number from each region was too small to collect significant data. Therefore more analytical information is needed

  19. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  20. Radiocarbon analysis of halophilic microbial lipids from an Australian salt lake

    Science.gov (United States)

    Bray, P. Sargent; Jones, Claudia M.; Fallon, Stewart J.; Brocks, Jochen J.; George, Simon C.

    2012-01-01

    Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.

  1. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  2. From lab to field: Geotechnical properties for predicting embankment settlement on Lake Bonneville deposits

    International Nuclear Information System (INIS)

    Hoagland, K.C.; Sampaco, C.L.; Anderson, L.R.; Caliendo, J.A.; Rausher, L.; Keane, E.

    1994-01-01

    The results of a laboratory analysis, to determine geotechnical properties of lacustrine Lake Bonneville deposits, within the I-15 corridor of Salt Lake City, Utah, is presented. Laboratory vertical and horizontal consolidation coefficients are compared with those back-calculated from observed, field settlement data and linear relationships established. The results are used to select vertical and horizontal field coefficients and predict settlement rate of an existing embankment, scheduled for enlargement. 27 refs., 9 figs

  3. Urban microbial ecology of a freshwater estuary of Lake Michigan.

    Science.gov (United States)

    Fisher, Jenny C; Newton, Ryan J; Dila, Deborah K; McLellan, Sandra L

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an "urban microbial signature," and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas , and Pseudomonas , which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with potential

  4. Urban microbial ecology of a freshwater estuary of Lake Michigan

    Directory of Open Access Journals (Sweden)

    Jenny C. Fisher

    2015-07-01

    Full Text Available Abstract Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is

  5. Urban microbial ecology of a freshwater estuary of Lake Michigan

    Science.gov (United States)

    Fisher, Jenny C.; Newton, Ryan J.; Dila, Deborah K.

    2015-01-01

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with

  6. LONG-TERM CHANGES IN THE LARGE LAKE ECOSYSTEMS UNDER POLLUTION: THE CASE OF THE NORTH-EAST EUROPEAN LAKES

    Directory of Open Access Journals (Sweden)

    Tatyana Moiseenko

    2012-01-01

    Full Text Available A retrospective analysis of aquatic ecosystem long-term changes in the Russian large lakes: Ladoga, Onega, and Imandra, is given. The lakes in the past were oligotrophic and similar in their origin, water chemistry and fauna. The ecosystems transformed under the impact of pollution with toxic substances and nutrients. There are three stages of ecosystem quality: background parameters and degradation and recovery trends after the decrease of the toxic stress. On the stage of degradation, species abundance and community biodiversity were decreased. Eurybiontic species abundance and biomass were increased due to lack of competitive connections in toxic conditions and biogenic inflow. Small forms of organisms (r-strategists, providing more rapid biomass turnover in ecosystem, dominated in the formed plankton communities. On the stage of decrease of the toxic pollution, the lakes recolonization with northern species occurs, which is confirmed by replacement of dominating complexes, increasing index of plankton community biodiversity, and the rise of the mass of individual organisms of the communities. Accumulated nutrients in ecosystems are efficiently utilized at the upper trophic level. The ecosystem state after decrease of the toxic impact indicates formation of its mature and more stable modification, which differs from a natural one.

  7. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    Science.gov (United States)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  8. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China.

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    Full Text Available We examined the potential effects of environmental variables, and their interaction, on phytoplankton community succession in spring using long-term data from 1992 to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed to test the sensitivity of the phytoplankton community to nutrient concentrations and temperature. A phytoplankton community structure analysis from 1992 to 2012 showed that Cryptomonas (Cryptophyta was the dominant genus in spring during the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta in 1996 and 1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with Ulothrix regaining dominance from 2003 to 2006. The bloom-forming cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007-2012. The results of ordinations indicated that the nutrient concentration (as indicated by the trophic state index was the most important factor affecting phytoplankton community succession during the past two decades. In the laboratory experiments, shifts in dominance among phytoplankton taxa occurred in all nutrient addition treatments. Results of both long term monitoring and experiment indicated that nutrients exert a stronger control than water temperature on phytoplankton communities during spring. Interactive effect of nutrients and water temperature was the next principal factor. Overall, phytoplankton community composition was mediated by nutrients concentrations, but this effect was strongly enhanced by elevated water temperatures.

  9. Environmental status of the Lake Michigan region. Volume 6. Zoobenthos of Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, S.C.; Howmiller, R.P.

    1977-09-01

    This report summarizes Lake Michigan zoobenthic studies up to 1974, including reports of power-plant surveys. It describes ecologies of macroinvertebrate species and some microfauna, partly through use of data from other Great Lakes. The following are discussed: methodology of field surveys; zoobenthic indicators of pollution; zoobenthic effects on sediment-water exchanges; and numbers, biomass, and production of total macroinvertebrates. Prominent features of Lake Michigan zoobenthos include predominance of the amphipod Pontoporeia affinis, usefulness of tubificid oligochaetes in mapping environmental quality, and pronounced qualitative gradients in zoobenthos in relation to depth. Further research is needed on sampling methods, energy flow rates and pathways through benthic communities, factors limiting distribution of species near shore, and effects of macroinvertebrates on sediment chemistry and structure.

  10. Neutron activation analysis of sediment core samples of Lake Erhai in southern China and a Salt Lake in India

    International Nuclear Information System (INIS)

    Toyoda, Kazuhiro; Shinozuka, Yoshitsugu; Miura, Masahiro; Moriyasu, Yuki

    2005-01-01

    The purpose of this research is in the verification of the hypothesis that the long-lived nuclide ratio of Th/Sc in the deposit sample dug up in the lake with the hinterland of the granite quality is the index of a past change of precipitation and of the event such as earthquakes. As a preceding step the relation between an environmental change and a climate change was studied by the measuring result of the ratio of Th/Sc by the neutron activation analysis about the digging core sample of the Nepalese Katmandu basin (For the past 700,000 years) and the core sample (For 40,000 years and 8,000 years of the past) in Lake Biwa. (H. Katsuta)

  11. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment...... (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment...

  12. Lake Lysevatten - A study of liming and reacidification effects in a forest lake ecosystem in southwestern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, B.I.; Hultberg, H.

    1997-02-01

    Long-term monitoring (1973 to 1987) of acidification and liming effects to a lake ecosystem is reported in this study. The liming intervention of Lake Lysevatten in spring 1974 resulted in neutralisation of lake water and positive alkalinity. Invasion and population expansion of new species started and proceeded for several years. Following the neutralisation Sphagnum was almost eradicated. The restocking with fish changed the predator-prey interactions, and the community composition gradually approached what would be expected to be within the normal range for an unacidified lake. Early signs of reacidification were: The appearance of filamentous algae; Decreased condition of Brown trout (Salmo trutta) caused by increased aluminium concentrations in connection with an acid event; Enhanced growth of Sphagnum surviving on profundal bottoms. Progressive reacidification to Ph 5.0 resulted in accelerated growth of Mougeotia reaching nuisance level. If implemented, liming should be prolonged by reinterventions before alkalinity and pH decrease to much. A stable circumneutral pH is a prerequisite to provide the timescale necessary for invasion and population growth of organisms with low dispersal capacity. Furthermore, the most sensitive organisms will be adversely affected already at pH-values around six. Extensive reacidification should by all means be prevented as development of a destabilized lake community could react rather unpredictably. 168 refs, 80 figs, 26 tabs

  13. The changes in the composition of Cladocera community in bottom sediments of Lake Maloye Shibrozero (Zaonezhsky Peninsula) as a consequence of shifts of environmental and climatic conditions

    Science.gov (United States)

    Ibragimova, A. G.; Frolova, L. A.; Subetto, D. A.; Belkina, N. A.; Potakhin, M. S.

    2018-01-01

    The study aims to explore the evolution of lakes of the boreal zone during the late- and postglacial time on the south-eastern periphery of the Fennoscandian crystalline shield since the last deglaciation. In order to reconstruct the past for virgin territories of the Zaonezhsky Peninsula current investigation on bottom sediments of Lake Maloye Shibrozero was conducted. Analyzes were performed using the new paleoindicator - subfossil remains of Cladocera (Cladocera, Branchiopoda). The 28 samples of bottom sediments were analyzed. It has been determined that discovered Cladocera remains belong to representatives of 6 families and 38 taxa. Species inhabiting Palaearctic zone are predominant in lake deposits; most of the identified subfossil remains are related to the pelagic species inhabiting the open part of the lake. According to the Lubarsky scale the dominant of Cladocera community is Bosmina (Eubosmina) cf. longispina. Secondary taxa are Chydorus sphaericus, Bosmina coregoni, Alonella nana, Alona guadrangularis, A. affinis, Chydorus gibbus. At a depth of 650-653 cm, a partial replacement of Bosmina (Eubosmina) cf. longispina by Bosmina coregoni takes place with a simultaneous increase in the significance of Chydorus sphaericus, which is used to be an indicator of eutrophication and increasing trophic status of the reservoir. Changes in Cladocera community could be attributed to decreasing the level of periglacial lake, as a result of which the Lake Maloye Shibrozero became a small isolated lake with the trend to trophic status increasing. Cold-water species were replaced by thermophilic ones with a further return to a cold-water fauna. In the upper layers of the column an increase of the number of phytophilous species is noted.

