WorldWideScience

Sample records for sall1 induces angiogenesis

  1. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells.

    Science.gov (United States)

    Hepp, Matías I; Escobar, David; Farkas, Carlos; Hermosilla, Viviana; Álvarez, Claudia; Amigo, Roberto; Gutiérrez, José L; Castro, Ariel F; Pincheira, Roxana

    2018-05-17

    SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi. Copyright © 2018. Published by Elsevier B.V.

  2. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  3. Channel Control-Blade Interference Management at LaSalle 1 and 2 during 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cantonwine, Paul; Crawford, Doug; Downs, Mike [Global Nuclear Fuels, PO Box 780, Wilmington, NC 28402 (United States); Joe, Bertrum [GE-Hitachi, 1989 Little Orchard St., San Jose, CA 95125-1030 (United States); Bahensky, Ted [GE-Hitachi, PO Box 780, Wilmington, NC 28402 (United States); Reimer, John [Exelon Nuclear, 2601 North 21st Road, Marseilles, Il 61341-9757 (United States); Hoz, Carlos del la; Petersen, Ken [Exelon Nuclear, 4300 Winfield Road, Warrenville, IL 60555 (United States); Reitmeyer, Mike [Exelon Nuclear, 200 Exelon Way, Kennett Square, PA 19348 (United States); Morris, Jeff; Zbib, Ali [AREVA NP, 2101 Horn Rapids Road, Richland, WA. 99354 (United States)

    2009-06-15

    This paper provides a summary of the operational experience at LaSalle 1 and LaSalle 2 regarding channel control-blade interference that occurred in 2007 and 2008. Channel distortion data from LaSalle 1 provides a characterization of distortion in all four bundles in cells that experienced channel interference and cells that did not. Also, this paper provides a new channel distortion management strategy implemented at LaSalle 2 that avoided a mid-cycle outage. LaSalle 1 and LaSalle 2 are GE designed Boiling Water Reactors (BWR/5 Type) that generate 1195 MW electric. During 2007 and 2008, each core had 1. and 3. Cycle AREVA ATTRIUM{sup TM} 10 fuel with 100 mil Zr-2 channels and 2. Cycle GNF GE14 fuel with 120/75 mil Zr-2 channels. As a result of the channel control-blade interference observed in 2007 and 2008, two peripheral cells in LaSalle 1 and two (1 peripheral and 1 interior) cells in LaSalle 2 were declared inoperable. The first observations of channel control-blade friction occurred in September 2007 in LaSalle 1 about 6 months prior to the end of a 2-year cycle. LaSalle 2 had started up approximately 6 months earlier and had 18 months left the cycle. The initial observations (eventually seven cells with no-settle conditions were observed in LaSalle) were limited to the peripheral cells where fluence gradient-induced bow was the dominant distortion mechanism. However, near the end of cycle in LaSalle 1 in January 2008, a number of interior cells were unexpectedly found to not settle. These were later determined to be a result of shadow corrosion-induced bow. Further testing to determine the extent of condition found a total of nine interior cells that failed the no-settle criterion. These unexpected observations instigated a significant response that resulted in an extensive expansion of the work scope for the upcoming outage that began on February 4, 2008. Specifically, a large channel measurement campaign and a large re-channeling campaign were added. The

  4. Truncated SALL1 Impedes Primary Cilia Function in Townes-Brocks Syndrome

    DEFF Research Database (Denmark)

    Bozal-Basterra, Laura; Martín-Ruíz, Itziar; Pirone, Lucia

    2018-01-01

    by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm. Here, we provide evidence that SALL1 mutations might cause TBS by means beyond its transcriptional capacity. By using proximity proteomics, we show...

  5. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  6. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer M Curry

    Full Text Available BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo.

  7. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation.

    Science.gov (United States)

    Fu, Chenglai; Tyagi, Richa; Chin, Alfred C; Rojas, Tomas; Li, Ruo-Jing; Guha, Prasun; Bernstein, Isaac A; Rao, Feng; Xu, Risheng; Cha, Jiyoung Y; Xu, Jing; Snowman, Adele M; Semenza, Gregg L; Snyder, Solomon H

    2018-02-02

    Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. We have investigated the role of IPMK in regulating angiogenesis. Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α. © 2017 American Heart Association, Inc.

  8. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  9. Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5

    DEFF Research Database (Denmark)

    Fork, Christian; Gu, Lunda; Hitzel, Juliane

    2015-01-01

    OBJECTIVE: Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS...... of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout...

  10. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody.

    Science.gov (United States)

    Camaré, Caroline; Trayssac, Magali; Garmy-Susini, Barbara; Mucher, Elodie; Sabbadini, Roger; Salvayre, Robert; Negre-Salvayre, Anne

    2015-01-01

    Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL. © 2014 The British Pharmacological Society.

  11. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer.

    Science.gov (United States)

    Itou, Junji; Matsumoto, Yoshiaki; Yoshikawa, Kiyotsugu; Toi, Masakazu

    2013-09-17

    In cell cultures, the dispersed phenotype is indicative of the migratory ability. Here we characterized Sal-like 4 (SALL4) as a dispersion factor in basal-like breast cancer. Our shRNA-mediated SALL4 knockdown system and SALL4 overexpression system revealed that SALL4 suppresses the expression of adhesion gene CDH1, and positively regulates the CDH1 suppressor ZEB1. Cell behavior analyses showed that SALL4 suppresses intercellular adhesion and maintains cell motility after cell-cell interaction and cell division, which results in the dispersed phenotype. Our findings indicate that SALL4 functions to suppress CDH1 expression and to maintain cell dispersion in basal-like breast cancer. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Hoi-Hin [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Chan, Lai-Sheung [Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Poon, Po-Ying [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Yue, Patrick Ying-Kit [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Wong, Ricky Ngok-Shun, E-mail: rnswong@hkbu.edu.hk [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China)

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  14. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    Directory of Open Access Journals (Sweden)

    Susan J. Harrison

    2012-05-01

    Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5. These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS.

  15. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  16. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won

    2017-04-01

    Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.

  17. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein Induced Retinal Angiogenesis

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won

    2017-01-01

    Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325

  18. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  19. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jianchang Yang

    Full Text Available BACKGROUND: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. METHODOLOGY/PRINCIPAL FINDINGS: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the "break" for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. CONCLUSIONS/SIGNIFICANCE: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the "stemness" of ES cells.

  1. Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells.

