WorldWideScience

Sample records for salt dissolution alkaline

  1. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  2. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  3. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  4. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  5. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  6. Deep-seated salt dissolution in the Delaware basin, Texas and New Mexico

    International Nuclear Information System (INIS)

    Anderson, R.Y.

    1981-01-01

    Patterns of salt dissolution in the Delaware Basin are related to the bedrock geometry and hydrology that developed following uplift, tilting, and erosion in the late Cenozoic, and the greatest volume of salt has been removed since that time. During the Permian, some salt was dissolved from the top of the Castile Formation before deposition of the Salado Formation and from the top of the Salado before deposition of the Rustler Formation. In addition, some salt dissolution occurred after the Permian and before the Cretaceous. Post-uplift surface dissolution has progressed across the Delaware Basin from south to north and west to east and generally down the regional dip. Deep-seated dissolution has occurred around the margin of the basin where the Capitan Limestone aquifer is in contact with the Permian evaporites and within the basin where selective dissolution in the lower Salado has undercut the overlying salt beds of the middle and upper Salado. Dissolution has not advanced down regional dip uniformly but has left outliers of salt and has progressed selectively into structurally predisposed areas. This selective advance has significance for the stability of the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) site

  7. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  8. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  9. Biorelevant characterisation of amorphous furosemide salt exhibits conversion to a furosemide hydrate during dissolution

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Pajander, Jari Pekka

    2013-01-01

    , as well as of crystalline furosemide salt and acid showed a higher rate of dissolution of the salt forms in comparison with the two acid forms. The measured dissolution rates of the four furosemide forms from the UV imaging system and from eluted effluent samples were consistent with dissolution rates...... obtained from micro dissolution experiments. Partial least squares-discriminant analysis of Raman spectra of the amorphous acid form during flow through dissolution showed that the amorphous acid exhibited a fast conversion to the crystalline acid. Flow through dissolution coupled with Raman spectroscopy...... showed a conversion of the amorphous furosemide salt to a more stable polymorph. It was found by thermogravimetric analysis and hot stage microscopy that the salt forms of furosemide converted to a trihydrate during dissolution. It can be concluded that during biorelevant dissolution, the amorphous...

  10. Salt dissolution and collapse at the Wink Sink in West Texas

    International Nuclear Information System (INIS)

    Johnson, K.S.

    1986-06-01

    The Wink Sink, in Winkler County, Texas, is a collapse feature that formed in June 1980 when an underground dissolution cavity migrated upward by successive roof failures until it breached the land surface. The original cavity developed in the Permian Salado Formation salt beds more than 1300 feet below ground level. Natural dissolution of salt occurred in the vicinity of the Wink Sink in several episodes that began as early as Salado time and recurred in later Permian, Triassic, and Cenozoic time. Although natural dissolution cavity and resultant collapse were influenced by petroleum production activity in the immediate area. Drilling, completion, and plugging procedures used on an abandoned oil well at the site of the sink appear to have created a conduit that enabled water to circulate down the borehole and dissolve the salt. When the dissolution cavity became large enough, the roof failed and the overlying rocks collapsed into the cavity. Similar collapse features exist where underground salt beds have been intentionally dissolved during solution mining or accidentally dissolved as a result of petroleum production activities

  11. Summary report on salt dissolution review meeting, March 29--30, 1977

    International Nuclear Information System (INIS)

    Johnson, K.S.; Brokaw, A.L.; Gilbert, J.F.; Saberian, A.; Snow, R.H.; Walters, R.F.

    1977-01-01

    It is the unanimous conclusion of the Ad Hoc Committee that radioactive waste can be stored in salt and underground repository sites sufficiently removed from natural and/or man-made dissolution areas so that the waste will not be liberated during its hazardous period at projected rates of future salt dissolution. To ensure long-term isolation of radioactive waste in salt formations, specific recommendations are given for needed research concerning (A) General Principles, (B) Basinal or Regional Studies, and (C) Site-Specific Studies, each stated in sequence of priority

  12. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  13. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  14. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  15. Dissolution characteristics of chalcedony under alkaline condition. Study for changes in mineral composition of engineered barrier composed by bentonite

    International Nuclear Information System (INIS)

    Watanabe, Yasutaka; Yokoyama, Shingo

    2016-01-01

    In the engineered barrier of radioactive waste disposal facilities, it is expected that bentonite is exposed to alkaline groundwater which arise from leaching of cementations materials. Minerals contained in the bentonite will be dissolved by reactions of the alkaline groundwater. Some bentonite contains silica such as quartz and chalcedony. Chalcedony is categorized in intermediate silica which is microcrystalline. It is known that dissolution of silica influences to the dissolution of smectite by means of solubility. However, dissolution kinetics of chalcedony in the alkaline condition has not been investigated, which is an uncertainty in geochemical simulations to evaluate a long-term stability of the engineered barrier. Therefore, this study performed flow-through experiments in alkaline conditions using chalcedony in order to obtain the dissolution rate of the chalcedony. The flow-through experiments was performed using NaOH-NaCl solution adjusted to 0.3 mol/L of ionic strength. Initial pH of the solution was from 8.9 to 13.5. As a result, higher pH and higher temperature showed higher Si ion concentrations of reacted solutions. The dissolution rate of the samples was calculated using Si ion concentrations at steady state of the experiment. Note that, the dissolution rate of the chalcedony was almost same as that of quartz at same temperature. After the experiments, SEM observation showed that rough surface of the chalcedony partly changed to smooth surface like quartz. It is supposed that rough surface of chalcedony was rapidly dissolved because of low degree of crystallization. The dissolution rate obtained is supposedly applicable to highly crystalline SiO 2 of chalcedony. (author)

  16. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    International Nuclear Information System (INIS)

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs

  17. Evaluation of alkaline dissolution of Al 6061 and Al 1050 for the production of Mo-99 from LEU targets

    International Nuclear Information System (INIS)

    Mindrisz, Ana C.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2013-01-01

    Since 2008, due to the global crisis in the production of radioisotope 99 Mo, which product of decay, 99m Tc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo. Studies on the alkaline dissolution to obtain 9 9M o from irradiated UAl x -Al LEU targets are under development. Processing time should be minimized, considering the short half-life of 99 Mo and 99m Tc, about 66 h and 6 h, respectively. This makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of 'scraps' of Al 6061 and 1050, used to simulate the dissolution process of UAl x -Al targets. Dissolution time and gas releasing were evaluated using the following alkaline solutions: a) NaOH 3 mol.L -1 and NaNO 3 2 mol.L -1 , b) NaOH 3 mol.L -1 and NaNO 3 4 mol.L -1 . The initial temperature of dissolution was 85 deg C in all cases. Al 6061 showed values of dissolution time greater than that for Al 1050, 25% for NaNO 3 2 mol.L -1 and 104.55% for NaNO 3 4 mol.L -1 . The dissolution with NaNO 3 2 mol.L -1 showed that the gas releasing for Al 6061 was 2.7% greater than for Al 1050. However Al 1050 showed that gas releasing 9.92% greater than for Al 6061 during the dissolution with NaNO 3 4 mol.L -1 . The decision about what type of alloy has to be used, Al 1050 or Al 6061, it will be upto the group that will manufacture the targets for the RMB. (author)

  18. The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings

    International Nuclear Information System (INIS)

    Vu, T.N.; Mokaddem, M.; Volovitch, P.; Ogle, K.

    2012-01-01

    Graphical abstract: - Abstract: The polarization behavior of a 5 wt% Al–Zn steel coating (Galfan™) has been investigated in alkaline solution using atomic emission spectroelectrochemistry (AESEC). The instantaneous Zn and Al dissolution rates were measured as a function of time during a linear scan and potential step transients. The formation rate of insoluble oxides was determined from the difference between the convoluted total current and the sum of the elemental dissolution currents. It was found that, over a wide potential range, the zinc and aluminum partial currents behaved in a similar way to pure zinc and pure aluminum independently. However, during the period in which zinc was active, aluminum dissolution was inhibited. This is attributed to the inhibitive effect of the first and/or the second states of zinc oxide that are formed during the active potential domain. The third form of zinc oxide, observed at higher potential and responsible for the passivation of zinc dissolution, does not have a measurable effect on the Al dissolution rate.

  19. Micromechanical Characterization of Hydrogels Undergoing Swelling and Dissolution at Alkaline pH

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2017-11-01

    Full Text Available The swelling of polyelectrolyte hydrogels usually depends on the pH, and if the pH is high enough degradation can occur. A microindentation device was developed to dynamically test these processes in whey protein isolate hydrogels at alkaline pH 7–14. At low alkaline pH the shear modulus decreases during swelling, consistent with rubber elasticity theory, yet when chemical degradation occurs at pH ≥ 11.5 the modulus decreases quickly and extensively. The apparent modulus was constant with the indentation depth when swelling predominates, but gradients were observed when fast chemical degradation occurs at 0.05–0.1 M NaOH. In addition, these profiles were constant with time when dissolution rates are also constant, the first evidence that a swollen layer with steady state mechanical properties is achieved despite extensive dissolution. At >0.5 M NaOH, we provide mechanical evidence showing that most interactions inside the gels are destroyed, gels were very weak and hardly swell, yet they still dissolve very slowly. Microindentation can provide complementary valuable information to study the degradation of hydrogels.

  20. Description of the Material Balance Model and Spreadsheet for Salt Dissolution

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1994-01-01

    The model employed to estimate the amount of inhibitors necessary for bearing water and dissolution water during the salt dissolution process is described. This model was inputed on a spreadsheet which allowed many different case studies to be performed. This memo describes the assumptions and equations which are used in the model, and documents the input and output cells of the spreadsheet. Two case studies are shown as examples of how the model may be employed

  1. Salt dissolution in oil and gas test holes in central Kansas. Part I. Salt beds in the subsurface in Russell, Lincoln, Ellsworth, Barton, and Rice Counties, central Kansas

    International Nuclear Information System (INIS)

    Walters, R.F.

    1975-06-01

    The Hutchinson Salt Member of the Permian Wellington Formation is described in a five-county study area of 4,000 square miles. Most of the 22,200 oil and gas test holes in the study area were drilled with fresh water, causing dissolution of the salt during drilling, commonly resulting in borehole enlargement to three times the diameter of the drill bit (some older rotary drilled holes have borehole enlargement up to 10 ft). After drilling ceases, no salt dissolution occurs in oil and gas test holes which have properly cemented surface casing protecting all aquifers above the salt. The conclusion is reached that extensive dissolution of the Hutchinson Salt in oil and gas test holes in central Kansas is a rare and unusual event in the 50-year history since the discovery of oil in Russell County in 1923. In only seven known instances (six of which are within the study area) did such dissolution lead to collapse and surface subsidence. With an estimated 72,000 holes drilled through the Hutchinson Salt Member within the State of Kansas, this is a ratio of approximately one occurrence for every 10,000 oil and gas test holes

  2. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  3. Oxidative dissolution of chromium from Hanford tank sludges under alkaline conditions

    International Nuclear Information System (INIS)

    Rapko, B.M.; Delegard, C.H.; Wagner, M.J.

    1997-08-01

    Alkaline oxidative leaching has been performed on caustic leached sludges from the three following Hanford waste tanks: BY-110, S-107, and SX-108. These samples were chosen because they represent types of waste where significant amounts of Cr are located and show relatively poor dissolution of Cr during standard caustic leaching. The experiments involved tests with three chemical oxidants, permanganate, ozone and oxygen, and a blank, argon. The effects of varying the hydroxide concentration of the leachate (from 0.1 M to 3 M) and of time and temperature (from room temperature to 80 degrees C) were also examined

  4. Oxidative dissolution of ruthenium deposits onto stainless steel by permanganate ions in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Floquet, S.; Eysseric, C.; Maurel, D. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France)

    2008-07-01

    During spent nuclear fuel reprocessing ruthenium is liable to form black ruthenium deposits on the stainless steel walls of process equipments. These deposits promote corrosion and can eventually obstruct the off-gas lines. The results of decontamination of 304L stainless steel test specimens covered with RuO(OH){sub 2} . xH{sub 2}O deposits by permanganate ions in alkaline medium are described. The ruthenium deposits were dissolved by oxidation of RuO(OH){sub 2} to RuO{sub 4}{sup 2-} ions, while the permanganate ions were reduced to MnO{sub 4}{sup 2-} ions and then to manganese dioxide MnO{sub 2}. The parameters affecting the kinetics of oxidative dissolution of these deposits were examined. The results indicate that the oxidative dissolution kinetics depends on the instantaneous surface area of the deposit, and that the dissolution rate increases with the concentrations of MnO{sub 4}{sup -} and OH{sup -} ions. (orig.)

  5. Dissolution of aluminium

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-01-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  6. Hanford Supplemental Treatment: Literature and Modeling Review of SRS HLW Salt Dissolution and Fractional Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S.; Flach, G. P.; Martino, C. J.; Zamecnik, J. R.; Harris, M. K.; Wilmarth, W. R.; Calloway, T. B.

    2005-03-23

    In order to accelerate waste treatment and disposal of Hanford tank waste by 2028, the Department of Energy (DOE) and CH2M Hill Hanford Group (CHG), Inc. are evaluating alternative technologies which will be used in conjunction with the Waste Treatment Plant (WTP) to safely pretreat and immobilize the tank waste. Several technologies (Bulk Vitrification and Steam Reforming) are currently being evaluated for immobilizing the pretreated waste. Since the WTP does not have sufficient capacity to pretreat all the waste going to supplemental treatment by the 2028 milestone, two technologies (Selective Dissolution and Fractional Crystallization) are being considered for pretreatment of salt waste. The scope of this task was to: (1) evaluate the recent Savannah River Site (SRS) Tank 41 dissolution campaign and other literature to provide a more complete understanding of selective dissolution, (2) provide an update on the progress of salt dissolution and modeling activities at SRS, (3) investigate SRS experience and outside literature sources on industrial equipment and experimental results of previous fractional crystallization processes, and (4) evaluate recent Hanford AP104 boildown experiments and modeling results and recommend enhancements to the Environmental Simulation Program (ESP) to improve its predictive capabilities. This report provides a summary of this work and suggested recommendations.

  7. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    Science.gov (United States)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  8. Mechanisms and kinetics laws of inactive R7T7 reference glass dissolution in water at 90 deg C: initial dissolution rate measurements

    International Nuclear Information System (INIS)

    Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-02-01

    The initial dissolution rate of inactive R7T7 reference glass was measured at 90 deg C in dilute aqueous solutions first at unspecified pH, then with imposed pH values. In distilled water, R7T7 glass corrosion initially involved preferential extraction of boron and network modifier elements (Li, Na, Ca) as long as the solution pH remained acid. When the solution pH became alkaline, glass dissolution was stoichiometric. These two mechanisms were confirmed by dissolution tests in aqueous solutions at imposed pH values under acid and alkaline conditions. The initial dissolution rate r 0 in mole.cm -3 .s -1 also increased significantly in alkaline media when the pH of the aqueous phase increased: in slightly acid media, selective glass dissolution formed a residual, de-alkalinized, hydrated glass that was characterized by transmission electron microscopy and secondary ion mass spectrometry. Under steady-state dissolution conditions, the initial glass corrosion rate (in mole.cm -3 .s -1 ) was: in acid and alkaline media, amorphous and crystallized alteration products formed after complete dissolution of the silicated glass network. The first products formed consisted mainly of Zr, Rare Earths, Fe and Al. (author). 67 refs., 29 figs., 26 tabs., 21 plates

  9. Final Report on the Analytical Results for Tank Farm Samples in Support of Salt Dissolution Evaluation

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1996-01-01

    Recent processing of dilute solutions through the 2H-Evaporator system caused dissolution of salt in Tank 38H, the concentrate receipt tank. This report documents analytical results for samples taken from this evaporator system

  10. Determining the Contribution of Non-Carbonate Alkalinity from Intertidal Salt Marshes to Coastal Buffering Capacity

    Science.gov (United States)

    Anderson, L. B.; Gonneea, M. E.; Wang, A. Z.; Chu, S. N.

    2016-02-01

    Coastal ocean acidification varies with high magnitude and frequency due to both natural and anthropogenic factors, and levels of acidity in coastal waters have important consequences for environmental concerns such as local settlement of bivalve populations. Therefore, it is useful to fully evaluate measurements that increase understanding of coastal ocean acidification dynamics. This study focuses on the quantification and characterization of alkalinity, the ability of a specific water parcel to buffer against inputs of acidity. There has been limited research on the magnitude and composition of non-carbonate alkalinity (NCA) generated in coastal environments. Specifically, this study evaluates the contribution of NCA to total alkalinity (TA) in an intertidal salt marsh, assesses NCA dynamics within the marsh, and begins to determine composition of NCA. We demonstrated that it was possible to develop a CO2-free full titration system modeled after Cai et al. (1998) that produced reasonable values for TA and NCA. From initial use of this system, it was evident that NCA was a significant contributor to TA within the Sage Lot Pond salt marsh, and that NCA was dominated by organic/unknown alkalinity. Preliminary observations indicated that NCA variability in the marsh was directly proportional to water flux entering the tidal creek from Sage Lot Pond. The source of higher NCA concentrations in Sage Lot Pond was unknown, but may have been due to organic/unknown alkalinity generated in a different part of the marsh and exported to our specific tidal creek site. Preliminary assessment of NCA composition indicates an acid/base species with a pK value of 6.46. From evaluation of NCA magnitude and relation to water flux, it is reasonable to conclude that NCA generated within salt marshes may be a significant source of buffering capacity to the coastal ocean.

  11. The dissolution phenomenon of lysozyme crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Department of Thermal Separation Processes, Centre of Engineering Science, Halle/Saale (Germany)

    2012-02-15

    Dissolution studies on lysozyme crystals were carried out since the observed dissolution pattern look different from non-protein dissolved crystals. The Tetragonal, High Temperature and Low Temperature Orthorhombic morphologies, crystallized using sodium chloride, were chosen and the influence of different pH, salt and protein concentration on their dissolution was investigated. An increase in pH and/or salt concentration can modify the dissolution behaviour. The pattern of the crystals during the dissolution process will, therefore, develop differently. Frequently a skeleton like crystal pattern followed by a falling apart of the crystals is observed. The multi-component character of the lysozyme crystal (protein, water, buffer, salt) as well as ''solvatomorphism'' gives first insights in the phenomena happening in the dissolution process. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Salt tea consumption and esophageal cancer: a possible role of alkaline beverages in esophageal carcinogenesis.

    Science.gov (United States)

    Dar, Nazir Ahmad; Bhat, Gulzar Ahmad; Shah, Idrees Ayoub; Iqbal, Beenish; Rafiq, Rumaisa; Nabi, Sumaiya; Lone, Mohd Maqbool; Islami, Farhad; Boffetta, Paolo

    2015-03-15

    Salt tea is the most commonly used beverage in Kashmir, India, where esophageal squamous cell carcinoma (ESCC) is the most common cancer. Salt tea is brewed in a unique way in Kashmir, usually with addition of sodium bicarbonate, which makes salt tea alkaline. As little information about the association between salt tea drinking and ESCC was available, we conducted a large-scale case-control study to investigate this association in Kashmir. We recruited 703 histologically confirmed cases of ESCC and 1664 controls individually matched to cases for age, sex, and district of residence. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Participants who consumed >1,250 ml day(-1) showed an increased risk of ESCC (OR = 2.60, 95% CIs = 1.68-4.02). Samovar (a special vessel for the beverage preparation) users (OR = 1.77, 95% CIs 1.25-2.50) and those who ate cereal paste with salt tea (OR = 2.14, 95% CIs = 1.55-2.94) or added bicarbonate sodium to salt tea (OR = 2.12, 95% CIs = 1.33-3.39) were at higher risk of ESCC than others. When analysis was limited to alkaline tea drinkers only, those who both consumed cereal paste with salt tea and used samovar vessel were at the highest risk (OR = 4.58, 95% CIs = 2.04-10.28). This study shows significant associations of salt tea drinking and some related habits with ESCC risk. © 2014 UICC.

  13. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  14. Influence of initial temperature and heating method in the temperature profile during alkaline dissolution of Al for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: cruzaraujo22@gmail.com, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radionuclides in nuclear medicine can be used for diagnosis and therapy. The {sup 99m}Tc, son of {sup 99}Mo, is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Aiming to resolve the dependency of Brazil with respect to the supply of {sup 99}Mo was created the Brazilian Multipurpose Reactor project (BMR), started in 2008, having as main objective to produce about 1000 Ci/week of {sup 99}Mo. This study is part of the project to obtain {sup 9}'9Mo by alkaline dissolution of UAl{sub x}-Al targets. The initial reaction temperature is an important parameter, since it has great influence on the value of the maximum temperature and dissolution time. According to literature, for security reasons the dissolution process must have its temperature controlled so that the maximum temperature has to be around 90 deg C. The behavior of the temperature during dissolution using three different methods of heating in order to minimize the fluctuation of temperature during dissolution, keeping its maximum value at around 90 deg C was studied. The three methods of heating chosen were: a) initial temperature of 85 deg C with continuous heating, b) heating water bath until it reaches the initial temperature (70 to 95 deg C), turning off after that, and c) external heating until it reached the starting temperature (60-95 deg C). The alkaline solution used was 3 mol.L{sup -1} NaOH{sub 3} and 2 mol.L{sup -1} NaNO{sub 3}. In the first study it was observed that after 1 minute of dissolution the solution temperature reached 100 deg C on average, up to a maximum of 109 deg C, ending with values around 95 deg C. In the second study after 3 minutes of dissolution the maximum temperature was 106 deg C and the minimum 100 deg C. In the third study the temperature rise during dissolution increased with increasing initial temperature which practically remains constant until the end

  15. Dissolution of aluminium; Disolucion de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Pereira Sanchez, G

    1968-07-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  16. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    Science.gov (United States)

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  17. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    International Nuclear Information System (INIS)

    Caravaca, C.; De Cordoba, G.

    2008-01-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  18. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  19. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  20. Modeling the dissolution behavior of defense waste glass in a salt repository environment

    International Nuclear Information System (INIS)

    McGrain, B.P.

    1988-02-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution behavior of SRL-165 defense waste glass in a high-magnesium brine (PBB3) at a temperature of 90 0 C. The synergistic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron/silica stoichiometry depended on the metal/glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron/silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model can be used with confidence in predicting radionuclide release rates for a salt repository. 25 refs., 4 figs., 1 tab

  1. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  2. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels

    International Nuclear Information System (INIS)

    Hill, J.; Harris, A.W.; Manning, M.; Chambers, A.; Swanton, S.W.

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 deg. C compared to those prepared at 25 deg. C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium

  3. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  4. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  5. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  6. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  7. Mechanisms Of The Dissolution Inhibition Effect And Their Application To Designing Novel Deep-UV Resists

    Science.gov (United States)

    Murata, Makoto; Koshiba, Mitsunobu; Harita, Yoshiyuki

    1989-08-01

    The dissolution inhibition effect and alkaline solubility were investigated for naphthoquinone diazides like 1,2-naphthoquinone diazide (NQD), its 5-sulfonylchloride (NQD-C) and 5-sulfonyloxybenzene (DAM), and for other compounds like sulfonylchlorides, sulfonyl esters, sulfones and a ketone which do not contain a naphthoquinone diazide moiety. As a result, it has turned out that the dissolution inhibition effect does not depend on the specific structure; namely, the naphthoquinone diazide moiety itself, but largely on the alkaline solubility of the compounds added to a novolak resin. An XPS study for the films consisting of a novolak resin and a dissolution inhibitor indicates a formation of an inhibitor-rich protective thin layer on the film surface after immersion of the film in an alkaline developer. In this paper is proposed a new third dissolution inhibition mechanism in addition to the previously reported chemical crosslinking and dipolar interaction; i.e., the alkaline insoluble protective layer inhibits the dissolution of novolak resin at the interface between the film and the developer. A new three-component type deep-UV resist has been also developed as an application of the new mechanism. The resist consists of a novolak resin, 5-diazo Meldrum's acid and a new dissolution inhibitors like phenyltosylate and p-phenylene ditosylate, which successfully improve the residual resist thickness.

  8. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution

    Science.gov (United States)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.

    2018-02-01

    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  9. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    Menes, F.

    1969-01-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr 2 - (CaBr 2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48 Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr 2 - CeBr 3 . A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [fr

  10. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  11. Some aspects of the development of NW-German salt domes

    International Nuclear Information System (INIS)

    Jaritz, W.

    1980-01-01

    Aspects of the development of salt structures that may be of some importance to the safety of a final disposal site for radioactive waste are salt ascent and salt dissolution at the surface. The geological history of the salt domes is described in terms of the dissolution of the salt at the dome surface. In many cases it can be distinguished whether dissolution was caused by the ascent of the salt into strata containing groundwater by diapirism or by epeirogenic uplift or both. The salt domes of Wesendorf, Heide, and Marne are used as examples in a discussion of the transition from dissolution to the deposition of a cover of impermeable sediments. Moreover, the development of the Gorleben salt dome is described. The author's studies show the average rate of uplift of the NW-German salt domes in the diapiric stage to have ranged from a little less than 0.1 to about 0.5 mm per year. For salt domes in later stages, the rate of uplift is several hundredths of a millimeter per year at most. (orig.) [de

  12. Biorelevant dissolution media

    DEFF Research Database (Denmark)

    Ilardia-Arana, David; Kristensen, Henning G; Müllertz, Anette

    2006-01-01

    Biorelevant dissolution media containing bile salt and lecithin at concentrations appropriate for fed and fasted state are useful when testing oral solid formulations of poorly water-soluble drugs. Dilution of amphiphile solutions affects the aggregation state of the amphiphiles because bile salt...... is partitioned between the aqueous phase and the aggregates. The aim of the investigation was to study the effect of dilution on the size distribution of aggregates and its effect on the solubilization capacity. Clear buffered solutions of four intestinal amphiphiles (sodium glycocholate, lecithin, monoolein...

  13. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    Science.gov (United States)

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  14. A general model for the dissolution of nuclear waste glasses in salt brine

    International Nuclear Information System (INIS)

    McGrail, B.P.; Strachan, D.M.

    1988-07-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution of SRL-165 defense waste glass in a high-magnesium (PBB3) brine at a temperature of 90/degree/C. The synergetic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron-silica ratio depended on the metal-to-glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron-silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model could be used with confidence in predicting radionuclide release rates for a salt repository. If the deleterious effects of the iron corrosion products can be shown to be transient, and the fracturing of the glass can be minimized, it appears that the performance of SRL-165 defense waste glass will be near the NRC regulatory criterion for fraction release of one part in 100,000 in PBB3 brine at 90/degree/C under silica-saturated conditions. 47 refs., 6 figs., 1 tab

  15. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  16. Dissolution of calcium carbonate: observations and model results in the subpolar North Atlantic

    Directory of Open Access Journals (Sweden)

    K. Friis

    2007-01-01

    Full Text Available We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings by indicating that there is not a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale.

  17. Anodic dissolution of UO2 in slightly alkaline sodium perchlorate solutions

    International Nuclear Information System (INIS)

    Sunder, S.; Strandlund, L.K.; Shoesmith, D.W.

    1996-04-01

    The anodic dissolution of UO 2 has been studied in aqueous sodium perchlorate solutions at pH ∼ 9.5. Under potentiostatic conditions two distinct regions of oxidation/dissolution behaviour were observed. In the potential (E) range 0.100 V A , Q C respectively) obtained by integration of the anodic current-time plots (Q A ) and cathodic potential scans to reduce accumulated oxidized surface films (Q C ), it was shown that > ∼ 90% of the anodic oxidation current went to produce these films. For E > ∼ 0.350 V, steady-state currents were obtained and measurements of Q A and Q C showed the majority of the current went to produce soluble species. The film blocking anodic dissolution appeared to be either UO 2.27 or, more probably, UO 3 .2H 2 O located primarily at grain boundaries. It is proposed that, at the higher potentials, rapid oxidation and dissolution followed by the hydrolysis of dissolved uranyl species leads to the development of acidic conditions in the grain boundaries. At these lower pH values the UO 3 .2H 2 O is soluble and therefore does not accumulate. Alternatively, if this oxide has been formed by prior oxidation at a lower potential, the formation of protons on oxidizing at E > ∼ 0.350V causes its redissolution, allowing the current to rise to a steady-state value. On the basis of Tafel slopes, an attempt was made to demonstrate that the observed behaviour was consistent with dissolution under acidic conditions. This analysis was only partially successful. (author) 34 refs. 11 figs

  18. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  19. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    Science.gov (United States)

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  20. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure

    International Nuclear Information System (INIS)

    Gao, G.Y.; Yao, K.L.; Liu, Z.L.; Zhang, J.; Min, Y.; Fan, S.W.