  14. A SURVEY OF LANDNET SITES FOCUSING ON TUZ GÖLÜ SALT LAKE, TURKEY

    Directory of Open Access Journals (Sweden)

    S. Z. Gürbüz

    2012-07-01

    Full Text Available Radiometric calibration is critical to ensure the accuracy, veracity, continuity and reliability of satellite data measured from multiple sensors and platforms, and is thus recognized as a key activity by all satellite operators. For imaging sensors, vicarious methods using natural targets (such as salt lakes, deserts, or flatlands that are well-characterized and preferably temporally and spatially stable as a reference are similarly well established. However, while selecting a target site, it is important that its quality and location are selected to minimize sources of uncertainty for any given sensor. To maximize the benefit from limited resources and minimize the impact on satellite operators, the Infrared Visible Optical Sensor (IVOS sub-group of Committee on Earth Observation Satellites (CEOS Working Group on Calibration and Validation (WGCV has selected a few, well-characterized, regularly instrumented target sites, which have since become known as LANDNET sites. Currently, there are eight LANDNET sites: 1 Dome C, Antarctica; 2 Dunhuang, China, Asia; 3 Lspec Frenchman Flat, NV, USA, North America; 4 Ivanpah, NV/CA, USA, North America; 5 La Crau, France, Europe; 6 Negev, Southern Israel, Asia; 7 Railroad Valley Playa, NV, USA, North America; 8 Tuz Gölü, Central Anatolia, Turkey, Asia. This work summarizes the key characteristics, and areas of application of each of the LANDNET sites, especially that of Tuz Gölü, to guide and inform researchers on site selection, and increase international awareness and collaboration in this field. Additionally, detailed information about the Tuz Gölü, Turkey test site is provided, including geographical characteristics, spatial uniformity qualities, and opportunities for international researchers to conduct experiments and measurements. Practical, technical, and logistical experience gained through the international field campaigns organized over the last few years at Tuz Gölü is also shared in

  15. Sociologie d’une dispute dans l’arbitrage en patinage artistique : le cas de Salt Lake City

    Directory of Open Access Journals (Sweden)

    Cécile Collinet

    2010-09-01

    Full Text Available Notre travail se penche sur les problèmes d’arbitrage en patinage et danse sur glace en prenant appui sur l’affaire de Salt Lake City (affaire internationale. L’arbitrage en patinage artistique ne peut être soumis à une mesure complètement objective, une part de subjectivité reste importante. Nous montrons que cette caractéristique du patinage est à l’origine des disputes relatives à l’arbitrage. Autrement dit, loin de constituer un effet périphérique, surajouté, à ce sport, les problèmes d’arbitrage sont le résultat normal d’un positionnement ambigu et de la confrontation de principes (Boltanski & Thévenot, 1991 difficilement conciliables ouvrant la brèche à un espace de plainte. Le mode de jugement artistique en patinage s’accorde mal avec les valeurs sportives créant ainsi des discordances débouchant sur de véritables affaires. Enfin, nous envisageons comment s’est construite la clôture de la dispute en insistant sur le fait que ce n’est pas l’objectivité du jugement qui est visée par les modifications (nouveau code qui ont suivi l’affaire, mais l’espace de plainte qui se réduit. Ce travail est fondé sur l’analyse d’articles de presse, de témoignages écrits et d’entretiens. Il se centre sur le point de vue français d’une affaire internationale et mobilise des approches sociologiques issues de la sociologie pragmatique, la sociologie de l’art et la sociologie du sport.Our work looks into the judging issues in ice skating and ice dancing, based on the Salt Lake City scandal (an international scandal. Judging in figure skating cannot be entirely objective as a large part of subjectivity remains inherent to the process. We will demonstrate that the controversy surrounding judging decisions originates in this particular feature of ice skating. In other words, judging issues – far from being an extraneous addition to this sport – are the natural consequence of an ambiguous

  16. Trophic condition of the volcanic Lake Nemi (Central Italy: environmental factors and planktonic communities in a changing environment

    Directory of Open Access Journals (Sweden)

    Fiorenza G. MARGARITORA

    2005-08-01

    Full Text Available Lake Nemi is an interesting case of anthropogenic overexploitation which has caused its progressive environmental deterioration in the past decades. On this lake historical data about the trophic situation are available from 1975 to 1984. The research performed in 2002-03, about ten years after the diversion of urban waste waters, concerned a biological investigation on the phyto- and zooplanktonic communities, integrated with a physico-chemical analysis. The aims of our study are to evaluate the current water quality of the lake and compare it with the water quality observed in 1982-1983, when all biotic and abiotic components indicated a heavily compromised hypereutrophic condition. The water quality data and the comparison with a previous study point out that the biological aspects have partially changed (increased number of Cyanobacteria and phytoplanktonic taxa, particularly Clorophyta and Dinophyta; zooplankton composition changed at a species level, with the appearance of taxa associated to light trophic conditions, and the physico-chemical conditions significantly improved. The mean transparency, dissolved oxygen, nutrients and chlorophyll-a concentrations have all improved. Mean annual temperature at different depths increased, probably due to differences in climatic period and the lowering of the lake surface level (from 32.5 to 27.5 m in 1982 and 2002, respectively. Our results indicate a general improving trend in water quality is taking place since the diversion of waste water discharges. The present abiotic characteristics of the lake allow the phytoplankton to distribute itself in the whole epilimnion, and the zooplankton in the whole water column. A possible further improvement is hypothesized, and the constraints represented by excessive water level lowering and water temperature increasing are also discussed.

  17. Lake Turkana National Parks Kenya.

    OpenAIRE

    2005-01-01

    Lake Turkana is the largest, most northerly and most saline of Africa's Rift Valley lakes and an outstanding laboratory for the study of plant and animal communities. The three National Parks are a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile and hippopotamus. The Koobi Fora deposits are rich in pre-human, mammalian, molluscan and other fossil remains and have contributed more to the understanding of Quaternary palaeoenvironments than any other site on ...

  18. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake.

    Science.gov (United States)

    Zhao, Da-yong; Luo, Juan; Zeng, Jin; Wang, Meng; Yan, Wen-ming; Huang, Rui; Wu, Qinglong L

    2014-01-01

    Abundances and community compositions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in unvegetated sediment and the rhizosphere sediments of three submerged macrophytes (Ceratophyllum demersum, Vallisneria spinulosa, and Potamogeton crispus) were investigated in a large, eutrophic freshwater lake, Lake Taihu. Abundances of archaeal ammonia monooxygenase alpha-subunit (amoA) gene (from 6.56 × 10(6) copies to 1.06 × 10(7) copies per gram of dry sediment) were higher than those of bacterial amoA (from 6.13 × 10(5) to 3.21 × 10(6) copies per gram of dry sediment) in all samples. Submerged macrophytes exhibited no significant effect on the abundance and diversity of archaeal amoA gene. C. demersum and V. spinulosa increased the abundance and diversity of bacterial amoA gene in their rhizosphere sediment. However, the diversity of bacterial amoA gene in the rhizosphere sediments of P. crispus was decreased. The data obtained in this study would be helpful to elucidate the roles of submerged macrophytes involved in the nitrogen cycling of eutrophic lake ecosystems.

  19. Community genetics reveal elevated levels of sympatric gene flow among morphologically similar but not among morphologically dissimilar species of Lake Victoria cichlid fish

    NARCIS (Netherlands)

    Konijnendijk, N.; Joyce, D.A.; Mrosso, H.D.J.; Egas, M.; Seehausen, O.

    2011-01-01

    We examined genetic structure among five species of Lake Victoria haplochromine cichlids in four island communities, using a full factorial sampling design that compared genetic differentiation between pairs of species and populations of varying morphological similarity and geographical proximity.