    Science.gov (United States)

    Asuthkar, S; Velpula, K K; Nalla, A K; Gogineni, V R; Gondi, C S; Rao, J S

    2014-04-10

    Matrix metalloproteinase-9 (MMP-9) represents one of the most prominent proteins associated with tumorigenesis and is a modulator of the tumor microenvironment during angiogenesis. Recently, syndecan-1 (SDC1), a transmembrane heparan sulfate-bearing proteoglycan, was also speculated to have a critical role in contributing to angiogenesis when associated with MMP-9. However, the mechanism behind their synergistic regulation is not fully understood. In the current study, we report for the first time that ionizing radiation (IR)-induced MMP-9 enhances SDC1 shedding, corroborating to tube-inducing ability of medulloblastoma (MB) cells. Furthermore, we observed that the tumor angiogenesis is associated with higher MMP-9-SDC1 interactions on both the cell surface and extracellular medium. Our results also revealed the existence of a novel regulatory mechanism where MMP-9 drives the suppression of miR-494, resulting in enhanced SDC1 shedding and angiogenesis. From the in situ hybridization analysis, we found that MMP-9-specific shRNA (shMMP-9) treatment of mouse intracranial tumors resulted in elevated expression of miR-494. This negative correlation between MMP-9 and miR-494 levels was observed to be dependent on the methylation status of a miR-494 promoter-associated CpG island region (-186 to -20), which was confirmed by bisulfite-sequencing and methylation-specific PCR (MSP) analysis. Further, validation of MMP-9 and SDC1 3'-untranslated region (3'-UTR) targets with luciferase reporter assay provided a more favorable result for miR-494-mediated regulation of SDC1 but not of MMP-9, suggesting that the 3'-UTR of SDC1 mRNA is a direct target of miR-494. Overall, our results indicate that angiogenesis induced by radiotherapy is associated with an MMP-9-miR-494-SDC1 regulatory loop and that MMP-9-SDC1 activity creates a negative feedback loop by regulating the expression of miR-494.

  2. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    Science.gov (United States)

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  3. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential.

    Science.gov (United States)

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S; Bielenberg, Diane R; D'Amato, Robert J

    2015-02-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases. © FASEB.

  4. Role and mechanism of arsenic in regulating angiogenesis.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Liu

    Full Text Available Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1 and vascular endothelial growth factor (VEGF. Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.

  5. Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis

    Science.gov (United States)

    Renault, Marie-Ange; Vandierdonck, Soizic; Chapouly, Candice; Yu, Yang; Qin, Gangjian; Metras, Alexandre; Couffinhal, Thierry; Losordo, Douglas W.; Yao, Qinyu; Reynaud, Annabel; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Desgranges, Claude; Gadeau, Alain-Pierre

    2015-01-01

    Rationale A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. Objective The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the crosstalk between angiogenesis and myogenesis in adults. Methods and Results Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-CreERT2; Gli3Flox/Flox mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle–associated transcription factor E2F1. Conclusions This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair–associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine. PMID:24044950

  6. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    Science.gov (United States)

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  7. The Management Skills of SALL Managers

    Directory of Open Access Journals (Sweden)

    David Gardner

    2013-12-01

    Full Text Available This paper looks at the management skills of SALL managers. It is based on data collected using quantitative and qualitative instruments with six SALL managers in tertiary contexts in Hong Kong. With reference to the literature in the field of management, the paper reviews the data in terms of identifiable management skills. This provides a picture of the skills possessed by these managers and also identifies gaps in their skill-sets. The paper provides a checklist of skills relevant to SALL management which individual managers may find useful, and also discusses the 4 key management areas of leadership, scope, expectations and evaluation.

  8. SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes.

    Directory of Open Access Journals (Sweden)

    Kathrin Gassei

    Full Text Available The spermatogenic lineage is established after birth when gonocytes migrate to the basement membrane of seminiferous tubules and give rise to spermatogonial stem cells (SSC. In adults, SSCs reside within the population of undifferentiated spermatogonia (A(undiff that expands clonally from single cells (A(single to form pairs (A(paired and chains of 4, 8 and 16 A(aligned spermatogonia. Although stem cell activity is thought to reside in the population of A(single spermatogonia, new research suggests that clone size alone does not define the stem cell pool. The mechanisms that regulate self-renewal and differentiation fate decisions are poorly understood due to limited availability of experimental tools that distinguish the products of those fate decisions. The pluripotency factor SALL4 (sal-like protein 4 is implicated in stem cell maintenance and patterning in many organs during embryonic development, but expression becomes restricted to the gonads after birth. We analyzed the expression of SALL4 in the mouse testis during the first weeks after birth and in adult seminiferous tubules. In newborn mice, the isoform SALL4B is expressed in quiescent gonocytes at postnatal day 0 (PND0 and SALL4A is upregulated at PND7 when gonocytes have colonized the basement membrane and given rise to spermatogonia. During steady-state spermatogenesis in adult testes, SALL4 expression overlapped substantially with PLZF and LIN28 in A(single, A(paired and A(aligned spermatogonia and therefore appears to be a marker of undifferentiated spermatogonia in mice. In contrast, co-expression of SALL4 with GFRα1 and cKIT identified distinct subpopulations of A(undiff in all clone sizes that might provide clues about SSC regulation. Collectively, these results indicate that 1 SALL4 isoforms are differentially expressed at the initiation of spermatogenesis, 2 SALL4 is expressed in undifferentiated spermatogonia in adult testes and 3 SALL4 co-staining with GFRα1 and c

  9. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    International Nuclear Information System (INIS)

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-01-01

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC 50 of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases

  10. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  11. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu; He, Xiao-dong; Jun, Li; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Ju; Wang, Li-jing; Yang, Xuesong

    2014-01-01

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  12. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  13. Inhibitory Effect of Endostar on Specific Angiogenesis Induced by Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, and in vivo Matrigel plug assay induced by HCC conditioned media (HCM and HepG2 compared with normal hepatocyte conditioned media (NCM and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL. In vivo Matrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix.

  14. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yan, E-mail: shy35309@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Wei, Shu-Ping, E-mail: weishuping_83@163.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Rui-Cheng, E-mail: xu_rc@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Peng-Xiao, E-mail: xupengxiao1228@sina.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Zhang, Wen-Cheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China)

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  15. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    International Nuclear Information System (INIS)

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-01-01

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  16. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  17. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Grossmann, Nina, E-mail: grossmann@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Fleming, Ingrid, E-mail: fleming@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Hansmann, Martin-Leo, E-mail: m.l.hansmann@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Brüne, Bernhard, E-mail: b.bruene@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2015-02-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.