    2008-01-01

    In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of 1.00μ B per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates

  1. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  2. Nuclear Criticality Safety Assessment for Tank 38H Salt Dissolution

    International Nuclear Information System (INIS)

    Davis, P.L.

    1996-01-01

    This assessment report of sample results of the accumulating insoluble solids from Tank 38H demonstrates that an inherent subcritical condition for nuclear criticality safety exists during saltcake dissolution. This report also defines criteria for future sampling of Tank 38H for continued verification of the inherent subcritical condition as saltcake dissolution proceeds

  3. The impact of reduced gastric acid secretion on dissolution of salts of weak bases in the fasted upper gastrointestinal lumen: Data in biorelevant media and in human aspirates.

    Science.gov (United States)

    Litou, Chara; Vertzoni, Maria; Xu, Wei; Kesisoglou, Filippos; Reppas, Christos

    2017-06-01

    To propose media for simulating the intragastric environment under reduced gastric acid secretion in the fasted state at three levels of simulation of the gastric environment and evaluate their usefulness in evaluating the intragastric dissolution of salts of weak bases. To evaluate the importance of bicarbonate buffer in biorelevant in vitro dissolution testing when using Level II biorelevant media simulating the environment in the fasted upper small intestine, regardless of gastric acid secretions. Media for simulating the hypochlorhydric and achlorhydric conditions in stomach were proposed using phosphates, maleates and bicarbonates buffers. The impact of bicarbonates in Level II biorelevant media simulating the environment in upper small intestine was evaluated so that pH and bulk buffer capacity were maintained. Dissolution data were collected using two model compounds, pioglitazone hydrochloride and semifumarate cocrystal of Compound B, and the mini-paddle dissolution apparatus in biorelevant media and in human aspirates. Simulated gastric fluids proposed in this study were in line with pH, buffer capacity, pepsin content, total bile salt/lecithin content and osmolality of the fasted stomach under partial and under complete inhibition of gastric acid secretion. Fluids simulating the conditions under partial inhibition of acid secretion were useful in simulating concentrations of both model compounds in gastric aspirates. Bicarbonates in Level III biorelevant gastric media and in Level II biorelevant media simulating the composition in the upper intestinal lumen did not improve simulation of concentrations in human aspirates. Level III biorelevant media for simulating the intragastric environment under hypochlorhydric conditions were proposed and their usefulness in the evaluation of concentrations of two model salts of weak bases in gastric aspirates was shown. Level II biorelevant media for simulating the environment in upper intestinal lumen led to

  4. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius

    International Nuclear Information System (INIS)

    Menzorova, Natalie I.; Seitkalieva, Alexandra V.; Rasskazov, Valery A.

    2014-01-01

    Highlights: • Alkaline phosphatase from eggs of the sea urchin (StAP) proved to be active in seawater. • Activity of StAP is inhibited by very low concentrations of heavy metal. • A test to assess sea and fresh water quality has been developed basing on StAP. • For the first time a salt resistant alkaline phosphatase has been found in eukaryote. - Abstract: A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0–8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15–150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples

  5. Uranium dissolution in hyper-alkaline TMA-OH solutions: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Cachoir, C.; Salah, S.; Mennecart, T.; Lemmens, K. [Belgian Research Nuclear Centre - SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2016-07-01

    Leaching experiments were performed with depleted UO{sub 2} powders in tetramethylammonium solutions (TMA-OH) at pH 13.5 and 12.5, and at different UO{sub 2} surface area to volume of solution (SA/V) ratio's to determine the solubility and the dissolution kinetics of UO{sub 2} at high pH in absence of cations dominating cementitious waters (Ca, Na, K). The solubility of UO{sub 2} increased from pH 12.5 to 13.5 and by increasing the SA/V ratio up to 100 m{sup -1}. However, no known U secondary-phases were predicted by geochemical calculations to control the measured U-concentrations. We interpreted the UO{sub 2} dissolution process as a 2-step process. For all experiments, we observe a fast initial rate, hydroxo promoted and likely surface controlled. Afterwards the rate is apparently negative at low SA/V over time while it is positive at higher SA/V ratio's. The former is interpreted to be related to a sorption process, while the latter reveals a continuous residual dissolution process. No solubility enhancing effect of U-colloids was observed in the TMA-OH media. However, there is much less uranium colloid formation in TMA-OH tests with low Ca (Na, K) concentration than in previous tests with higher Ca (Na, K) concentrations. This suggests that the colloid formation is promoted by alkali and/or alkali-earth elements.

  6. Salt precipitation and dissolution in the late Quaternary Dead Sea: Evidence from chemical and δ37Cl composition of pore fluids and halites

    Science.gov (United States)

    Levy, Elan J.; Yechieli, Yoseph; Gavrieli, Ittai; Lazar, Boaz; Kiro, Yael; Stein, Mordechai; Sivan, Orit

    2018-04-01

    The chemical composition and δ37Cl of pore fluids from the ICDP core drilled in the deepest floor of the terminal and hypersaline Dead Sea, and halites from the adjacent Mount Sedom salt diapir, are used to establish the dynamics of halite precipitation and dissolution during the last interglacial and glacial periods. Between ∼132 and 116 thousand years ago (ka) halites precipitated in the lake resulting in the expulsion of Na+ and Cl- from the residual solution. Over 50% of the Cl- reservoir was removed, resulting in a decrease in the Na/Cl ratio from 0.57 to 0.19. This process was accompanied by a decrease in δ37Cl values in the precipitating halites and the associated residual Cl- in the lake. The observed decrease fits a Rayleigh distillation curve with a fractionation factor of Δ(NaCl-Dead Sea solution) = +0.32‰ (±0.12) determined in the present study. This behavior implies negligible contribution of external sources of Cl- to the lake during the main peak of the last interglacial, MIS5e. Subsequently, during the last glacial (ca. 117 to 17 ka) dissolution of halite took place, the Na+ and Cl- inventory were replenished, accompanied by an increase in Na/Cl from 0.21 to 0.55 and in the δ37Cl values from -0.46‰ to -0.12‰. While the lake underwent significant dilution during that time, the decrease in salinity was somewhat suppressed by the dissolution of the halite which was mostly derived from Mount Sedom salt diapir.

  7. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  8. Comparison of oxidants in alkaline leaching of uranium ore

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Srinivas, K.; Anand Rao, K.; Manmadha Rao, M.; Venkatakrishnan, R.R.; Padmanabhan, N.P.H.

    2007-01-01

    The uranium minerals occurring in various ore deposits consists of predominantly uranous ion (U +4 ), necessitating use of an oxidant and other lixiviants for efficient dissolution during leaching. Unlike acid leaching route, where uranium minerals dissolution could be achieved efficiently with cheaper lixiviants, processing of ores by alkaline leaching route involve expensive lixiviants and drastic leaching conditions. Alkaline leaching of uranium ores becomes economical only upon using cheaper and efficient oxidants and conservation of other reagents by their recycle. The present paper gives efficacy of various oxidants - KMnO 4 , NaOCl, Cu - NH 3 , air and oxygen, in the leaching of uranium from a low-grade dolostone hosted uranium ore of India. A comparison based on technical merits and cost of the oxidant chemicals is discussed. (author)

  9. Saltcake dissolution FY 1998 status report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    A laboratory scouting study was completed on the dissolution characteristics of Hanford waste from three single-shell waste tanks: 241-BY-102, 241-BY-106, and 241-B-106. Gross dissolution behavior (percent undissolved solids as a function of dilution) is explained in terms of characteristics of individual salts in the waste. The percentage of the sodium inventory retrievable from the tanks by dissolving saltcake at reasonable dilution levels is estimated at 86% of the total sodium for tank BY-102, 98% for BY-106, and 79% for B-106

  10. Processes determining the marine alkalinity and carbonate saturation distributions

    OpenAIRE

    B. R. Carter; J. R. Toggweiler; R. M. Key; J. L. Sarmiento

    2014-01-01

    We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near ri...

  11. Studies on the Electrochemical Dissolution for the Treatment of 10 g-Scale Zircaloy-4 Cladding Hull Wastes in LiCl-KCl Molten Salts

    International Nuclear Information System (INIS)

    Lee, You Lee; Lee, Jang Hwa; Jeon, Min Ku; Kang, Kweon Ho

    2012-01-01

    The electrochemical behaviors of 10 g-scale fresh and oxidized Zircaloy-4 cladding hulls were examined in 500 degree C LiCl-KCl molten salts to confirm the feasibility of the electrorefining process for the treatment of hull wastes. In the results of measuring the potential-current response using a stainless steel basket filled with oxidized Zircaloy-4 hull specimens, the oxidation peak of Zr appears to be at -0.7 to -0.8 V vs. Ag/AgCl, which is similar to that of fresh Zircaloy-4 hulls, while the oxidation current is found to be much smaller than that of fresh Zircaloy-4 hulls. These results are congruent with the outcome of current-time curves at -0.78 V and of measuring the change in the average weight and thickness after the electrochemical dissolution process. Although the oxide layer on the surface affects the uniformity and rate of dissolution by decreasing the conductivity of Zircaloy-4 hulls, electrochemical dissolution is considered to occur owing to the defect of the surface and phase properties of the Zr oxide layer.

  12. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  13. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  14. Structural characterisations and mechanistic investigations of the selective dissolution of americium by the ferricyanide ions in alkaline media. Application for the partitioning americium curium

    International Nuclear Information System (INIS)

    Fouchard, Sebastien

    2000-01-01

    Americium exhibits a high solubility form in basic media under oxidant conditions, unlike the other Transplutonium elements (TPE). This property can be used in the frame of High Level Liquid Waste (HLLW) treatment in order to extract preferentially the americium element, the main responsible of the long term radiotoxicity of the nuclear waste. This soluble compound can be obtained by addition of a concentrated basic solution of Fe(CN) 6 3- ions on Am(OH) 3 precipitates. This technique enables a rapid extraction of Am by the synthesis of this soluble form in alkaline solutions. Under these conditions, the other TPE remain in the solid state as trivalent hydroxide solids, strongly insoluble. In the case of dissolutions involving large amounts of Am(OH) 3 , the formation of the soluble complex is concomitant with the appearance of a reddish precipitate in the basic solution. Dissolution experiments which were carried out on this solid in NaOH/Fe(CN) 6 3- have demonstrated the dependency of the solubility equilibria with the media. Spectroscopic studies (UV Visible, XAS) on the precipitate have enabled the determination of the chemical structure and the oxidation state of the americium in the solid: Na 2 Am(V)O 2 (OH) 3 ,nH 2 O. Electrochemical studies on the americium solution have confirmed that the oxidation of Am(OH) 3 by the Fe(CN) 6 3- ions in basic media could only lead to the pentavalent form. A stoichiometric study carries out between a AmO 2 + ion and one Fe(CN) 6 3- ion and the spectroscopic characterisation of this reaction have demonstrated that the Fe(CN) 6 3- ion didn't remain as an un-complexed form in solution after the alkaline mixing. These results tend to prove that this dissolution of Am(OH) 3 is much more complex than a simple oxidation by the Fe(CN) 6 3- ions. The existence of molecular interactions between AmO 2 + and Fe(CN) 6 3- has been postulated and a mechanistic scheme has been proposed in order to explain the appearance of the soluble

  15. Radioactive waste isolation in salt: peer review of the Texas Bureau of Economic Geology's report on the Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle

    International Nuclear Information System (INIS)

    Fenster, D.F.; Anderson, R.Y.; Gonzales, S.; Baker, V.R.; Edgar, D.E.; Harrison, W.

    1984-08-01

    The following recommendations for improving the Texas Bureau of Economic Geology (TBEG) report entitled Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle have been abstracted from the body of this review report. The TBEG report should be resided to conform to one of the following alternatives: (1) If the report is intended to be a review or summary of previous work, it should contain more raw data, be edited to give equal treatment to all types of data, and include summary tables and additional figures. (2) If the report is intended to be a description and interpretation of petrographic evidence for salt dissolution, supported by collateral stratigraphic and structural evidence, the relevant indirect and direct data should become the focal point of the report. The following recommendations apply to one or both of the options listed above. (1) The text should differentiate more carefully between the data and inferences based on those data. (2) The authors should retain the qualifiers present in cited works. Statements in the report that are based on earlier papers are sometimes stronger than those in the papers themselves. (3) The next revision should present more complete data. (4) The authors should achieve a more balanced presentation of alternative hypotheses and interpretations. They could then discuss the relative merits of the alternative interpretations. (5) More attention should be given to clear exposition

  16. Aqueous corrosion of french R7T7 nuclear waste glass: selective then congruent dissolution by pH increase

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.

    1991-01-01

    A study of the corrosion of a borosilicate nuclear glass shows the strong effect of the pH on the dissolution mechanism. Acidic media lead to selective extraction of the glass modifier elements (Li, Na, Ca) as well as B, while dissolution is congruent under alkaline conditions. The silica dissolution rate significantly increases with increasing pH [fr

  17. Origins of the Salado, Seven Rivers, and San Andres salt margins in Texas and New Mexico: Revision 1: Topical report

    International Nuclear Information System (INIS)

    Boyd, S.D.; Murphy, P.J.

    1987-02-01

    The present boundaries of the San Andres, Seven Rivers, and Salado salts generally lie along the periphery of the Palo Duro and Tucumcari Basins. Various geologic mechanisms occurring singularly or in combination determined the positions of the salt margins. These mechanisms include nondeposition of salt and syndepositional and postdepositional dissolution. In New Mexico, San Andres units pinch out against the Pedernal and Sierra Grande Uplifts, indicating that nondeposition established the original salt margins there. Syndepositional dissolution of exposed Upper San Andres salts occurred in response to Guadalupian upwarp of the basin margins. Triassic erosion differentially removed Permian salt-bearing formations along the uplifts. Late Tertiary dissolution is indicated by fill of north-south trending collapse valleys. In Texas, Guadalupian upwarp along the Amarillo Uplift caused pinchout of Units 2 and 3 in the Lower San Andres and influenced the deposition of subsequent salt-bearing strata. The discontinuity of Upper San Andres evaporites across the Amarillo Uplift suggests syndepositional dissolution. Along the eastern and northeastern basin margin, dissolution may have accompanied Triassic erosion of locally uplifted Upper Permian strata. Tertiary dissolution is recognized beneath anomalously thick Ogallala Formation sections that overlie collasped Permian strata. 49 refs., 31 figs., 2 tabs

  18. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  19. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  20. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  1. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  2. Development of a μDissolution-Permeation model with in situ drug concentration monitoring

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Byrialsen, Julie Pelle; Holm, René

    2016-01-01

    state biorelevant medium consisting of HBSS pH 6.5 supplemented with bile salts and lecithin was used as the apical dissolution media, while HBSS pH 7.4 was used as the basolateral medium. The apparent permeability (Papp) and dissolution-time profiles for albendazole, felodipine and fenofibrate were...

  3. A comparative study between the dissolution and the leaching methods for the separation of rare earths, uranium and thorium from hydrous metal oxide cake obtained by the alkaline digestion of monazite

    International Nuclear Information System (INIS)

    Chayavadhanangkur, C.; Busamongkol, A.; Hongsirinirachorn, S.; Rodthongkom, C.; Sirisena, K.

    1986-12-01

    Methods for the group-separation of rare-earths, thorium and uranium from hydrous metal oxide cake obtained by the alkaline digestion of monazite were studied. Leaching of the hydrous metal oxide cake at pH between 4-5 separates the elements under investigation into 3 major groups which are suitable to be used as feed materials for further purification. Total dissolution and gradient precipitation at pH 4-5 yields a poorer separation in comparison to the leaching method

  4. Formation of chemical gardens on granitic rock. A new type of alteration for alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Hisao [Mitsubishi Materials Corporation, Naka (Japan). Energy Project and Technology Center; Tsukamoto, Katsuo [Tohoku Univ. Aramaki, Sendai (Japan). Dept. of Earth and Planetary Materials Science; Garcia-Ruiz, Juan Manuel [Granada Univ., Armilla (Spain). Lab. de Estudios Cristalograficos

    2014-06-15

    In order to understand the groundwater flow at near-underground facilities such as waste repositories, we have studied the effects of flowing an alkaline solution leached from cementitious building materials through the fractures of low-porosity granitic rocks under laboratory conditions. The results show that silica released from the dissolution of sodium-rich plagioclase and quartz reacts with the calcium leached from cementitious buildings to form calcium silicate hydrates (C-S-H) phases in the form of hollow tubular structures. These tubular structures form selectively on the surface of plagioclase in a similar way to reverse silica gardens structures. It was found that the rate of precipitation of C-S-H phases is faster than the rate of dissolution of plagioclase. This selftriggered dissolution/precipitation phenomenon may be an important factor controlling groundwater permeation in natural alkaline underground systems.

  5. Formation of chemical gardens on granitic rock. A new type of alteration for alkaline systems

    International Nuclear Information System (INIS)

    Satoh, Hisao; Tsukamoto, Katsuo; Garcia-Ruiz, Juan Manuel

    2014-01-01

    In order to understand the groundwater flow at near-underground facilities such as waste repositories, we have studied the effects of flowing an alkaline solution leached from cementitious building materials through the fractures of low-porosity granitic rocks under laboratory conditions. The results show that silica released from the dissolution of sodium-rich plagioclase and quartz reacts with the calcium leached from cementitious buildings to form calcium silicate hydrates (C-S-H) phases in the form of hollow tubular structures. These tubular structures form selectively on the surface of plagioclase in a similar way to reverse silica gardens structures. It was found that the rate of precipitation of C-S-H phases is faster than the rate of dissolution of plagioclase. This selftriggered dissolution/precipitation phenomenon may be an important factor controlling groundwater permeation in natural alkaline underground systems.

  6. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  7. Inhibition of cobalt active dissolution by benzotriazole in slightly alkaline bicarbonate aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: danick.gallant.1@ulaval.ca; Pezolet, Michel [Departement de Chimie, Universite Laval, Quebec (Canada)]. E-mail: michel.pezolet@chm.ulaval.ca; Simard, Stephan [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: stephan_simard@uqar.qc.ca

    2007-04-20

    The efficiency of benzotriazole as inhibiting agent for the corrosion of cobalt was probed at pH ranging from 8.3 to 10.2 in a sodium bicarbonate solution, chosen to simulate mild natural environments. From electrochemical, Raman spectroscopy, atomic force microscopy and ellipsometry experiments, we have demonstrated that benzotriazole markedly affects the electrodissolution reactions, which become modeled by the formation of a [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film according to two different mechanisms. Surface-enhanced Raman spectroscopy has shown that the polarization of a cobalt electrode at cathodic potentials with respect to its potential of zero charge allows a mechanism of specific adsorption of the neutral form of benzotriazole to take place through a suspected metal-to-molecule electron transfer and which follows Frumkin's adsorption isotherms. At the onset of the anodic dissolution, some experimental evidence suggests that these adsorbed neutral benzotriazole molecules deprotonate to yield a very thin [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} polymer-like and water-insoluble protective film, responsible for the inhibition of active dissolution processes occurring at slightly more anodic potentials. In the anodic dissolution region, deprotonated benzotriazole species present in the bulk solution favors the formation of a multilayered [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film, which also contributes to the inhibition of any further cobalt dissolution usually observed at higher electrode potentials.

  8. Processes determining the marine alkalinity and calcium carbonate saturation state distributions

    OpenAIRE

    Carter, B. R.; Toggweiler, J. R.; Key, R. M.; Sarmiento, J. L.

    2014-01-01

    We introduce a composite tracer for the marine system, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near riv...

  9. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  10. Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.

    Science.gov (United States)

    Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario

    2015-06-01

    To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.

  11. Sea salt and pollution inputs over the continental United States

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1992-01-01

    The average deposition rate of sea salt chloride over the world continents is about 10 meq m -2 yr -1 . Only about 14±1% of chloride in the pollution-corrected world average river is contributed by sea salt aerosols and the rest from the dissolution of evaporites. The significant increase of the ion concentrations in the Mississippi river from the year 1905 to 1987 was caused by anthropogenic inputs such as fossil fuel burning, common salt consumption, and dissolution of carbonate and silicate rocks by acids derived from acid precipitation. 29 refs., 4 figs., 3 tabs

  12. Geohydrolic studies of Gulf Coast interior salt domes

    International Nuclear Information System (INIS)

    Smith, C.G. Jr.

    1977-01-01

    Disposal of high-level radioactive wastes in Gulf Coast salt domes requires that the cavities be free from groundwater dissolution for 250,000 years. Salinity variations of groundwater near selected domes were investigated. Saline groundwater anomalies (saline plumes) in aquifers pierced or uplifted by the dome may be the result of salt solution by groundwater. In the Northeast Texas salt dome basin electric logs of oil and gas wells have been used to estimate groundwater salinities in aquifers near selected domes. Thus far, the analyses have revealed saline groundwater anomalies around 4 of the 9 domes studied. Estimates of the rate of salt dissolution from domes associated with saline groundwater plumes indicate that less than 30 meters of salt will be removed from the upper surfaces of the dome in 250,000 years. Thus, these preliminary studies show that even apparently unstable domes may be sufficiently stable to serve as waste disposal sites. 6 figures

  13. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    OpenAIRE

    Battaglia Gianna; Steinacher Marco; Joos Fortunat

    2016-01-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo sche...

  14. Mechanism of alkalinity lowering and chemical equilibrium model of high fly ash silica fume cement

    International Nuclear Information System (INIS)

    Hoshino, Seiichi; Honda, Akira; Negishi, Kumi

    2014-01-01

    The mechanism of alkalinity lowering of a High Fly ash Silica fume Cement (HFSC) under liquid/solid ratio conditions where the pH is largely controlled by the soluble alkali components (Region I) has been studied. This mechanism was incorporated in the chemical equilibrium model of HFSC. As a result, it is suggested that the dissolution and precipitation behavior of SO 4 2- partially contributes to alkalinity lowering of HFSC in Region I. A chemical equilibrium model of HFSC incorporating alkali (Na, K) adsorption, which was presumed as another contributing factor of the alkalinity lowering effect, was also developed, and an HFSC immersion experiment was analyzed using the model. The results of the developed model showed good agreement with the experiment results. From the above results, it was concluded that the alkalinity lowering of HFSC in Region I was attributed to both the dissolution and precipitation behavior of SO 4 2- and alkali adsorption, in addition to the absence of Ca(OH) 2 . A chemical equilibrium model of HFSC incorporating alkali and SO 4 2- adsorption was also proposed. (author)

  15. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  16. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  17. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fisher, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes from the fuel cycle of an integral fast reactor (IFR). The IFR is a sodium-cooled fast reactor with metal fuel. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500 degrees C. This cell has a cadmium anode and a liquid salt electrolyte. The salt will be a low-melting mixture of alkaline and alkaline earth chlorides. This paper discusses one method being considered for immobilizing this treated salt, to disperse it in a portland cement-base motar, which would then be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canisters where it will solidify into a strong, leach-resistant material

  18. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    Science.gov (United States)

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  19. Dissolution kinetics of magnesium hydroxide for CO{sub 2} separation from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Hari Krishna [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Lee, Joo-Youp, E-mail: joo.lee@uc.edu [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Li, Xin; Liu, Zhouyang [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Keener, Tim C. [Environmental Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2013-04-15

    Highlights: ► Magnesium hydroxide dissolution was found to be controlled by chemical reaction. ► The intrinsic kinetics has a fractional order between 0.20 and 0.31. ► The true activation energy value was found to have 76 ± 11 kJ/gmol. ► A shrinking-core model predicted experimental data with good accuracy. -- Abstract: The dissolution of magnesium hydroxide in water for the release of magnesium and hydroxyl ions into the solution to maintain suitable alkalinity is a crucial step in the Mg(OH){sub 2}-based CO{sub 2} absorption process. In this study, the rate of dissolution of Mg(OH){sub 2} was investigated under different operating conditions using a pH stat apparatus. The dissolution process was modeled using a shrinking core model and the overall Mg(OH){sub 2} dissolution process was found to be controlled by the surface chemical reaction of Mg(OH){sub 2} with H{sup +} ions. Under the chemical reaction control regime, the dissolution of Mg(OH){sub 2} in alkaline conditions was found not to follow a first-order reaction, and the fractional order of reaction was estimated to lie between 0.20 and 0.31. This suggests that the dissolution reaction is a non-elementary reaction, consisting of a sequence of elementary reactions, via most likely forming a surface magnesium complex. The true activation energy value of 76 ± 11 kJ/gmol was found to be almost twice as much as the observed activation energy value of 42 ± 6 kJ/gmol determined at pH 8.6, and was comparable with the previously reported values. The particle sizes predicted from the intrinsic kinetics determined from the model were in good agreement with the experimentally measured particle sizes during the dissolution process.

  20. Bench Scale Saltcake Dissolution Test Report

    International Nuclear Information System (INIS)

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-01-01

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird(reg s ign) sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method

  1. Dissolution of targets for the production of Mo-99: Part 1. Influence of NaOH concentration and the addition of NaNO3 and NaNO2 on the dissolution time

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Araujo, Izilda da C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Faced with global crisis in the production of radioisotope 99 Mo, which product of decay, 99 mTc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo, since September 2008 Brazil is developing the project called Brazilian Multipurpose Reactor (RMB). Within the Brazilian Nuclear Program (PNB) the construction of the RMB, is seen as a long term solution to meet all domestic demand relative to the supply of radioisotopes and radiopharmaceuticals. In the process to be studied to obtain 99 Mo from irradiated UA1 x -A1 LEU targets employing alkaline dissolution, processing time should be minimized, considering the short half life of 99 Mo and 99 mTc, about 66 h and 6 h, respectively. That makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of scraps of Al, used to simulate the dissolution process of UA1 x -A1 targets. Al corresponds to about 79% of the total weight of the UA1 x -A1 target. The effect of NaOH concentration on dissolution time for the interval of 1 to 3.5 mol.L-1 was studied, keeping the molar ratio in 1Al:2.16NaOH and the initial temperature of 88 degree C. The influence of reagent composition over dissolution time was studied using three different solutions: a) 3 mol.L -1 NaOH, b) 3 mol.L -1 NaOH/NaNO 3 and c) 3 mol.L -1 NaOH/NaNO 2 , keeping the same molar ratio and temperature. The results showed that the dissolution time decreases with increasing NaOH concentration and the addition of NaNO 3 or NaNO 2 in the NaOH solution reduces both dissolution time and volume of gases released. (author)

  2. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  3. Spectroscopic Characterization of Omeprazole and Its Salts

    Directory of Open Access Journals (Sweden)

    Tomislav Vrbanec

    2017-01-01

    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  4. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  5. Real-time dissolution behavior of furosemide in biorelevant media as determined by UV imaging

    DEFF Research Database (Denmark)

    Gordon, Sarah; Naelapää, Kaisa; Rantanen, Jukka

    2013-01-01

    M bile salt/phospholipid, pH 6.5) together with corresponding blank buffer were employed. Dissolution rates as a function of flow rate (0.2-1.0 mL/min) were determined directly from UV images, and by analysis of collected effluent using UV spectrophotometry. A good agreement in dissolution rates...

  6. The anodic dissolution of SIMFUEL (UO2) in slightly alkaline sodium carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Keech, P.G.; Goldik, J.S.; Qin, Z.; Shoesmith, D.W.

    2011-01-01

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U VI corrosion product, [UO 2 ] 2+ . As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO 2 ) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U IV → U V → U VI ). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U VI O 2 CO 3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  7. Salts and Co-crystals of Theobromine and their phase ...

    Indian Academy of Sciences (India)

    Co-crystal; dissolution; phase transformation; salts; solubility; stability; synthon. ... Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using ... C. R. Rao Road, Gachibowli, Central University P.O., Hyderabad 500 046, India ...

  8. Salt Repository Project: Data report on corrosion results obtained from excess-salt corrosion test Matrix 1

    International Nuclear Information System (INIS)

    Haberman, J.H.; Westerman, R.E.