  20. Fluctuations of Lake Eyre, South Australia

    Science.gov (United States)

    2002-01-01

    Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. However, this low-lying lake attracts run-off from one of the largest inland drainage systems in the world. The drainage basin is very responsive to rainfall variations, and changes dramatically with Australia's inter-annual weather fluctuations. When Lake Eyre fills,as it did in 1989, it is temporarily Australia's largest lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Nino events) by drying completely.These four images from the Multi-angle Imaging SpectroRadiometer contrast the lake area at the start of the austral summers of 2000 and 2002. The top two panels portray the region as it appeared on December 9, 2000. Heavy rains in the first part of 2000 caused both the north and south sections of the lake to fill partially and the northern part of the lake still contained significant standing water by the time these data were acquired. The bottom panels were captured on November 29, 2002. Rainfall during 2002 was significantly below average ( http://www.bom.gov.au/ ), although showers occurring in the week before the image was acquired helped alleviate this condition slightly.The left-hand panels portray the area as it appeared to MISR's vertical-viewing (nadir) camera, and are false-color views comprised of data from the near-infrared, green and blue channels. Here, wet and/or moist surfaces appear blue-green, since water selectively absorbs longer wavelengths such as near-infrared. The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree forward, nadir and 60-degree backward-viewing cameras, displayed as red, green and blue, respectively. In these multi-angle composites, color variations serve as a proxy for changes in angular reflectance, and indicate textural properties of the surface related to roughness and/or moisture content.Data from

  1. Meetings and Events about Western Lake Erie Basin

    Science.gov (United States)

    Western Lake Erie Basin, near Toledo (Ohio), Louisiana of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  2. Moses Lake Fishery Restoration Project; Factors Affecting the Recreational Fishery in Moses Lake Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Dave

    2003-11-01

    This annual report is a precursor to the final technical report we will be writing the next contract period. Consequently, this report, covering the period between September 27, 2002, and September 26, 2003, represents a progress report towards the final technical report we anticipate completing by September 26, 2004. Sample analysis and field work have progressed well and we anticipate no further delays. There are 4 objectives: (1) To quantify secondary production Moses Lake; (2) To quantify the influence of predation on target fishes in Moses Lake; (3) To quantify mortality of selected fished in Moses Lake; and (4) To assess effects of habitat changes from shoreline development and carp on the fish community in Moses Lake.

  3. The promotion of geomorphosites on salt from Sovata - Praid and Turda using cultural and scientific tourism

    Science.gov (United States)

    Toma, B.; Irimus, I.; Petrea, D.

    2012-04-01

    The paper highlights the role of geomorphosites on salt, in experts and specialists training, in geography of tourism and planning, namely, the involvement of educational factor in defining managerial and marketing skills of future specialists in training. Geographical area of investigation belongs to the Transylvanian tectonic basin, overlapped to saliferous tectonic area from eastern Transylvania, represented by Praid - Sovata - Corund anticline and Sic -Cojocna - Turda anticline, analysis is focused on the Praid - Sovata and Turda diapirs. Saliferous area Praid - Sovata - Corund is situated on the contact area of the Transylvanian Basin with neo-eruptiv mountain chain of Eastern Carpathians, Calimani - Gurghiu - Harghita, and at the contact of Târnavelor Plateau with the orogen alignment of Gurghiu - Harghita Mountains. The salt body, in the horizontal plane, has a quasi-circular shape, slightly ellipsoidal, with diameters of 1.2 and 1.4 km, and is estimated to have a burial depth of 2.6 to 2.8 km. The salt massif from Praid, pierce the Mio-Pliocene blanket around and appears at the surface as diapir, flanked by sedimentary rocks that are partially covered by extrusive post-Pliocene volcanic formations and Quaternary deposits. Evaporitic deposits presents a varied lithology represented by gypsum, anhydrite, salt rock, potassium salt and celestine. The salt massif from Turda develops on the anticline Sic -Cojocna - Turda, oriented NE - SW, 2 km NE of Turda's downtown. It has an elongated shape, about 4 km, with widths ranging from 700 m to 200 m and also with a thickness ranging from 750 m to over 1000 m. In terms of stratigraphy, the salt massif is surrounded by deposits belonging to Badenian, Sarmatian and Quaternary. Due to salt dissolution by meteoric waters, carsto-saline lakes were formed, and due to ceiling collapse, because of an intensive exploitation, and infiltrations of rainwater and rivers, antropo-salted lakes were formed. The water and mud of

  4. Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake

    Czech Academy of Sciences Publication Activity Database

    Grossart, H. P.; Jezbera, Jan; Horňák, Karel; Hutalle, K. M. L.; Buck, U.; Šimek, Karel

    2008-01-01

    Roč. 10, č. 3 (2008), s. 635-652 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/05/0007 Institutional research plan: CEZ:AV0Z60170517 Keywords : in situ hybridization * meso-eutrophic reservoir * dissolved organic carbon * fresh-water reservoir * bacterioplankton community * dystrophic lake Subject RIV: EE - Microbiology, Virology Impact factor: 4.707, year: 2008

  5. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai

    Science.gov (United States)

    Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.

    2017-08-01

    The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.

  6. An investigation of several aspects of LANDSAT-5 data quality. [Palmer County, Shelby, mt; White sands, NM; Great Salt Lake, UT; San Matted Bridge and Sacramento, California

    Science.gov (United States)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    Band-to-band registration, geodetic registration, interdector noise, and the modulation transfer function (MTE) are discussed for the Palmer County; TX scene. Band combinations for several LANDSAT 4 and LANDSAT 5 scenes; the geodetic registration test for the Sacramento, CA area; periodic noise components in TM band 5; and grey level measurements by detector for Great Salt Lake (UT) dark water forescans and backscans are considered. Results of MTF analyses of the San Mateo Bridge and of TM high resolution and aerial Daedalus scanner imagery are consistent and appear to be repeatable. An oil-on-sand target was constructed on the White Sands Missile Range in New Mexico. The two-image analysis procedure used is summarized.

  7. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Naftz, David [US Geological Survey, Salt Lake City 84119, UT (United States)], E-mail: dlnaftz@usgs.gov; Angeroth, Cory; Kenney, Terry [US Geological Survey, Salt Lake City 84119, UT (United States); Waddell, Bruce; Darnall, Nathan [US Fish and Wildlife Service, Salt Lake City, UT (United States); Silva, Steven [US Geological Survey, Menlo Park, CA (United States); Perschon, Clay [Utah Division of Wildlife Resources, Salt Lake City, UT (United States); Whitehead, John [Utah Department of Environmental Quality, Salt Lake City, UT (United States)

    2008-06-15

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6 per mille decrease in {delta}{sup 15}N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in {delta}{sup 15}N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing {delta}{sup 15}N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO{sub 4}{sup 2-} reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH{sub 3}Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH{sub 3}Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves

  8. The heliothermic lake: a direct method of collecting and storing solar energy

    Science.gov (United States)

    Kirkland, Douglas W.; Bradbury, J. Platt; Dean, Walter E.

    1980-01-01

    Heliothermic lakes contain a sun-heated layer of warm, saline water beneath a surface layer of cooler, less saline water. The two layers are separated by a chemocline, a stratum in which salinity increases progressively with depth. The chemocline, the position of which varies from lake to lake, functions as a heat trap. Most sunlight that penetrates this stratum is transformed into heat, which cannot escape by radiation because water is opaque to infrared light, and which cannot escape by convection because the specific gravity of the dense water below the chemocline is not significantly decreased by the increasing temperature. Heat can escape only by conduction through the chemocline, and water or brine is a very poor conductor. As a result, the temperature within and commonly below the chemocline rises. Under ideal conditions of a clear solution, high isolation, and a suitable salinity distribution, the temperature of the chemocline will increase to the boiling point. The lower part of the chemocline in a shallow (0.8-m) manmade heliothermic lake at Sedom, Israel, for example, reached a temperature of 96°C (205°F) in spite of a brine with poor light transmissibility.About 30 natural heliothermic lakes have been reported. The best known, Lake Ursului, occurs in Transylvania, Romania (latitude, 46°35'N). During four consecutive summers, 1899 to 1902, this lake had temperatures of 60-70°C (140-158°F) at a depth of 1-2 m. Heliothermic conditions have persisted in this lake for at least 28 and probably for more than 77 years. The most unusual, Lake Vanda, Victoria Land, Antarctica (latitude, 77°35'S), has a temperature of 26°C near the base of the chemocline at a depth of 61 despite a mean atmospheric temperature of -20°C. Sunlight penetrates into the chemocline through 5 m of remarkably clear ice.Maintenance of the chemocline is the chief problem preventing commercial use of manmade heliothermic lakes for the collection and storage of solar energy. The most

  9. Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland)

    DEFF Research Database (Denmark)

    Anderson, N. John; Brodersen, Klaus Peter; Ryves, David B.

    2008-01-01

    The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N...

  10. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert

  11. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    Science.gov (United States)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  12. The evolution of a mining lake - From acidity to natural neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, Elwira, E-mail: esienkie@twarda.pan.pl; Gąsiorowski, Michał, E-mail: mgasior@twarda.pan.pl

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed “an anthropogenic lake district”. This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ{sup 13}C, δ{sup 15}N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23 years. - Highlights: • Originally acid water lake had poor phyto- and zooplankton populations. • Process of natural neutralization lasted approximately 23 years. • Presently, lake's ecosystem is similar to other shallow lakes in the region. • Changes in the lake are representative for other mine lakes.

  13. Geographic scale matters in detecting the relationship between neighbourhood food environments and obesity risk: an analysis of driver license records in Salt Lake County, Utah.