  18. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Geis, Theresa; Döring, Claudia; Popp, Rüdiger; Grossmann, Nina; Fleming, Ingrid; Hansmann, Martin-Leo; Dehne, Nathalie; Brüne, Bernhard

    2015-01-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin

  19. Repetitive Transient Ischemia-Induced Cardiac Angiogenesis is Mediated by Camkii Activation

    Directory of Open Access Journals (Sweden)

    Zhuobin Chen

    2018-05-01

    Full Text Available Background/Aims: Coronary angiogenesis is an important protective mechanism in response to myocardial ischemia in coronary artery disease. However, the underlying mechanisms remain largely unclear. Here, we investigated the role of CaMKII activation in ischemia-induced cardiac angiogenesis. Methods: Repetitive transient ischemia model was established in C57/BL6 mice by daily multiple episodes (3 times/day of short time (5 min occlusion of the left anterior descending coronary artery for 7 days. Coronary angiogenesis was detected by immunofluorescent staining. RT-qPCR and Western blot analyses were used to detect the mRNA and protein levels of CaMKII, p-CaMKII and VEGF. Primary cardiac microvascular endothelial cells (CMECs were isolated to investigate the effects of KN93 on cell proliferation and migration in hypoxic condition. Results: We found that angiogenesis was induced in the ischemic myocardium and suppressed by chronic intraperitoneal injection of CaMKII inhibitor KN93. RT-qPCR and Western blot analyses showed that myocardial ischemia induced an increased expression and autophosphorylation of CaMKII. VEGF expression was increased in the ischemia model but blunted by KN93. Moreover, KN93 suppressed the proliferation and migration of cardiac endothelial cells in hypoxic condition in which the protein expression of CaMKII, p-CaMKII and VEGF was increased. Conclusion: CaMKII is an important mediator for the ischemia-induced coronary angiogenesis, in which CaMKII-triggered VEGF expression plays a key role.

  20. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    Science.gov (United States)

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  1. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages

    International Nuclear Information System (INIS)

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; Santos, Sofia Nascimento dos; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-01-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68 + -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68 + cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways

  2. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Siân P. Cartland

    2016-12-01

    Full Text Available Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A and fibroblast growth-factor-2 (FGF-2 either separately (10 ng/mL or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1 cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  3. Aspartame induces angiogenesis in vitro and in vivo models.

    Science.gov (United States)

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p aspartame group had better healing than control group, and this was statistically significant at p aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.

  4. Surgical revascularization induces angiogenesis in orthotopic bone allograft

    NARCIS (Netherlands)

    Willems, Wouter F.; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T.

    2012-01-01

    Remodeling of structural bone allografts relies on adequate revascularization, which can theoretically be induced by surgical revascularization. We developed a new orthotopic animal model to determine the technical feasibility of axial arteriovenous bundle implantation and resultant angiogenesis. We

  5. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    Science.gov (United States)

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  6. Water chemistry and radiation buildup at the Commonwealth Edison Company LaSalle-1 BWR. Final report

    International Nuclear Information System (INIS)

    Earls, C.E.; Blok, J.

    1986-09-01

    This report presents the results of a comprehensive study of the water quality and radiation buildup at the LaSalle County Unit 2 boiling warer reactor (BWR). The purpose of the study was to determine the effect of corrosion product inputs from the forward pumped heater drains on overall water quality. Since the drains are pumped into the feedwater line without filtration or demineralization, corrosion products in these streams will directly add to the impurity levels of the final feedwater. At LaSalle, the forward pumped heater drains contributed less to the feedwater impurities, on average, than the effluent of the condensate demineralizer. The feedwater quality at LaSalle was generally in the ''acceptable'' range. Nevertheless, significant water chemistry improvements, especially in reducing the corrosion product spikes associated with power or flow transients, is highly desirable for this plant. Such improvements should begin with a more consistent quality of demineralizer operation. Quantitative gamma scans of the primary system piping at LaSalle 2 were carried out in the course of the water chemistry study. Although the cumulative operational exposure of the plant was relatively limited at the time this study was carried out, the radiation buildup rate did appear to be rapid (in fact, among the most rapid) compared to other similar BWRs

  7. Ex-vivo expansion of nonhuman primate CD34+ cells by stem cell factor Sall4B

    Directory of Open Access Journals (Sweden)

    Bin Shen

    2016-10-01

    Full Text Available Abstract Background Hematopoietic CD34+ stem cells are widely used in the clinical therapy of complicated blood diseases. Stem cell factor Sall4B is a zinc finger transcription factor that plays a vital role in hematopoietic stem cell expansion. The purpose of our current study is to further evaluate how Sall4B might affect the expansion of CD34+ cells derived from nonhuman primates. Methods Sall4B was overexpressed in nonhuman primate bone marrow-derived CD34+ cells via a lentiviral transduction system. The granulocyte–erythrocyte–macrophage–megakaryocyte colony-forming unit (CFU assay evaluated the differentiation potential of primate CD34+ cells that were expanded with Sall4B. Furthermore, an in-vivo murine system was employed to evaluate the hematopoietic potential of primate Sall4B-expanded CD34+ cells. Results Overexpression of Sall4B promoted ex-vivo nonhuman primate CD34+ cell expansion by 9.21 ± 1.94-fold on day 9, whereas lentiviral transduction without Sall4B expanded cells by only 2.95 ± 0.77-fold. Sall4B maintained a significant percentage of CD34+ cells as well. The CFU assay showed that the Sall4B-expanded CD34+ cells still possessed multilineage differentiation potential. A study using nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice in vivo revealed that Sall4B led to an increase in the number of repopulating cells and the 9-day-old Sall4B-transduced CD34+ cells still possess self-renewal and multilineage differentiation capacity in vivo, which are similar stemness characteristics to those in freshly isolated primate bone marrow-derived CD34+ cells. Conclusions We investigated the expansion of nonhuman primate bone marrow-derived CD34+ cells using the Sall4B lentiviral overexpression approach; our findings provide a new perspective on mechanisms of rapid stem cell proliferation. The utilization of Sall4B to expand CD34+ cells on a large scale through use of suitable model systems would prove

  8. Negative regulation of NOD1 mediated angiogenesis by PPARγ-regulated miR-125a

    International Nuclear Information System (INIS)