    1987-05-01

    The test discussed in this data report was directed at determining the response of the reference A216 grade WCA steel when it is exposed to anoxic excess-salt conditions at 150 0 C. The environment used in the test was intended to duplicate the intrusion brine scenario (i.e., the formation of brine by the intrusion of water from an outside source into the repository, with the formation of brine through dissolution of salt from the repository horizon). The salt-brine environment used in the test therefore reflected the expected gross salt composition of the repository horizon

  9. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  10. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  11. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  12. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dissolution of targets for the production of Mo-99: Part 1. Influence of NaOH concentration and the addition of NaNO{sub 3} and NaNO{sub 2} on the dissolution time

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda da C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: icaraujo@ipen.br, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN/SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Faced with global crisis in the production of radioisotope {sup 99}Mo, which product of decay, {sup 99}mTc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo, since September 2008 Brazil is developing the project called Brazilian Multipurpose Reactor (RMB). Within the Brazilian Nuclear Program (PNB) the construction of the RMB, is seen as a long term solution to meet all domestic demand relative to the supply of radioisotopes and radiopharmaceuticals. In the process to be studied to obtain {sup 99}Mo from irradiated UA1{sub x}-A1 LEU targets employing alkaline dissolution, processing time should be minimized, considering the short half life of {sup 99}Mo and {sup 99}mTc, about 66 h and 6 h, respectively. That makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of scraps of Al, used to simulate the dissolution process of UA1{sub x}-A1 targets. Al corresponds to about 79% of the total weight of the UA1{sub x}-A1 target. The effect of NaOH concentration on dissolution time for the interval of 1 to 3.5 mol.L-1 was studied, keeping the molar ratio in 1Al:2.16NaOH and the initial temperature of 88 degree C. The influence of reagent composition over dissolution time was studied using three different solutions: a) 3 mol.L{sup -1} NaOH, b) 3 mol.L{sup -1} NaOH/NaNO{sub 3} and c) 3 mol.L{sup -1} NaOH/NaNO{sub 2}, keeping the same molar ratio and temperature. The results showed that the dissolution time decreases with increasing NaOH concentration and the addition of NaNO{sub 3} or NaNO{sub 2} in the NaOH solution reduces both dissolution time and volume of gases released. (author)

  14. Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings of melilotus officials (fabaceae) in northeast of china

    International Nuclear Information System (INIS)

    VU, T. S.; Zhang, D.; Xiao, W.; Chi, C.; Xing, Y.; Fu, D.; Yuan, Z.

    2015-01-01

    In line with the salt-alkalinized soils found in the northeast of China, the conditions were simulated to investigate the mechanisms associated with this combination of stresses on Melilotus officinalis. The effects of salinity (NaCl: 0-300mM) in combination with alkali (pH: 7.1-9.8) on the seed germination and seedlings of M. officinalis were investigated. The results showed that germination was not inhibited completely by the salt-alkali conditions tested. The recovery germinations were significant higher than the control or had no significant differences with the control under the conditions of NaCl less than 200mM and pH=9.0, suggesting that non-germinated seeds may have a strategy to get through and resist the stress during germination stage. For the seedling growth, M. officinalis was capable of surviving at high pH (pH=9.8) and the salinity (NaCl=200mM) (seedling survival rate: 84.77 ± 8.62 percentage). The characteristic feature for combined salt-alkali stresses is the reciprocal enhancement between salt and alkali stresses. The combined action of salinity and pH should be considered when evaluating the effects of salt-alkali stresses. Correlation and regression analyses showed that salinity was the dominant stress factor, while pH was a secondary factor. From the physiological and ecological parameters, we suggested that M. officinalis is a salt-alkali tolerant species which can be used in vegetative restoration of saline soils in the northeast of China. (author)

  15. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    International Nuclear Information System (INIS)

    Eibling, R

    2008-01-01

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble

  16. Hydrometallurgical treatment of plutonium. Bearing salt baths waste

    International Nuclear Information System (INIS)

    Bros, P.; Gozlan, J.P.; Lecomte, M.; Bourges, J.

    1993-01-01

    The salt flux issuing from the electrorefining of plutonium metal alloy in salt baths (KCI + NaCI) poses a difficult problem of the back-end alpha waste management. An alternative to the salt process promoted by Los Alamos Laboratory is to develop a hydrometallurgical treatment. A new process based on the electrochemistry technique in aqueous solution has been defined and tested successfully in the CEA. The diagram of the process exhibits two principal steps: in the head-end, a dissolution in HNO 3 medium accompanied with an electrolytic dechlorination leading to a quantitative elimination of chloride as CI 2 gas followed by its trapping one soda lime cartridge, a complete oxidative dissolution of the refractory Pu residues by electrogenerated Ag(II), in the back-end: the Pu and Am recoveries by chromatographic extractions. (authors). 10 figs., 9 refs

  17. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    Magnesite (MgCO 3 ) is the stable anhydrous member of a series of Mg-carbonates with different degrees of hydration. Despite its relative scarcity in the natural environments, it constitutes an important mineral phase for the permanent sequestration of CO 2 as carbonate minerals. Experimental determination of magnesite precipitation and dissolution rates at conditions representative of the storage sites is therefore fundamental for the assessment of magnesite sequestration potential in basaltic and ultramafic rocks and the optimization of the techniques of CO 2 storage. Magnesite precipitation rates have been measured using mixed-flow and batch reactors as a function of temperature (100 ≤ T ≤ 200 deg. C), solution composition and CO 2 partial pressure (up to 30 bar). Rates were found to be independent of aqueous solution ionic strength at 0.1 M 3 2- activity at pH > 8. All rates obtained from mixed flow reactor experiments were found to be consistent with the model of Pokrovsky et al. (1999) where magnesite precipitation rates are proportional to the concentration of the >MgOH 2 + surface species. The study of magnesite crystallization using hydrothermal atomic force microscopy (HAFM) demonstrated the consistency of the rates derived from microscopic measurements with those obtained from bulk experiments and showed that these rates are also consistent with a spiral growth mechanism. According to AFM observations this mechanism controls magnesite growth over a wide range of temperatures and saturation states (15≤ Ω ≤200 for 80 ≤T 2 to accelerate the rate of the overall carbonation process, avoiding the inhibiting effect of carbonate ions on magnesite precipitation and increasing the rates of Mg-silicate dissolution via acidification of reacting solutions. Determination of magnesite dissolution rates by mixed flow reactor at 150 and 200 deg. C and at neutral to alkaline conditions allowed us to improve and extend to high temperatures the surface

  18. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  19. Permeability change with dissolution and precipitation reaction induced by highly alkaline plume in packed bed with amorphous silica particles

    International Nuclear Information System (INIS)

    Komatsu, Kyo; Kadowaki, Junichi; Niibori, Yuichi; Mimura, Hitoshi; Usui, Hideo

    2008-01-01

    A large amount of cement is used to construct of the geological disposal system. Such a material alters the pH of groundwater to highly alkaline region. The highly alkaline plume contains rich Ca ion compared to the surrounding environment, and the Ca ion reacts with soluble silicic acid. Its product would deposit on the surface of flow-paths in the natural barrier and decrease the permeability. In this study, the influence of Ca ions in highly alkaline plume on flow-paths has been examined by using packed bed column. The column was packed with the amorphous silica particles of 75-150 μm in diameter. The Ca(OH) 2 solution (0.78 mM, 2.58 mM, 4.37 mM, and 8.48 mM, pH: 12.2-12.4) was continuously injected into the column at a constant flow rate (5 ml/min, and 2 ml/min), and the change of permeability was monitored. At the same time, the concentrations of [Ca] total and [Si] in the eluted solution were measured by the inductively coupled plasma atomic emission spectrometry (ICP-AES). The Ca(OH) 2 solutions were prepared with CO 2 -free pure water, and filtrated through 0.45 μm filter. The permeability was normalized by the initial permeability value. In the experiment results, the permeability dramatically changed with increasing Ca concentration, because Ca ions and H 4 SiO 4 (due to the dissolution of SiO 2 ) produce C-S-H gel between the packed particles in the column. The SEM images and XRD analyses showed that the surface of SiO 2 particles was covered with the C-S-H gel precipitation. On the other hand, when the Ca concentration was relatively low, the permeability did not show remarkable change. For the cross section of SiO 2 particles, EPMA analysis suggested the consumption of Ca in the inner pore of the SiO 2 particles. However, the time-change in the concentrations of Si and Ca was not always simple. Such time-change strongly depended not only on pH or Ca concentration, but also on the flow rates. This suggested that mass transport controls the chemical

  20. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  2. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  3. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  4. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  5. "Cleaning" the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach.

    Science.gov (United States)

    Cao, Binrui; Yang, Mingying; Wang, Lin; Xu, Hong; Zhu, Ye; Mao, Chuanbin

    2015-10-21

    Synthetic nanoparticles are always terminated with coating molecules, which are often cytotoxic and not desired in biomedicine. Here we propose a novel reaction-dissolution approach to remove the cytotoxic coating molecules. A two-component solution is added to the nanoparticle solution; one component reacts with the coating molecules to form a salt whereas another is a solvent for dissolving and thus removing the salt. As a proof of concept, this work uses a NaOH-ethanol solution to remove the cytotoxic linoleic acid molecules coated on the hydroxyapatite nanorods (HAP-NRs). The removal of the coating molecules not only significantly improves the biocompatibility of HAP-NRs but also enables their oriented attachment into tightly-bound superstructures, which mimic the organized HAP crystals in bone and enamel and can promote the osteogenic differentiation of mesenchymal stem cells. Our reaction-dissolution approach can be extended to the surface "cleaning" of other nanomaterials.

  6. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  7. The anodic dissolution of SIMFUEL (UO{sub 2}) in slightly alkaline sodium carbonate/bicarbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Keech, P.G.; Goldik, J.S.; Qin, Z. [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada)

    2011-09-30

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U{sup VI} corrosion product, [UO{sub 2}]{sup 2+}. As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO{sub 2}) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U{sup IV} {yields} U{sup V} {yields} U{sup VI}). At low potentials ({<=}250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U{sup VI}O{sub 2}CO{sub 3} surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  8. Differing disintegration and dissolution rates, pharmacokinetic profiles and gastrointestinal tolerability of over the counter ibuprofen formulations.

    Science.gov (United States)

    Bjarnason, Ingvar; Sancak, Ozgur; Crossley, Anne; Penrose, Andrew; Lanas, Angel

    2018-02-01

    Formulations of over the counter (OTC) NSAIDs differ substantially, but information is lacking on whether this alters their gastrointestinal profiles. To assess disintegration and dissolution rates and pharmacokinetics of four preparations of OTC ibuprofen and relate these with spontaneously reported gastrointestinal adverse events. Disintegration and dissolution rates of ibuprofen tablets as (a) acid, (b) sodium salt, (c) lysine salt, and (d) as a liquid gelatine capsule were assessed. Pharmacokinetic data gastrointestinal and spontaneously reported adverse events arising from global sales were obtained from files from Reckitt Benckiser. Disintegration at low pH was progressively shorter for the preparations from a-to-d with formation of correspondingly smaller ibuprofen crystals, while dissolution was consistently poor. Dissolution at a neutral pH was least rapid for the liquid gelatine capsule. Pharmacokinetic data showed a shorter t max and a higher C max for preparations b-d as compared with ibuprofen acid. Spontaneously reported abdominal symptoms were rare with the liquid gelatine preparation. The formulations of OTC ibuprofen differ in their disintegration and dissolution properties, pharmacokinetic profiles and apparent gastrointestinal tolerability. Spontaneously reported abdominal symptoms were five times lower with the liquid gelatine capsule as compared with ibuprofen acid despite a 30% increase in C max . © 2017 Royal Pharmaceutical Society.

  9. Geologic study of the interior Salt Domes of Northeast Texas Salt-Dome basin to investigate their suitability for possible storage of radioactive waste material

    International Nuclear Information System (INIS)

    1976-05-01

    The purpose of this study was to investigate the movement and hydrologic stability of the domes, to identify the domes which appear suitable for further study and consideration, and to outline the additional information needed to evaluate these domes. The growth of the interior salt domes appears to have slowed with geologic time and to have halted altogether. The Bullard, Whitehouse, and Keechi domes probably are not subject to significant dissolution at the present time. However, caprock found at Bullard and Whitehouse indicates that salt dissolution occurred at some period during the past 50 million years since Wilcox was deposited. It is recommended that shallow water wells be drilled and tested

  10. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W

    2014-01-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate...... in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved....... Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing....

  11. Chrono-amperometric studies in melt alkaline nitrates and chlorides

    International Nuclear Information System (INIS)

    Stemmelin, Jean-Claude

    1969-01-01

    This research thesis proposes a large overview of the electrochemical behaviour of a number of metals and alloys in melt alkaline chlorides and nitrates at various temperatures. These salts are generally pure but, in some experiments, contain humidity or gases. The author addresses and discusses all the reactions which may occur at the electrode between the salt decomposition potentials. After having recalled and commented some definitions and fundamental principles of thermodynamics and electrochemical kinetics, presented the methods (polarization curves, measurements and additional analysis), the experimental apparatus and the reference electrodes in melt salts, the author reports the results obtained with the studied melt salts, and proposes an interpretation of Log i/U curves

  12. Study on dissolution behavior of polymer-bound and polymer-blended photo-acid generator (PAG) resists

    Science.gov (United States)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi

    2013-03-01

    The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.

  13. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    Ulrich, J.

    1987-01-01

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction [fr

  14. Ellipsometric study of salt film formation during passivation

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Lee Warren [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    An experimental program was carried out to gain further understanding into the kinetics of salt film formation during repassivation of a corroding metal. Experiments were conducted using an ellipsometer to examine an electrode surface undergoing anodic dissolution and passivation. Because of the constraints of the ellipsometer, the sample had to be mounted vertically. As a consequence natural convection currents had to be taken into account. Calculation showed that the mass transfer limiting current was exceeded by transient currents, indicating that natural convection was present to an extent that could drastically change the system from the diffusion model that was proposed. It was determined that recessing the electrode led to minimized natural convective effects, and to uniform current distribution. The ellipsometer output provided times which were associated with precipitation and dissolution of the salt film. The experimental data was in good agreement with the mathematical model, further strengthening the precipitation-dissolution mechanism of passivation. Furthermore, a dimensionless model was shown capable of a first approximation of the passivation behavior of any metal. Investigations reported here were carried out on iron, nickel, and cobalt.

  15. Jahani salt diapir, Iran: Hydrogeology, karst features and effect on surroundings environment

    Czech Academy of Sciences Publication Activity Database

    Abirifard, M.; Raeisi, E.; Zarei, M.; Zare, M.; Filippi, Michal; Bruthans, J.; Talbot, J.

    2017-01-01

    Roč. 46, č. 3 (2017), s. 445-457 ISSN 0392-6672 Institutional support: RVO:67985831 Keywords : salt diapir * brine spring * sinkhole * flow model * halite dissolution * salt karst Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.439, year: 2016

  16. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  17. Selection of lixiviant System for the alkaline in-situ Leaching of uranium from an arkosic type of sandstone and measuring the dissolution behaviour of some metals and non-metals

    International Nuclear Information System (INIS)

    Khan, Y.; Shah, S.S.; Siddiq, M.

    2012-01-01

    A laboratory simulation study was carried out to check the possibility of alkaline in-situ leaching of uranium from an arkosic type of sandstone recovered from a specific location at a depth of 300-500 m. The ore body was overlaying impervious clay shale below the water table. Different CO/sub 3/ containing soluble salts were tested as complexing agent of the UO/sup +2/ ions along with H/sub 2/O/sub 2/ as oxidizing agent. The lixiviant system, comprising NH/sub 4/HCO/sub 3/ as complexing agent along with H/Sub 2/O/sub 2/ as oxidizing agent in concentrations of 5 g/L and 0.5 g/L respectively, was found to be the most efficient for the leaching of uranium among the 25 different compositions employed. Along with uranium, the dissolution behaviour of 15 other metals, non-metals and radicals, including eight transition metals, was also observed in the lixiviant employed. These were Na, K, Ca, Mg, Cl, SO/sub 4/, CO/sub 3/, Ti, V, Cr, Mn, Fe, Cu, Zn and Mo. It was found that the leaching of uranium compared to non-transition et als/radicals followed the trend Cl > SO > U > Na > K > Mg > Ca > CO. The comparison of uranium leaching to the transition metals was in the order U > Cr > Mo > V > Ti > Cu > Zn > Mn > Fe. Physical parameters like pH, oxidation reduction potential (ORP) and conductivity were also measured for the fresh and pregnant lixiviants. It was found that the leaching of uranium is directly related to the concentration of native soluble hexavalent uranium, contact time of the lixiviant and ore and to some extent with the total concentration of uranium as well as the porosity and permeability of the ore. (author)

  18. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  19. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev

    2015-01-01

    –arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined....... Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder. Concerning tableting, the developed formulation allowed for the preparation of tablets...... with a broad range of compaction pressures resulting in different porosities and tensile strengths. XRPD results showed that, overall, no crystallization occurred neither during tableting nor during long-term storage. Dissolution profiles of TAB SD IND–ARG showed an immediate release of IND by erosion...

  20. Experimental Evaluation of Efficient Si Dissolution from Perlite at Low Level Activator’s Concentration

    Directory of Open Access Journals (Sweden)

    Georgia-Maria Tsaousi

    2018-04-01

    Full Text Available This paper deals with the Si dissolution of fine perlite in alkaline solutions for the determination of the SiO2/Na2O mass ratio in the aqueous phase of geopolymer slurries. In the present work, the effect of the main synthesis parameters such as NaOH concentration and curing temperature on the setting time of the paste were studied. The obtained results showed that the inorganic polymer pastes present fast hardening at low concentrations of NaOH solutions for both 70 and 90 °C. This observation was also identified by the Si dissolution study of perlite pastes as a function of different concentrations of NaOH solutions and different solid to liquid ratios of the slurries, under a constant temperature. The optimum synthesis conditions for geopolymer pastes proved to be a low initial NaOH concentration in the alkaline phase (2–4 M NaOH, where the fast hardening of the paste was attributed to the high SiO2/Na2O mass ratio, enhancing the polycondensation phenomena and promoting the geopolymerization process.

  1. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  2. MSO spent salt clean-up recovery process; TOPICAL

    International Nuclear Information System (INIS)

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-01-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory[1

  3. On the capacity to the complexing of alkaline earth metal and magnesium chromates

    International Nuclear Information System (INIS)

    Orekhov, O.L.

    1978-01-01

    Considered is the capacity to the complexing of magnesium chromates and alkaline earth metal chromates with ammonium chromates in aqueous solutions. It has been established that the complexing of alkaline earth metal and magnesium chromates is effected by a nature of initial salts as well as their solubilities and the presence of crystallization water. Capacity of magnesium ions and alkaline rare earth metals to the complexing decreases in a series of Mg-Ca-Sr-Ba. Ca complexes exceed magnesium derivatives in respect of stability

  4. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Among various nitrogen sources, yeast extract was found to be the best inducer of alkaline protease. Among metal salts, KNO3 and NH4Cl were found to increase protease production. The maximum enzyme production (3600 U/ml) was observed with pomegranate peels of fermentation medium in the presence of yeast ...

  5. Dissolution of targets for the production of Mo-99: Part 2. Influence of excess of reagent and aluminium mass on dissolution time

    International Nuclear Information System (INIS)

    Araujo, Izilda da C.; Camilo, Ruth L.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Radioisotopes play an important role in the peaceful uses of nuclear energy. Radionuclides in nuclear medicine can be used for diagnosis and therapy. The 9T c, daughter of 99 Mo is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Nowadays, the supply of this important isotope is deficient, due to the shutdown of the reactors in Canada and Belgium, the world's largest producers. Aiming to resolve the dependency of Brazil with respect to the supply of 99 Mo was created the Brazilian Multipurpose Reactor project (RMB), started in 2008, having as main objective to produce about 1000 Ci/week of 99 Mo. This study is part of the project to obtain 99 Mo by alkaline dissolution of UA1 x -A1 targets. Al, which corresponds to 79% of the total mass, was used to simulate the targets. The reagent used in the dissolution was a 3 mol.L -1 NaOH/NaNO 3 solution and initial temperature of 88 degree influence of the reagent on the dissolution time, related to the molar ratio 1Al:1.66NaOH:1.66NaNO 3 , for a range of over 5 to 50%, and the influence of the amount of mass in a range from 16 to 48 g of Al were studied. It was observed that the dissolution time. (author)

  6. Acid Dissolution of Depleted Uranium from Catalyst using Microwave

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Hyun; Jeong, Seong Gi; Park, Kwang Heon [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    The separation process of uranium is one of the most important fields in nuclear industry because uranium is used primary in nuclear power plants. Uranium ores are treated by either acid or alkaline reagents. Uranium can be dissolved by acid or alkaline solutions. There are two oxidation states in which the hexavalent form, the oxide of which is UO{sub 3}, and the tetravalent form, the oxide of which is UO{sub 2}. However, depleted uranium(DU) has also been used as a catalyst in specialized chemical reaction such as ammoxidation. The preferred catalyst for propylene oxidation with ammonia was a uranium oxide-antimony oxide composition. The active phase of catalyst was known as USbO{sub 5} and USb{sub 3}O{sub 10}. There is pentavalent form. Waste catalyst containing DU was generated and stored in chemical industry. In this work, we removed DU from catalyst by acid dissolution

  7. The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH

    International Nuclear Information System (INIS)

    Clarens, F.; Pablo, J. de; Casas, I.; Gimenez, J.; Rovira, M.; Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Martinez-Esparza, A.

    2005-01-01

    The dissolution of non-irradiated UO 2 was studied as a function of both pH and hydrogen peroxide concentration (simulating radiolytic generated product). At acidic pH and a relatively low hydrogen peroxide concentration (10 -5 mol dm -3 ), the UO 2 dissolution rate decreases linearly with pH while at alkaline pH the dissolution rate increases linearly with pH. At higher H 2 O 2 concentrations (10 -3 mol dm -3 ) the dissolution rates are lower than the ones at 10 -5 mol dm -3 H 2 O 2 , which has been attributed to the precipitation at these conditions of studtite (UO 4 . 4H 2 O, which was identified by X-ray diffraction), together with the possibility of hydrogen peroxide decomposition. In the literature, spent fuel dissolution rates determined in the absence of carbonate fall in the H 2 O 2 concentration range 5 x 10 -7 - 5 x 10 -5 mol dm -3 according to our results, which is in agreement with H 2 O 2 concentrations determined in spent fuel leaching experiments

  8. Evaporite dissolution relevant to the WIPP site, northern Delaware Basin, southeastern New Mexico

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1982-01-01

    Evaluation of the threat of natural dissolution of host evaporites to the integrity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has taken into consideration (1) the volume of missing rock salt, (2) the occurrence (or not) of characteristic dissolution brines, (3) geomorphic features, some of which are unrelated to dissolution, and (4) the time intervals over which dissolution may have been active. Even under the assumption that all missing halite was originally present and has been removed by dissolution, there is no evidence of active preferential removal of the lower Salado Formation halite by any geologically reasonable process. The geologic record contains evidence of dissolution in the Triassic and Jurassic; to constrain all removal of basinal halite to the late Cenozoic yields an unrealistically high rate of removal. Application to the lower Salado of a stratabound mechanism known to be active in Nash Draw, a near-surface feature within the Basin, allows a minimum survival time of 2,500,000 years to be predicted for the subsurface facility for storage of radioactive waste at WIPP. This calculation is based on an analysis of all known dissolution features in the Delaware Basin, and takes into account the wetter (pluvial) climate during the past 600,000 years. 2 figures, 1 table

  9. Rhizomes Help the Forage Grass Leymus chinensis to Adapt to the Salt and Alkali Stresses

    Science.gov (United States)

    Li, Xiaoyu; Wang, Junfeng; Lin, Jixiang; Wang, Ying; Mu, Chunsheng

    2014-01-01

    Leymus chinensis has extensive ecological adaptability and can grow well in saline-alkaline soils. The knowledge about tolerance mechanisms of L. chinensis could be base for utilization of saline-alkaline soils and grassland restoration and rebuilding. Two neutral salts (NaCl : Na2SO4 = 9 : 1) and two alkaline salts (NaHCO3 : Na2CO3 = 9 : 1) with concentration of 0, 100, and 200 mmol/L were used to treat potted 35-day-old seedlings with rhizome growth, respectively. After 10 days, the biomass and number of daughter shoots all decreased, with more reduction in alkali than in salt stress. The rhizome biomass reduced more than other organs. The number of daughter shoots from rhizome was more than from tillers. Under both stresses, Na+ contents increased more in rhizome than in other organs; the reduction of K+ content was more in underground than aerial tissue. Anion ions or organic acids were absorbed to neutralize cations. Na+ content in stem and leaf increased markedly in high alkalinity (200 mmol/L), with accumulation of soluble sugar and organic acids sharply. Rhizomes help L. chinensis to adapt to saline and low alkaline stresses by transferring Na+. However, rhizomes lost the ability to prevent Na+ transport to aerial organs under high alkalinity, which led to severe growth inhibition of L. chinensis. PMID:25121110

  10. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-01-01

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy's Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed

  11. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 3. Appendices II-XVII

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, J.D.

    1981-03-01

    Volume 3 contains Appendices II through XVII: mixing instructions for sodium orthosilicate; oil displacement studies using THUMS C-331 crude oil and extracted reservoir core material from well B-110; clay mineral analysis of B-827-A cores; sieve analysis of 4 Fo sand samples from B-110-IA and 4 Fo sand samples from B-827-A; core record; delayed secondary caustic consumption tests; long-term alkaline consumption in reservoir sands; demulsification study for THUMS Long Beach Company, Island White; operating plans and instructions for DOE injection demonstration project, alkaline injection; caustic pilot-produced water test graphs; well test irregularities (6/1/79-5/31/80); alkaline flood pump changes (6/1/79-5/31/80); monthly DOE pilot chemical waterflood injection reports (preflush injection, alkaline-salt injection, and alkaline injection without salt); and caustic safety procedures-alkaline chemicals.

  12. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  13. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  14. Comparative evaluation of methods to quantify dissolution of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Kruse, Susanne; Baun, Anders

    2015-01-01

    Effects and behaviour of nanomaterials in the environment depends on the materials' specific physical and chemical properties and for certain nanomaterials (e.g., Ag, ZnO and CuO) aqueous solubility is of outmost importance. The solubility of metals salts is normally described as a maximum...... dissolved concentration or by the solubility constant (Ksp). For nanomaterials it is essential to also assess solubility kinetics as nanomaterials will often not dissolve instantaneously upon contact with artificial aqueous media or natural waters. Dissolution kinetics will thereby influence their short...... and long-term environmental fate as well as laboratory test results. This highlights the need to evaluate and improve the reliability of methods applied to assess the solubility kinetics of nanomaterials. Based on existing OECD guidelines and guidance documents on aqueous dissolution of metals and metal...

  15. Alkaline corrosion properties of laser-clad aluminum/titanium coatings

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Herbreteau, Alexis; Rombouts, Marleen

    2015-01-01

    Purpose - The purpose of this paper is to study the use of titanium as a protecting element for aluminum in alkaline conditions. Design/methodology/approach - Aluminum coatings containing up to 20 weight per cent Ti6Al4V were produced using laser cladding and were investigated using light optical...... microscope, scanning electron microscope - energy-dispersive X-ray spectroscopy and X-Ray Diffraction, together with alkaline exposure tests and potentiodynamic measurements at pH 13.5. Findings - Cladding resulted in a heterogeneous solidification microstructure containing an aluminum matrix...... with supersaturated titanium ( (1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion...

  16. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  17. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  18. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  19. Proposing and evaluating applications for products obtained during chromium chip alkaline hydrolysis produced during leather tanning

    Directory of Open Access Journals (Sweden)

    Andrea Díaz

    2006-09-01

    Full Text Available Some applications for products obtained by chromium chip alkaline hydrolysis produced during leather tanning were evaluated in this work, considering the concept of maximising tanneries’ solid residue reuse for different industrial applications and minimising the environmental impact so produced. When Cr(OH is transformed into Cr (OH(SO it can be used in tanning leather (i.e. as tanning salt. When compared to commercial salts, 2 4 it was determined that it could be applied to mixtures containing this salt, replacing it by up to 40%. Chromium content reduction was evaluated for collagen hydrolyzate by pH control after alkaline hydrolysis of the chips and by applying adsorbent materials such as bentonite, alfalfa and sorghum biomass and activated charcoal, a maximum 55% Cr removal being obtained when the first two adsorbent materials were used.

  20. The enigma of cooking salt crystals

    International Nuclear Information System (INIS)

    Nikolskaya, E.

    1987-01-01

    Two Soviet experts, Vladimir Gromov and Valentin Krylov, have discovered an unexpected phenomenon on irradiating cooking salt crystals with electrons. When the crystals are subsequently ground the rate at which they are dissolved increases, but not always. The electrons cause the salt molecules to polarize thus creating an internal electric field. This acts against the double electric layer which is inevitably formed in the part of the solution touching the crystal surface. So, if the permittivity of the solution is much greater than that of the molecules of the crystal, the rate of dissolution is increased, and vice versa. (G.T.H.)

  1. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  2. Comparison of destructive and nondestructive assay of heterogeneous salt residues

    International Nuclear Information System (INIS)

    Fleissner, J.G.; Hume, M.W.