    Science.gov (United States)

    Fan, Jessie X; Hanson, Heidi A; Zick, Cathleen D; Brown, Barbara B; Kowaleski-Jones, Lori; Smith, Ken R

    2014-08-19

    Empirical studies of the association between neighbourhood food environments and individual obesity risk have found mixed results. One possible cause of these mixed findings is the variation in neighbourhood geographic scale used. The purpose of this paper was to examine how various neighbourhood geographic scales affected the estimated relationship between food environments and obesity risk. Cross-sectional secondary data analysis. Salt Lake County, Utah, USA. 403,305 Salt Lake County adults 25-64 in the Utah driver license database between 1995 and 2008. Utah driver license data were geo-linked to 2000 US Census data and Dun & Bradstreet business data. Food outlets were classified into the categories of large grocery stores, convenience stores, limited-service restaurants and full-service restaurants, and measured at four neighbourhood geographic scales: Census block group, Census tract, ZIP code and a 1 km buffer around the resident's house. These measures were regressed on individual obesity status using multilevel random intercept regressions. Obesity. Food environment was important for obesity but the scale of the relevant neighbourhood differs for different type of outlets: large grocery stores were not significant at all four geographic scales, limited-service restaurants at the medium-to-large scale (Census tract or larger) and convenience stores and full-service restaurants at the smallest scale (Census tract or smaller). The choice of neighbourhood geographic scale can affect the estimated significance of the association between neighbourhood food environments and individual obesity risk. However, variations in geographic scale alone do not explain the mixed findings in the literature. If researchers are constrained to use one geographic scale with multiple categories of food outlets, using Census tract or 1 km buffer as the neighbourhood geographic unit is likely to allow researchers to detect most significant relationships. Published by the BMJ

  14. [Ecosystem services valuation of Qinghai Lake].

    Science.gov (United States)

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  15. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2015-06-01

    Full Text Available A Lake Multi-biotic Integrity Index (LMII for the China’s second largest interior lake (Dongting Lake was developed to assess the water quality status using algal and macroinvertebrate metrics. Algae and benthic macroinvertebrate assemblages were sampled at 10 sections across 3 subregions of Dongting Lake. We used a stepwise process to evaluate properties of candidate metrics and selected ten for the LMII: Pampean diatom index, diatom quotient, trophic diatom index, relative abundance diatoms, Margalef index of algae, percent sensitive diatoms, % facultative individuals, % Chironomidae individuals, % predators individuals, and total number of macroinvertebrate taxa. We then tested the accuracy and feasibility of the LMII by comparing the correlation with physical-chemical parameters. Evaluation of the LMII showed that it discriminated well between reference and impaired sections and was strongly related to the major chemical and physical stressors (r = 0.766, P<0.001. The re-scored results from the 10 sections showed that the water quality of western Dongting Lake was good, while that of southern Dongting Lake was relatively good and whereas that of eastern Dongting Lake was poor. The discriminatory biocriteria of the LMII are suitable for the assessment of the water quality of Dongting Lake. Additionally, more metrics belonging to habitat, hydrology, physics and chemistry should be considered into the LMII, so as to establish comprehensive assessment system which can reflect the community structure of aquatic organisms, physical and chemical characteristics of water environment, human activities, and so on.

  16. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  17. Recovery of lake vegetation following reduced eutrophication and acidification

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars; Sand-Jensen, Kaj; Olesen, Sissel C. H.

    2017-01-01

    in pollution control has been successful in terms of markedly improving water quality of lakes and, with a time lag, macrophyte species richness. Although relatively common species have spread across lakes and resulted in homogenised macrophyte communities, continued efforts to reduce pollution could ensure...

  18. Plant species and communities in Poyang Lake, the largest freshwater lake in China

    Directory of Open Access Journals (Sweden)

    Wang, H. F.

    2015-12-01

    Full Text Available Studying plant species richness and composition of a wetland is essential when estimating its ecological importance and ecosystem services, especially if a particular wetland is subjected to human disturbances. Poyang Lake, located in the middle reaches of Yangtze River (central China, constitutes the largest freshwater lake of the country. It harbours high biodiversity and provides important habitat for local wildlife. A dam that will maintain the water capacity in Poyang Lake is currently being planned. However, the local biodiversity and the likely effects of this dam on the biodiversity (especially on the endemic and rare plants have not been thoroughly examined. Therefore, in order to assess the richness of plant species and plant communities in Poyang Lake, we conducted a detailed field investigation combined with a literature review. A total of 124 families, 339 genera, and 512 species (including sub-species, varieties and forms as well as eight dominant plant communities were identified, confirming the lake’s wetland as a regional hotspot of plant diversity. It is imperative to carry out further research on the impact of damming on the vegetation, particularly research focusing on protecting local biodiversity, maintaining the lake’s ecosystem services, controlling the spread of invasive species, and restoring degraded ecosystems.El estudio de la riqueza y la composición de especies vegetales de un humedal es esencial a la hora de estimar su importancia ecológica y sus servicios ecosistémicos, especialmente cuando éste está sujeto a perturbaciones humanas. El lago Poyang, situado en el curso medio del río Yangtsé (China central constituye la mayor superfície de agua dulce del país. Alberga una elevada biodiversidad y proporciona hábitats importantes para la flora y fauna locales. En la actualidad existen planes de construir una presa que mantendrá el volumen de agua del lago estable. Sin embargo, y hasta la fecha, apenas

  19. The early quaternary sediments above the Gorleben salt dome

    International Nuclear Information System (INIS)

    Mueller, H.

    1986-01-01

    About 1500 borehole samples from the 90 m thick pre-Elsterian Pleistocene sediments above the Gorleben salt dome were studied to establish the palynostratigraphy of the main part of the still poorly known 'Cromerian Complex'. With the exception of two isolated sink holes above the gypsum cap rock, which developed during the early Bavelian, the investigated pre-Elsterian Pleistocene sediments were deposited in a very shallow lake, similar to the present-day Steinhuder Meer (NW Germany). Therefore, subrosion (subsurface erosion of salt) and sedimentation kept pace with each other during this time interval. Small discordances - similar to those in the Holocene sediments of the Steinhuder Meer - are frequent, but do not hamper the close correlation (to within 1 cm) between the different boreholes. (orig.) [de

  20. The early quaternary sediments above the Gorleben salt dome

    International Nuclear Information System (INIS)

    Mueller, H.

    1986-01-01

    About 1500 borehole samples from the 90 m thick pre-Elsterian Pleistocene sediments above the Gorleben salt dome were studied to establish the palynostratigraphy of the main part of the still poorly known 'Cromerian Complex'. With the exception of two isolated sink holes above the gypsum cap rock, which developed during the early Bavelian, the investigated pre-Elsterian Pleistocene sediments were deposited in a very shallow lake, similar to the present-day Steinhuder Meer (NW Germany). Therefore, subrosion (subsurface erosion of salt) and sedimentation kept pace with each other during this time interval. Small discordances - similar to those in the Holocene sediments of the Steinhuder Meer - are frequent, but do not hamper the close correlation (to within 1 cm) between the different boreholes. (orig./PW) [de

  1. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake.

    Science.gov (United States)

    Mentes, Anikó; Szabó, Attila; Somogyi, Boglárka; Vajna, Balázs; Tugyi, Nóra; Csitári, Bianka; Vörös, Lajos; Felföldi, Tamás

    2018-02-01

    Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters

    Directory of Open Access Journals (Sweden)

    Tingting eYang

    2011-06-01

    Full Text Available Abstract. Five sublacustrine hydrothermal vent locations from 1-109 m water depth in Yellowstone Lake were surveyed by ribosomal RNA sequencing in relation to their chemical composition and dark CO2 fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16 - 110ºC and electron donor supply (H2S <1 - >100µM; NH3 <0.5 - >10µM. Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO2 fixation rates reaching near 9 µM C h-1 at temperatures of 50 to 60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution.

  3. Salt marsh and seagrass communities of Bakkhali Estuary, Cox's Bazar, Bangladesh

    Science.gov (United States)

    Hena, M. K. Abu; Short, F. T.; Sharifuzzaman, S. M.; Hasan, M.; Rezowan, M.; Ali, M.

    2007-10-01

    The species identification, distribution pattern, density and biomass of salt marsh and seagrass plants with some of the ecological parameters were studied in the Bakkhali river estuary, Cox's Bazar, Bangladesh during the first half of 2006. Two salt marsh species ( Spartina sp. and Imperata cylindrica) and one seagrass species ( Halophila beccarii) were identified during this investigation, providing the first reports of Spartina sp. and H. beccarii in coastal Bangladesh. Seagrass H. beccarii was found in an accreted area and co-existing with salt marsh, and scattered sparsely in the salt marsh habitat and macroalgae Ulva intestinalis. Flowering and fruiting were recorded from the seagrass H. beccarri during January and February. No flowers and fruits were observed for the salt marsh Spartina sp. during the study period. Results showed that the shoot density of Spartina ranged from 400 to 2875 shoots m -2 with the highest total biomass (165.80 g dry weight (DW) m -2) in March. Shoot density of H. beccarii ranged from 2716 to 14320 shoots m -2 in this estuarine coastal environment. The total biomass of seagrass was higher (17.56 g DW m -2) in March compared to the other months. The highest H. beccarii above ground (AG) biomass and below ground (BG) biomass were 9.59 g DW m -2 and 9.42 g DW m -2, respectively. These parameters are comparable with those generally observed for the salt marsh and seagrass species in the other places of the world.