    Kang, Hyesoo; Park, Youngsook; Lee, Aram; Seo, Hyemin; Kim, Min Jung; Choi, Jihea; Jo, Ha-neul; Jeong, Ha-neul; Cho, Jin Gu; Chang, Woochul; Lee, Myeong-Sok; Jeon, Raok; Kim, Jongmin

    2017-01-01

    Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3′ untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis. - Highlights: • Expression of NOD1 is regulated by

  9. Blocking S1P interaction with S1P1 receptor by a novel competitive S1P1-selective antagonist inhibits angiogenesis

    International Nuclear Information System (INIS)

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-01-01

    Highlights: ► The effect of a newly developed S1P 1 -selective antagonist on angiogenic responses. ► S1P 1 is a critical component of VEGF-related angiogenic responses. ► S1P 1 -selective antagonist showed in vitro activity to inhibit angiogenesis. ► S1P 1 -selective antagonist showed in vivo activity to inhibit angiogenesis. ► The efficacy of S1P 1 -selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P 1 ) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P 1 and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P 1 -selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P 1 antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P 1 is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  10. Expression of sall4 in taste buds of zebrafish.

    Science.gov (United States)

    Jackson, Robyn; Braubach, Oliver R; Bilkey, Jessica; Zhang, Jing; Akimenko, Marie-Andrée; Fine, Alan; Croll, Roger P; Jonz, Michael G

    2013-07-01

    We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish. Copyright © 2013 Wiley Periodicals, Inc.

  11. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  12. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis.

    Science.gov (United States)

    Conrad, Claudius; Hüsemann, Yves; Niess, Hanno; von Luettichau, Irene; Huss, Ralf; Bauer, Christian; Jauch, Karl-Walter; Klein, Christoph A; Bruns, Christiane; Nelson, Peter J

    2011-03-01

    To specifically target tumor angiogenesis by linking transgene expression of engineered mesenchymal stem cells to angiopoietin-1-induced differentiation. Mesenchymal stem cells (MSCs) have been used to deliver therapeutic genes into solid tumors. These strategies rely on their homing mechanisms only to deliver the therapeutic agent. We engineered murine MSC to express reporter genes or therapeutic genes under the selective control of the Tie2 promoter/enhancer. This approach uses the differentiative potential of MSCs induced by the tumor microenvironment to drive therapeutic gene expression only in the context of angiogenesis. When injected into the peripheral circulation of mice with either, orthotopic pancreatic or spontaneous breast cancer, the engineered MSCs were actively recruited to growing tumor vasculature and induced the selective expression of either reporter red florescent protein or suicide genes [herpes simplex virus-thymidine kinase (TK) gene] when the adoptively transferred MSC developed endothelial-like characteristics. The TK gene product in combination with the prodrug ganciclovir (GCV) produces a potent toxin, which affects replicative cells. The homing of engineered MSC with selective induction of TK in concert with GCV resulted in a toxic tumor-specific environment. The efficacy of this approach was demonstrated by significant reduction in primary tumor growth and prolongation of life in both tumor models. This "Trojan Horse" combined stem cell/gene therapy represents a novel treatment strategy for tailored therapy of solid tumors.

  13. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  14. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

    Science.gov (United States)

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2012-03-13

    Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Endogenous developmental endothelial locus-1 limits ischemia-related angiogenesis by blocking inflammation

    Science.gov (United States)

    Klotzsche - von Ameln, Anne; Cremer, Sebastian; Hoffmann, Jedrzej; Schuster, Peggy; Khedr, Sherif; Korovina, Irina; Troulinaki, Maria; Neuwirth, Ales; Sprott, David; Chatzigeorgiou, Antonios; Economopoulou, Matina; Orlandi, Alessia; Hain, Andreas; Zeiher, Andreas M.; Deussen, Andreas; Hajishengallis, George; Dimmeler, Stefanie; Chavakis, Triantafyllos; Chavakis, Emmanouil

    2017-01-01

    We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin–dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischemia-related angiogenesis. Intriguingly, Del-1–deficient mice displayed increased neovascularization in two independent ischemic models (retinopathy of prematurity and hind-limb ischemia), as compared to Del-1–proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischemic neovascularization in Del-1-deficiency was linked to higher infiltration of the ischemic tissue by CD45+ hematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin–dependent adhesion of hematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischemic muscles in vivo. Consistently, the increased hind limb ischemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularization in Del-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognized function of endogenous Del-1 as a local inhibitor of ischemia-induced angiogenesis by restraining LFA-1–dependent homing of pro-angiogenic hematopoietic cells to ischemic tissues. Our findings are relevant for the optimization of therapeutic approaches in the context of ischemic diseases. PMID:28447099

  16. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  17. Modulation of thioacetamide-induced hepatic inflammations, angiogenesis and fibrosis by andrographolide in mice.

    Science.gov (United States)

    Lee, Tzung-Yan; Chang, Hen-Hong; Wen, Chorng-Kai; Huang, Tse-Hung; Chang, Ya-Shu

    2014-12-02

    Liver fibrosis is a complex disease in which several pathological processes, such as inflammation and angiogenesis, are closely integrated. We hypothesised that treatment with the pharmacological agent, andrographolide (AP), which has multiple mechanisms of action, will provide a greater understanding of the role of AP during the multiple pathological processes that occur in advanced liver disease. Liver fibrogenesis was induced in mice using thioacetamide (TAA), which was administrated for 6 weeks. Andrographolide (5, 20 or 100mg/kg) was then given once daily following TAA injection. Liver collagen was examined using hydroxyproline and α-SMA, while the inflammatory response was quantified by Western blot and RT-PCR assays. Liver angiogenesis, neutrophil infiltration and hypoxia were assessed using CD11b+, vWF and HIF-1α immunostaining. Mice with liver injuries that were treated with andrographolide showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. Andrographolide treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α and COX-2 signalling indicated macrophage activation. Andrographolide decreased overall liver hypoxia, as shown by the downregulation of hypoxia-inducible cascade genes, such as VEGF. Andrographolide treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression. The present results suggest that multi-targeted therapies directed against angiogenesis, inflammation, and fibrosis should be considered for the treatment of advanced liver injury. They further suggest that andrographolide treatment may be a novel therapeutic agent for the treatment of liver disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Sphingosine kinase 1/sphingosine-1-phosphate (S1P)/S1P receptor axis is involved in ovarian cancer angiogenesis.