    1986-01-01

    To study problems associated with nondestructive assay (NDA) measurements of molten salt residues, a joint study was conducted by the Rocky Flats Plant, Golden, CO and Mound Laboratories, Miamisburg, OH. Extensive NDA measurements were made on nine containers of molten salt residues by both Rocky Flats and Mound followed by dissolution and solution quantification at Rocky Flats. Results of this study verify that plutonium and americium can be measured in such salt residues by a new gamma-ray spectral analysis technique coupled with calorimetry. Biases with respect to the segmented gamma-scan technique were noted

  3. Corrosion of silicon nitride in high temperature alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liyan, E-mail: liyan.qiu@cnl.ca; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si{sub 3}N{sub 4}) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si{sub 3}N{sub 4} experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  4. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  5. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  6. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    Directory of Open Access Journals (Sweden)

    Wei Shi

    Full Text Available A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T, which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl. Electrical output was further demonstrated in microbial fuel cells (MFCs with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  7. In-situ interferometric measurements of compacted smectite under hyper-alkaline condition - 59124

    International Nuclear Information System (INIS)

    Satoh, Hisao; Kurosawa, Susumu; Ishii, Tomoko; Owada, Hitoshi

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Alteration of bentonite buffer at the repository for radioactive waste is an unavoidable phenomenon. However, precise kinetic data is useful for evaluation of the endurance for long-term safety. Alkaline attack to bentonite by cement-leachates may enhance alteration of smectite into the other phase such as zeolite. Until recently, there are a number of detailed dissolution studies (e.g., Cama et al., 2000; Yokoyama et al., 2005; Rozalen et al., 2008) for suspended smectite, using high precision measurements by ICPMS and AFM analyses. In contrast, dissolution study of compacted smectite is very limited (e.g., Nakayama et al., 2003). In order to verify the previous data, the dissolution rate of compacted smectite with realistic density needs to be confirmed experimentally. We have, for the first time, applied in-situ vertical scanning interferometry (VSI) along with the auto-compaction cell for measuring dissolution rates of smectite compacted at 0.04-20.0 MPa and 70 deg. C in 0.3 M NaOH (pH 12.1). At less-compaction (0.04 MPa), Kunipia-P smectite initially showed a relatively fast dissolution of ∼2E-11 mol/m 2 /s which is comparable to the rate for suspended smectite under same pH-T condition. At high-compaction ( 2 /s, but at higher compaction (>5 MPa), smectite dissolution was enhanced again to ∼5E-13 mol/ m 2 /s

  8. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    Science.gov (United States)

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  9. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    Science.gov (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    .12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing

  10. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  11. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  12. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  13. Thermodynamic characterization of salt components for the Molten Salt Reactor Fuel - 15573

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, A.

    2015-01-01

    Molten fluoride salts are considered as primary candidates for nuclear fuel in the Molten Salt Reactor (MSR), one of the 6 generation IV nuclear reactor designs. In order to determine the safety limits and to access the properties of the potential fuel mixtures, thermodynamic studies are very important. This study is a combination of experimental work and thermodynamic modelling and focusses on the fluoride systems with alkaline and alkaline earth fluorides as matrix and ThF 4 , UF 4 and PuF 3 as fertile and fissile materials. The purification of the single components was considered as essential first step for the study of more complex systems and ternary phase diagrams were described using Differential Scanning Calorimetry (DSC) and drop calorimetry, which are used to measure phase transitions, enthalpy of mixing and heat capacity. In addition to the calorimetric techniques, Knudsen Effusion Mass Spectrometry (KEMS) and X-ray Diffraction (XRD) were used to collect data on vapour pressure and crystal structure of fluorides. The results are then coupled with thermodynamic modelling using the Calphad method for the assessment of the phase diagrams. A thermodynamic database describing the most important systems for MSR application has been developed and it has been used to optimize the fuel composition in view of the relevant properties such as melting temperature. A reliable database of thermodynamic properties of fluoride salts has been generated. It includes the key systems for the MSR fuel and it is very useful to predict the properties of the fuel

  14. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  15. Synthesis of anatoxin a via intramolecular cyclization of iminium salts

    International Nuclear Information System (INIS)

    Bates, H.A.; Rapoport, H.

    1979-01-01

    Anatoxin a (1) has been synthesized by exploiting intramolecular cyclization between an iminium salt and a nucleophilic carbon to construct the 9-azabicyclo[4.2.1]nonane ring system. Cyclization of malonate iminiumsalt 16 at alkaline pH afforded a low yield of bicyclic malonate 18 owing to an unfavorable equilibrium constant and lability of the iminium salt in base. In contrast, cyclization of ketoiminium salt 31 afforded a good yield of bicyclic ketone 34 in acidic methanol. Dihydropyrrolium salts 16 and 31 were generated quantitatively by decarbonylation of substituted N-methylprolines 15 and 30b, obtained by reduction of the corresponding pyrroles

  16. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng; Yuan, Dan; Haburcak, Richard; Zhang, Qiang; Zhao, Chao; Zhang, Xixiang; Xu, Bing

    2015-01-01

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  17. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng

    2015-10-14

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  18. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    Science.gov (United States)

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  19. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  20. CaCO3 dissolution by holothurians (sea cucumber): a case study from One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Schneider, K.; Silverman, J.; Kravitz, B.; Woolsey, E.; Eriksson, H.; Schneider-Mor, A.; Barbosa, S.; Rivlin, T.; Byrne, M.; Caldeira, K.

    2012-12-01

    Holothurians (sea cucumbers) are among the largest and most important deposit feeder in coral reefs. They play a role in nutrient and CaCO3 cycling within the reef structure. As a result of their digestive process they secrete alkalinity due to CaCO3 dissolution and organic matter degradation forming CO2 and ammonium. In a survey at station DK13 on One Three Reef we found that the population density of holothurians was > 1 individual m-2. The dominant sea cucumber species Holothuria leucospilota was collected from DK13. The increase in alkalinity due to CaCO3 dissolution in aquaria incubations was measured to be 47±7 μmol kg-1 in average per individual. Combining this dissolution rate with the sea cucumbers concentrations at DK13 suggest that they may account for a dissolution rate of 34.9±17.8 mmol m-2 day-1, which is equivalent to about half of night time community dissolution measured in DK13. This indicates that in reefs where the sea cucumber population is healthy and protected from fishing they can be locally important in the CaCO3 cycle. Preliminary result suggests that the CaCO3 dissolution rates are not affected by the chemistry of the sea water they are incubated in. Measurements of the empty digestive track volume of two sea cucumbers H. atra and Stichopus herrmanni were 36 ± 4 ml and 151 ± 14 ml, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni are 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. Our result that the primary parameter determining the CaCO3 dissolution by sea cucumber is the amount of carbonate send in their gut

  1. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    . Environments having different ionic concentrations of inorganic salts, i.e. sodium hydroxide, sodium sulfide, and sodium chloride, were used to understand the effect of liquor alkalinity, percent sulfidity, and chloride content on the corrosion and SCC behavior. Hydrogen embrittlement of S32205 was studied to understand the electrochemical conditions and fracture features associated with this failure mode. The results showed that there is an appreciable increase in the susceptibility of DSS to SCC in the presence of sulfide and chloride in hot alkaline environments. Sulfide and chloride adsorption at active sites on the metal surface caused unstable passivity and defective film formation. Chloride and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films had an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in hot alkaline environments. The onset of SCC was related to the extent of selective dissolution and was consistent with a slip-step dissolution mechanism. Selective corrosion of the austenite phase depended on percent sulfidity and liquor alkalinity. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite boundaries. Crack initiation and transgranular growth strongly depended on the phase distribution in the banded microstructure of DSS. These findings will augment understanding of SCC in this alloy-environment combination and facilitate materials selection in hot alkaline-sulfide environments, particularly in the petrochemical, nuclear, chemical processing, and pulp and paper industries.

  2. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  3. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    Science.gov (United States)

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  4. Effect of a cement buffer on spent fuel dissolution

    International Nuclear Information System (INIS)

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel; Gielen, Ben; Vercauter, Regina

    2012-01-01

    The Belgian agency for radioactive waste has selected the super-container design with an Ordinary Portland Cement (OPC) buffer as the reference design for geological disposal of High-Level Waste (HLW) and Spent Fuel (SF) in the Boom Clay formation. In the super-container design, the canisters of HLW or SF will be enclosed by a 30 mm thick carbon steel overpack and a 700 mm thick concrete buffer. The overpack will prevent contact with the (cementitious) pore water during the thermal phase. On the other hand, once the overpack will be locally perforated, the high pH of the incoming water may have an impact on the lifetime of the waste. Most published data and national programs are related to clayey backfill materials, and few studies are reported in alkaline media. Hence, a set of experiments was conducted to evaluate the behavior of spent fuel (UO 2 dissolution rate and UO 2 solubility) in such an environment. The objective was to estimate the spent fuel dissolution rate in super-container conditions for use in preliminary performance assessment calculations

  5. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate

    Directory of Open Access Journals (Sweden)

    Seo JH

    2015-07-01

    Full Text Available Jae Hong Seo, Jung Bae Park, Woong-Kee Choi, Sunhwa Park, Yun Jin Sung, Euichaul Oh, Soo Kyung Bae College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea Objective: Cilostazol is a Biopharmaceutical Classification System class II drug with low solubility and high permeability, so its oral absorption is variable and incomplete. The aim of this study was to prepare two sulfonate salts of cilostazol to increase the dissolution and hence the oral bioavailability of cilostazol.Methods: Cilostazol mesylate and cilostazol besylate were synthesized from cilostazol by acid addition reaction with methane sulfonic acid and benzene sulfonic acid, respectively. The salt preparations were characterized by nuclear magnetic resonance spectroscopy. The water contents, hygroscopicity, stress stability, and photostability of the two cilostazol salts were also determined. The dissolution profiles in various pH conditions and pharmacokinetic studies in rats were compared with those of cilostazol-free base.Results: The two cilostazol salts exhibited good physicochemical properties, such as nonhygroscopicity, stress stability, and photostability, which make it suitable for the preparation of pharmaceutical formulations. Both cilostazol mesylate and cilostazol besylate showed significantly improved dissolution rate and extent of drug release in the pH range 1.2–6.8 compared to the cilostazol-free base. In addition, after oral administration to rats, cilostazol mesylate and cilostazol besylate showed increases in Cmax and AUCt of approximately 3.65- and 2.87-fold and 3.88- and 2.94-fold, respectively, compared to cilostazol-free base.Conclusion: This study showed that two novel salts of cilostazol, such as cilostazol mesylate and cilostazol besylate, could be used to enhance its oral absorption. The findings warrant further preclinical and clinical studies on cilostazol mesylate and

  6. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  7. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  8. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    Science.gov (United States)

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  9. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Science.gov (United States)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  10. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2012-05-01

    Full Text Available The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g. However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate – which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g → multiple steps → SOOCl2−. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32− by O3 (αseasalt = 1.0124±0.0017 at 19 °C. Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways – oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2 – which favour the heavy isotope, and

  11. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine.

    Science.gov (United States)

    Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri

    2013-09-01

    Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.

  12. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  13. Growth of rhombohedral insulin crystals and in vitro modeling of their dissolution in the blood stream

    Energy Technology Data Exchange (ETDEWEB)

    Nanev, C.N.; Dimitrov, I.L.; Hodzhaoglu, F.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-02-15

    Insulin is the only protein that is secreted in a crystalline form in a human healthy body. To mimic the secretion process we used NaCl salting-out to growing tiny rhombohedral Zn-insulin crystals. The dissolution of the insulin crystals is of special interest for the therapeutical praxis, because the human body is supplied with the physiologically active monomers of the insulin through dissolution of the crystalline granules secreted in the pancreatic {beta}-cells. Sets of tiny rhombohedral Zn-insulin crystals, which resembled the granules secreted in the {beta}-cells, were subjected to dissolution in blood plasma and model solutions. The impacts of the solution composition, flow rate, pH and ionic strength on the insulin crystal dissolution were investigated. The effect of the blood plasma was determinant because it dissolved the rhombohedral Zn-insulin crystals almost instantly, while the effects of solution's physicochemical characteristics were of minor importance. In addition, we found that the presence of abundant zinc ions suppressed the dissolution of the insulin crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Dissolution kinetics of smectite in geological repository system of TRU waste

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2005-02-01

    Extensive use of cement for encapsulation, mine timbering, and grouting purposes is envisaged in geological repositories of TRU waste. Degradation of cement materials in the repositories can produce a high pH pore fluid initially ranging from pH 13.0 to 13.5. The high pH pore fluids can migrate and react chemically with the host rock and bentonites which were employed to enhance repository's integrity. These chemical reactions can effect the capacity of the rocks and bentonites in retarding the migration of radionuclides. Smectite, main component of bentonite, can lose some of their desirable properties at the early stages of bentonite-cement fluid interaction. This has been a key research issue in performance assessment of TRU waste disposal. In this study, firstly, the factors affected on dissolution rate of smectite and equations describing dissolution rate were reviewed. Secondly, the effect of dissolved silica on the dissolution behavior of Na-montmorillonite was investigated. Bulk sample flow-through dissolution experiments at alkaline condition (pH 13.3) with different dissolved silica concentrations at different temperatures were performed. Titration experiments were also carried out at similar conditions. Atomic Force Microscopy (AFM) ex situ observations (i.e. on samples from flow-through experiments) was also performed to obtain the dissolution rate. Current results from bulk sample surface titration experiments indicate that dissolved silica has no pronounced effect on the surface titration behavior of Na-montmorillonite at any temperature. However, the trends for the surface titration behavior represent the averaged behavior of all particle sizes (i.e. including colloids) such that within an order of magnitude change cannot be quantified appreciably. Bulk flow-through dissolution experiments coupled with ex situ AFM observations indicate that there is also no effect of dissolved silica with comparatively low concentration of the reacting solution on

  15. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  16. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  17. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome

  18. Complexing power of hydro-soluble degradation products from γ-irradiated polyvinylchloride. Influence on Eu(OH)_3(s) solubility and Eu(III) speciation in neutral to alkaline environment

    International Nuclear Information System (INIS)

    Reiller, Pascal E.; Badji, Hawa; Tabarant, Michel; Vercouter, Thomas; Fromentin, Elodie; Ferry, Muriel; Dannoux-Papin, Adeline

    2017-01-01

    The complexing power of hydrosoluble degradation products (HDPs) from an alkaline hydrolysis of a 10 MGy γ-irradiated polyvinylchloride is studied. The complexation of Eu(III), as an analogue of lanthanide and actinide radionuclides at their +III oxidation state for oxygen containing functions, is evidenced both from the increasing of Eu(OH)_3(s) dissolution, and from a complexometric titration by time-resolved luminescence spectroscopy. The dissolution of Eu(OH)_3(s) in a simplified alkaline solution (0.3 M KOH/0.1 M NaOH) increases moderately, but significantly, with the HDPs concentration. The luminescence signal of the supernatant clearly indicates the presence of several complexed Eu(III) species. Performing a complexometric titration of Eu(III) from pH 6 by alkaline HDPs shows the formation of two different species with increasing HDPs' concentration and pH. Operational complexation constants - based on dissolved carbon concentration - are proposed. The analyses of the spectra and luminescence decays seem to confirm the presence of two different species.

  19. Salt Separation from Uranium Deposits in Integrated Crucible

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Chang, J. H.; Kim, J. G.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non-volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation.

  20. Calcination/dissolution chemistry development Fiscal year 1995

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-09-01

    The task open-quotes IPC Liaison and Chemistry of Thermal Reconstitutionclose quotes is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elements (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to open-quotes Provide End-of-Year Report on C/D Laboratory Test Resultsclose quotes due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared

  1. Comparative Effects of Salt Stress and Extreme pH Stress Combined on Glycinebetaine Accumulation, Photosynthetic Abilities and Growth Characters of Two Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Suriyan CHA-UM

    2009-12-01

    Full Text Available Glycinebetaine (Glybet accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (r2 = 0.71 and salt-sensitive (r2 = 0.86 genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm, photon yield of PSII (ΦPSII, non-photochemical quenching (NPQ and net photosynthetic rate (Pn in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ΦPSII, ΦPSII and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.

  2. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    International Nuclear Information System (INIS)

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO 3 ·2H 2 O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions

  3. Effects of Chlorine Ions on the Dissolution Mechanism of Cu Thin Film in Phosphoric Acid Based Solution.

    Science.gov (United States)

    Seo, Bo-Hyun; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

  4. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  5. Response to Fenton and Fenton: evidence does not support the alkaline diet

    Science.gov (United States)

    In the space available in this broad review, we focused on large trials published since the 2011 Fenton meta-analysis. This included two trials published in 2013 and one in 2015. These trials found favorable effects of supplementation with alkaline salts of potassium, in amounts of 60 mmol/day and h...

  6. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  7. Urbanization accelerates long-term salinization and alkalinization of fresh water

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  8. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  9. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  10. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  11. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland

    OpenAIRE

    Kalwasi?ska, Agnieszka; Felf?ldi, Tam?s; Szab?, Attila; Deja-Sikora, Edyta; Kosobucki, Przemys?aw; Walczak, Maciej

    2017-01-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth...

  12. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.

    Science.gov (United States)

    Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S

    2011-10-26

    Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.

  13. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  14. Effect of Alkaline Stress on Some Morphophysiologic Characteristics of Two Varieties of Safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Sh Bemany Golnabadi

    2016-12-01

    Full Text Available Introduction Safflower (Carthamus tinctorius L. is an important oilseed crop grown throughout the semiarid regions in many parts of the world. It has been cultivated for its oil and flowers and as a meal. Alkaline stress is caused by alkaline salts such as Na2CO3 or NaHCO3 in the soil. Alkaline stress, is widespread environmental constraint affecting crop productivity ,which can inhibit absorption of inorganic anions such as Cl–, NO3– and H2PO4–, greatly affect the selective absorption of K+-Na+, and break the ionic balance. However, under alkali stress, accumulation of compatible solutes, such as betaine, proline and soluble sugar into the vacuole are considered as the basic strategies for plant re-established cellular homeostasis. Some reports have clearly demonstrated that alkaline salts (NaHCO3 and Na2CO3 are more destructive to plants than neutral salts (NaCl and Na2SO4. Moreover, the salt-alkali stress can directly damage plant growth, alter the availability of nutrients and disrupt the balance of ions and mineral nutrition. The objective of this study was to investigate the effects of alkaline stress on growth and some physiological characteristics of safflower. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in completely randomized design with three replications. Experimental factors included alkaline stress in 7 levels (0, 10, 20, 30 , 40, 50 and 60 mM and two varieties of safflower (Sofeh and 411. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution with half strength Hoagland's solution. After the fourth true leaves appeared, alkaline stress in the pot was created by adding NaHCO3, to half strength Hoagland’s solution. Control plants were only irrigated with half strength Hoagland’s solution. Plants were harvested after 40 days of seed sowing. After forty days, shoot and root height

  15. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    Science.gov (United States)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific

  16. Influence of pH modifiers on the dissolution and stability of hydrochlorothiazide in the bi- and three-layer tablets

    Directory of Open Access Journals (Sweden)

    Blatnik Sandra Urek

    2015-12-01

    Full Text Available During the past few years, the studies of bi- and multi-layered tablets increased due to the consumption of several different drugs per day by a patient and requests for appropriate patient compliance. The demographic shift toward older population increases the use of combination therapy as polypharmacy. Hydrochlorothiazide (HCTZ, as a model drug, is most commonly used in the treatment of hypertension, congestive heart failure and as a diuretic. The aim of the present study is to investigate the effect of the local environment on dissolution and stability behaviour of HCTZ in fixed multilayered tablet combinations, which are commonly used in polypharmacy. For this purposes, three different systems were introduced: (i two conventional tablets (HCTZ and pH modifying placebo, (ii 2-layer tablets (HCTZ, pH modifying placebo and (iii 3-layer tablets (HCTZ, barrier and pH modifying placebo. Disintegration of tablets, dissolution of HCTZ from tablets and HCTZ related substances were monitored for all systems. Results showed that there was a significant difference between dissolution profiles of the conventional two-tablet system (HCTZ tablet and pH modifying tablet and the 2-layer and 3-layer tablets, which include the pH modifying layer. In the case of the conventional two-tablets system, 85 % of HCTZ was dissolved in less than 15 minutes. The dissolution profiles of HCTZ from 2-layered and 3-layered tablets showed a decrease in the dissolution rate. In addition, during the stability studies, it has been confirmed that the typical degradation product of HCTZ is formed, impurity B (4-amino-6-chloro-1,3-benzenedisulfonamide, which implies formation of formaldehyde as hydrolytic impurity not reported in the Ph. Eur. (16. Both impurities are particularly raised in 2-layered tablets with alkaline and neutral placebo layers. Stability of HCTZ was improved in the case of the 3-layer tablet, where the intermediate separation layer of glycerol monostearate was

  17. A study of the alkaline and acid phosphatase activities in acute uranium intoxication

    International Nuclear Information System (INIS)

    Bokova, N.; Pavlova, V.; Stancheva, Yu.; Khadzhirusev, S.; Kiradzhiev, G.

    1975-01-01

    Comparative study of the ability of the sodium salt of diethylbarbituric acid and acetazolamide to protect the kidneys is conducted under conditions of acute uranium intoxication in rats. The parameters studied are alkaline and acid phosphatase activities in the serum and urine and phosphatase activity in the kidneys (histochemically as described by Gomori) followed up until the 30th day after the total uranyl acetate dose was reached (2 or 7 mg per kg bodyweight). Either compound exerted only minor effect on serum alkaline phosphatase activity. Sodium diethylbarbiturate induced distinct fluctuations in urinary alkaline phosphatase activity throughout the entire study period, but the differences never reached statistical significance. Acetazolamide caused essential decrease in urinary alkaline phosphatase activity. In either case renal tissue protection from the action of the uranyl ion may be suggested. This assumption is supported by the histochemical analysis. The compounds appeared to have no effect on serum acid phosphatase activity which showed high variability both in control and in treated rats. (Ch.K.)

  18. Status Report on Laboratory Testing and International Collaborations in Salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mills, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kirkes, Leslie Dawn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Xiong, Yongliang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Icenhower, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

  19. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  20. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  1. Thermodynamic and Kinetic Aspects of the Dissolution of Quartz-Kaolinite Mixtures by Alkalis Aspects thermodynamiques et cinétiques de la dissolution des mélanges quartz-kaolinite par les alcalis

    Directory of Open Access Journals (Sweden)

    Labrid J.

    2006-11-01

    Full Text Available Mineral-alkali interactions have received considerable attention in the recent literature dealing with enhanced oil recovery techniques and clay stabilization treatments. One of the critical factors to be considered is alkali consumption. Alkalinity decrease occurs through several mechanisms, which are ion exchange, precipitation, reaction with crude oil components, and dissolution of minerals. This paper describes the dissolution process. An original kinetic model is proposed to describe the alkaline dissolution of a clayey sandstone. This model is based first on results concerning quartz dissolution/condensation processes. It is also based on new experimental data, which demonstrate the inhibiting effect of aluminum and, as the reaction proceeds, the precipitation of an aluminosilicate whose the chemical composition has been determined. From these data, a kinetic scheme has been conceived in which adsorption of different chemical species is assumed to occur onto solid surfaces. These species play a more or less important role according to the extent of the reaction. In the mechanisms considered, the argillaceous fraction of the rock provides silicon and aluminum which inhibit the dissolution of the matrix while silicon coming from quartz interferes with clay attack. The kinetic model depicts the coupling of elementary dissolution processes and calculates dissolved silicon and aluminum. It has been tested for various operating conditions, providing initial reaction rates for quartz and clay. Results emphasize the definitive advantage of carbonate compared to other alkaline chemicals owing to the relative low pH of solutions, which is particularly favorable for promoting inhibition by aluminum and, as a general rule, for reducing mineral dissolution. Ce résumé contient des formules (*** qui ne peuvent s'afficher à l'écran L'emploi des agents alcalins pour améliorer la récupération du pétrole a été préconisé à l'origine dans le but

  2. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  3. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    Science.gov (United States)

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  4. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  5. Complexing power of hydro-soluble degradation products from γ-irradiated polyvinylchloride. Influence on Eu(OH){sub 3}(s) solubility and Eu(III) speciation in neutral to alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, Pascal E.; Badji, Hawa; Tabarant, Michel; Vercouter, Thomas [CEA, Paris-Saclay Univ., Gif-sur-Yvette (France). Service d' Etudes Analytiques et de Reactivite des Surfaces (SEARS); Fromentin, Elodie; Ferry, Muriel [CEA, Paris-Saclay Univ., Gif-sur-Yvette (France). Service d' Etudes du Comportement des Radionucleides (SECR); Dannoux-Papin, Adeline [CEA, Bagnols-sur-Ceze (France). Service des Procedes de Decontamination et d' Enrobage

    2017-10-01

    The complexing power of hydrosoluble degradation products (HDPs) from an alkaline hydrolysis of a 10 MGy γ-irradiated polyvinylchloride is studied. The complexation of Eu(III), as an analogue of lanthanide and actinide radionuclides at their +III oxidation state for oxygen containing functions, is evidenced both from the increasing of Eu(OH){sub 3}(s) dissolution, and from a complexometric titration by time-resolved luminescence spectroscopy. The dissolution of Eu(OH){sub 3}(s) in a simplified alkaline solution (0.3 M KOH/0.1 M NaOH) increases moderately, but significantly, with the HDPs concentration. The luminescence signal of the supernatant clearly indicates the presence of several complexed Eu(III) species. Performing a complexometric titration of Eu(III) from pH 6 by alkaline HDPs shows the formation of two different species with increasing HDPs' concentration and pH. Operational complexation constants - based on dissolved carbon concentration - are proposed. The analyses of the spectra and luminescence decays seem to confirm the presence of two different species.

  6. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical...... forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG...

  7. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  8. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    International Nuclear Information System (INIS)

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig

    2015-01-01

    Most of the iodine exists in the caustic dissolution as iodide form. KAERI is developing LEU-based fission 99 Mo production process which is connected to the new research reactor, which is being constructed in Kijang, Busan, Korea. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Synthesis of silver-doped alumina is conducted in two ways. One is using the ascorbic acid as a reducing agent. However, this method is impossible to control

  9. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  10. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  11. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  12. Stratigraphy and dissolution of the Rustler Formation

    International Nuclear Information System (INIS)

    Bachman, G.O.

    1985-01-01

    The Rustler Formation is the uppermost evaporite-bearing unit in the Permian Ochoan series in southeastern New Mexico. It rests on the Salado Formation which includes the salt beds where the mined facility for the Waste Isolation Pilot Plant (WIPP) is being constructed. An understanding of the physical stratigraphy of the Rustler Formation is pertinent to studies of the WIPP site because some portions of the Rustler are water-bearing and may provide paths for circulating waters to come into contact with, and dissolve, evaporites within the Ochoan sequence. Knowledge of the processes, magnitude, and history of evaporite dissolution in the vicinity of the WIPP site is important to an evaluation of the integrity of the site. 2 refs., 2 figs

  13. Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Engman, Joakim; Sloth, Jens Jørgen

    2005-01-01

    An analytical method for the determination of inorganic arsenic in fish samples using HPLC-ICP-MS has been developed. The fresh homogenised sample was subjected to microwave-assisted dissolution by sodium hydroxide in ethanol, which dissolved the sample and quantitatively oxidised arsenite (As...

  14. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Liquid Salt as Green Solvent: A Novel Eco-Friendly Technique to Enhance Solubility and Stability of Poorly Soluble Drugs

    Science.gov (United States)

    Patel, Anant A.

    As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation

  16. Limnological studies on the Pretoria Salt Pan, a hypersaline maar lake

    CSIR Research Space (South Africa)

    Ashton, PJ

    1983-01-01

    Full Text Available The Pretoria Salt pan is shallow and alkaline with pronounced mesothermy at a depth of between 0.55 and 0.7 metres. Secchi disc transparencies ranged from 7 to 19 cm. Endorheic or closed drainage basins are widely distributed in many climate...

  17. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  18. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  19. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  20. Principle of gas storage in salt caverns; Principe du stockage de gaz en cavites creusees dans le sel

    Energy Technology Data Exchange (ETDEWEB)

    Durup, J.G. [Mining Research Institute, CA (United States)]|[Gaz de France (GDF), 75 - Paris (France)

    2001-08-15

    The principle of the exploitation of a gas storage cavity is analogue to the one of a cylinder of compressed gas. Such a reservoir has remarkable dimensions with a volume of several thousands of m{sup 3}, a height of few hundred meters and a diameter of about 100 m. The mechanical resistance with respect to the gas pressure is ensured by the 'pre-stress' corresponding to the weight of the geologic strata. Salt (halite) is the ideal material for the digging out of such facilities because of its excellent tightness, its solubility in water (allowing the dissolution digging technique), and its good mechanical resistance. Natural gas storage is in general performed in natural porous and permeable environments, like depleted hydrocarbon fields or aquifers. The storage in salt caverns has the advantage of allowing important emission flow rates with respect to the quantities of immobilized gases. In some Northern Europe countries, like Germany, the salt deposits are well developed and abundant, in particular near the North Sea and its important natural gas fields. In France, there exists 3 gas storage sites in salt caverns, with about 40 cavities as a whole. This document briefly presents the main elements of the gas storage technique in salt caverns: characteristics and geology of salt deposits, geo-technique, wells, dissolution digging, gas injection and exploitation. (J.S.)