  4. Phytoplankton productivity in newly dug fish ponds within Lake ...

    African Journals Online (AJOL)

    The declining Lake Victoria fisheries resource led to a growing recognition of aquaculture as a source of livelihood to riparian communities. Finger ponds speculated to naturally stock fish during flooding and retain them during dry seasons were introduced within the lake's wetlands. In order to develop a

  5. Cyanobacteria and cyanotoxins in the source water from Lake ...

    African Journals Online (AJOL)

    The phytoplankton community and cyanotoxins in Lake Chivero (formerly Lake McIlwaine) and the presence of cyanotoxins in treated drinking water were investigated between 2003 and 2004. A typical seasonal succession of Cyanobacteria species occurred from January to April, Bacillariophyta from May to July, and ...

  6. Photo Gallery for Lake Pontchartrain Area/New Orleans (Louisiana)

    Science.gov (United States)

    Lake Pontchartrain Area/New Orleans (Louisiana) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  7. Program Contacts for Lake Pontchartrain Area/New Orleans (Louisiana)

    Science.gov (United States)

    Lake Pontchartrain Area/New Orleans (Louisiana) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  8. Urinary Schistosomiasis in Communities around Kiri Lake, Shelleng ...

    African Journals Online (AJOL)

    ADOWIE PERE

    swim and play in nearby lakes and irrigation channels, women ... controlled. In preference, the dam is used by residents .... the fresh water, streams and or pools near their farms after each .... Princeton energy resources international. (peri).

  9. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  10. Limnological studies on the Pretoria Salt Pan, a hypersaline maar lake

    CSIR Research Space (South Africa)

    Ashton, PJ

    1983-01-01

    Full Text Available The Pretoria Salt pan is shallow and alkaline with pronounced mesothermy at a depth of between 0.55 and 0.7 metres. Secchi disc transparencies ranged from 7 to 19 cm. Endorheic or closed drainage basins are widely distributed in many climate...

  11. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    Science.gov (United States)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  12. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    Science.gov (United States)

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  13. Decline in the deepwater benthic communities abundance in the Onego Lake under multifactor influence

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2016-06-01

    Full Text Available The dynamics of deepwater benthic communities state between 1988 and 2015 was analyzed. In the last decade the decline in the deepwater benthic communities development indicators is observed in Petrozavodskaya Bay and contiguous central area of the Lake Onego. The abundance of benthos decreased by 6-7 times, biomass dropped in 2-4 times. At the same time the changes in sedimentation processes of organic matter, nutrients, iron and manganese are observed in the water ecosystem. This has resulted in an increase in the concentrations of Fe and Mn in the sediment surface layers; in pore waters up to 13 mg Fe/l and 7 mg Mn/l. The sharp increase in the content of iron and manganese in the bottom sediment can be considered as a possible factor of benthos oppression. Another reason of the benthos decrease is the reduction of anthropogenic load. Now Petrozavodskaya bay receives 3 times less light organic substances than 10 years ago. The third possible reason for the reduction of benthic communities is invasion of baikalian amphipods Gmelinoides fasciatus, resulting in the redistribution of organic matter flow from the littoral zone to the pelagic zone and depletion of deepwater benthic food resources.

  14. Hydrobiological Survey of the Bahir Dar Gulf of Lake Tana, Ethiopia

    African Journals Online (AJOL)

    FIRST LADY

    lake and for monitoring changes taking place as a consequence of human developmental ... peculiar biodiversity and the increasing threats of expanding urban habitation ..... communities and their role in the food web of Lake Tana, Ethiopia.

  15. Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region.

    Science.gov (United States)

    Qvit-Raz, Noga; Finkel, Omri M; Al-Deeb, Taghleb M; Malkawi, Hanan I; Hindiyeh, Muna Y; Jurkevitch, Edouard; Belkin, Shimshon

    2012-02-01

    The leaves of Tamarix, a salt-secreting desert tree, form an extreme niche that harbors a unique microbial community. In view of the global distribution of this tree, its island-like phyllosphere is highly suitable for studying microbial diversity along geographical gradients. Here we present an analysis of microbial community diversity using leaf surface samples collected at six different sites, on both sides of the Dead Sea, over a period of one year. Biodiversity analysis of denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial 16S rRNA gene revealed a significant degree of bacterial community similarity within trees sampled at the same site, much higher than the similarity between trees from different geographical locations. Statistical analysis indicated that the degree of similarity was negatively correlated with the distance between sampling sites, and that a weak correlation existed between diversity and leaf pH. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1)

    Energy Technology Data Exchange (ETDEWEB)

    Subin, Zachary M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Murphy, Lisa N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Li, Fiyu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Bonfils, Celine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Riley, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2012-01-15

    We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  17. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1

    Directory of Open Access Journals (Sweden)

    William J. Riley

    2012-02-01

    Full Text Available We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1 to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  18. Seasonal quantitative dynamics and ecology of pelagic rotifers in an acidified boreal lake

    Directory of Open Access Journals (Sweden)

    Svein Birger Wærvågen

    2017-12-01

    Full Text Available Lake Gjerstadvann is a dimictic, oligotrophic, slightly acidified boreal lake in southern Norway (northwest Europe. The planktonic rotifer community of this lake was studied quantitatively during one year in order to investigate the impacts of the local environment and biotic interactions on seasonal succession and habitat selection. Pure suspension feeders (mainly Keratella spp., Conochilus spp., and Kellicottia longispina together with raptorial graspers or specialised feeders (mainly Polyarthra spp. and Collotheca spp. dominated the rotifer community over prolonged periods, whereas carnivorous/omnivorous species (mainly Asplanchna priodonta were extremely uncommon. Low bicarbonate buffering capacity resulted in a distinctive seasonal oscillating pH between 5.0 and 5.6, defining a special acid-transition lake category. The pH values were highest in the productive period during summer, and lowest during ice break-up coinciding with the peak reactive aluminium concentrations of 250-300 mg L-1. As in typical Norwegian boreal perch lakes, the most abundant cladoceran was Bosmina longispina due to perch predation on the genus Daphnia. Rotifer community structure was significantly related to temperature and oxygen (P=0.001 and P=0.022, illustrating the important effects of the seasonal cycle and vertical density stratification. The most significant competition indicator species were B. longispina and Eudiaptomus gracilis (both with P=0.001. A variance partitioning indicated that 14% of the total community composition variance could only be explained by biotic interactions, while 19% of the variance could be attributed to environmental gradients. Of the variance, 23% could not be resolved between biotic interactions and environmental gradients, while a residual of 44% was not explainable by any of the variables. Acid conditions alone cannot account for all the observed changes in the rotifer community of this lake with low humic content, since

  19. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    Science.gov (United States)

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  20. Is Fish Farming an Illusion for Lake Malawi Riparian Communities under Environmental Changes?

    Directory of Open Access Journals (Sweden)

    Moses Majid Limuwa

    2018-05-01

    Full Text Available Global environmental changes have negatively affected many food systems while the demand for food has continued to rise. An urgent need exists to identify other sustainable means of producing food. This is a case in Malawi, where capture fisheries and agriculture are not supplying sufficient food. Fish farming food systems by communities who rely on inland fisheries have not been evaluated. Therefore, a study was conducted in two phases: January 2016 to May 2016 and in July 2017 to evaluate if fish farming could sustainably support livelihoods of Lake Malawi riparian communities. We used mixed methods to collect and analyze data. The data collection methods included explorative surveys, household survey interviews, focus group discussion and key informant interviews. Qualitative data was analyzed using content analysis for themes. This identified themes that were quantitatively analyzed using descriptive and inferential statistics. We observed that fish farming was dominated by men and also not the main occupation for the respondents despite owning fishponds. The respondents have water and land, which are prerequisite for any farming. The study also observed fish farming production challenges related to quality fingerlings, formulated diets, and extension services. Cases of food insecurity amongst the respondents were also prevalent due to lack of food to cover the entire year. Weak synergies existed between fish farming and agriculture restricting bio-resource flow and water usage between these two food systems, meaning the outcomes of the food systems provide unsustainable diets. Furthermore, water availability, money spent on food, and cassava cropping increased fish farming participation. Whereas operating a bicycle taxi, casual labor, former fish farming, as well as application of agricultural wastes negatively affected fish farming. On the other hand, extreme weather events (increased incidences of droughts and floods attributed to inter

  1. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  2. Estimation of selenium loads entering the south arm of Great Salt Lake, Utah, from May 2006 through March 2008

    Science.gov (United States)

    Naftz, David L.; Johnson, William P.; Freeman, Michael L.; Beisner, Kimberly; Diaz, Ximena; Cross, VeeAnn A.