    Science.gov (United States)

    Dai, Lan; Liu, Yixuan; Xie, Lei; Wu, Xia; Qiu, Lihua; Di, Wen

    2017-09-26

    Sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) signaling pathway has been implicated in a variety of pathological processes of ovarian cancer. However, the function of this axis in ovarian cancer angiogenesis remains incompletely defined. Here we provided the first evidence that SphK1/S1P/S1PR 1/3 pathway played key roles in ovarian cancer angiogenesis. The expression level of SphK1, but not SphK2, was closely correlated with the microvascular density (MVD) of ovarian cancer tissue. In vitro , the angiogenic potential and angiogenic factor secretion of ovarian cancer cells could be attenuated by SphK1, but not SphK2, blockage and were restored by the addition of S1P. Moreover, in these cells, we found S1P stimulation induced the angiogenic factor secretion via S1PR 1 and S1PR 3 , but not S1PR 2 . Furthermore, inhibition of S1PR 1/3 , but not S1PR 2 , attenuated the angiogenic potential and angiogenic factor secretion of the cells. in vivo , blockage of SphK or S1PR 1/3 could attenuate ovarian cancer angiogenesis and inhibit angiogenic factor expression in mouse models. Collectively, the current study showed a novel role of SphK1/S1P/S1PR 1/3 axis within the ovarian cancer, suggesting a new target to block ovarian cancer angiogenesis.

  19. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Andersson, Krister A.; Haugen, Oyvind P.

    2017-01-01

    -like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate...

  20. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2017-06-13

    Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.

  1. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  2. Fascin 1 is dispensable for developmental and tumour angiogenesis

    Directory of Open Access Journals (Sweden)

    Yafeng Ma

    2013-09-01

    The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.

  3. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression.

    Science.gov (United States)

    Wang, Geng; Li, Na; Lv, Xiaohong; Ahmed, Naila; Li, Xinlei; Liu, Huidong; Ma, Jing; Zhang, Yafang

    2017-07-01

    Triptolide (TPL) is an active compound extracted from a Chinese herbal medicine tripterygium wilfordii Hook. f. (Celastraceae), which has been used as an anti-inflammatory drug for years. It also inhibits the growth and proliferation of different types of cancer cells. The inhibitory effect of TPL on angiogenesis after chemical-induced corneal inflammation was studied in vivo. The effects of TPL on the proliferation, apoptosis, migration, and tube formation of rat aortic endothelial cells (RAECs) were studied in vitro. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. Migration was analyzed using the scratch wound healing assay and transwell assay. Tube formation assay was used to examine angiogenesis. Real-time PCR and Western blot were used to determine the expression of vascular endothelial growth factor A (VEGFA) and VEGFC. To study the in vivo effects of TPL, the mouse model of alkali burn-induced corneal angiogenesis was used. The angiogenesis was analyzed by determining the density of the newly generated blood vessels in corneas. We found that TPL induced apoptosis and inhibited the proliferation of RAECs in a dose-dependent manner. TPL inhibited migration and tube formation of RAECs and decreased the expression of VEGFA and VEGFC in vitro. Furthermore, TPL suppressed alkali burn-induced corneal angiogenesis and inhibited the expression of VEGFA and VEGFC in corneas in vivo. In conclusion, topical TPL as a pharmacological agent has the ability to reduce angiogenesis in cornea and may have clinical indications for the treatment of corneal angiogenesis diseases which have to be further explored. Anat Rec, 300:1348-1355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Ahmad, Ajmal; Alam, Kaiser; Siddiquei, Mohammad Mairaj; Mohammad, Ghulam; Hertogh, Gert De; Mousa, Ahmed; Opdenakker, Ghislain

    2017-11-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes angiogenesis through matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) production. We investigated the expression levels of EMMPRIN and correlated these levels with VEGF, MMP-1 and MMP-9 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of EMMPRIN in the retinas of diabetic rats and the effect of EMMPRIN on the induction of angiogenesis regulatory factors in human retinal microvascular endothelial cells (HRMECs). Vitreous samples from 40 PDR and 19 non-diabetic patients, epiretinal membranes from 12 patients with PDR, retinas of rats and HRMECs were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blot analysis, zymography analysis and RT-PCR. We showed a significant increase in the expression of EMMPRIN, VEGF, MMP-1 and MMP-9 in vitreous samples from PDR patients compared with non-diabetic controls (p EMMPRIN and the levels of VEGF (r = 0.38; p = 0.003), MMP-1 (r = 0.36; p = 0.005) and MMP-9 (r = 0.46; p = 0.003). In epiretinal membranes, EMMPRIN was expressed in vascular endothelial cells and stromal cells. Significant increase of EMMPRIN mRNA was detected in rat retinas after induction of diabetes. EMMPRIN induced hypoxia-inducible factor-1α, VEGF and MMP-1 expression in HRMEC. These results suggest that EMMPRIN/MMPs/VEGF pathway is involved in PDR angiogenesis. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Hypoxia-Inducible Factor-1 as Regulator of Angiogenesis in Rheumatoid Arthritis - Therapeutic Implications

    NARCIS (Netherlands)

    Westra, J.; Molema, G.; Kallenberg, C. G. M.

    Angiogenesis plays an important role in the pathogenesis of inflammatory diseases, including rheumatoid arthritis ( RA). The site and extent of inflammation and subsequent joint destruction in the rheumatoid synovium is dependent on the development of new vasculature. Inhibition of angiogenesis,

  6. Aberrant Hypermethylation of SALL3 with HPV Involvement Contributes to the Carcinogenesis of Cervical Cancer.

    Directory of Open Access Journals (Sweden)