  1. Preliminary Study on the Dissolutions of Ce, Nd, Y and La from Mineral Cassiterite by Acid and Alkaline Leaching

    Science.gov (United States)

    Firdiyono, F.; Andriyah, L.; Aini, F. N.; Arini, T.; Lalasari, L. H.

    2018-03-01

    Rare Earth Metal is a rare element that its availability in nature is very small. In Indonesia, the potential of rare earth metals is generally found as the associated mineral in major commodities, especially gold and alluvial tin. These associated minerals can be processed using a particular technology so that the result is a by-product that can increase the added value of the mineral. This purpose of this research was to investigate the dissolution of Cerium (Ce), Neodymium (Nd), Yttrium (Y) and Lanthanum (La) from mineral cassiterite by leaching process using dilute hydrochloric acid (HCl), sulfate acid (H2SO4) and sodium hydroxide (NaOH). Firstly, cassiterite was grinded to -100 mesh of particle size and characterized by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) techniques. Secondly, 10 gram of cassiterite was leached in 100 ml solution of 3.26 N HCl, H2SO4 and NaOH at variation leaching time of 2, 4, 6, 24 and 48 hours in atmospheric conditions. The products were then filtered to separate filtrate and residue of cassiterite. Finally, to investigate the dissolution of Ce, La, Nd and Y, filtrate from dissolved cassiterite was analyzed by Induced Coupled Plasma-Optical Emission Spectrometry (ICP-OES), while to know the chemical composition of cassiterite leached by dilute HCl, H2SO4 and NaOH, residue products of cassiterite was characterized by XRF analysis. The result of ICP-OES analysis showed the dissolution of Ce element higher than Nd, Y and La elements for leaching cassiterite using HCl, H2SO4 and NaOH. The increase of leaching time was accompanied by the rise in the amount of dissolved elements from cassiterite. The result of XRF analysis showed the chemistry composition of Ce, Nd, Y and La elements on residue decreased insignificantly from chemistry composition of cassiterite (raw mineral) in all conditions. However, the dissolution of Ce, La, Nd and Y was insignificant in all conditions.

  2. Interannual sedimentary effluxes of alkalinity in the southern North Sea: model results compared with summer observations

    Directory of Open Access Journals (Sweden)

    J. Pätsch

    2018-06-01

    Full Text Available For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000–2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3–0.5 the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.

  3. Preparation, characterization, and dissolution studies of naproxen solid dispersions using polyethylene glycol 6000 and labrafil M2130

    Directory of Open Access Journals (Sweden)

    Jafar Akbari

    2015-06-01

    Full Text Available Naproxen is a poor water soluble, non-steroidal analgesic and anti-inflammatory drug. The enhancement of oral bioavailability of poor water soluble drugs remains one of the most challenging aspects of drug development. Although salt formation, solubilization and particle size reduction have commonly been used to increase dissolution rate and thereby oral absorption and bioavailability of low water soluble drugs, there are practical limitation of these techniques. However, the most attractive option for increasing the release rate is improvement of solubility through formulation approaches. In this study, solid dispersions (SD of naproxen were prepared by hot melt method using various ratios of drug to polymers (PEG6000 separately and characterized for physical appearance, FTIR, DSC, X-Ray crystallography, and in-vitro dissolution studies. The influence of several amounts of Labrafil M2130 was also studied. FTIR study revealed that drug was stable in SDs, and great state of amorphous formed particles was proofed by DSC analysis. The in vitro dissolution studies were carried using USP type II (paddle dissolution apparatus at medium (pH 1.5. Solubility of naproxen from SDs was increased in dissolution media. The prepared dispersion showed increase in the dissolution rate of naproxen comparing to that of physical mixtures of drug and polymers and pure drug. Percent of drug released in 60 minutes was 23.92% for pure naproxen witch is increased in SDs and reached to100% for best formulations of PEG6000 and labrafil based SDs respectively, considering ratio of drug to polymers.It is concluded that dissolution of the naproxen could be improved by the solid dispersion. Although physical mixtures have increased the rate of dissolution, dissolution shows faster release from SDs which would therefore be due to formation of amorphous particles through the hot melt process which was also revealed by DSC analysis and XRD.

  4. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1994-01-01

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as 99 Tc and 106 Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion reg-sign cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution

  5. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  6. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Soestbergen, van M.; Pel, L.

    2012-01-01

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  7. Dissolution Methods Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — For a drug product that does not have a dissolution test method in the United States Pharmacopeia (USP), the FDA Dissolution Methods Database provides information on...

  8. Alkaline Leaching of Key, Non-Radioactive Components from Simulants and Hanford Tank Sludge 241-S-110: Results of FY01 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Vienna, John D.; Sinkov, Serguei I.; Kim, Jinseong; Cisar, Alan J.

    2002-09-10

    This study addressed three aspects in selected alkaline leaching: first, the use of oxidants persulfate, permanganate, and ferrate as selective chromium-leaching agents from washed Hanford Tank S-110 solids under varying conditions of hydroxide concentration, temperature, and time was investigated. Second, the selective dissolution of solids containing mercury(II) oxide under alkaline conditions was examined. Various compounds were studied for their effectiveness in dissolving mercury under varying conditions of time, temperature, and hydroxide concentration in the leachate. Three compounds were studied: cysteine, iodide, and diethyldithiophosphoric acid (DEDTPA). Finally, the possibility of whether an oxidant bound to an anion-exchange resin can be used to effectively oxidize chromium(III) in alkaline solutions was addressed. The experimental results remain ambiguous to date; further work is required to reach any definitive conclusions as to the effectiveness of this approach.

  9. Extraction of lithium from neutral salt solutions with fluorinated. beta. -diketones

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated ..beta..-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated ..beta..-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included.

  10. Extraction of lithium from neutral salt solutions with fluorinated β-diketones

    International Nuclear Information System (INIS)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated β-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated β-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included. (author)

  11. Lithology, microstructures, fluid inclusions, and geochemistry of rock salt and of the cap-rock contact in Oakwood Dome, East Texas: significance for nuclear waste storage. Report of investigations No. 120

    International Nuclear Information System (INIS)

    Dix, O.R.; Jackson, M.P.A.

    1982-01-01

    Oakwood salt dome in Leon and Freestone Counties, Texas, has a core composed of a diapiric salt stock at a depth of 355 m. A vertical borehole in the center of the salt stock yielded 57.3 m of continuous rock-salt core overlain by 137 m of anhydrite-calcite cap rock. The lower 55.3 m of rock salt exhibits a strong, penetrative schistosity and parallel cleavage dipping at 30 to 40 0 and more than 60 variably dipping layers of disseminated anhydrite. Anhydrite constitutes 1.3 +- 0.7 percent of the rock-salt core. The upper 2 m of rock salt is unfoliated, comprising a lower 1.4-m interval of medium-grained granoblastic rock salt and an upper 0.6-m interval of coarse-grained granoblastic rock salt. An abrupt, cavity-free contact separates rock salt from laminated cap rock consisting of granoblastic-polygonal anhydrite virtually devoid of halite or pore space. Microstructures and concentration gradients of fluid inclusions suggest that the unfoliated rock salt at the crest of the salt stock was once strongly foliated, but that this fabric was destroyed by solid-state recrystallization. Downward movement of brine from the rock-salt - cap-rock contact was apparently accompanied by two recrystallization fronts. Dissolution of halite at the contact released disseminated anhydrite that presumably accumulated as sand on the floor of the dissolution cavity. Renewed rise of the salt stock closed the cavity, and the anhydrite sand was accreted against the base of the cap rock. Much, if not all, of the lamination in the 80 m of anhydrite cap rock may result from cycles of dissolution, recrystallization, and upward movement in the salt stock, followed by accretion of anhydrite residuum as laminae against the base of the cap rock. These processes, which are strongly influenced by fluids, act both to breach waste repositories and to geologically isolate them

  12. Groundwater flow and potential effects on evaporite dissolution in the Paradox Basin, SE Utah

    Science.gov (United States)

    Reitman, N.; Ge, S.; Mueller, K. J.

    2012-12-01

    A hydrogeologic study was conducted in the portion of the Paradox Basin south of the Needles District of Canyonlands National Park, Utah. Geology of the study area comprises fractured and faulted Paleozoic sandstone, limestone, and shale, which are underlain by evaporite cycles of the Paradox Formation. The evaporite deposits deform and dissolve when they come in contact with groundwater, generating land subsidence, saline groundwater, and salt input to the Colorado River. Active faults in the region slip at a rate of approximately 2 mm/year, likely due to evaporite dissolution. The objective of this study is to better understand groundwater flow and solute transport dynamics and to help determine the rate and timing of subsurface salt dissolution, which is an important control on the salt tectonics in the region. Study methods include hydrologic fieldwork, laboratory tests, and numerical modeling. No groundwater wells exist in the study area. Water samples from springs and seeps were collected throughout the study area. Analysis of total dissolved solids (TDS), stable oxygen (δ18O) and deuterium (δD) isotopes, spring and seep locations, and prior data are used to gain a preliminary understanding of the shallow groundwater flow in the region. Stable isotope ratios of oxygen (18O/16O) and deuterium (D/H) are used to constrain the source of spring water. Measured δ values are compared to predicted δ values for precipitation from WaterIsotopes.org for each sample site. Measured isotopic values range from -14.9 ‰ to -10.7 ‰ for δ18O and -108 ‰ to -78 ‰ for δD. The majority of samples from above 2000 m match predicted isotopic values for precipitation. Most samples taken below 2000 m are lighter than predicted isotopic values for precipitation. The TDS of spring samples measured in the lab show they range from 184 mg/L to 1552 mg/L with the majority of samples between 220 - 430 mg/L. TDS shows a weak correlation (R2 = 0.54) with altitude, where lower TDS

  13. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  14. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  15. A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K.

    1989-11-01

    A kinetic model for the dissolution of borosilicate glass is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkali-depleted amorphous surface (gel) layer. Our model predicts that all components concentrated in the surface layer, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations. 10 refs., 5 figs., 1 tab

  16. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    Science.gov (United States)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  17. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  18. Research on Dynamic Dissolving Model and Experiment for Rock Salt under Different Flow Conditions

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-01-01

    Full Text Available Utilizing deep rock salt cavern is not only a widely recognized energy reserve method but also a key development direction for implementing the energy strategic reserve plan. And rock salt cavern adopts solution mining techniques to realize building cavity. In view of this, the paper, based on the dissolving properties of rock salt, being simplified and hypothesized the dynamic dissolving process of rock salt, combined conditions between dissolution effect and seepage effect in establishing dynamic dissolving models of rock salt under different flow quantities. Devices were also designed to test the dynamic dissolving process for rock salt samples under different flow quantities and then utilized the finite-difference method to find the numerical solution of the dynamic dissolving model. The artificial intelligence algorithm, Particle Swarm Optimization algorithm (PSO, was finally introduced to conduct inverse analysis of parameters on the established model, whose calculation results coincide with the experimental data.

  19. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    Science.gov (United States)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of

  20. Process optimization and leaching kinetics of zinc and manganese metals from zinc-carbon and alkaline spent batteries using citric acid reagent

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Zn-Carbon and Alkaline spent batteries contains heavy metals, such as zinc and manganese, which can causes environmental problem if not handled properly. Usually the recovery of these metals were done by leaching method using strong acid, but the use of strong acids as leaching reagents can be harmful to the environment. This paper concerns the recovery of Zn and Mn metals from Zn-C and alkaline spent batteries with leaching method using citric acid as the environmental friendly leaching reagent. The leaching conditions using citric acid were optimized and the leaching kinetics of Zn and Mn in citric acid solution was investigated. The leaching of 89.62% Zn and 63.26% Mn was achieved with 1.5 M citric acid, 90°C temperature, and 90 minutes stirring time. Kinetics data for the dissolution of Zn showed the best fit to chemical control shrinking core model, while the diffusion controlled model was suitable for the dissolution of Mn kinetics data. The activation energy of 6.12 and 1.73 kcal/mol was acquired for the leaching of Zn and Mn in the temperature range 60°C-90°C.

  1. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  2. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2017-11-01

    Full Text Available This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  3. Leach resistance properties and release processes for salt-occluded zeolite A

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

    1992-01-01

    The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl 2 . For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m 2 for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m 2 , respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t 0.5 kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt

  4. Groundwater recharge and discharge scenarios for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Steinborn, T.L.; Thorson, L.D.

    1979-01-01

    Twelve potential scenarios have been identified whereby groundwater may enter or exit a nuclear waste repository in bedded salt. The 12 scenarios may be grouped into 4 categories or failure modes: dissolution, fracturing, voids, and penetration. Dissolution modes include breccia pipe and breccia blanket formation, and dissolution around boreholes. Fracture modes include flow through preexisting or new fractures and the effects of facies changes. Voids include interstitial voids (pores) and fluid inclusions. Penetration modes include shaft and borehole sealing failures, undetected boreholes, and new mines or wells constructed after repository decommissioning. The potential importance of thermal effects on groundwater flow patterns and on the recharge-discharge process is discussed. The appropriate levels of modeling effort, and the interaction between the adequacy of the geohydrologic data base and the warranted degree of model complexity are also discussed

  5. Climatology of salt transitions and implications for stone weathering.

    Science.gov (United States)

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  7. TOURISM PLANNING OPPORTUNITIES FOR THE SALT LAKES OF OCNELE MARI AND OCNIŢA

    Directory of Open Access Journals (Sweden)

    POPESCU ANTOANETA-CARINA

    2012-03-01

    Full Text Available Tourism Planning Opportunities for The Salt Lakes of Ocnele Mari and Ocniţa. Ocnele Mari used to be a popular balneal tourism destination in the Southern region of Romania, Oltenia. Due to the hilly climate and the two balneal establishments of Ocnele Mari and Ocniţa, tourists could find the necessary natural cure factors for rheumatic and cardiovascular diseases. However, the salt from Ocnele Mari was also used for industrial purposes, being extracted through solution mining, which proved to be detrimental to the environment. Salt underground dissolution caused land subsidence and landslide in the area, together with the formation of large salt lakes. Security became an issue, the number of tourists diminished and the balneal equipment became obsolete because of lack of modernization investment. Under these circumstances, on the basis of field work, we have reached the conclusion that a better planning of the resort and of the salt lakes would contribute to the economic development of the region.

  8. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  9. Salt Removal from the Uranium Deposits of Electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  10. Salt Removal from the Uranium Deposits of Electrorefiner

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G.

    2010-01-01

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  11. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution.

    Science.gov (United States)

    Takeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E; Amidon, Gordon L

    2014-11-01

    In vitro dissolution tests are performed for new formulations to evaluate in vivo performance, which is affected by the change of gastrointestinal (GI) physiology, in the GI tract. Thus, those environmental changes should be introduced to an in vitro dissolution test. Many studies have successfully shown the improvement of in vitro-in vivo correlations (IVIVC) by introducing those physiological changes into dissolution tests. The gastrointestinal simulator (GIS), a multicompartment in vitro dissolution apparatus, was developed to evaluate in vivo drug dissolution. A gastric-emptying rate along with transit rate are key factors to evaluate in vivo drug dissolution and, hence, drug absorption. Dissolution tests with the GIS were performed with Biopharmaceutical Classification System class I drugs at five different gastric-emptying rates in the fasted state. Computational models were used to determine in vivo gastric-emptying time for propranolol and metoprolol based on the GIS dissolution results. Those were compared with published clinical data to determine the gastric half-emptying time. In conclusion, the GIS is a practical tool to assess dissolution properties and can improve IVIVC. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  13. Development of an integrated crucible for the salt separation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Pyroprocessing has been developed for the recovery of actinide elements from spent fuel due to its advantages. Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode process sing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the integrated salt separation system was developed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits

  14. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  15. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  16. Performance analysis of conceptual waste package designs in salt repositories

    International Nuclear Information System (INIS)

    Jansen, G. Jr.; Raines, G.E.; Kircher, J.F.

    1984-01-01

    A performance analysis of commercial high-level waste and spent fuel conceptual package designs in reference repositories in three salt formations was conducted with the WAPPA waste package code. Expected conditions for temperature, stress, brine composition, radiation level, and brine flow rate were used as boundary conditions to compute expected corrosion of a thick-walled overpack of 1025 wrought steel. In all salt formations corrosion by low Mg salt-dissolution brines typical of intrusion scenarios was too slow to cause the package to fail for thousands of years after burial. In high Mg brines judged typical of thermally migrating brines in bedded salt formations, corrosion rates which would otherwise have caused the packages to fail within a few hundred years were limited by brine availability. All of the brine reaching the package was consumed by reaction with the iron in the overpack, thus preventing further corrosion. Uniform brine distribution over the package surface was an important factor in predicting long package lifetimes for the high Mg brines. 14 references, 15 figures

  17. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  18. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  19. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    as well as carbonates in porefluids under different pCO2 levels. In a second step, we will let the minerals react to a thermodynamically stable state and thereby observe the resulting alkalinity effect and the effect on carbonate precipitation. So far, modeling showed that saturation states of some of the most common clay minerals, including kaolinite, illite, montmorillonite and chlorite in a standard seawater solution strongly depend on silica and aluminum concentrations, but they show very little dependence on the pH. This is understandable since a congruent dissolution of clay minerals does not significantly increase or decrease the alkalinity. However, partial leaching of structural ions by incongruent dissolution/precipitation should have a strong effect on porewater alkalinity. Hence, substitution reactions will have to be simulated as part of this study. Calculated mineral alteration and rock-fluid interactions in deep sediments will contribute to a better understanding of carbonate diagenesis but also of long-term effects in subsurface CO2 storage reservoirs. Mavromatis et al. (2014) Chem. Geol. 385, 84-91. Parkhurst, D.L, and Appelo, C.A.J. (2013) U.S Geological Survey Techniques and Methods, book 6, chap. A43, 497 p. Wallmann et al. (2008) Geochim. Cosmochim. Acta 72, 3067-3090.

  20. Enthalpies of the dissolution and dilution of aqueous solutions of rubidium and cesium diclofenac at 293.15-318.15 K

    Science.gov (United States)

    Manin, N. G.; Perlovich, G. L.; Fini, A.

    2014-03-01

    Enthalpies of the dissolution and dilution of aqueous solutions of rubidium and cesium diclofenac (RbDC and CsDC) are measured at 293.15, 298.15, 308.15, and 318.15 K at concentrations of water of less than 0.1 mol/kg. The heat capacity of RbDC and CsDC crystal salts is determined. Changes in the thermodynamic properties of both a solution and its components vs. concentration and temperature is considered. An increase in the endothermicity of the dissolution of RbDC and CsDC with a rise in temperature is noted. It is shown that the dissolution of both RbDC and CsDC electrolytes in water is determined by the contribution from entropy. It is shown that in aqueous solutions of RbDC and CsDC, the degree of binding of water molecules is higher than in pure water at temperatures below 303.15 K.

  1. Flow injection determination of metronidazole through spectrophotometric measurement of the nitrite ion produced upon alkaline hydrolysis

    Directory of Open Access Journals (Sweden)

    Simões Simone S.

    2006-01-01

    Full Text Available A new method for metronidazole determination, based on spectrometric monitoring of a diazonium salt produced in-line by alkaline hydrolysis released nitrite ions, was developed and successfully applied to pharmaceutical tablets (r = 0.9993, 2.0-20.0 mg L-1, DL = 0.7 mg L-1 with no interference from common ingredients accompanying the drug.

  2. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    Science.gov (United States)

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  3. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  4. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  5. Climatology of salt transitions and implications for stone weathering

    International Nuclear Information System (INIS)

    Grossi, C.M.; Brimblecombe, P.; Menendez, B.; Benavente, D.; Harris, I.; Deque, M.

    2011-01-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: → We introduce the notion of salt climatology for heritage conservation. → Climate affects salt thermodynamics on building materials. → We associate Koeppen-Geiger climate types with potential salt weathering. → We offer future projections of salt damage in Western Europe due to climate change. → Humid climate areas may change to

  6. Climatology of salt transitions and implications for stone weathering

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Brimblecombe, P. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Menendez, B. [Geosciences et Environnement Cergy, Universite de Cergy-Pontoise 95031 Cergy-Pontoise cedex (France); Benavente, D. [Lab. Petrologia Aplicada, Unidad Asociada UA-CSIC, Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante 03080 (Spain); Harris, I. [Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Deque, M. [Meteo-France/CNRM, CNRS/GAME, 42 Avenue Coriolis, F-31057 Toulouse, Cedex 01 (France)

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: {yields} We introduce the notion of salt climatology for heritage conservation. {yields} Climate affects salt thermodynamics on building materials. {yields} We associate Koeppen-Geiger climate types with potential salt weathering. {yields} We offer future projections of salt damage in Western Europe due to climate change. {yields} Humid

  7. Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2014-07-01

    Full Text Available The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3- have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

  8. Drafting of the closure of the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Schneefuss, J.U.

    2001-01-01

    The report of the R and D-project 'Drafting of the closure of the Asse salt mine' contains the results of the first phases 'Basic findings' and 'Predrafting'. These phases were started after the backfilling of the south flank of the Asse salt mine was permitted in accordance to 2.2 of the operating program 'Future work at the Asse salt mine'. The knowledge status of May 2000 is reported. The result obtained in this program provides the basis for future drafting the closure of the Asse salt mine. The final results will include the long-term safety assessment to obtain the permission of the mining authorities for the closure of the Asse salt mine. The evaluation of the basic data has shown that further investigations are necessary. During the predrafting period the method for backfilling of the cavities, transport of the backfill and backfill and closure of the shafts were developed. Other parts of the concept for the closure are not finalized (control of the brine inflow when starting backfilling above the 658-m-level, minimizing of the possible effects of dissolution of carnallitite, avoiding of squeezing brines from deeper cavities through the disposal chambers etc.). (orig.) [de

  9. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    Science.gov (United States)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  10. Alkaline-earth metal bicarbonates as lixiviants for uranium (VI) under CO2 sparging

    International Nuclear Information System (INIS)

    Vaziri, F.; White, D.A.

    1989-01-01

    In recent years it has become apparent that uranium is significantly soluble in solutions of alkaline-earth metal bicarbonates -particularly those of magnesium and calcium. A system has been proposed by previous authors in which milled uranium ore is leached in a medium to which an oxidizing agent, the metal hydroxide and CO 2 are added. The alkaline-earth metal hydroxides are much more readily soluble in this medium than the corresponding carbonates. Magnesium and calcium bicarbonates are quite soluble in aqueous media at neutral or nearly neutral pH. The pH determines the relative quantities of bicarbonate and carbonate ions in the system. Even if the pH is quite low, small amounts of carbonate ion are present that can complex with the uranyl ion to produce anionic uranyl complexes. Both UO 2 (CO 3 ) 2 2- and UO 2 (CO 3 ) 3 4- complexes are known and both have a very high stability constant. Despite the appearance of several patents on the use of alkaline-earth metal ions in carbonate media as uranium lixiviants, little theoretical or experimental work on the system has been published. In view of the potential of these systems for cheap, large-scale dissolution of uranium the present contribution will discuss the theory behind this method and provide some experimental data to verify the theoretical treatment. (author)

  11. pH-Dependent Solubility and Dissolution Behavior of Carvedilol--Case Example of a Weakly Basic BCS Class II Drug.

    Science.gov (United States)

    Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman

    2016-04-01

    The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.

  12. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  14. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  15. Long term behaviour of compacted argillite submitted to an alkaline fluid circulation

    International Nuclear Information System (INIS)

    Cuisinier, O.; Masrouri, F.; Deneele, Dimitri

    2010-01-01

    Document available in extended abstract form only. In the French concept of deep nuclear wastes repository, the galleries should be backfilled with excavated argillite after the site exploitation period. After several thousands of years, the degradation of the concrete lining of the galleries will generate alkaline fluid (pH > 12) that will diffuse through the backfill. The object of the study is to describe the influence of such solute diffusion on the microstructure of compacted argillite. Saturated-portlandite water was circulated through compacted samples for 3, 6 and 12 months at 20 or 60 deg. C. First, the mechanical behaviour of the samples was determined after the fluid circulation period. The microstructure of the samples was also analysed via mercury intrusion porosimetry tests, scanning electron microscopy and optical microscopy. Since it is planned to introduce additives (bentonite, calcareous sand or lime) in the remoulded argillite to backfill the deep galleries, such mixtures were also studied. The results showed that MA particles are sensitive to the alkaline fluid circulation at the microstructural level. In the case of the calcareous sand, no major changes of the microstructure nor the mechanical behaviour were observed. The pure argillite underwent slight modifications that can be related to a limited dissolution of its clayey particles. Conversely, intense alteration of the MX-80 particles was evidenced with a strong increase of the macro-pore void ration while the mechanical behaviour was slightly altered by the fluid circulation. Lime addition improved the mechanical characteristics of the argillite through the precipitation of cementitious compounds. The microstructure of the lime-treated argillite was also altered by the fluid circulation. That study evidenced that alkaline fluid circulation led to the dissolution clayey particles, leading to the increase of the macro-pore void ratio. Some of the dissolved compounds allowed the formation of

  16. Conversion of Hanford salt cake to glass: laboratory studies

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Kupfer, M.J.

    1976-05-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged, alkaline high-level wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. These solid wastes can be converted to silicate-based glasses by melting them either at 1200 to 1300 0 C with appropriate amounts of sand and lime (soda-lime formulation) or at 1000 to 1100 0 C with appropriate amounts of Columbia River basalt and B 2 O 3 (basalt formulation). Both formulations yield dense, immobile glasses of low water leachability (10 -7 to 10 -6 g cm -2 day -1 ) suitable for terminal storage. The soda-lime formulation is presently preferred over the basalt formulation because it can accommodate more salt cake (50 wt percent versus 30 to 40 wt percent) while yielding a glass whose volume is 10 to 20 percent less than the volume of the salt cake in the melt charge

  17. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    International Nuclear Information System (INIS)

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-01-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C α r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329

  18. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Shigeki; Yonezawa, Yasushi [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Ishibashi, Matsujiro [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Tokunaga, Hiroko [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Blaber, Michael [Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300 (United States); Tokunaga, Masao [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Kuroki, Ryota, E-mail: kuroki.ryota@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan)

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  19. The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals

    Science.gov (United States)

    Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.

    2011-06-01

    The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.

  20. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  1. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  2. Carbonation of alkaline paper mill waste to reduce CO{sub 2} greenhouse gas emissions into the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain)], E-mail: rafael.perez@dgeo.uhu.es; Montes-Hernandez, G. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Nieto, J.M. [Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain); Renard, F. [Laboratoire de Geodynamique des Chaines Alpines, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Physics of Geological Processes, University of Oslo (Norway); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France)

    2008-08-15

    The global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO{sub 2}, CH{sub 4}, N{sub 2}O and CFCs. The CO{sub 2} emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH){sub 2}) as a possible mineralogical CO{sub 2} sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO{sub 2} dissolution in water and (3) CaCO{sub 3} precipitation. This CO{sub 2} sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO{sub 2} into stable calcite/ton of paper waste, independently of initial CO{sub 2} pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO{sub 2} mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid-solid waste for CO{sub 2} mitigation and reduction of greenhouse effect gases into the atmosphere.

  3. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  4. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    increased from 4.5x10 -13 to 1.2x10 -12 by 11 cycles. This result is probably caused by the changes of exchangeable cations in the altered bentonite and the formation of the illite/smectite interstratified mineral. In the case of the alkaline solutions with pH14, the permeability increased with the dissolution of the component minerals of bentonite, the precipitation of the secondly minerals (e.g. analcime and phillipsite) and the change of the mineralogical feature of montmorillonite as illitization, beidellitization and increasing of layer charge. (author)

  5. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  6. Combining piracetam and lithium salts: ionic co-crystals and co-drugs?

    Science.gov (United States)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Capucci, Davide; Nanna, Saverio; Wouters, Johan; Aerts, Luc; Quéré, Luc

    2012-08-25

    Mechanochemical reaction of solid piracetam with the inorganic salts LiCl and LiBr yields ionic co-crystals which are also co-drugs, characterized by markedly different thermal properties with respect to pure components, also depending on the method for preparation and/or conditions of measurements; single crystal and powder X-ray diffraction at variable temperatures, DSC, TGA, hot stage microscopy (HSM) and intrinsic dissolution rate have been used to fully characterize the solid products.