    2009-01-01

    Discharge and water-quality data collected from six streamflow-gaging stations were used in combination with the LOADEST software to provide an estimate of total (dissolved + particulate) selenium (Se) load to the south arm of Great Salt Lake (GSL) from May 2006 through March 2008. Total estimated Se load to GSL during this time period was 2,370 kilograms (kg). The 12-month estimated Se load to GSL for May 1, 2006, to April 30, 2007, was 1,560 kg. During the 23-month monitoring period, inflows from the Kennecott Utah Copper Corporation (KUCC) Drain and Bear River outflow contributed equally to the largest proportion of total Se load to GSL, accounting for 49 percent of the total Se load. Five instantaneous discharge measurements at three sites along the railroad causeway indicate a consistent net loss of Se mass from the south arm to the north arm of GSL (mean = 2.4 kg/day, n = 5). Application of the average daily loss rate equates to annual Se loss rate to the north arm of 880 kg (56 percent of the annual Se input to the south arm). The majority of Se in water entering GSL is in the dissolved (less than 0.45 micron) state and ranges in concentration from 0.06 to 35.7 micrograms per liter (ug/L). Particulate Se concentration ranged from less than 0.05 to 2.5 ug/L. Except for the KUCC Drain streamflow-gaging station, dissolved (less than 0.45 um) inflow samples contain an average of 21 percent selenite (SeO32-) during two sampling events (May 2006 and 2007). Selenium concentration in water samples collected from four monitoring sites within GSL during May 2006 through August 2007 were used to understand how the cumulative Se load was being processed by various biogeochemical processes within the lake. On the basis of the Mann-Kendall test results, changes in dissolved Se concentration at the four monitoring sites indicate a statistically significant (90-percent confidence interval) upward trend in Se concentration over the 16-month monitoring period. Furthermore

  3. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  4. Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake.

    Science.gov (United States)

    Zhong, Zhi-Ping; Liu, Ying; Wang, Fang; Zhou, Yu-Guang; Liu, Hong-Can; Liu, Zhi-Pei

    2016-01-01

    A Gram-stain-negative, facultatively aerobic bacterium, strain X13M-12T, was isolated from a salt lake (Lake Xiaochaidan) in the Qaidam basin, Qinghai Province, PR China. Cells of strain X13M-12T were slightly curved, rod-shaped, 0.5-0.8 μm wide and 1.2-2.3 μm long, and motile by means of a polar flagellum. Strain X13M-12T was catalase- and oxidase-positive. Growth was observed in the presence of 0-15.0 % (w/v) NaCl (optimum 3.0-5.0 %), and at 4-40 °C (optimum 25-30 °C) and pH 6.0-11.0 (optimum pH 8.5). Strain X13M-12T contained Q-8 as the sole respiratory quinone, and phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The major cellular fatty acids (>10 % of totals) were C16 : 0, C16 : 1ω7c and/or C16 : 1ω6c, and C18 : 1ω7c and/or C18 : 1ω6c. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain X13M-12T belonged to the family Alteromonadaceae and formed a distinct lineage, showing low gene sequence similarities to closely related genera: Bowmanella, Aestuariibacter and Salinimonas (16S rRNA gene sequence similarities, 93.0-93.1 %, 92.3-93.1 % and 92.6-92.7 %, respectively). In addition, strain X13M-12T showed < 92.7 % gene sequence similarities to other species of the family Alteromonadaceae. The DNA G+C content of strain X13M-12T was 49 mol% (Tm). Based on the data presented above, strain X13M-12T is considered to represent a novel genus and species of the family Alteromonadaceae, for which the name Lacimicrobium alkaliphilum gen. nov., sp. nov. is proposed. The type strain is X13M-12T ( = CGMCC 1.12923T = KCTC 42674T).

  5. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    Collins, Sara J.; Russell, Ronald W.

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC 50 ) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  6. Bacterial diversity and ecological function in lake water bodies

    OpenAIRE

    Lijuan Ren; Dan He; Peng Xing; Yujing Wang; Qinglong Wu

    2013-01-01

    The healthy development of lake ecosystems is a global issue. Bacteria are not only an integral component of food webs, but also play a key role in controlling and regulating water quality in lake ecosystems. Hence, in order to provide some suggestions for maintaining the long-term and healthy development of lake ecosystems, this review discusses and analyses concepts and assessment of bacterial diversity, the distribution of bacteria communities, mechanisms of formation, and the ecological f...

  7. Phosphorus decreases in Lake Geneva but climate warming hampers the recovery of pristine oligochaete communities whereas chironomids are less affected

    Directory of Open Access Journals (Sweden)

    Claude Lang

    2016-03-01

    temperature, the recovery of the pristine oligochaete community was perhaps impeded in 2009 because the transfer of organic matter to the sediment was increased by the impact of fish (mostly Coregonus feeding selectively on zooplankton. Finally, many micro pollutants (pesticides, drugs, and other substances which are present in the lake could have negatively affected sensitive oligochaete species.   

  8. Palaeoecology of fossil diatoms (the thermometers of salinity) of lake Bonneville, Utah, USA

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    and is presently the Great Salt Lake of Utah, having a salinity of 276 ppt. It is estimated that the saline content changed at the rate of 1 ppt per foot in stages, which is due to variation in the balance between precipitation and inflow evaporation and outflow...

  9. 78 FR 45848 - Amendment of Class E Airspace; Salt Lake City, UT

    Science.gov (United States)

    2013-07-30

    ...) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach procedures at Salt...: Paragraph 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the earth...

  10. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  11. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  12. Historical changes in the ecosystem condition of a small mountain lake over the past 60 years as revealed by plankton remains and Daphnia ephippial carapaces stored in lake sediments.

    Directory of Open Access Journals (Sweden)

    Hajime Ohtsuki

    Full Text Available To examine if changes in species composition of a plankton community in the past due to anthropogenic activities can be clarified in lakes without any monitoring data, we analyzed genetically ephippial carapaces of Daphnia with plankton remains stored in the bottom sediments of Lake Hataya Ohunma in Japan. In the lake, abundance of most plankton remains in the sediments was limited and TP flux was at low levels (2-4 mg/m2/y before 1970. However TP flux increased two-fold during the period from 1980s to 1990 s. In parallel with this increase, abundance of most plankton remains increased although abundance of benthic testate amoebae's remains decreased, indicating that the lake trophic condition had changed from oligo- to mesotrophic for the past 60 years. According to cluster analysis, the stratigraphic sediments were divided into two periods with different features of the phytoplankton composition. Chronological comparison with events in the watershed suggested that eutrophication occurred because of an increase in visitors to the watershed and deposition of atmospheric dust. In this lake more than 50% of resting eggs produced by Daphnia over the past 60 years hatched. However, genetic analysis of the ephippial carapaces (remains showed that the Daphnia population was originally composed of D. dentifera but that D. galeata, or its hybrid with D. dentifera, invaded and increased the population density when the lake was eutrophied. Subsequently, large D. pulex established populations in the 1980s when largemouth bass were anonymously introduced. These results indicated that the Lake Hataya Ohunma plankton community underwent significant changes despite the fact that there were no notable changes in land cover or land use in the watershed. Since increases in atmospheric deposition and release of fish have occurred in many Japanese lakes, the changes in the plankton community described here may be widespread in these lakes.

  13. Modelling assessment of oil sands pit lakes turn-over potential

    International Nuclear Information System (INIS)

    Mackenzie, I.; Vandenberg, J.; Lauzon, N.; Takyi, A.

    2006-01-01

    Pit lakes form when surface mining operations are discontinued and dewatering is terminated. Their use as a treatment step for oil sands surface mining reclamation waters was discussed. The goal of the End Pit Lake Subgroup of the Cumulative Environmental Management Association is to establish guidelines that will enable operators to achieve acceptable water quality for these lakes. Although both biological and physical processes affect turn-over potential, this presentation focused on the size of pit lakes, their depth, starting lake salinity concentrations, inflow rates and inflow salinity flux. These parameters where selected because of their influence on density gradients and turn-over potential. One-dimensional and two-dimensional modelling simulations were performed to examine turnover potential for a large range of pit lake configurations and conditions. The pit lake scenarios chosen for this modelling study included a wide range of changes in 3 lake sizes (1, 4 and 8 km 2 ), 3 lake depths (5, 20 and 50 m), 2 lake starting salinities (1 and 5 parts per thousand), 2 inflow rates (2 and 10 million m 3 per year), 3 starting inflow salinity concentrations (1, 2 and 4 parts per thousand) and 2 rates of influent salinity decrease (6- and 28- year half-life). Simulations showed that autumn is the governing season for determining turn-over potential. For the scenarios examined in this study, the expelling of salt from saline water upon ice formation and the effect of fresh water loading during spring melt events were not found to be significant factors governing turn-over potential. This presentation reviewed the DYRESM, CE-QUAL-W2, and RMA models used in this study. The conclusions reached by each model was also reviewed along with ongoing follow-up work

  14. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Live/Dead Comparisons of Ostracodes in Temperate Lakes Reveal Evidence of Human Impact and Provides a Tool to Measure the Progress of Remediation Efforts

    Science.gov (United States)

    Spergel, J.; Kimball, K. C.; Fitzpatrick, S. A.; Michelson, A. V.; Leonard-Pingel, J.