    Xing Wei

    Full Text Available This study aimed to investigate the methylation status of the promoter region of spalt-like transcription factor 3 (SALL3 and the expression of SALL3 in cervical cancer to explore the function of this gene in cervical cancer carcinogenesis.The methylation status of SALL3 was detected by methylation-specific PCR, and SALL3 gene expression was assessed by real-time quantitative PCR in the cervical cancer cell lines, SiHa, HeLa and C33A, as well as in cervical cancer tissue samples (n = 23, matched pericarcinomatous tissue samples (n = 23 and normal cervix tissue samples (n = 17. MTT was used to measure the cell viability and proliferation capacity of SiHa and HeLa cells.The SALL3 promoter was completely methylated in SiHa cells, unmethylated in C33A cells and partially methylated in HeLa cells. After treatment of SiHa and HeLa cells with 5 μM and 10 μM of 5-Azacytidine (5-Aza, respectively, the methylation level of the SALL3 promoter decreased and observed increase in the degree of unmethylation in a dose-dependent manner. Moreover, the relative expression of SALL3 mRNA increased as the concentration of 5-Aza increased in SiHa (p<0.05 and HeLa (p<0.05 cells. This above-mentioned increase in SALL3 mRNA in SiHa cells was more remarkable than that observed in HeLa cells. Cell proliferation capacity also decreased after administration of 5-Aza to SiHa and HeLa cells (p<0.05. Methylation of the SALL3 promoter was observed in 15 of 23 (65.21% cervical cancer tissue samples, 15 of 23 (65.21% matched pericarcinomatous tissue samples and 5 of 17 (29.41% normal cervical tissue samples (p<0.05. SALL3 mRNA expression was significantly lower in cervical cancer and pericarcinomatous tissues compared with normal cervical tissues (p<0.05. In all cervix tissue samples, HPV infection was positively associated with hypermethylation of the promoter region of SALL3 (p<0.05, r = 0.408, and the expression of SALL3 mRNA in HPV-positive tissues was lower than that in

  7. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    International Nuclear Information System (INIS)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-01-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1 H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  8. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  9. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  10. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    Science.gov (United States)

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  12. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis.

    Science.gov (United States)

    Yang, Le; Yue, Shi; Yang, Lin; Liu, Xin; Han, Zhen; Zhang, Yuanyuan; Li, Liying

    2013-07-01

    Sphingosine kinase (SphK)/sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) axis is involved in multiple biological processes, including liver fibrosis. Angiogenesis is an important pathophysiological process closely associated with liver fibrosis; however, the functional role of SphK/S1P/S1PR in this process remains incompletely defined. Bile duct ligation or carbon tetrachloride was used to induce liver fibrosis in mice. Human fibrotic samples were obtained from livers of patients undergoing liver transplantation. S1P levels in the liver were examined by HPLC. Expression of angiogenic markers, including angiopoietin 1, CD31, vascular cell adhesion molecule-1, and von Willebrand factor, was characterized by immunofluorescence, real-time RT-PCR, and Western blot in the fibrotic liver and primary mouse hepatic stellate cells (HSCs). SphK inhibitor (SKI) or S1PR antagonists were administered intraperitoneally in mice. S1P levels in the liver were closely correlated with mRNA expression of angiogenic markers. Ang1 is expressed in activated HSCs of the fibrotic liver and in primary HSCs. In HSCs, by using specific antagonists or siRNAs, we demonstrated S1P stimulation induced Ang1 expression via S1PR1 and S1PR3. In vivo, S1P reduction by SKI inhibited angiogenesis in fibrotic mice. Furthermore, S1PR1/3 antagonist significantly blocked upregulation of angiogenic markers in the injured liver, and attenuated the extent of liver fibrosis, while S1PR2 antagonist had no effect on angiogenesis, supporting the key role of S1PR1 and S1PR3 in angiogenesis underlying liver fibrosis process. SphK1/S1P/S1PR1/3 axis plays a crucial role in the angiogenic process required for fibrosis development, which may represent an effective therapeutic strategy for liver fibrosis. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. The many arts in Santiago, by João Moreira Salles

    Directory of Open Access Journals (Sweden)

    Jacques Fux

    2012-05-01

    Full Text Available This article discusses the documentary Santiago, by João Moreira Salles, exploring the many arts of the main character Santiago. Besides being very rich in its autobiographic approach, the film allows us to establish some connections with literature and some characters of Borges and Flaubert, as it relates to performance and documentary theories. Santiago, disguised as a butler for over four decades, began to accumulate delusions. While working at the residence of the Moreira Salles, he typed 30,000 cards, classified and cataloged his own story and the “history of great men”. His notes are the record of his passage through Literature and History. The film by João Moreira Salles ensures Santiago’s posterity, in the same way that reports of Dante and the creations and inventions of Borges ensure the existence of their characters. Santiago, as a Flaubert’s copyist, lives and is reinvented on the screen through his testimony, memory, art and through the auto fictional documentary by Salles.

  14. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis

    NARCIS (Netherlands)

    Sluimer, Judith C.; Gasc, Jean-Marie; van Wanroij, Job L.; Kisters, Natasja; Groeneweg, Mathijs; Sollewijn Gelpke, Maarten D.; Cleutjens, Jack P.; van den Akker, Luc H.; Corvol, Pierre; Wouters, Bradly G.; Daemen, Mat J.; Bijnens, Ann-Pascale J.

    2008-01-01

    We sought to examine the presence of hypoxia in human carotid atherosclerosis and its association with hypoxia-inducible transcription factor (HIF) and intraplaque angiogenesis. Atherosclerotic plaques develop intraplaque angiogenesis, which is a typical feature of hypoxic tissue and expression of

  15. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  16. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  17. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Norifumi Urao

    2010-10-01

    Full Text Available Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS. IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF-induced ROS production and migration of cultured endothelial cells (ECs; however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+ macrophages and CD31(+ capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/- mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/- mice. In vitro, IQGAP1(-/- BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/- mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.

  18. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  19. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  20. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  1. Ghrelin did not change coronary angiogenesis in diet-induced obese mice.

    Science.gov (United States)

    Khazaei, M; Tahergorabi, Z

    2017-02-28

    Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.

  2. Functional computed tomography imaging of tumor-induced angiogenesis. Preliminary results of new tracer kinetic modeling using a computer discretization approach

    International Nuclear Information System (INIS)

    Kaneoya, Katsuhiko; Ueda, Takuya; Suito, Hiroshi

    2008-01-01

    The aim of this study was to establish functional computed tomography (CT) imaging as a method for assessing tumor-induced angiogenesis. Functional CT imaging was mathematically analyzed for 14 renal cell carcinomas by means of two-compartment modeling using a computer-discretization approach. The model incorporated diffusible kinetics of contrast medium including leakage from the capillary to the extravascular compartment and back-flux to the capillary compartment. The correlations between functional CT parameters [relative blood volume (rbv), permeability 1 (Pm1), and permeability 2 (Pm2)] and histopathological markers of angiogenesis [microvessel density (MVD) and vascular endothelial growth factor (VEGF)] were statistically analyzed. The modeling was successfully performed, showing similarity between the mathematically simulated curve and the measured time-density curve. There were significant linear correlations between MVD grade and Pm1 (r=0.841, P=0.001) and between VEGF grade and Pm2 (r=0.804, P=0.005) by Pearson's correlation coefficient. This method may be a useful tool for the assessment of tumor-induced angiogenesis. (author)

  3. YKL-40-Induced Inhibition of miR-590-3p Promotes Interleukin-18 Expression and Angiogenesis of Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Te-Mao Li

    2017-04-01

    Full Text Available YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18, and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs. We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis.