  7. Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil

    Directory of Open Access Journals (Sweden)

    Jaqueline Alves de Almeida Calábria

    2017-11-01

    Full Text Available Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, atomic absorption spectrometry (AAS, scanning electron microscopy (SEM, and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH, which are expected to be worse sorbents for alkaline elements (e.g., Cs than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.

  8. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Lee, Seung Kon; Lee, Su Seung; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of); Kim, Sang Wook [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    {sup 99} Mo is extracted from the filtrate solution through column-based multistep separation and purification process. In the process, removal of radio-impurities from the solution is essential to acquire high-quality fission {sup 99} Mo. Iodine is the main impurity having about 15% of total radioactivity among the whole fission products. Most of the iodine exists in the caustic dissolution as iodide form. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Compound is dried again. After heating ascorbic acid solution, solution is added to dried compound. Heat the mixture. After removing supernatant, the mixture is washed with hot distilled water and then cool distilled water in the order named. Finally, the mixture is heated and then recovering by using the sieve. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Silver-doped DAW-70 alumina by using silver mirror reaction is less impurities and simpler than method using ascorbic acid.

  9. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  10. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress.

    Science.gov (United States)

    Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang

    2018-08-30

    Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.

  11. Salt disproportionation: A material science perspective.

    Science.gov (United States)

    Thakral, Naveen K; Kelly, Ron C

    2017-03-30

    While screening the counter-ions for salt selection for an active pharmaceutical substance, there is often an uncertainty about disproportionation of the salt and hence physical stability of the final product formulation to provide adequate shelf life. Several examples of disproportionation reactions are reviewed to explain the concepts of pHmax, microenvironmental pH, and buffering capacity of excipients and APIs to gain mechanistic understanding of disproportionation reaction. Miscellaneous factors responsible for disproportionation are examined. In addition to the dissolution failure due to the formation of less soluble unionized form, various implications of the disproportionation are evaluated with specific examples. During lead optimization and early stages of development, when only a limited amount of material is available, use of predictive tools like mathematical models and model free kinetics to rank order the various counter-ions are discussed in detail. Finally, analytical methods and mitigation strategies are discussed to prevent the disproportionation by detecting it during early stages of drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modelling of the UO2 dissolution mechanisms in synthetic groundwater solutions. Dissolution experiments carried out under oxic conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2001-02-01

    The analytical data generated during the last three years within the 4th framework program of the European Community at VTT Chemical Technology concerning UO 2 dissolution under oxidising conditions have been modelled in the present work. The modelling work has been addressed to perform a kinetic study of the dissolution data generated by Ollila (1999) under oxidising conditions by using unirradiated uranium dioxide as solid sample. The average of the normalised UO 2 dissolution rates determined by using the initial dissolution data generated in all the experimental tests is (6.06 ± 3.64)* 10 -7 mol m -2 d -1 . This dissolution rate agrees with most of the dissolution rates reported in the literature under similar experimental conditions. The results obtained in this modelling exercise show that the same bicarbonate promoted oxidative dissolution processes operate for uranium dioxide, as a chemical analogue of the spent fuel matrix, independently of the composition of the aqueous solution used. (orig.)

  13. Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora.

    Science.gov (United States)

    Kulkarni, S; Nautiyal, C S

    2000-04-01

    A study was conducted to examine the growth response of a rhizobial strain Rhizobium sp. NBRI330 isolated from root nodules of Prosopis juliflora growing in alkaline soil. The strain had the ability to nodulate P. juliflora. Nursery grown plants inoculated with Rhizobium sp. NBRI330 had 60.6% higher plant dry weight, as compared with uninoculated plants. The individual stress survival limit of a rhizobial strain Rhizobium sp. NBRI330 isolated from alkaline soil in a medium containing 32% (wt/vol) salt was 8 h, and at 55 degrees C up to 3 h. The length of Rhizobium sp. NBRI330 in salt-stressed cells increased significantly to 3.04 microm from 1.75 microm of non-stressed control cells. On the contrary, the length of pH-stressed cells declined to 1.40 microm. Compared with non-stressed control rod-shaped cells, the shape of temperature-stressed cells changed to spherical, of 0.42 microm diameter. High temperature (45 degrees C) was tolerated efficiently by Rhizobium sp. NBRI330 in the presence of salt at pH 12, as compared with pH 7.

  14. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  15. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  16. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  17. Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg.

    Science.gov (United States)

    Ganesan, P; Kaewmanee, T; Benjakul, S; Baharin, B S

    2014-01-01

    Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption.

  18. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  19. Wastewater parameters after the process of phosphorus compounds removal by the metal dissolution method in comparison with precipitation and electrocoagulation methods

    Directory of Open Access Journals (Sweden)

    Wysocka Izabela

    2017-03-01

    Full Text Available Precipitation methods are commonly used for removing phosphorus compounds from wastewater. Chemical precipitation method, based on adding iron, aluminium or calcium salts to the treated wastewater, is often used. Another possible way of precipitating phosphates is metal dissolution method, which is presented in this paper. The main difference between these two methods is how the phosphate precipitating ions are introduced to the wastewater.

  20. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  1. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  2. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations.

    Science.gov (United States)

    Borbás, Enikő; Nagy, Zsombor K; Nagy, Brigitta; Balogh, Attila; Farkas, Balázs; Tsinman, Oksana; Tsinman, Konstantin; Sinkó, Bálint

    2018-03-01

    In this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%. Changing the salt forming agent as well resulted in approximately 20% of flux reduction compared to the brand formulation. This significant difference was clearly shown in the published in vivo results as well. The use of additional lactose monohydrate in the formulation also leads to approximately 10% reduction in flux. The results show that by changing excipients, the dissolution of telmisartan was not altered significantly, but the flux through the membrane was found to be significantly changed. These results pointed out the limitations of traditional USP dissolution tests and emphasized the importance of simultaneously measuring dissolution and absorption, which allows the complex effect of formulation excipients on both processes to be measured. Moreover, the in vivo predictive power of the simultaneous dissolution-absorption test was demonstrated by comparing the in vitro fluxes to in vivo bioequivalence study results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The dissolution of chalcopyrite in chloride media

    International Nuclear Information System (INIS)

    Ibanez, T.; Velasquez, L.

    2013-01-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO 2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  4. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  5. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  6. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  7. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  8. Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York

    Science.gov (United States)

    Norris, Stanley E.

    1978-01-01

    The aggregate thickness of evaporites (salt, gypsum, and anhydrite) in the Silurian Salina sequence in Michigan exceeds 1200 feet in areas near the periphery of the Michigan basin, where the salt beds are less than 3000 feet below land surface. In northeast Ohio the aggregate thickness of salt beds is as much as 200 feet in places, and in western New York it is more than 500 feet, where th beds are less than 3000 feet deep. The salt-bearing rocks dip regionally on the order of 50 feet per mile; those in Michigan dip toward the center of the Michigan basin, and those in Ohio and New York, in the Appalachian basin, dip generally southward. The rocks in both basins thicken downdip. Minor folds and faults occur in the salt-bearing rocks in all three states. Some of this defrmation has been attenuated or absorbed bo the salt beds. Occuring near the middle of thick sedimentary sequences, the salt beds are bounded aboe and below by beds containing water having dissolved-solids concentrations several times that seawter. The brines occur commonly in discrete zones of high permeability at specific places in the stratigraphic sequence. In northeast Ohio two prominent brine zones are recognized by the driller, the Devonian Oriskany Sandstone, or 'first water' zone, above the Salina Formation, and the Newburg or 'second water' zone below the Salina. In each aquifer there is a vertical component of hydraulic head, but little brine probably moves through the salt beds because their permeability is extremely low. Also, ther is little evidence of dissolution of the salt in areas distant from the outcrop, suggesting that if brine does move through the salt, movement is at a slow enough rate so that, in combination with the saturated or near-saturated condition of the water, it precludes significant dissolution. Principal brine movement is probably in the permeable zones in the direction of the hydraulic gradient. Two areas in Michigan and one area each in Ohio and New York appear

  9. The degree of doubly charged cation binding in solutions of (co)polymers of 2-acrylamido-2-methylpropanesulfonic acid salts

    International Nuclear Information System (INIS)

    Kurenkov, V.F.; Kolesnikova, I.Yu.; Antonovich, O.A.

    2002-01-01

    The degree of binding the ions of the alkaline-earth metals (M = Mg, Ca, Sr, Ba) by the polysulfate anions in the aqueous solutions of the polymers of the 2-acrylamido-2-methylpropanesulfonic acid (N-AMS) salts and their binary copolymers with the acrylamide (AA) and N-vinylpyrrolidone (VP) is quantitatively evaluated through the Terayama and Wall viscosimetric method. It is established, that the degree of binding decreases in the Sr>Ca>Mg sequence for the N-AMS polymer salts and in the reverse sequence (Mg>Ca>Sr(Ba)) for the binary copolymers of the N-AMS salts with AA and VP [ru

  10. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter [AF-Consult Switzerland AG, Baden (Switzerland); Fuehrboeter, Jens Fred [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-07-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  11. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    International Nuclear Information System (INIS)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter; Fuehrboeter, Jens Fred

    2015-01-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  12. Applicability of low alkaline cement for construction and alteration of bentonite in the cement. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Fujii, Kensuke; Tajima, Takatoshi; Takeda, N.; Kubo, Hiroshi

    2003-02-01

    This study consists of accelerating corrosion test of rebar in saline, automogeneous shrinkage test of HFSC, accelerating test for bentonite and rock, and summarizing rock and bentonite alteration. Corrosion of rebars in HFSC: Since sorption capacity of HFSC for Cl ion is slow due to low alkalinity, rate of corrosion of rebar in HFSC is very large. Cracking due to corrosion is generating in 4 years or 20 years, although service period is deferent in OPC amount. Automogenous shrinkage: Automogenous shrinkage of HFSC is larger than OPC in cement paste. It decreases corresponding to rise of fly ash content. The shrinkage in HFSC 226 is quite similar to OPC. The shrinkage in HFSC concrete is smaller than OPC concrete. 720 days alteration test of bentonite by solution of low alkaline cement: Ion exchange to Ca bentonite and calcite are observed in the solid phase. Thin plate of bentonite is disappeared and round shaped secondary mineral is generated. Dissolution of bentonite and generation of secondary minerals are limited in pH 11.0 or less, since pH of bentonite is about 10.0. 720 days alteration test of rock by solution of low alkaline cement: Calcite is generated in very test. Very small evidence is observed as generation of secondary minerals. Etched pits are observed in tuff A due to corrosion. (author)

  13. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  14. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  15. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  16. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  17. Monitoring system specifications: retrieval of surf from a salt repository

    International Nuclear Information System (INIS)

    1980-01-01

    The task of developing specifications for a reference monitoring system determined by repository environmental conditions, retrieval operations, and federal regulatory criteria is discussed. The monitoring system specified in this report is capable of measuring (1) package position and orientation, (2) vault deformation, (3) brine accumulation, (4) spent fuel dissolution, (5) temperature, (6) nuclear radiation, and (7) package condition with sufficient accuracy to provide data input to a general risk assessment model. In order to define a monitoring system which can provide probabilistic data on radiological risk to operating personnel and the general public for a salt mine repository, the following information is required: (1) a complete design of the salt SURF repository including inventory, density and waste package design details; (2) probalistic failure rate data on containment integrity of the SURF waste package; (3) probabilistic failure rate data on the monitoring system components

  18. Development of Dissolution Test Method for Drotaverine ...

    African Journals Online (AJOL)

    Development of Dissolution Test Method for Drotaverine ... Methods: Sink conditions, drug stability and specificity in different dissolution media were tested to optimize a dissolution test .... test by Prism 4.0 software, and differences between ...

  19. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Gard, L.M. Jr.

    1976-01-01

    The geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt are discussed. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after Miocene regional uplift had caused downcutting streams to breach the salt core resulting in further collapse. The axis of the anticline is a narrow generally flat-floored valley containing a few hills composed of downdropped Mesozoic rocks foundered in thecaprock. The caprock, which underlies thin alluvium in the valley, is composed of contorted gypsum, shale, sandstone, and limestone--the insoluble residue of the Paradox salt

  20. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  2. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  3. [Physiological characteristics of Pinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica seedlings on sandy lands under salt-alkali stresses].

    Science.gov (United States)

    Meng, Peng; Li, Yu-Ling; Zhang, Bai-xi

    2013-02-01

    For the popularization of Pinus densiflora var. zhangwuensis, a new afforestation tree species on the desertified and salinized-alkalized lands in Northern China, and to evaluate the salinity-alkalinity tolerance of the tree species and to better understand the tolerance mechanisms, a pot experiment with 4-year old P. densiflora var. zhangwuensis and P. sylvestris var. mongolica was conducted to study their seedlings growth and physiological and biochemical indices under the effects of three types salt (NaCl, Na2CO3, and NaHCO3 ) stresses and of alkali (NaOH) stress. Under the salt-alkali stresses, the injury level of P. densiflora var. zhangwuensis was lower, and the root tolerance index was higher. The leaf catalase (CAT) activity increased significantly by 22. 6 times at the most, as compared with the control; the leaf malondialdehyde (MDA) content had no significant increase; the leaf chlorophyll (Chl) content had a smaller decrement; and the leaf water content (LWC) increased slightly. P. sylvestris var. mongolica responded differently to the salt-alkali stresses. Its leaf CAT activity had less change, MDA content increased significantly, Chl content had significant decrease, and LWC decreased slightly. It was suggested that P. densi-flora var. zhangwuensis had a greater salinity-alkalinity tolerance than P. sylvestris var. mongolica. The higher iron concentration in P. densiflora var. zhangwuensis needles enhanced the CAT activity and Chl content, whereas the higher concentrations of zinc and copper were associated with the stronger salinity-alkalinity tolerance.

  4. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  5. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    Science.gov (United States)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  6. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  7. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  8. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barbi'ro, L.; Wopereis, M.C.S.; Maeght, J.L.; Zee, van der S.E.A.T.M.

    2003-01-01

    Salt-related soil degradation due to irrigation activities is considered a major threat to the sustainability of rice cropping under semi-arid conditions in West Africa. Rice productivity problems related to soil salinity, alkalinity and topographic position were observed in an irrigated rice scheme

  9. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    Science.gov (United States)

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    USP apparatus I and II are gold standard methodologies for determining the in vitro dissolution profiles of test drugs. However, it is difficult to use in vitro dissolution results to predict in vivo dissolution, particularly the pH-dependent solubility of weak acid and base drugs, because the USP apparatus contains one vessel with a fixed pH for the test drug, limiting insight into in vivo drug dissolution of weak acid and weak base drugs. This discrepancy underscores the need to develop new in vitro dissolution methodology that better predicts in vivo response to assure the therapeutic efficacy and safety of oral drug products. Thus, the development of the in vivo predictive dissolution (IPD) methodology is necessitated. The major goals of in vitro dissolution are to ensure the performance of oral drug products and the support of drug formulation design, including bioequivalence (BE). Orally administered anticancer drugs, such as dasatinib and erlotinib (tyrosine kinase inhibitors), are used to treat various types of cancer. These drugs are weak bases that exhibit pH-dependent and high solubility in the acidic stomach and low solubility in the small intestine (>pH 6.0). Therefore, these drugs supersaturate and/or precipitate when they move from the stomach to the small intestine. Also of importance, gastric acidity for cancer patients may be altered with aging (reduction of gastric fluid secretion) and/or co-administration of acid-reducing agents. These may result in changes to the dissolution profiles of weak base and the reduction of drug absorption and efficacy. In vitro dissolution methodologies that assess the impact of these physiological changes in the GI condition are expected to better predict in vivo dissolution of oral medications for patients and, hence, better assess efficacy, toxicity and safety concerns. The objective of this present study is to determine the initial conditions for a mini-Gastrointestinal Simulator (mGIS) to assess in vivo

  10. Study of the thermal and mechanical sensitivity of bitumen/oxygen salt mixtures

    International Nuclear Information System (INIS)

    Backof, E.; Diepold, W.

    1975-07-01

    The safe handling characteristics of radioactive wastes containing nitrate salts to be fixed in bitumen for ultimate storage in salt mines according to a process developed at the Karlsruhe Nuclear Research Center have been examined with respect to their combustibility and shock sensitivity in tests of inactive bitumen/salt mixtures. Samples containing 40% bitumen and 60% nitrates of alkali, alkaline earth, and heavy metals, organic acids and rare earths were used to determine the thermal sensitivity (ignition temperature, duration of burning, heating under contained conditions), the mechanical sensitivity (shock sensitivity) and, in order to simulate major shock stresses, the sensitivity against detonation stresses. A few basic experiments were also performed on some beta-irradiated inactive samples. It appeared that although the addition of nitrates increased the combustibility of bitumen, neither the high thermal nor the detonation stresses resulted in any explosion-type reaction. (orig.) [de

  11. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Z., E-mail: zaynab.aly@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Perera, D.S. [School of Materials Science, University of NSW, Kensington, NSW 2052 (Australia)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In dilute solutions, Na, Al and Si releases were not sensitive to pH in range 4-10. Black-Right-Pointing-Pointer On heating from 18 to 90 Degree-Sign C in DIW, Na dissolution rate increased by a factor of {approx}4. Black-Right-Pointing-Pointer Elemental extractions in DIW at 18 Degree-Sign C increased linearly with time over 1-7 days. Black-Right-Pointing-Pointer Na release kinetics in DIW followed a pseudo-second-order kinetic model. Black-Right-Pointing-Pointer Contact with KCl, KHCO{sub 3} and phthalate buffers (pH6 and 10) resulted in Na{sup +} {r_reversible} K{sup +} exchange. - Abstract: In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of {approx}4 on heating from 18 to 90 Degree-Sign C, with greater increases in the extractions of Al and Si. At 18 Degree-Sign C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO{sub 3}, and pH {approx}6 and 10

  12. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  13. Rock salt as a medium for long-term isolation of radioactive wastes - a reassessment

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1985-01-01

    Rock salt has been regarded as a suitable medium for the permanent disposal of high and medium level radioactive wastes since the National Academy of Sciences recommended it in 1957. As a result of detained site-specific studies conducted for the Waste Isolation Pilot Plant (WIPP) project in New Mexico, however, several potential problems which are unique to bedded salt deposits have emerged. These include 1) the need to delineate the extent and rate of past dissolution and projections for the future, 2) the origin and significance of brines often found underlying the salt beds, 3) the rate and volume of migration of brine from the salt crystals towards the heat producing waste canisters, 4) the creep rates and implications for retrievability, and 5) the existence of potash and oil and gas resources with implications of human intrusion in the future. These questions will also be faced for sites in salt domes with added complications due to more complex structure and hydrology. The experience at WIPP shows that the site characterization process for high level waste repositories in bedded or dome salt should aim at identifying the important issues of site suitability early in the process and a clear program should be established to address these issues

  14. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  15. Potential effect on the cathodic efficiency of a Zinc electrodeposition in a cyanide free alkaline bath

    International Nuclear Information System (INIS)

    Diez, J. A.; Muller, C.; Grande, H.

    2004-01-01

    The aim of this work has been the study of the potential advantages of ursin a potentiostatic method in galvanizing industrial processes. The behaviour of cyanide-free alkaline zinc bath has been analyzed using the process cathodic efficiency as control parameter. By anodic re dissolution (Q 0 x/Q r ed measurement), the potential range of maximum cathodic efficiency has been set. Finally, the method has been scaled up to a semi-pilot plant in order to check the stability of the results and as a previous step to industry implementation. At this scale, the cathodic efficiency has been measured by weight loss tests. (Author) 22 refs

  16. Corrosion properties of HLW and spent fuel overpacks in highly alkaline environments

    International Nuclear Information System (INIS)

    Kursten, B.

    2009-01-01

    Throughout the world, deep geological disposal in stable rocks with low groundwater flow is considered for the long-term management of long-lived radioactive waste (vitrified high-level waste - VHLW - and spent fuel - SF).The main advantage of the SC design, with respect to corrosion, is that under the predicted conditions (i.e. highly alkaline concrete buffer), the carbon steel overpack is expected to undergo uniform corrosion (passive dissolution). The key objective of this study is to demonstrate that the carbon steel overpack will be able to ensure complete containment of the radioactivity at least during the thermal phase, this is the period during which the temperature of the host rock is expected to lie above the range of temperatures within which nominal radionuclide migration properties can be relied upon

  17. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  18. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  19. Dissolution of different zinc salts and zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture.

    Science.gov (United States)

    Jiang, Cheng'ai; Wu, Qitang; Zeng, Shucai; Chen, Xian; Wei, Zebin; Long, Xinxian

    2013-09-01

    Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5ZnO x 2CO3-4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210-2603 mg/kg for maize shoots and 6445-12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.

  20. Dissolution rate enhancement of piroxicam by ordered mixing.

    Science.gov (United States)

    Saharan, Vikas Anand; Choudhury, Pratim Kumar

    2012-07-01

    Micronized piroxicam was mixed with lactose, mannitol, sorbitol, maltitol and sodium chloride to produce ordered mixture in a glass vial by manual hand shaking method. The effect of excipients, surfactant, superdisintegrant, drug concentration and carrier particle size on dissolution rate was investigated. Dissolution rate studies of the prepared ordered mixtures revealed that all water soluble excipients increased the dissolution rate of piroxicam when compared to the dissolution rate of piroxicam or its suspension. Ordered mixture formulation PLF4, consisting of lactose as water soluble excipient, SSG (8% w/s) and SLS (1% w/w), released piroxcam at a very fast rate so much so that about 90% of the composition had passed into solution within 2 min. The order of the dissolution rate enhancement for ordered mixtures of various water soluble excipients was: lactose > mannitol > maltitol > sorbitol > sodium chloride. Carrier granules of size 355-710 µm were most effective in increasing the dissolution rate of drug from ordered mixtures. Decreasing the carrier particle size reduced drug dissolution from ordered mixtures. The dissolution rate of ordered mixtures consisting of 1-5% w/w piroxicam was superior to dissolution rate of piroxicam suspension. The dissolution data fitting and the resulting regression parameters indicated Hixson Crowell, cube root law, as the best fit to drug release data of ordered mixtures.

  1. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  2. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  3. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  4. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  5. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  6. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  7. Removal of free cyanide in waste water through complexation with Fe(II) iron followed by alkaline chlorination. Tetsu (II) ion ni yoru sakka hanno wo maeshori to suru haisuichu no yuri sian no shori

    Energy Technology Data Exchange (ETDEWEB)

    Nishikubo, N; Tanihara, K; Yasuda, S [Government Industrial Research Institute, Kyushu, Fukuoka (Japan)

    1991-11-01

    The removal treatment of free cyanide in waste water was tested by complexation with Fe(2) ion followed by alkaline chlorination and precipitation of residual iron cyano complex to study saving of sodium hypochlorite (NaClO) for alkaline chlorination. The complexation with Fe(2) ion was studied in batch treatment under the coexistence with zinc ion assuming plating waste water, while the relation between the complexation and effective chlorine consumption in alkaline chlorination was studied in continuous treatment. As a result, the effective chlorine consumption was greatly decreased by pretreatment, and a cyanic acid ion (CNO{sup {minus}}) concentration was also lower than that in conventional methods. In the case of free cyanide with lower initial concentration, the total cyanide concentration in final treated water offered sufficiently low values only by adding zinc salt, while in higher initial concentration, it reached 1 ppm or less through precipitation by adding a reductant together with zinc salt. 9 refs., 7 figs., 2 tabs.

  8. Process control plan for Single Shell Tank (SST) Saltcake Dissolution Proof of Concept

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    2001-01-01

    This document describes the process controls for the tank 241-U-107 (U-107) saltcake dissolution proof-of-concept operations. Saltcake dissolution is defined as a method by which water-soluble salts will be retrieved from the Hanford Site radioactive waste tanks utilizing dissolution as the mobilizing mechanism. The proof-of-concept operations will monitor the retrieval process and transfer at least 100 kgal of fluid from tank U-107 to the double-shell tank (DST) system during the performance period. Tank U-107 has been identified as posing the highest long-term risk to the Columbia River of all single shell tanks (SSTs). This is because of the high content of mobile, long-lived radionuclides mostly in the saltcake waste in the tank. To meet current contractual and consent decree commitments, tank U-107 is being prepared for interim stabilization in August 2001. It is currently scheduled for saltcake retrieval in 2023, near the end of the SST retrieval campaign because of a lack of infrastructure in U-Farm. The proof-of-concept test will install a system to dissolve and retrieve a portion of the saltcake as part of, and operating in parallel with, the standard interim stabilization system to be installed on tank U-107. This proof-of-concept should provide key information on spray nozzle selection and effective spray patterns, leak detection, monitoring, and mitigation (LDMM) and in-tank saltcake solubility data that will help in the design of a full-tank retrieval demonstration system

  9. Study of sulfur adlayers on Au(1 1 1) from basic hydrolysis of piperazine bis(dithiocarbamate) sodium salt

    International Nuclear Information System (INIS)

    Martínez, Javier A.; Valenzuela, José; Hernandez-Tamargo, Carlos E.; Cao-Milán, Roberto; Herrera, José A.; Díaz, Jesús A.; Farías, Mario H.; Mikosch, Hans

    2015-01-01

    Highlights: • S adlayer formation from descomposition of piperazine bis(dithiocarbamate) sodium salt under alkaline conditions. • Quasi-rectangular octomers (eight sulfur atoms) coexist with another phase. • A DFT surface model of four S-dimers arranged as octomers reproduced real STM images. - Abstract: Sulfur adlayers on Au(1 1 1) were obtained after the interaction of a gold substrate with an alkaline solution of piperazine bis(dithiocarbamate) sodium salt. Characterization of the sulfur modified gold surface was performed by means of X-Ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculations. XPS signals indicated the presence of S–Au bonds, monomeric and polymeric sulfur, and absence of nitrogen and sodium. Images from STM showed the formation of quasi-rectangular octomers in coexistence with another phase. A DFT model using the arrangement of sulfur dimers on the Au(1 1 1) surface effectively reproduced the experimental STM images

  10. Study of sulfur adlayers on Au(1 1 1) from basic hydrolysis of piperazine bis(dithiocarbamate) sodium salt

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Javier A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Valenzuela, José [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Hernandez-Tamargo, Carlos E. [Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Cao-Milán, Roberto [Laboratorio de Bioinorgánica (LBI), Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Herrera, José A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Díaz, Jesús A.; Farías, Mario H. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); and others

    2015-08-01

    Highlights: • S adlayer formation from descomposition of piperazine bis(dithiocarbamate) sodium salt under alkaline conditions. • Quasi-rectangular octomers (eight sulfur atoms) coexist with another phase. • A DFT surface model of four S-dimers arranged as octomers reproduced real STM images. - Abstract: Sulfur adlayers on Au(1 1 1) were obtained after the interaction of a gold substrate with an alkaline solution of piperazine bis(dithiocarbamate) sodium salt. Characterization of the sulfur modified gold surface was performed by means of X-Ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculations. XPS signals indicated the presence of S–Au bonds, monomeric and polymeric sulfur, and absence of nitrogen and sodium. Images from STM showed the formation of quasi-rectangular octomers in coexistence with another phase. A DFT model using the arrangement of sulfur dimers on the Au(1 1 1) surface effectively reproduced the experimental STM images.

  11. A method for polymerizing insaturated monomers through irradiation in the presence of a salt

    International Nuclear Information System (INIS)

    Phalangas, C.J.; Restaino, A.J.; Yun, Hanbo.