    2015-12-01

    Lake ecosystems face a multitude of environmental threats including: eutrophication, overfishing, and heavy metal pollution. Tools to identify lakes impacted by human activity and quantify that impact are needed to combat their environmental degradation. One such promising tool has been the comparison between living communities and associated time-averaged death assemblages of mollusks in marine environments. Here we extend the reach of such live/dead comparisons using ostracodes in temperate lakes. We sampled six lakes in Wisconsin for living communities and associated death assemblages of ostracodes: two lakes impacted by human activity, two relatively "pristine" lakes, and two remediated lakes. We took sixteen grab samples of the upper centimeter of sediment in each lake, capturing simultaneously living benthic ostracodes and discarded valves of dead ostracodes. We found that impacted lakes had lower live/dead fidelity in taxonomic composition and rank-order abundance distributions and greater within-lake variation in death assemblages than "pristine" lakes. Additionally, the living communities in the impacted lakes tended to be lower in species richness and have lower evenness than "pristine" lakes. Remediated lakes displayed similar live/dead fidelity in taxonomic composition and rank-abundance distributions to "pristine" lakes and had lower within-lake variation in death assemblages than impacted lakes. Remediated lakes also contained living communities that tended to be richer and more even than impacted lakes. The lower live/dead fidelity of ostracodes in impacted lakes indicate live/dead ostracode comparisons can provide a tool to identify lake ecosystems impacted by humans. The similar results of remediated and "pristine" lakes indicate remediation efforts in these lakes have been successful in alleviating environmental impact detrimental to ostracode communities. This result indicates live/dead comparisons of ostracodes can be a useful tool to monitor

  16. THE HYDROLOGIC CYCLE, UNIDIRECTIONAL CHARTER OF THE DISSOLVED SALTS AND SUSPENDED LOAD

    Directory of Open Access Journals (Sweden)

    Nicolae Florea

    2012-12-01

    Full Text Available In this paper it is underlined that the hydrologic cycle in nature, reversible and regenerating of fresh water, carries out also an unidirectional and irreversible circulation – by means of a fragment of the hydrologic cycle – of the dissolved salts and stream’s suspended load, entailed by the water drained from continents to ocean. The trend is to transfer soluble salts from land to ocean in the same time with the running water on land in the portion of the hydrologic cycle which refers to the water transfer from continents to ocean in order to equilibrate the annual water balance of the hydrologic cycle. But, one can realize here and there some local salt accumulations in salt soils or in salt lakes within areas without drainage in arid climate; these salts accumulations are cases of local hydrologic cycles „grafted” along the way of water on land (to ocean. The energy necessary to the hydrologic cycle in nature is delivered by the Sun, and the entropy remains at a low level as a consequence of the elimination in this cycle of water vapors with high entropy, and of the receiving of liquid or solid water with low entropy, so that the annual level of entropy is maintained at a low level.

  17. Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt

    Science.gov (United States)

    Attia, Abdelaal H.; El-Sayed, Salah Abdelwahab; El-Sabagh, Moustafa E.

    2018-02-01

    Qaroun Lake, the study area, is a natural protectorate located at the northern part of El Fayoum Depression, Egypt. An integrated approach including hydrochemistry, mineralogy of sediments and GIS analysis and modeling was conducted in order to determine the different geoenvironmental parameters affecting the lake environmental system. Forty two environmental water and sediment samples were collected from the lake and relevant drains in 2013. The water samples were analyzed for major ions and trace elements and the sediment ones were analyzed for clay and non-clay minerals. This study showed that the saline water of the lake (31490 Mg2+ > Ca2+ > K+ - Cl- > SO42- > HCO3- > CO32-. The water salt assemblages were KCl - NaCl - Na2SO4 - MgSO4 - CaSO4 - Ca(HCO3)2 reflecting a mixed water type. The contents of NaCl, Na2SO4 and MgSO4 salts were found to be fully controlled with the lake depths. The hydrogeochemical investigations revealed that the evaporation concentration is the primary process of the lake water evolution. The presence of trace elements in the lake water is essentially of allochtonous origin. The GIS-based maps indicated that the concentrations of Zn, Co, Mo, Pb, F and Cd elements in water had increased in the eastern part of the lake; meanwhile, the contents of NO3- ions had increased in the southwestern part indicating that these parts were the most vulnerable to the potential pollution with such elements. The XRD analysis revealed the existence of different mineral assemblages (quartz, kaolinite, goethite, calcite, halite, hematite, feldspar, gypsum, dolomite and saponite) in bottom sediments. The mineral concentrations varied greatly from place to another place along the lake and their distributions were asymmetric. The dominant minerals were the quartz and calcite. The mineralogical compositions of sediments were highly affected by the natural and man-mad activities. The most effective processes were the type of the water and solid materials coming

  18. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    Science.gov (United States)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  19. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    Science.gov (United States)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    Lake sediments are globally significant sources of CH4 to the atmosphere, but the factors controlling the production and consumption of CH4 in these systems are understudied. Increasing availability of electron acceptors (EA) (other than CO2) in sediments can decrease or even suppress CH4 production by diverting the electron flow (from H2 and organic substances) from methanogenic to other anaerobic respiration pathways. However, whether these changes in microbial function extend down to changes in the structure of microbial communities is not known. Also anaerobic oxidation of methane (AOM) could be enhanced by increased availability of EAs (SO42-, NO3-, Fe3+ and Mn4+), but information on the role of this process in lake sediments is scarce. We studied the effects of inorganic EAs on the potential for CH4 production and consumption and on the structure of microbial communities in sediments of a boreal lake. Anoxic slurries of sediment samples collected from two depths (0 - 10 cm; 10 - 30 cm) of the profundal zone of a boreal, mesotrophic Lake Ätäskö, were amended with 1) CH4 or with CH4 and either 2) 10 mM Mn4+, 3) 10 mM Fe3+, 4) O2 or 5) CH2F2 (inhibitor of aerobic methane oxidation) and incubated at +10° C for up to 4 months. Furthermore, slurries from the 10 - 30 cm layer were amended with CH4 and either 6) 2 mM NO3- or 7) 2 mM SO42- and incubated at +4 ° C for up to 14 months. The processes were measured using 13C-labelling and by concentration measurements of CH4 and CO2. Effects of treatments 1-3 on microbial communities were also analysed by next-generation sequencing of 16S rRNA, as well as methyl coenzyme-M reductase gene amplicons and mRNA transcripts. CH4 production (max. 83 nmol gdw-1d-1) took place in the anaerobic treatments but was generally decreased by the addition of NO3-, SO42-, Fe3+ and Mn4+. Although the structure of sediment archaeal community was resistant to Fe3+/Mn4+ - additions, slight changes in the structure of bacterial community

  20. Devils Lake Climate, Weather, and Water Decision Support System

    Science.gov (United States)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  1. Microbial community biomass and structure in saline and non-saline soils associated with salt, boran tolerant poplar clones grown for the phytoremediation of selenium

    Science.gov (United States)

    The effect of naturally-occurring salts, boron (B), and selenium (Se) on soil microbial community composition associated with plants during different growing seasons used in bioremediation strategies is not known. This information is needed for developing sustainable remediation practices as soil mi...

  2. Salt Lake City Area Integrated Projects electric power marketing -- Final environmental impact statement. Volume 1: Summary

    International Nuclear Information System (INIS)

    1996-01-01

    The Colorado River Storage Project Customer Service Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Colorado, Green, Gunnison, and Rio Grande rivers and on Plateau Creek in Arizona, Colorado, Utah, Wyoming, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western power scheduling and transmission decisions. The environmental impact statement (EIS) alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western's firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this EIS include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources. Western has identified commitment-level alternative 1, the Post-1989 commitment level, as its preferred alternative. The impact evaluations indicate that this commitment level is also the environmentally preferred alternative

  3. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno

    DEFF Research Database (Denmark)

    Posth, Nicole Rita Elisabeth; Bristow, L. A.; Cox, R. P.

    2017-01-01

    carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C......Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive...

  4. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  5. Effects of a new molt-inducing insecticide, tebufenozide, on zooplankton communities in lake enclosures.