  4. Carbamoylating activity associated with the activation of the antitumor agent laromustine inhibits angiogenesis by inducing ASK1-dependent endothelial cell death.

    Directory of Open Access Journals (Sweden)

    Weidong Ji

    Full Text Available The anticancer agent 1,2-bis(methylsulfonyl-1-(2-chloroethyl-2-[(methylaminocarbonyl]hydrazine (laromustine, upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl-1-(2-chloroethylhydrazine (90CE. 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl isocyanate in the antineoplastic function of laromustine has not been delineated. Herein, we show that 1,2-bis(methylsulfonyl-1-[(methylaminocarbonyl]hydrazine (101MDCE, an analog of laromustine that generates only methyl isocyanate, activates ASK1-JNK/p38 signaling in endothelial cells (EC. We have previously shown that ASK1 forms a complex with reduced thioredoxin (Trx1 in resting EC, and that the Cys residues in ASK1 and Trx1 are critical for their interaction. 101MDCE dissociated ASK1 from Trx1, but not from the phosphoserine-binding inhibitor 14-3-3, in whole cells and in cell lysates, consistent with the known ability of methyl isocyanate to carbamoylate free thiol groups of proteins. 101MDCE had no effect on the kinase activity of purified ASK1, JNK, or the catalytic activity of Trx1. However, 101MDCE, but not 90CE, significantly decreased the activity of Trx reductase-1 (TrxR1. We conclude that methyl isocyanate induces dissociation of ASK1 from Trx1 either directly by carbamoylating the critical Cys groups in the ASK1-Trx1 complex or indirectly by inhibiting TrxR1. Furthermore, 101MDCE (but not 90CE induced EC death through a non-apoptotic (necroptotic pathway leading to inhibition of angiogenesis in vitro. Our study has identified methyl isocyanates may contribute to the anticancer activity in part by interfering with tumor angiogenesis.

  5. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes.

    Directory of Open Access Journals (Sweden)

    Ha-Won Jeong

    2011-04-01

    Full Text Available Our previous work shows that the stem cell factor SALL4 plays a central role in embryonic and leukemic stem cells. In this study, we report that SALL4 expression was higher in drug resistant primary acute myeloid leukemic patients than those from drug-responsive cases. In addition, while overexpression of SALL4 led to drug resistance in cell lines, cells with decreased SALL4 expression were more sensitive to drug treatments than the parental cells. This led to our investigation of the implication of SALL4 in drug resistance and its role in side population (SP cancer stem cells. SALL4 expression was higher in SP cells compared to non-SP cells by 2-4 fold in various malignant hematopoietic cell lines. Knocking down of SALL4 in isolated SP cells resulted in a reduction of SP cells, indicating that SALL4 is required for their self-renewal. The SP phenotype is known to be mediated by members of the ATP-binding cassette (ABC drug transport protein family, such as ABCG2 and ABCA3. Using chromatin-immunoprecipitation (ChIP, quantitative reverse transcription polymerase chain reaction (qRT-PCR and electrophoretic mobility shift assay(EMSA, we demonstrated that SALL4 was able to bind to the promoter region of ABCA3 and activate its expression while regulating the expression of ABCG2 indirectly. Furthermore, SALL4 expression was positively correlated to those of ABCG2 and ABCA3 in primary leukemic patient samples. Taken together, our results suggest a novel role for SALL4 in drug sensitivity, at least in part through the maintenance of SP cells, and therefore may be responsible for drug-resistance in leukemia. We are the first to demonstrate a direct link between stem cell factor SALL4, SP and drug resistance in leukemia.

  6. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  7. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    Science.gov (United States)

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  8. Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice

    Science.gov (United States)

    Ami, Nozomi; Sato, Hideki; Hayakawa, Yoshihiro

    2018-01-01

    Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral blood flow on metastatic 4T1 breast cancer was investigated in a mouse model and the modification of these effects by thermoneutral temperature was also assessed. A single dose of PTX decreased the body temperature and peripheral blood flow in mice housed at a standard temperature (23°C). Furthermore, although lung metastasis and angiogenesis of inoculated 4T1 cells increased in mice pretreated with PTX, mice housed at a thermoneutral temperature (30°C) could compensate their body temperature and peripheral blood flow compared with control mice, and also suppressed 4T1 angiogenesis and metastasis to lung. The present results imply that maintenance of body temperature or efficient energy supply for thermogenesis may prevent tumor relapse or metastasis after chemotherapy. PMID:29434941

  9. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    International Nuclear Information System (INIS)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-01-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  10. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  11. The zinc-finger transcription factor SALL4 is frequently expressed in human cancers: association with clinical outcome in squamous cell carcinoma but not in adenocarcinoma of the esophagus.

    Science.gov (United States)

    Kilic, Ergin; Tennstedt, Pierre; Högner, Anica; Lebok, Patrick; Sauter, Guido; Bokemeyer, Carsten; Izbicki, Jakob R; Wilczak, Waldemar

    2016-04-01

    SALL4 is a transcription factor originally identified as a homeotic gene essential for organ development. Early studies suggested that SALL4 is a useful marker to identify testicular and ovarian germ cell tumors. The aim of the study was to evaluate the diagnostic potential of SALL4 immunohistochemistry. Immunohistochemical staining was performed on a tissue microarray (TMA) with 3966 samples from 94 different tumor types and on a further TMA with 492 esophagus carcinomas. SALL4 immunostaining was by far most prevalent and most intensive in testicular tumors with a positivity rate of 93.1% in seminomas, 80% in mixed germ cell tumors (embryonic carcinomas/yolk sac tumors), and 18.5% in teratomas, respectively. However, SALL4 expression is not specific to germ cell tumors. We observed SALL4 positivity in non-germ cell tumors as carcinomas of the kidney (28.9% of chromophobe, 34.4% of clear cell carcinoma), in intestinal type adenocarcinoma of the stomach (10.9%), in adenocarcinoma (10.5%) and squamous cell carcinoma (7.2%) of the esophagus, and in malignant melanoma (8.1%) and invasive urothelial bladder carcinoma (20%). SALL4 expression was not found in lymphomas, in soft tissue tumors or breast tumors. At analysis of esophagus carcinoma TMA, no significant association was seen between SALL4 expression and overall survival in adenocarcinoma. However, SALL4 expression was strongly associated with worse overall survival in squamous cell carcinoma. SALL4 expression can be found at relevant frequencies in various tumors of different primary sites. SALL4 expression in squamous cell carcinoma of the esophagus may constitute a sign of dedifferentiation leading to poor patient prognosis.