    1975-01-01

    The method consists in irradiating an aqueous solution with a pH between about 2 and 12, comprising from 10 to 40% about an ethylene-insaturated monomer or of mixtures thereof with vinyl-sulfonic acid, an alkaline metal salt of said acid or acrylamide diacetone and at least 3% of a potassium, sodium, lithium, ammonium or aluminium salt, by means of highly powerful radiations, e.g. gamma rays, the radiation intensity being between 1000 and 200000 rads per hour and the overall radiation dose being in the 1000-30000 rads. The obtained product is a polymer aqueous solution either in the liquid state or in the form of a gel [fr

  12. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    chemistry. For most determinations, a jet of water conditioned to the required chemistry but stripped of dissolved iron with ion-exchange is directed onto a pellet of magnetite and the dissolution monitored; the high velocity of the jet ensures that mass transfer effects are minimised. The magnetite is synthesised by a solid-state method involving heating a mixture of haematite and iron under vacuum at 600 deg. C, compacting under pressure and sintering into a pellet under argon at 1,100 deg. C. The product has an appropriate consistency and resistance to erosion. Most experiments have measured the average dissolution rate by estimating the amount of magnetite lost from the pellet by surface analysis and profilometry after exposure for a given time. Concomitant electrochemical information is obtained by electrically isolating the pellet from the loop and connecting it to a potentiostat, along with a counter-electrode and reference electrode strategically mounted in the loop test section. Detailed kinetic data are obtained by irradiating the magnetite before installation in the loop and monitoring on-line with gamma spectrometry the transport of dissolved, radioactive 59 Fe. Preliminary determinations had used radioactive magnetite precipitated under galvanostatic conditions from a solution of irradiated FeSO 4 in EDTA onto a platinum coupon. The coupon was then mounted axially in the loop test section and subjected to a range of imposed potentials during exposure; however, this coupon technique gave dissolution results confounded by the release of magnetite crystallites, so we concentrated on the pellet technique. The paper presents the results of exposures carried out over a range of temperatures and alkalinities at oxygen concentrations between 0 and 20 ppb. It shows how dissolution rate constants obtained under CANDU primary coolant conditions of 310 deg. C and pH 25C 10.5 (with LiOH) fall between published values, which were obtained with a different technique under

  13. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  14. Dissolution rate of BTEX contaminants in water

    International Nuclear Information System (INIS)

    Njobuenwu, D.O.; Amadi, S.A.; Ukpaka, P.C.

    2005-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and substituted benzenes are the most common aromatic compounds in petroleum. BTEX components are the most soluble and mobile fraction of crude oil and many petroleum products, and frequently enter soil, sediments and aquatic environments because of accidental spills, leaks and improper oil waste disposal practices. The mass transfer process of hydrocarbons in aquatic mediums has received considerable attention in the literature. This paper focused on the molecular mass transfer rate of BTEX in water, with the aim of understanding and predicting contaminant fate and transport. A comprehensive model was developed to simulate the molecular dissolution rate of BTEX in a natural water stream. The model considered the physicochemical properties of the BTEX compounds and physical processes relevant to the spreading of contaminants in the sea. The dissolution rate was a function of oil slick area, dissolution mass transferability and oil solubility in water. The total dissolution rate N was calculated and the dissolution mass transfer coefficient K was given as the point value of mass transfer coefficient. Results for the dissolution rate based on the solubility of the components in the water were compared with analytical solutions from previous studies and showed good agreement. The model showed that benzene had the largest dissolution rate, while o-xylene had the lowest rate because of its lower fraction. Benzene dissolution rate was approximately 2.6, which was 20.6 times that of toluene and ethylbenzene. It was concluded that the model is useful in predicting and monitoring the dissolution rate of BTEX contaminants in soil and water systems. 22 refs., 2 tabs., 3 figs

  15. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  16. Biochemical Changes Associated With Giving PALUDAL Salt In The Drinking Water Of Rats

    International Nuclear Information System (INIS)

    ABD-EL-MONEIM, A.E.; LOTFI, S.A.

    2010-01-01

    Three groups of adult male albino rats were given either tap water (control) or saline water (1 % unrefined paludal salt dissolved in tap water or 1 % pure chemically synthesized NaCl in tap water). The experiment was carried out under hot summer conditions. At the end of 28 days of the treatment, blood samples were collected to follow up the biochemical alterations induced by paludal salt intake in kidney, liver and thyroid function tests besides serum electrolytes since unrefined paludal salt is being used extensively nowadays by Egyptian people as a table salt which comprises risks to human health.The results revealed that drinking water containing high level of either pure or unrefined crude salts led to significant elevation of serum urea, creatinine, sodium, potassium, aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum triiodothyronine (T3) and thyroxine (T4) were significantly depressed in both groups received high levels of salt in their drinking water. The level of serum total protein was decreased and albumin was negatively affected by salinity of water especially in paludal group while serum globulin was significantly increased in the other two groups. The biochemical alterations observed in rats as a result of drinking water containing paludal salt were more pronounced than those occurred in rats drank tap water plus pure NaCl.

  17. Colorimetric study of oxidation kinetics of thiolactic acid (2 - mercaptopropionic acid) by hexacyanoferrate (III) in acid and alkaline media

    International Nuclear Information System (INIS)

    Kachhwaha, O.P.; Potter, P.C.; Kapoor, R.C.

    1985-01-01

    The oxidation kinetics of thiolactic acid by hexacyanoferrate (III) in acid and alkaline media employing the calorimetric method have been described. The two compounds react in equimolar ratio in both media, but the kinetic results are different in both media. In acid medium the total order is three, two with respect to thiol and one in oxidant. The rate of the reaction shows an inverse proportionality to (H + ) and also varies inversely with decreasing dielectric constant of the medium. In alkaline medium, the total order of the reaction is two, being unity in each reactant. The rate increases with increased pH value. Additions of ferrocyanide and dithio dilactic acid have no effect on the rate in both media. Additions of a neutral electrolyte does not affect the rate in the acid medium, while a positive salt effect was observed in an alkaline medium. Activation parameters have been evaluated in both media and in a medium of low dialectric. Different reaction schemes have been proposed for acid and alkaline media and have satisfactory explained the experimental data, except for the pH rate. (author)

  18. Formalization of the kinetics for autocatalytic dissolutions. Focus on the dissolution of uranium dioxide in nitric medium

    International Nuclear Information System (INIS)

    Charlier, F.; Canion, D.; Gravinese, A.; Magnaldo, A.; Lalleman, S.; Borda, G.; Schaer, E.

    2017-01-01

    Uranium dioxide dissolution in nitric acid is a complex reaction. On the one hand, the dissolution produces nitrous oxides (NOX), which makes it a triphasic reaction. On the other hand, one of the products accelerates the kinetic rate; the reaction is hence called autocatalytic.The kinetics for these kinds of reactions need to be formalized in order to optimize and design innovative dissolution reactors. In this work, the kinetics rates have been measured by optical microscopy using a single particle approach. The advantages of this analytical technique are an easier management of species transport in solution and a precise following of the dissolution rate. The global rate is well described by a mechanism considering two steps: a non-catalyzed reaction, where the catalyst concentration has no influence on the dissolution rate, and a catalyzed reaction. The mass transfer rate of the catalyst was quantified in order to discriminate when the reaction was influenced by catalyst accumulated in the boundary layer or uncatalyzed. This first approximation described well the sigmoid dissolution curve profile. Moreover, experiments showed that solutions filled with catalyst proved to lose reactivity over time. Results pointed out that the higher the liquid-gas exchanges, the faster the kinetic rate decreases with time. Thus, it was demonstrated, for the first time, that there is a link between catalyst and nitrous oxides. The outcome of this study leads to new ways for improving the design of dissolvers. Gas-liquid exchanges are indeed a lever to impact dissolution rates. Temperature and catalyst concentration can be optimized to reduce residence times in dissolvers. (authors)

  19. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  20. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Simpson, Mike [Idaho National Lab., (United States)

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  1. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    International Nuclear Information System (INIS)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Simpson, Mike

    2012-01-01

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal

  2. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs.

    Science.gov (United States)

    David, S E; Timmins, P; Conway, B R

    2012-01-01

    Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol and tris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility.

  3. Sintering-alkaline processing of borosilicate ores of Tajikistan

    International Nuclear Information System (INIS)

    Nazarov, F.A.

    2018-01-01

    The aim of the work is to study the processes of decomposition of boron-containing ore by sintering with NaOH, finding the optimal parameters of the decomposition process, studying the kinetics of processes and developing the technological foundations for ore processing. The processes of borosilicate ore processing were studied by sintering with NaOH. Possible mechanisms of chemical reactions of the process of sintering-alkaline decomposition of boron-containing ore are established, the results of which are substantiated by physicochemical methods of analysis. A principal technological scheme for processing of borosilicate ores by a sintering-alkaline method has been developed. In the first chapter, data on alkaline and caking processes for processing boron-containing and aluminium comprising raw materials are available in the literature. Based on this, the directions of our own research are outlined. The second chapter is devoted to the study of the chemical and mineralogical compositions of borosilicate ores and their concentrates with the help of X-ray phase and chemical analysis methods, the stoichiometric calculation of the formation of aluminum, iron, and boron salts has been carried out, and a thermodynamic analysis of the processes of sintering borosilicate ores with alkali has been considered. The third chapter presents the results of a study of sintering-alkaline method of processing of initial borosilicate ore of the Ak-Arkhar Deposit and its concentrate without calcination and after calcination. The kinetics of sintering of borosilicate ores with sodium hydroxide was studied. The optimal conditions of borosilicate ore sintering before and after the preliminary calcination with alkali were determined. Optimal parameters of the sintering process have been found: sintering temperature 800-8500 deg C, duration of the process - 60 minutes, mass ratio of NaOH to raw materials 2: 1. The conditions for sintering of borosilicate concentrate with alkali have been

  4. Electrochemical studies of the corrosion behavior of the fine-grained structural steel DIN W.Nr. 1.0566 between 55 and 90deg C in simulated salt brine repository environments

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-05-01

    The electrochemical corrosion of the fine-grained structural steel DIN W. Nr. 1.0566 was tested between 55 and 90deg C in three simulated salt brines of similar compositions as analyzed for the Gorleben repository environment. As test parameters the temperature, the salt brine composition, the stirring velocity and the oxygen content as well as the state of the steel surface were varied. As experimental results are presented: (1) the free corrosion potentials of the steel in three brines, (2) Tafel plots of current densities as measured potentiodynamically in the anodic and cathodic vicinity of the corrosion potentials and being representative for the rate of metal dissolution, (3) the surface morphology of the corroded specimens. As mechanisms - in the absence of oxygen - the cathodic reduction of water and the anodic dissolution of iron are considered to prevail the corrosion reaction. It is shown that the applied electrochemical techniques are able to determine within an accelerated procedure the most important corrosion parameters in respect to their influence on rate of metal dissolution and morphology of corrosion attack. (orig.) [de

  5. Sequential automated fusion/extraction chromatography methodology for the dissolution of uranium in environmental samples for mass spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Milliard, Alex; Durand-Jezequel, Myriam [Laboratoire de Radioecologie, Departement de chimie, Universite Laval, 1045 Avenue de la Medecine, Quebec, QC, G1V 0A6 (Canada); Lariviere, Dominic, E-mail: dominic.lariviere@chm.ulaval.ca [Laboratoire de Radioecologie, Departement de chimie, Universite Laval, 1045 Avenue de la Medecine, Quebec, QC, G1V 0A6 (Canada)

    2011-01-17

    An improved methodology has been developed, based on dissolution by automated fusion followed by extraction chromatography for the detection and quantification of uranium in environmental matrices by mass spectrometry. A rapid fusion protocol (<8 min) was investigated for the complete dissolution of various samples. It could be preceded, if required, by an effective ashing procedure using the M4 fluxer and a newly designed platinum lid. Complete dissolution of the sample was observed and measured using standard reference materials (SRMs) and experimental data show no evidence of cross-contamination of crucibles when LiBO{sub 2}/LiBr melts were used. The use of a M4 fusion unit also improved repeatability in sample preparation over muffle furnace fusion. Instrumental issues originating from the presence of high salt concentrations in the digestate after lithium metaborate fusion was also mitigated using an extraction chromatography (EXC) protocol aimed at removing lithium and interfering matrix constituants prior to the elution of uranium. The sequential methodology, which can be performed simultaneously on three samples, requires less than 20 min per sample for fusion and separation. It was successfully coupled to inductively coupled plasma mass spectrometry (ICP-MS) achieving detection limits below 100 pg kg{sup -1} for 5-300 mg of sample.

  6. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    Science.gov (United States)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  8. The impact of a (hyper)alkaline plume on (fractured) crystalline rock

    International Nuclear Information System (INIS)

    Alexander, Russell

    2012-01-01

    Russell Alexander from Bedrock Geosciences, Switzerland, gave a presentation on the possible effects of cement pore waters on a crystalline host rock. Field, laboratory and natural analogue studies as well as geochemical modelling indicate that cement leachates tend to induce the sealing of fractures in the rock. These studies also indicate that strongly alkaline waters might: - Accelerate the dissolution of vitrified waste, but probably not affect the dissolution rate of spent fuel. - Degrade bentonite to some degree. To avoid some of the effects associated with the use of concrete, several approaches may be used: - Minimisation and tracking/monitoring of the concrete masses. - Development and use of low-pH cements and alternative grouting materials. - The selection of less fractured rock volumes for a repository location. The sealing of fractures evidenced in the Maquarin natural analogue study might contribute to limiting the extent of perturbations caused by an alkaline plume and is likely to create a hydraulic barrier that affects groundwater flow. The effects of these processes should be analysed in a safety case since they may support the idea of a self-sealing repository. Uncertainties in the treatment of an alkaline plume in fractured rock include: - The possible formation of colloids. - Thermodynamic data for cement components and secondary mineral stability. - Cement carbonation. - The effects of super-plasticisers. Given these uncertainties, current assessments of perturbations around a HLW or spent fuel repository caused by cementitious materials are often conservative and provide a pessimistic view of disposal system performance. Discussion of the paper included: Will groundwater flows in deep systems be fast enough to cause pervasive sealing of fractures? The process of how a network of fractures may be sealed over time is uncertain. The flow field will be altered as fractures are sealed and this may cause flow rates in other parts of the fracture

  9. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warminska, Dorota; Wawer, Jaroslaw; Grzybkowski, Waclaw

    2010-01-01

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  10. Interference by pralidoxime (PAM) salts in clinical laboratory tests.

    Science.gov (United States)

    Nagase, Sumika; Kohguchi, Katsunori; Tohyama, Kaoru; Watanabe, Mikio; Iwatani, Yoshinori

    2013-02-01

    Drugs sometimes alter the results of clinical laboratory tests. We examined the effects of pralidoxime (PAM) salts, a medicine used to treat organophosphorus poisoning, on clinical laboratory test results for the first time. The effects of PAM salts on glucose (GLU) measurements were examined using a point-of-care testing (POCT) meter, four self-monitoring of blood glucose (SMBG) meters, and two biochemical autoanalyzers. The effects of PAM salts on other clinical tests were also evaluated. The addition of PAM iodide or potassium iodide, but not of PAM chloride or potassium chloride, to blood samples increased the GLU values measured by one POCT meter and 4 SMBG meters using the enzyme electrode (hydrogen peroxidase or oxygen electrode) method. On the other hand, PAM iodide or PAM chloride, but not KI or KCl, affected the values measured at 340 nm by an autoanalyzer using absorption spectrophotometry in 8 of 14 clinical laboratory tests. The absorption spectrum of PAM changed from 294 to 338 nm due to the reaction between PAM and the alkaline buffer, a component of the measuring reagents. PAM iodide increases the GLU values measured by the enzyme electrode method, and PAM salts affected the values measured at 340 nm by absorption spectrophotometry in many other clinical test items. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Layered Zinc Hydroxide Salts Intercalated with Anionic Surfactants and Adsolubilized with UV Absorbing Organic Molecules

    OpenAIRE

    Cursino,Ana C. T.; Rives,Vicente; Carlos,Luís D.; Rocha,João; Wypych,Fernando

    2015-01-01

    Two anionic surfactants, dodecylsulfate (DDS) and dodecylbenzenesulfonate (DBS), were intercalated into layered zinc hydroxide salts (LHS) using the direct alkaline co-precipitation method, and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and thermogravimetric analysis/differential thermal analysis (TGA/DTA). Different UV-absorbing organic molecules, like salicylates, cinnamates and benzophenones, were adsolubilized in the LHS interlayer following two di...

  12. Comparison of alkaline fusion and acid digestion methods for the determination of rhenium in rock and soil samples by ICP-MS

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Tagami, Keiko; Tabei, Ken

    2005-01-01

    A simple acid digestion method was studied in order to analyze many samples at once to understand Re behavior in the terrestrial environment, because, under normal laboratory conditions, digestion methods generally used, such as Carius tube digestions, Teflon vessel digestions and alkaline fusions, can handle only a small number of samples at one time to ensure complete sample digestion. In this study, the Re results for reference materials (RMs) obtained by the acid digestion method were compared with those by the alkaline fusion digestion method to get applicability of the acid digestion method for Re determination in soil by inductively coupled plasma mass spectrometry. Alkaline fusion was chosen for the comparison because it is known to have the highest capability to dissolve Re in geological materials among digestion methods. The average total Re recoveries measured using the 185 Re spike for RMs, such as rock, soil and sediment, were 90.6 ± 4.0% for alkaline fusion and 92.2 ± 7.3% for acid digestion, showing no differences between them. However, Re results obtained by the acid digestion method were usually slightly lower than those by the alkaline fusion (Student's t-test, P -1 , the acid digestion method could dissolve about 80% of the sample Re. Although the acid digestion method is unable to dissolve all Re in the sample, however, the Re discharged to soils could be more extractable than the Re in the dissolution-resistant part; thus, the acid digestion method could be useful for obtaining Re levels in soil samples

  13. Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The purpose of this study was to investigate the hydrolyzation of aspirin during the process of dissolution testing for aspirin delayed-release tablets. Hydrolysis product of salicylic acid can result in adverse effects and affect the determination of dissolution rate assaying. In this study, the technique of differential spectra was employed, which made it possible to monitor the dissolution testing in situ. The results showed that the hydrolyzation of aspirin made the percentage of salicylic acid exceed the limit of free salicylic acid (4.0, and the hydrolyzation may affect the quality detection of aspirin delayed-release tablets. Keywords: Aspirin delayed-release tablets, Drug dissolution test, Fiber-optic dissolution system, UV–vis spectrum

  14. Kinetic studies on the removal of fission products from molten salt using Zeolite-4A. Contributed Paper RD-15

    International Nuclear Information System (INIS)

    Shafi, Suheel; Prabhakara Reddy, B.; Perumal, S.V.; Nagarajan, K.

    2014-01-01

    Molten salt electrorefining process is one of the nonaqueous processes, being developed for reprocessing metallic spent fuel. This process uses liquid metals and molten salts and is operated at elevated temperatures. In the electro-refining process, the spent fuel is used as the anode of the electro-refiner and the actinide elements in the spent fuel are electrotransported from the anode through the molten salt electrolyte onto a suitable cathode where they are collected as metals in pure form. After some batches are processed, chlorides of fission products such as alkali, alkaline earth and rare earth metals accumulate in the electrolyte salt. The accumulated FPs in the salt will be removed by adsorption/ion-exchange by using zeolite columns. Hence, kinetic studies on the adsorption of Cs, Ba which are some of the major FP products in LiCI-KCI eutectic, have been carried out

  15. Identification of release scenarios for a repository of radioactive waste in a salt dome in the Netherlands

    International Nuclear Information System (INIS)

    Glasbergen, P.; Hamstra, J.

    1981-01-01

    A review is presented of the long-term scenarios used in the safety analysis which was carried out for the disposal of radioactive waste in salt domes in the Netherlands. The long-term analysis involved the following natural processes or events: climatological and sea-level changes, glacial erosion, diapirism, subsidence, faulting and dissolution. The model calculations which were carried out showed the dominant parameters: the rate of diapirism and the rate of subsurface dissolution of rock salt. During the operational period the intrusion of water in the repository was considered to be the most hazardous event. Because the layout of the disposal mine, the disposal geometry and the disposal mining procedures were still under consideration, the first approach of a release scenario was made on a generic basis. A generic scenario is presented for the events during the flooding of the repository. The transport ways of water through the repository and its surroundings are indicated. It is concluded that release scenario analysis for long-term periods and for the operational period provides essential information to optimize the overall disposal system in an iterative process

  16. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities)

  17. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  18. Salt formation improved the properties of a candidate drug during early formulation development.

    Science.gov (United States)

    Sigfridsson, Kalle; Ahlqvist, Matti; Lindsjö, Martin; Paulsson, Stefan

    2018-07-30

    The purpose of this study was to investigate if AZD5329, a dual neurokinin NK1/2 receptor antagonist, is a suitable candidate for further development as an oral immediate release (IR) solid dosage form as a final product. The neutral form of AZD5329 has only been isolated as amorphous material. In order to search for a solid material with improved physical and chemical stability and more suitable solid-state properties, a salt screen was performed. Crystalline material of a maleic acid salt and a fumaric acid salt of AZD5329 were obtained. X-ray powder diffractiometry, thermogravimetric analysis, differential scanning calorimetry and dynamic vapor sorption were used to investigate the physicochemical characteristics of the two salts. The fumarate salt of AZD5329 is anhydrous, the crystallization is reproducible and the hygroscopicity is acceptable. Early polymorphism assessment work using slurry technique did not reveal any better crystal modification or crystallinity for the fumarate salt. For the maleate salt, the form isolated originally was found to be a solvate, but an anhydrous form was found in later experiments; by suspension in water or acetone, by drying of the solvate to 100-120 °C or by subjecting the solvate form to conditions of 40 °C/75%RH for 3 months. The dissolution behavior and the chemical stability (in aqueous solutions, formulations and solid-state) of both salts were also studied and found to be satisfactory. The compound displays sensitivity to low pH, and the salt of the maleic acid, which is the stronger acid, shows more degradation during stability studies, in line with this observation. The presented data indicate that the substance fulfils basic requirements for further development of an IR dosage form, based on the characterization on crystalline salts of AZD5329. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. High-resolution InSAR constraints on flood-related subsidence and evaporite dissolution along the Dead Sea shores: Interplay between hydrology and rheology

    Science.gov (United States)

    Shviro, Maayan; Haviv, Itai; Baer, Gidon

    2017-09-01

    Sinkhole generation and land subsidence are commonly attributed to dissolution of subsurface layers by under-saturated groundwater and formation of cavities. Along the Dead Sea (DS) shorelines, this process also involves seasonal flash floods that are drained into the subsurface by existing and newly formed sinkholes. We quantify the contribution of flash-floods to salt dissolution and land subsidence using high-resolution interferometric synthetic aperture radar (InSAR). Subsidence rates during a 3-year period (2012-2015) were calculated from 57 COSMO SkyMed X-band interferograms bracketing major flood events and intra-flood periods in 21 sinkhole sites. The sites are located within channels and alluvial fans along the western shores of the Dead Sea, Israel. The observed subsidence reaches maximum rates of 2.5 mm/day, accumulating in specific sites to 500 mm/year. In most of the sinkhole sites a gradual increase in the annual subsidence rate is observed during the 3-year study period. Three different modes of response to floods were observed: (1) sites where floodwater is not directly channeled into sinkholes do not respond to floods; (2) sites adjacent to active channels with sinkholes are unaffected by specific floods but their subsidence rates increase gradually from early winter to mid-summer, and decay gradually until the following winter; and (3) sites in active channels with sinkholes are characterized by an abrupt increase in subsidence rates immediately after each flood (by a factor of up to 20) and by a subsequent quasi-exponential subsidence decay over periods of several months. In these latter sites, subsidence rates after each flood are temporally correlated with alternating groundwater levels in adjacent boreholes. The rapid rise in groundwater head following floods increases the hydraulic gradient of the under-saturated groundwater and hence also the groundwater discharge and the dissolution rate of the subsurface salt layer. A subsequent quasi

  20. The dissolution of high-FeO olivine rock from the Lovasjaervi intrusion (SE-Finland) at 25 deg. C as a function of pH

    International Nuclear Information System (INIS)

    Duro, Lara; El Aamrani, Fatima; Rovira, Miquel; Gimenez, Javier; Casas, Ignasi; Pablo, Joan de; Bruno, Jordi

    2005-01-01

    The high-FeO olivine-rich rock from the Lovasjaervi intrusion (65% olivine, 20% plagioclase, 8% magnetite, 4% pyroxene and 3% serpentine) has been proposed as a potential redox-active backfill-additive in deep high level nuclear waste repositories. In this work, the authors report on kinetic dissolution studies of this solid under different pH and redox conditions performed by using a flow-through methodology. Assuming that silicon is mainly released to solution from the olivine contained in the solid, the experimental results have been adjusted to an empirical rate law as a function of proton concentration. The proton concentration reaction orders agree with results found in the literature for both acidic and alkaline pH ranges. The calculations conducted with the reactive transport code RETRASO show that at alkaline pH, the olivine rock might have a lower redox buffer capacity than expected

  1. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    OpenAIRE

    Jaerger,Silvia; Zimmermann,Ademir; Zawadzki,Sonia Faria; Wypych,Fernando; Amico,Sandro Campos

    2014-01-01

    In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, th...

  2. Aqueous dissolution rates of uranium oxides

    International Nuclear Information System (INIS)

    Steward, S.A.; Mones, E.T.

    1994-10-01

    An understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in an underground repository. The main routes by which radionuclides could be released from a geological repository are the dissolution and transport processes in groundwater flow. Because uranium dioxide is the primary constituent of spent nuclear fuel, the dissolution of its matrix in spent fuel is considered the rate-limiting step for release of radioactive fission products. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a repository and allow for modeling. The intermediate oxide phase U 3 O 8 , triuranium octaoxide, is quite stable and known to be present in oxidized spent fuel. The trioxide, UO 3 , has been shown to exist in drip tests on spent fuel. Here we compare the results of essentially identical dissolution experiments performed on depleted U 3 O 8 and dehyrated schoepite or uranium trioxide monohydrate (UO 3 ·H 2 O). These are compared with earlier work on spent fuel and UO 2 under similar conditions

  3. Laboratory experiment demonstrating the way in which a steam barrier prevents the dissolution of salt buried in a flooded packed bed

    International Nuclear Information System (INIS)

    Taylor, R.W.; Bowen, D.

    1977-01-01

    We have conducted a laboratory experiment to demonstrate a way in which a solid material can be prevented from dissolving in water. The differential solubility of salt (NaCl) in steam vs water is exploited. As long as the temperature of the area and water surrounding the salt is maintained above the boiling point of water, the salt cannot dissolve. This phenomenon, known as the thermal barrier, has far-reaching implications for preventing the dispersal of contaminants present near groundwater sources

  4. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Felföldi, Tamás; Szabó, Attila; Deja-Sikora, Edyta; Kosobucki, Przemysław; Walczak, Maciej

    2017-07-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and EC e up to 423 dS m -1 ) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.

  5. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  6. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  7. Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

    Directory of Open Access Journals (Sweden)

    Stephanie Cohen

    2017-09-01

    Full Text Available As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA anomaly techniques as measures of gross and net calcification (GC, NC, respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

  8. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  9. SYSNET: A salt-site systems network model for scenario assessments

    International Nuclear Information System (INIS)

    Reeves, M.; Banda, R.S.

    1986-12-01

    This document contains a description of the initial version of the systems model SYSNET. This model is being developed to analyze potentially disruptive scenarios of salt repository systems. Currently the model features a general three-dimensional network topology and simulates the processes of flow, heat transport in rock, heat transport in fluid, brine transport, salt creep dissolution, and precipitation. Of necessity, the SYSNET Code uses relatively simple semi-analytic algorithms so that it may be implemented statistically. Uncertain parameters may be sampled with a compatible preprocessor and then analyzed statistically with a compatible postprocessor. When used in this fashion, SYSNET may be caused to calculate distributions of various performance measures and sensitivities of performance measures to uncertain parameters. The ultimate objective of the SYSNET development is to prioritize data needs by computing sensitivities relative to a particular performance measure, namely the 10,000-year cumulative release, and to evaluate repository systems for compliance with the US Environmental Protection Agency (EPA) Standard. 16 refs., 25 figs., 31 tabs

  10. Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots

    Directory of Open Access Journals (Sweden)

    Mingxia Li

    2017-06-01

    Full Text Available Soybean is an important economic crop that is continually threatened by abiotic stresses, especially salt stress. Wild soybean is an important germplasm resource for the breeding of cultivated soybean. The root system plays a very important role in plant salt tolerance. To explore the salt tolerance-related mechanisms among Soja, we have demonstrated the seedling roots' growth and metabolomics in wild soybean, semi-wild soybean, and cultivated soybean under two types of salt stress by using gas chromatography-mass spectrometry. We characterized 47 kinds of differential metabolites under neutral salt stress, and isoleucine, serine, l-allothreonine, glutamic acid, phenylalanine, asparagines, aspartic acid, pentadecanoic acid, lignoceric acid, oleic acid, galactose, tagatose, d-arabitol, dihydroxyacetone, 3-hydroxybutyric acid, and glucuronic acid increased significantly in the roots of wild soybean seedlings. However, these metabolites were suppressed in semi-wild and cultivated soybeans. Amino acid, fatty acid, sugars, and organic acid synthesis and the secondary metabolism of antioxidants increased significantly in the roots of wild soybean seedling. Under alkaline salt stress, wild soybean contained significantly higher amounts of proline, glutamic acid, aspartic acid, l-allothreonine, isoleucine, serine, alanine, arachidic acid, oleic acid, cis-gondoic acid, fumaric acid, l-malic acid, citric acid, malonic acid, gluconic acid, 5-methoxytryptamine, salicylic acid, and fluorene than semi-wild and cultivated soybeans. Our study demonstrated that carbon and nitrogen metabolism, and the tricarboxylic acid (TCA cycle and receiver operating characteristics (especially the metabolism of phenolic substances of the seedling roots were important to resisting salt stress and showed a regular decreasing trend from wild soybean to cultivated soybean. The metabolomics's changes were critical factors in the evolution of salt tolerance among Soja. This study

  11. Low temperature dissolution flowsheet for plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  12. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    Science.gov (United States)

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.