    Science.gov (United States)

    Kreutzweiser, D P; Thomas, D R

    1995-10-01

    : A potent ecdysone agonist, tebufenozide, has recently been developed as a molt-inducing insecticide to control defoliating lepidopterans. As part of continuing research efforts to assess the effectiveness and environmental safety of this material for insect pest management in Canadian forests, tebufenozide (RH-5992-2F) was applied to large lake enclosures and the effects on zooplankton communities were evaluated. There were significant treatment effects at all test concentrations (0.07-0.66 mg L(-1) tebufenozide). Concentration-dependent reductions in the abundance of cladocerans indicated that there were direct toxic effects of tebufenozide on this group of macrozooplankton. There were no indications of direct toxic effects on copepods. Significant increases in abundance of rotifers in treated enclosures at the three higher test concentrations were coincident with reductions in cladocerans and indicated secondary effects of the insecticide on the abundance of microzooplankton. There were no significant differences among treated and control enclosures in chlorophyll a concentrations, indicating that tebufenozide did not have direct effects on phytoplankton biomass, nor did the alterations in the zooplankton communities of treated enclosures have measurable secondary effects on phytoplankton biomass. Daytime dissolved oxygen concentrations were significantly higher in treated enclosures than in controls, indicating that the perturbation to biotic communities of some treated enclosures was sufficient to induce measurable changes in system-level functional attributes. Recovery of zooplankton communities in the enclosures occurred within 1-2 months at 0.07 and 0.13 mg l(-1) and by the following summer (12-13 months) at 0.33 and 0.66 mg l(-1).

  6. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    by the Millennium Ecosystem Assessment (Table1). Collectively, this primer synthesizes existing information in a new way that aims to support management of rivermouths as distinct and important ecosystems. The development and management decisions made around rivermouths today will shape the future of these ecosystems, and the human communities within them, well into the future. 1 The information presented in this paper was derived from discussions and draft documents of the Great Lakes Rivermouth Collaboratory. The Great Lakes Rivermouth Collaboratory was established by the U.S. Geological Survey's Great Lakes Science Center (USGS-GLSC) in collaboration with the Great Lakes Commission to engage the Great Lakes scientific community in sharing and documenting knowledge about freshwater rivermouth ecosystems. For more information, see http://www.glc.org/habitat/Rivermouth-Collaboratory.html.

  7. International Planning for Subglacial Lake Exploration

    Science.gov (United States)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  8. Environmental clustering of lakes to evaluate performance of a macrophyte index of biotic integrity

    Science.gov (United States)

    Vondracek, Bruce C.; Vondracek, Bruce; Hatch, Lorin K.

    2013-01-01

    Proper classification of sites is critical for the use of biological indices that can distinguish between natural and human-induced variation in biological response. The macrophyte-based index of biotic integrity was developed to assess the condition of Minnesota lakes in relation to anthropogenic stressors, but macrophyte community composition varies naturally across the state. The goal of the study was to identify environmental characteristics that naturally influence macrophyte index response and establish a preliminary lake classification scheme for biological assessment (bioassessment). Using a comprehensive set of environmental variables, we identified similar groups of lakes by clustering using flexible beta classification. Variance partitioning analysis of IBI response indicated that evaluating similar lake clusters could improve the ability of the macrophyte index to identify community change to anthropogenic stressors, although lake groups did not fully account for the natural variation in macrophyte composition. Diagnostic capabilities of the index could be improved when evaluating lakes with similar environmental characteristics, suggesting the index has potential for accurate bioassessment provided comparable groups of lakes are evaluated.

  9. Choking Lake Winnipeg

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  10. Microbial Profiling Of Cyanobacteria From VIT Lake

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2015-08-01

    Full Text Available The application of molecular biological methods to study the diversity and ecology of micro-organisms in natural environments has been practice in mid-1980. The aim of our research is to access the diversity composition and functioning of complex microbial community found in VIT Lake. Molecular ecology is a new field in which microbes can be recognized and their function can be understood at the DNA or RNA level which is useful for constructing genetically modified microbes by recombinant DNA technology for reputed use in the environment. In this research first we will isolate cyanobacteria in lab using conventional methods like broth culture and spread plate method then we will analyze their morphology using various staining methods and DNA and protein composition using electrophoresis method. The applications of community profiling approaches will advance our understanding of the functional role of microbial diversity in VIT Lake controls on microbial community composition.

  11. Variation in fish community structure, richness and diversity of 56 Danish lakes with contrasting depth and trophic state: Does the method matter?

    DEFF Research Database (Denmark)

    Menezes, Rosemberg

    2011-01-01

    The understanding of the variables that determine the structure and composition of fish communities is crucial for developing fish monitoring programs for lakes. Although electrofishing has long been recognized as an efficient method for quantitative investigations of fish populations, it has typ...... are not well caught in the gill nets such as eel, common carp (Carassius carassius) and stickleback (Gasterosteus aculeatus)....

  12. Road Salts as Environmental Constraints in Urban Pond Food Webs

    Science.gov (United States)

    Van Meter, Robin J.; Swan, Christopher M.

    2014-01-01

    Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May – July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L−1 Cl−/high = 1067 mg L−1 Cl−), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L−1) in the mesocosms was significantly greater for the high conductance inoculum (Psalts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259

  13. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    Science.gov (United States)

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  15. Community fisheries in eastern South Dakota: Angler demographics, use, and factors influencing satisfaction

    Science.gov (United States)

    Greiner, Michael J.; Lucchesi, David O.; Chipps, Steven R.; Gigliotti, Larry M.

    2016-01-01

    We surveyed anglers on five community fishing lakes near Brookings, South Dakota to assess angler use and satisfaction. The community lakes attracted younger anglers when compared to statewide and national averages. Overall, satisfaction was generally high (74%) among anglers fishing community lakes. Logistic regression analysis showed that harvest rate, anglers targeting trout, familiarity with the lake, adults fishing with children, and fishing during open water periods were significantly related to angler satisfaction. Angler parties consisting of adults fishing with children were 1.7 times more likely to respond as “satisfied” compared with adults-only angler groups. Fishing opportunities provided by community lakes can enhance participation by younger anglers while simultaneously providing family-oriented recreation (i.e., adults fishing with children) that enhances trip satisfaction.

  16. The invertebrate communities

    International Nuclear Information System (INIS)

    FloBner, D.; Kasprzak, P.; Mothes, G.; Ronneberger, D.; Schonborn, W.

    1985-01-01

    Studies of invertebrate communities have been carried out to a certain extent in the whole Lake Stechlin area, but especially with reference to Lake Stechlin. The chapter summarizes important results of detailed investigations over a long period, made by several researchers in the periods before and after the nuclear power plant came into operation. The following sections deal with the combination of species, frequency, types of life-form, structure and dynamics of the living community of zoobenthos and zooplankton. Not dealt with or only considered in passing are Amoebina, Heliozoa, Ciliata, Turbellaria (excl. Tricladida), Nematoda, Tardigrada, Gastrotricha, and partly Oligochaeta. The research into micro-and meiooobenthos are limited to the years 1959-1968. Data after the bringing into operation of the nuclear power plant refer only to macrozoobenthos. Before the operation of the nuclear power plant the planktonic Rotaroria and Crustacea were examined only qualitatively. The first quantitative analysis of the zooplankton-community was undertaken in 1968, and only from 1978 onwards has continuous and comprehensive research information about the zooplankton in Lake Stechlin been available

  17. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  18. Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake (Lake Monte Alegre, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    LM. Rangel

    Full Text Available Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo were investigated in two climatological periods: July 2001 (cool-dry season and March 2002 (warm-rainy season. Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2 and functional groups typical of shallow eutrophic environments (J, X1 and Sn were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.

  19. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  20. HIV-1 transmission networks in high risk fishing communities on the shores of Lake Victoria in Uganda: A phylogenetic and epidemiological approach.

    Directory of Open Access Journals (Sweden)

    Sylvia Kiwuwa-Muyingo

    Full Text Available Fishing communities around Lake Victoria in sub-Saharan Africa have been characterised as a population at high risk of HIV-infection.Using data from a cohort of HIV-positive individuals aged 13-49 years, enrolled from 5 fishing communities on Lake Victoria between 2009-2011, we sought to identify factors contributing to the epidemic and to understand the underlying structure of HIV transmission networks. Clinical and socio-demographic data were combined with HIV-1 phylogenetic analyses. HIV-1 gag-p24 and env-gp-41 sub-genomic fragments were amplified and sequenced from 283 HIV-1-infected participants. Phylogenetic clusters with ≥2 highly related sequences were defined as transmission clusters. Logistic regression models were used to determine factors associated with clustering.Altogether, 24% (n = 67/283 of HIV positive individuals with sequences fell within 34 phylogenetically distinct clusters in at least one gene region (either gag or env. Of these, 83% occurred either within households or within community; 8/34 (24% occurred within household partnerships, and 20/34 (59% within community. 7/12 couples (58% within households clustered together. Individuals in clusters with potential recent transmission (11/34 were more likely to be younger 71% (15/21 versus 46% (21/46 in un-clustered individuals and had recently become resident in the community 67% (14/21 vs 48% (22/46. Four of 11 (36% potential transmission clusters included incident-incident transmissions. Independently, clustering was less likely in HIV subtype D (adjusted Odds Ratio, aOR = 0.51 [95% CI 0.26-1.00] than A and more likely in those living with an HIV-infected individual in the household (aOR = 6.30 [95% CI 3.40-11.68].A large proportion of HIV sexual transmissions occur within house-holds and within communities even in this key mobile population. The findings suggest localized HIV transmissions and hence a potential benefit for the test and treat approach even at a community