  13. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  14. Modeling of waste/near field interactions for a waste repository in bedded salt: the Dynamic Network (DNET) model

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1983-01-01

    The Fuel Cycle Risk Analysis Division of Sandia National Laboratories has been funded by the US Nuclear Regulatory Commission to develop a methodology for use in assessing the long-term risk from the disposal of radioactive wastes in deep geologic formations. As part of this program, the Dynamic Network (DNET) model was developed to investigate waste/near field interactions associated with the disposal of radioactive wastes in bedded salt formations. The model is a quasi-multi-dimensional network model with capabilities for simulating processes such as fluid flow, heat transport, salt dissolution, salt creep, and the effects of thermal expansion and subsedence on the rock units surrounding the repository. The use of DNET has been demonstrated in the analysis of a hypothetical disposal site containing a bedded salt formation as the host medium for the repository. An example of this demonstration analysis is discussed. Furthermore, the outcome of sensitivity analyses performed on the DNET model are presented

  15. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  16. On catalysis of the initial period of methylcyclohexane oxidation by salts of nontransition metals

    International Nuclear Information System (INIS)

    Smirnov, P.A.; Syroezhko, A.M.; Potekhin, V.M.

    1976-01-01

    The purpose of the present work was to study the influence of salts formed by alkali and alkaline-earth metals with aliphatic acids on chain initiation during the initial period of methylcyclohexane oxidation by air. The oxidation was carried out in an autoclave under 10 kg/cm 2 pressure in the temperature range 120-150 0 C, at catalyst concentrations in the range 0.0-2.36.10 -2 M. The inhibitor concentration was varied in the range 0.0-9.5.10 -4 M. Sodium, cesium, barium lithium and calcium stearates and sodium pelargonate (Pe) were used as catalysts. It was found that salts formed by nontransition metals with aliphatic acids having acid radicals with 9-16 carbon atoms are active catalysts of chain initiation. The catalytic activity of the salts increases with the ionic radius of the cation in the series LiSt 2 2 < CsSt. Radical formation is a first-order process with respect to the catalyst and is due to the polar group of the salt

  17. A chemical redox reaction to generate rock salt-type materials: the case of Na3V2O5.

    Science.gov (United States)

    Adamczyk, E; Anger, E; Freire, M; Pralong, V

    2018-02-27

    Chemical redox reactions are extremely efficient to prepare fully reduced or oxidized phases that are formed during the topotactic insertion/extraction of alkaline ions. Herein, we report these reactions and discuss the possibility to generate new ordered or disordered rock salt-type structures depending on the structure of the mother phase. We have shown that a disordered rock salt-type structure is formed when the transition element is located at the tetrahedral site, as exemplified by the formation of Na 3 V 2 O 5 upon chemical reduction of V 2 O 5 .

  18. Study on alkaline and acid phosphatase activity in acute uranium intoxication

    International Nuclear Information System (INIS)

    Bokova, N.V.; Pavlova, V.B.; Stancheva, Yu.A.; Khadzhirusev, S.B.; Kiradzhiev, G.D.

    1975-01-01

    The protective potential of diethyl barbituric acid sodium salt is studied, in comparison with that of acetazolamide, on kidneys under acute uranium intoxication. Experiments involved rats given intraperitoneal injections with uranyl acetate on 12 successive days up to a total dose of 0.5, 2.0 or 7.0 mg/kg. The resulting effects are measured by chemical assays of serum and urine for alkaline and acid phosphatase and histochemical assays for phosphatase activities in kidneys, kinetics being followed over a 30-day period after total dose administration. Protection of kidneys from toxic uranium effects was found to be of about the same degree with sodium diethyl barbiturate as with acetazolamide. (A.B.)

  19. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  20. Molten salt destruction of rubber and chlorinated solvents

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.

    1994-09-01

    Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evidence of open flames in MSD, the containment of actinides is accomplished by chemical means (wetting and dissolution), the operating temperature of MSD is much lower (700--590 C vs 1,000--1,200 C) thus lowering the volatility of actinides. Furthermore, no acid gases are released from MSD. These advantages provide the main incentive for developing MSD as an alternative to incineration. The authors have demonstrated the viability of the MSD process to cleanly destroy rubber and chlorinated solvents

  1. Simfuel dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J.; Sandino, A.; Ollila, K.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwater at 25 deg C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend to congruent dissolution with the SIMFUEL matrix after a higher initial fractional release. Yttrium release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rates of dissolution of uranium has been observed

  2. SIMFUEL dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J; Sandino, A.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwaters at 25 degrees C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend of congruent dissolution with the SIMFUEL matrix after a higher initial fractional release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rate of dissolution of uranium has been observed. (au)

  3. Process for treating the dialyzed spent liquor from sulphonic acid containing sulfur minerals or tar oils or ammonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, E A

    1936-08-09

    Process for working up the dialyzate from sulfonic acid, sulfur-containing mineral or tar oils, or their ammonium salts, characterized by the combination of known steps, in the dialyzate being reacted with alkaline-earth oxide, hydroxide, or carbonate, and the resulting slightly soluble sulfate being filtered off and evaporated if necessary.

  4. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  5. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    The dissolution method which uses USP apparatus I (Basket) with rotating at 100 rpm, 900 ml of different dissolution medium, ultra violet spectroscopy for quantification was demonstrated to be robust, discriminating and transferable. Dissolution tests conditions were selected after it was demonstrated that the Metoprolol ...

  6. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  7. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  8. Dissolution testing of orally disintegrating tablets.

    Science.gov (United States)

    Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif

    2012-07-01

    For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  9. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  10. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  11. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  12. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  13. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2016-12-01

    Full Text Available A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.

  14. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    Science.gov (United States)

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P changes in bed height (BH, cm) over the range 83–165 cm following the relation: (Alkalinity, mg/L) = 123.51 − (3788.76 (BH)). Differences between filtered and non-filtered alkalinity were small(P > 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the dilution ratio of 0

  15. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media

    DEFF Research Database (Denmark)

    Sunesen, Vibeke Hougaard; Pedersen, Betty Lomstein; Kristensen, Henning Gjelstrup

    2005-01-01

    The purpose of the study was to design dissolution tests that were able to distinguish between the behaviour of danazol under fasted and fed conditions, by using biorelevant media. In vitro dissolution of 100mg danazol capsules was performed using the flow-through dissolution method. Flow rates w...

  16. Experimental study and modeling of the propagation of an alkaline concentration wave coming from a cement matrix an passing through the argilite of the Meuse / Haute-Marne laboratory

    International Nuclear Information System (INIS)

    Roussel, Th.

    2001-12-01

    The propagation of an alkaline wave through a clay rock has been investigated- The wave is generated by a cementitious matrix through the Callovo-Oxfordian argillite of the Meuse Haute-Marne Laboratory (-480 m depth). The argillite itself is composed of quartz, micas, calcite and an interstratified l/S. In order to characterise the interactions between the alkaline fluid and the argillaceous medium, dynamic column experiments have been carried out. The originality of the investigation methodology consists in exploiting the data generated from the breakthrough curves as well as from the characterisation of the solids extracted from the columns. Two types of processes having totally different reaction times have hence been thoroughly studied: - Fast surface adsorption and condensation reactions: On the one hand cation adsorption reactions by site ionisation have been characterised. They are responsible of the buffering effect of the clays. On the other hand an original reaction of calcium compound condensation in the interlayer space of the swelling clays has been revealed. These processes have been modelled and their simulations with the IMPACT calculation code showed that the models elaborated were very satisfying. - Strongly kinetically limited dissolution/precipitation reactions: The main primary phases dissolved are quartz and interstratified l/S. The precipitation of secondary phases are mainly C(A)SH and zeolites. After the injection of an alkaline fluid for 6 months at 60 deg C, the argillite is strongly amorphized but only 20 to 30% of the quartz and the interstratified I/S are dissolved. Therefore, dissolution kinetics of the primary phases and the solubility products of the main secondary phases have been determined. (author)

  17. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  18. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  19. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  20. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  1. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  2. Dissolution of ion exchange resin by hydrogen peroxide

    International Nuclear Information System (INIS)

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe 2+ , or Fe 3+ , and 3 vol % H 2 O 2 in 0.1M HNO 3 is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99 0 C. The recommended dissolution temperature range is 85 to 90 0 C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH 4 OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly

  3. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  4. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  5. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  6. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  7. Observations of bentonite-hyper-alkaline fluid and bentonite-cement interactions by the X-ray computed tomography

    International Nuclear Information System (INIS)

    Nakabayashi, R.; Chino, D.; Kawaragi, C.; Sato, T.; Yoneda, T.; Kaneko, K.; Shibata, S.; Sakamoto, H.

    2010-01-01

    Document available in extended abstract form only. Bentonite-hyper-alkaline fluid interaction has been a key research issue in the performance assessment of radioactive waste disposal. It has therefore been investigated based on the dissolution rate of smectite (main constituent mineral of bentonite) under such hyper-alkaline condition. Generally, the dissolution rate has been obtained from batch and flow-through experiments under the conditions with high fluid/solid weight rations. These previous studies have provided a contribution to kinetic model of smectite dissolution. Some of them in particularly showed some equations explaining the effect of different factors such as pH of reactive fluid, temperature and deviation from equilibrium on smectite dissolution rate. However, the experimental conditions in such studies were completely different from the conditions in actual radioactive waste disposal system. For quantitative understanding, dissolution experiments for the compacted bentonite have also been conducted. These studies showed that the dissolution rate of compacted bentonite was different from that of batch and flow-through experiments. However, the difference has not been understood in details. On the other hand, the interface between bentonite and cement has also been investigated by experiments in laboratories and field sites, via reaction transport modelling. Despite the very few in numbers of experimental results as function of time, there are many long-term modelling works intended for bentonite-cement interaction. The models developed by many authors should be verified by comparing results of the model calculations with experimental observations. The experimental results with different conditions are therefore necessary for verifications and comparisons. Even in the experimental works done previously, the alteration process at the interface has mainly been observed by EPMA. EPMA is a destructive analysis with lower time resolution for 2D images

  8. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  9. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    Full Text Available In recent years, considerable attention has been paid to various applications of Fe(VI due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI had to wait until efficient synthetic and analytical methods of Fe(VI were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI compounds : the wet oxidation of Fe(II and Fe(III compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI was studied by

  10. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    Science.gov (United States)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  11. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    Schwalfenberg, G.K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  12. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    International Nuclear Information System (INIS)

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  13. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  14. The corrosion behavior of mild steel in molten NaNO3-KNO3 salt and its evaluation

    International Nuclear Information System (INIS)

    Tsujino, Bunzo; Oki, Takeo.

    1992-01-01

    The galvanic behavior of mild steel in molten NaNO 3 -KNO 3 salt (equivalent molar fraction) and its evaluation have been investigated by the amount of galvanic current with zero impedance ammeter. The galvanic currents in a galvanic couple consisting of mild steel and platinum so obtained corresponded approximately to the information for dissolution reaction of iron in molten NaNO 3 KNO 3 salt. Further, the galvanic currents proved to be an effective means for evaluating corrosion rate of metals in molten NaNO 3 KNO 3 salt. The effect of NaCl on galvanic behavior of mild steel couple to platinum in molten NaNO 3 -KNO 3 salt did not appear at the NaCl concentration up to 0.05 molar fraction, but the effect appeared as localized corrosion at the NaCl concentration of 0.05 molar fraction or more. The coloration for mild steel due to the oxide film was well controlled by adjusting amount of electricity rather than the temperature. (author)

  15. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel

    2010-01-01

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  16. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  17. Frogging It: A poetic Analysis of Relationship Dissolution

    Directory of Open Access Journals (Sweden)

    Sandra L. Faulkner

    2012-10-01

    Full Text Available Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection to interpersonal relationship dissolution literature through the technique of poetic analysis. This analysis serves as an exemplar for how poetry as performative writing offers a valuable addition to interpersonal communication research through the poeticizing of relational dissolution as an everyday relational challenge.

  18. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  19. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  20. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  1. Interactions between the Tetrasodium Salts of EDTA and 1-Hydroxyethane 1,1-Diphosphonic Acid with Sodium Hypochlorite Irrigants.

    Science.gov (United States)

    Biel, Philippe; Mohn, Dirk; Attin, Thomas; Zehnder, Matthias

    2017-04-01

    A clinically useful all-in-one endodontic irrigant with combined proteolytic and decalcifying properties is still elusive. In this study, the chemical effects of dissolving the tetrasodium salts of 1-hydroxyethane 1,1-diphosphonic acid (Na 4 HEDP) or Na 4 EDTA directly in sodium hypochlorite (NaOCl) irrigants in polypropylene syringes were assessed during the course of 1 hour. The solubility of the salts in water was determined. Their compatibility with 1% and 5% NaOCl was measured by iodometric titration and in a calcium complexation experiment by using a Ca 2+ -selective electrode. The salts dissolved within 1 minute. The dissolution maximum of Na 4 HEDP in water (wt/total wt) was 44.6% ± 1.6%. The corresponding dissolution maximum of Na 4 EDTA was 38.2% ± 0.8%. Na 4 HEDP at 18% in 5% NaOCl caused a mere loss of 16% of the initially available chlorine during 1 hour. In contrast, a corresponding mixture between NaOCl and the Na 4 EDTA salt caused 95% reduction in available chlorine after 1 minute. Mixtures of 3% Na 4 EDTA with 1% NaOCl were more stable, but only for 30 minutes. Na 4 HEDP lost 24% of its calcium complexation capacity after 60 minutes. The corresponding loss for Na 4 EDTA was 34%. The compatibility and solubility of particulate Na 4 HEDP with/in NaOCl solutions are such that these components can be mixed and used for up to 1 hour. In contrast, short-term compatibility of the Na 4 EDTA salt with NaOCl solutions was considerably lower, decreasing at higher concentrations of either compound. Especially for Na 4 HEDP but also for Na 4 EDTA, the NaOCl had little effect on calcium complexation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Characterization of the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Haruka; Arai, Yoichi; Shibata, Atsuhiro; Nomura, K.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1194 (Japan)

    2016-07-01

    Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the Joyo experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo{sub 4}Ru{sub 4}RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate (ZMH) is produced in negligible amounts in the process. (authors)

  3. A kinetic model of the oxidative dissolution of brannerite, UTi2O6

    International Nuclear Information System (INIS)

    Thomas, B.S.; Zhang, Y.

    2003-01-01

    The aqueous dissolution of synthetic brannerite (UTi 2 O 6 ) in an open atmosphere has been investigated. Previous data in the literature have been combined with new experimental work, dealing with the release of uranium from brannerite as a function of solution pH and aqueous carbonate species, in oxygenated solutions. From these data we have developed a conceptual model for uranium release from brannerite consisting of two reaction steps: oxidation of surface uranium(IV) atoms, and subsequent detachment of U(VI) atoms into solution, which is catalysed by surface coordination with protons (acidic media) or carbonate species (alkaline media in equilibrium with the atmosphere). A kinetic rate law is derived for this simple reaction mechanism and fitted to experimental data. The resulting predictive equation for uranium release qualitatively describes the pH-dependent behaviour observed in experiment, and quantitatively gives an upper limit for uranium release from brannerite over a range of conditions and experiment types. (orig.)

  4. Problems in the separation of radium from uranium ore tailings

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.

    1976-01-01

    The radium content of a representative sandstone type of uranium ore was found to be distributed uniformly according to particle size before leaching, but in sulfuric acid-leached tailings was found predominantly in the -325 mesh fraction. The radium leaching characteristics from both ore and sulfate-leached tailings were investigated. Several 1 M salt solutions showed poor to moderate RaSO/sub 4/ dissolution from ''slimes solids'' tailings, while 3 M HNO/sub 3/ or HCl solutions dissolved approximately 95% of the radium content of either ore or tailings. Tests are reported in which -325 mesh sand particles were coated with alkaline-earth sulfates by a special technique to simulate slime solids tailings. The dissolution of RaSO/sub 4/ from these coated sands was decreased by the presence of BaSO/sub 4/, but increased by the presence of CaSO/sub 4/. The interrelationships in the dissolution of mixtures of CaSO/sub 5/, SrSO/sub 4/, BaSO/sub 4/, and RaSO/sub 4/ are shown, and a generalized equation for the estimation of the dissolution of a minor component is presented.

  5. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  6. Transition from Endothermic to Exothermic Dissolution of Hydroxyapatite Ca5(PO43OH–Johnbaumite Ca5(AsO43OH Solid Solution Series at Temperatures Ranging from 5 to 65 °C

    Directory of Open Access Journals (Sweden)

    Bartosz Puzio

    2018-06-01

    Full Text Available Five crystalline members of the hydroxyapatite (HAP; Ca5(PO43OH–johnbaumite (JBM; Ca5(AsO43OH series were crystallized at alkaline pH from aqueous solutions and used in dissolution experiments at 5, 25, 45, and 65 °C. Equilibrium was established within three months. Dissolution was slightly incongruent, particularly at the high-P end of the series. For the first time, the Gibbs free energy of formation ΔGf0, enthalpy of formation ΔHf0, entropy of formation Sf0, and specific heat of formation Copf were determined for HAP–JBM solid solution series. Based on the dissolution reaction, Ca5(AsO4m(PO43−mOH = 5Ca2+(aq + mAsO43−(aq + (3 − mPO43−(aq + OH−(aq, their solubility product Ksp,298.15 was determined. Substitution of arsenic (As for phosphorus (P in the structure of apatite resulted in a linear increase in the value of Ksp: from HAP logKsp,298.15 = −57.90 ± 1.57 to JBM logKsp,298.15 = −39.22 ± 0.56. The temperature dependence of dissolution in this solid solution series is very specific; in the temperature range of 5 °C to 65 °C, the enthalpy of dissolution ΔHr varied around 0. For HAP, the dissolution reaction at 5 °C and 25 °C was endothermic, which transitioned at around 40 °C and became exothermic at 45 °C and 65 °C.

  7. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio

    2008-01-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h -1 ) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  8. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  9. Dissolution behaviour of silicon nitride coatings for joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Maria [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Bryant, Michael [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Schmidt, Susann [Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden); Engqvist, Håkan [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Hall, Richard M. [Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Neville, Anne [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Persson, Cecilia, E-mail: cecilia.persson@angstrom.uu.se [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2016-05-01

    In this study, the dissolution rate of SiN{sub x} coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiN{sub x} coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiN{sub x} coatings was evaluated to 0.2–1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7–1.2 nm/day). The highest nitrogen containing coating showed mainly Si–N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si–N and/or Si–Si bonds in the bulk and an increased formation of Si–O bonds at the surface as well as in the dissolution area. The SiN{sub x} coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiN{sub x} coatings for joint replacements. - Graphical abstract: Dissolution rates of SiN{sub 0.3}, SiN{sub 0.8}, and SiN{sub 1.1} coatings on CoCrMo compared to uncoated CoCrMo. Dissolution rates were obtained from i) electrochemical measurements of I{sub corr}, ii) the step height between covered and solution-exposed surfaces, measured using VSI, and iii) the ion concentration in the solution, measured with ICP. - Highlights: • The dissolution of SiN{sub x} coatings was investigated in comparison to (bulk) CoCrMo. • The coatings gave a lower or similar dissolution rate to CoCrMo, of 0.2–1.2 nm/day. • An increased nitrogen content in the coatings gave lower dissolution rates. • SiN{sub x} coatings on CoCrMo reduced the metal ion release

  10. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Rainey, R

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  11. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  12. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  13. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  14. Regularities of radium coprecipitation with barium sulfate from salt solutions

    International Nuclear Information System (INIS)

    Kudryavskij, Yu.P.; Rakhimova, O.V.

    2007-01-01

    Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru

  15. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  16. Properties of altered soils by alkaline solution: contribution in the performance evaluation of repositories

    International Nuclear Information System (INIS)

    Calabria, Jaqueline Alves de Almeida

    2015-01-01

    evaluated samples (less than 20% after 10 days of equilibrium), being the best performance one, the nitosoil sample whose K_d values varied from 11.78 to 63.05 mL.g"-"1. In a subsequent step, the clay soil, was submitted to the alkaline solution interaction, in order to investigate possible alterations on the sorption properties and hydraulic conductivity of this soil. Using the sorption parameters, obtained from data fitted isotherms, the retardation factor, R, was estimated for the samples before and after the interaction. It was demonstrated that the alkaline alteration promotes damages to sorption properties of Cs, once the R became significantly smaller (about 1000 times) after the interaction. The hydraulic conductivity in turn increased slightly (3,91x10"-"8 cm.s"-"1 to 5,08 x 10"-"8 cm.s"-"1). It was concluded that these changes were due, mainly, to the dissolution of minerals present in the clay soil (kaolinite and quartz), associated with the incorporation of K and Ca from the alkaline solution, resulting, probably, in the formation of hydrated calcium silicate phases. Additionally, the effects of alkaline solution on the properties of a commercial bentonite were studied. Contrary to the clay soil, it was observed a gain in the sorption characteristics, with K_d (Cs) increasing from 760.05 mL.g"-"1to 1311.80 mL.g"-"1and Q_m_a_x from 36.32 mg.g"-"1to 52.13 mg.g"-"1, with the corresponding increase in the retardation coefficient, R. The dissolution of the clay minerals from the initial sample and the incorporation of Mg, K e Ca coming from the alkaline solution, generating smectite of different kinds, were considered as the main mineralogical changes responsible for the modifications in sorption parameters. The different behavior between the two evaluated samples, soil and bentonite, confirms that the nature and extension of changes observed, when mineral samples interact with alkaline solution, depend on the chemical/mineralogical composition of the solid material

  17. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  18. The Dissolution of Synthetic Na-Boltwoodite in Sodium Carbonate Solutions

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-01-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in the contaminated sediments at the US Department of Energy Hanford site (Liu et al., 2004). Consequently, the solubility of synthetic Na-boltwoodite was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility increased with increasing bicarbonate concentration. Calculated solubility constants varied by nearly 2 log units from low bicarbonate (no added NaCO3) to 50 mmol/L bicarbonate. However, the solubility constants only vary by 0.5 log units from 0 added bicarbonate to 1.2 mmol/L bicarbonate, where logKsp = 5.39-5.92 and the average logKsp = 5.63. No systematic trend in logKsp was apparent over this range in bicarbonate concentrations. LogKsp values trended down with increasing bicarbonate concentration, where logKsp = 4.06 at 50 mmol/L bicarbonate. We conclude that the calculated solubility constants at high bicarbonate are compromised by an incomplete or inaccurate uranyl-carbonate speciation model

  19. Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design

    International Nuclear Information System (INIS)

    Huminicki, Danielle M.C.; Rimstidt, J. Donald

    2008-01-01

    Batch reactor (BR) experiments were conducted to measure the effect of hydrodynamics and gypsum coatings on calcite neutralization rates. A factorial array of BR experiments measured the H + concentration change by calcite dissolution over a pH range of 1.5-3.5 and Na 2 SO 4 concentrations of 0-1 M. The rate of H + concentration change with time was determined by numerical differentiation of H + concentration versus time. Regression modeling showed that for uncoated calcite, rates are only significantly affected by pH, r=-10 -2.32 a H + 0.76 . Whereas, for calcite coated with gypsum only time had a significant effect on calcite dissolution rates, r = -10 -1.96 t -0.53 . Because transport-limited dissolution rates for uncoated calcite are a function of the pH and Reynolds number, a model was developed to express the effects of these two variables on the rate of H + consumption for a solution with a Darcy velocity, q, through a porous medium with a particle radius, r p , such that r ' =1.08x10 -3 q 0.31 r p -0.69 m H + 0.87 . This equation was integrated via a numerical model to simulate the performance of an idealized anoxic limestone drain (ALD). This model predicts the pH and alkalinity change along the length of an ALD. The model shows that the efficiency of an ALD is greater when the Darcy velocity is low and the particle radius is small. In addition, the growth of gypsum coatings causes the rate of H + neutralization to decline as the square root of time as they form and block the H + transport to the calcite surface. Supersaturation with respect to gypsum, leading to coating formation, can be avoided by diluting the ALD feed solution or by replacing limestone with dolomite

  20. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  1. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  2. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  3. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  4. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  5. Effects of aging on PuO{sub 2} . xH{sub 2}O particle size in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-08-01

    Between 1944 and 1989, 54.5 metric tons of the United States' weapons-grade plutonium and an additional 12.9 metric tons of fuels-grade plutonium were produced in and separated from irradiated uranium metal fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 g/L (or {proportional_to} 0.0002 wt. %) in the {proportional_to} 200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of hydrated plutonium oxide, PuO{sub 2} . xH{sub 2}O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium, precipitated in the alkaline tank waste by neutralization from acid solution, probably entered as 2-5-nm PuO{sub 2} . xH{sub 2}O, crystallite particles that, because of the low concentration of the neutral Pu(IV) dissolved species and opposition from radiolytic processes, grow from that point at exceedingly slow rates. (orig.)

  6. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  7. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  8. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  9. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  10. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  11. Alkalinity of the Mediterranean Sea

    OpenAIRE

    Schneider, Anke; Wallace, Douglas W.R.; Körtzinger, Arne

    2007-01-01

    Total alkalinity (AT) was measured during the Meteor 51/2 cruise, crossing the Mediterranean Sea from west to east. AT concentrations were high (∼2600 μmol kg−1) and alkalinity-salinity-correlations had negative intercepts. These results are explained by evaporation coupled with high freshwater AT inputs into coastal areas. Salinity adjustment of AT revealed excess alkalinity throughout the water column compared to mid-basin surface waters. Since Mediterranean waters are supersaturated with r...

  12. Emotional and Cognitive Coping in Relationship Dissolution

    Science.gov (United States)

    Wrape, Elizabeth R.; Jenkins, Sharon Rae; Callahan, Jennifer L.; Nowlin, Rachel B.

    2016-01-01

    Dissolution of a romantic relationship can adversely affect functioning among college students and represents one primary reason for seeking campus counseling. This study examined the associations among common coping strategies and distress following relationship dissolution. Avoidance and repetitive negative thinking (RNT) were significantly…

  13. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  14. Syn-depositional deformation of the late Zechstein evaporites on the Friesland Platform capturing the early life of a salt giant

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    It is often thought that the deposition of the Zechstein of NE Netherlands took place in a tectonically quiet environment and experienced complex deformation later. While early deformation structures were mostly overprinted by later salt flow, we focused on the Friesland platform, which was only weakly affected by later salt tectonics. In this study, we analyzed the present structures and deformation history with the help of 3D seismic and well data. Results show that the ZIII AC stringer contains (i) a regional network of thicker zones (TZ), and (ii) a network of zones where the stringers are absent, interpreted as ruptures formed by salt flow. These ruptures in many cases mark a clear vertical shift of the sub-horizontal stringer. Mapping of the base salt and top salt reflectors shows that the ruptures often coincide with faults at base Zechstein level, and that the thickness of the post-stringer rock salt layers is thicker where the stringers are lower, while the total salt thickness is relatively constant. We interpret these structures as evidence for movement on the faults at base salt, during Zechstein times, suggesting that late Zechstein deposition was syn-tectonic. Spatial correlation of TZ and these syn-depositional depressions also indicate syn-depositional or very early development of thickening in the ZIII-AC stringer. They are interpreted to reflect the interaction of anhydrite dewatering pathways and dissolution of salt below fracture systems in the stringer localized by the active shear zones in the salt.

  15. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  16. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  17. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  18. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  19. Dissolution Threats and Legislative Bargaining

    DEFF Research Database (Denmark)

    Becher, Michael; Christiansen, Flemming Juul

    2015-01-01

    Chief executives in many parliamentary democracies have the power to dissolve the legislature. Despite a well-developed literature on the endogenous timing of parliamentary elections, political scientists know remarkably little about the strategic use of dissolution power to influence policymaking....... To address this gap, we propose and empirically evaluate a theoretical model of legislative bargaining in the shadow of executive dissolution power. The model implies that the chief executive's public support and legislative strength, as well as the time until the next constitutionally mandated election...

  20. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns. Final Report

    International Nuclear Information System (INIS)

    Michael S. Bruno

    2005-01-01

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two