  12. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  13. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-01-01

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA 3.1 empty vector, pcDNA 3.1 -VEGF111b or pcDNA 3.1 -VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  14. Essential Role of Endothelial Notch1 in Angiogenesis

    Science.gov (United States)

    Limbourg, Florian P.; Takeshita, Kyosuke; Radtke, Freddy; Bronson, Roderick T.; Chin, Michael T.; Liao, James K.

    2009-01-01

    Background Notch signaling influences binary cell fate decisions in a variety of tissues. The Notch1 receptor is widely expressed during embryogenesis and is essential for embryonic development. Loss of global Notch1 function results in early embryonic lethality, but the cell type responsible for this defect is not known. Here, we identify the endothelium as the primary target tissue affected by Notch1 signaling. Methods and Results We generated an endothelium-specific deletion of Notch1 using Tie2Cre and conditional Notch1flox/flox mice. Mutant embryos lacking endothelial Notch1 died at approximately embryonic day 10.5 with profound vascular defects in placenta, yolk sac, and embryo proper, whereas heterozygous deletion had no effect. In yolk sacs of mutant embryos, endothelial cells formed a primary vascular plexus indicative of intact vasculogenesis but failed to induce the secondary vascular remodeling required to form a mature network of well-organized large and small blood vessels, which demonstrates a defect in angiogenesis. These vascular defects were also evident in the placenta, where blood vessels failed to invade the placental labyrinth, and in the embryo proper, where defective blood vessel maturation led to pericardial and intersomitic hemorrhage. Enhanced activation of caspase-3 was detected in endothelial and neural cells of mutant mice, which resulted in enhanced apoptotic degeneration of somites and the neural tube. Conclusions These findings recapitulate the vascular phenotype of global Notch1-/- mutants and indicate an essential cell-autonomous role of Notch1 signaling in the endothelium during vascular development. These results may have important clinical implications with regard to Notch1 signaling in adult angiogenesis. PMID:15809373

  15. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  16. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats.

    Science.gov (United States)

    Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei

    2016-10-01

    Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway.

  17. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  18. Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics.

    Science.gov (United States)

    Deep, Gagan; Kumar, Rahul; Nambiar, Dhanya K; Jain, Anil K; Ramteke, Anand M; Serkova, Natalie J; Agarwal, Chapla; Agarwal, Rajesh

    2017-03-01

    Hypoxia is associated with aggressive phenotype and poor prognosis in prostate cancer (PCa) patients suggesting that PCa growth and progression could be controlled via targeting hypoxia-induced signaling and biological effects. Here, we analyzed silibinin (a natural flavonoid) efficacy to target cell growth, angiogenesis, and metabolic changes in human PCa, LNCaP, and 22Rv1 cells under hypoxic condition. Silibinin treatment inhibited the proliferation, clonogenicity, and endothelial cells tube formation by hypoxic (1% O 2 ) PCa cells. Interestingly, hypoxia promoted a lipogenic phenotype in PCa cells via activating acetyl-Co A carboxylase (ACC) and fatty acid synthase (FASN) that was inhibited by silibinin treatment. Importantly, silibinin treatment strongly decreased hypoxia-induced HIF-1α expression in PCa cells together with a strong reduction in hypoxia-induced NADPH oxidase (NOX) activity. HIF-1α overexpression in LNCaP cells significantly increased the lipid accumulation and NOX activity; however, silibinin treatment reduced HIF-1α expression, lipid levels, clonogenicity, and NOX activity even in HIF-1α overexpressing LNCaP cells. In vivo, silibinin feeding (200 mg/kg body weight) to male nude mice with 22Rv1 tumors, specifically inhibited tumor vascularity (measured by dynamic contrast-enhanced MRI) resulting in tumor growth inhibition without directly inducing necrosis (as revealed by diffusion-weighted MRI). Silibinin feeding did not significantly affect tumor glucose uptake measured by FDG-PET; however, reduced the lipid synthesis measured by quantitative 1 H-NMR metabolomics. IHC analyses of tumor tissues confirmed that silibinin feeding decreased proliferation and angiogenesis as well as reduced HIF-1α, FASN, and ACC levels. Together, these findings further support silibinin usefulness against PCa through inhibiting hypoxia-induced signaling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Rosana D Meyer

    Full Text Available Vascular endothelial growth factor receptor-2 (VEGFR-2 signaling is an obligate requirement for normal development and pathological angiogenesis such as cancer and age-related macular degeneration. Although autophosphorylation of tyrosine 1173 (Y1173 of VEGFR-2 is considered a focal point for its angiogenic signal relay, however, the mechanism of phosphorylation of Y1173, signaling proteins that are recruited to this residue and their role in angiogenesis is not fully understood.In this study we demonstrate that c-Src kinase directly through its Src homology 2 (SH2 domain and indirectly via c-Cbl binds to phospho-Y1057 of VEGFR-2. Activation of c-Src kinase by a positive feedback mechanism phosphorylates VEGFR-2 at multi-docking site, Y1173. c-Src also catalyzes tyrosine phosphorylation of IQGAP1 and acts as an adaptor to bridge IQGAP1 to VEGFR-2. In turn, IQGAP1 activates b-Raf and mediates proliferation of endothelial cells. Silencing expression of IQGAP1 and b-Raf revealed that their activity is essential for VEGF to stimulate angiogenesis in an in vivo angiogenesis model of chicken chorioallantoic membrane (CAM.Angiogenesis contributes to the pathology of numerous human diseases ranging from cancer to age-related macular degeneration. Determining molecular mechanism of tyrosine phosphorylation of VEGFR-2 and identification of molecules that are relaying its angiogenic signaling may identify novel targets for therapeutic intervention against angiogenesis-associated diseases. Our study shows that recruitment and activation of c-Src by VEGFR-2 plays a pivotal role in relaying angiogenic signaling of VEGFR-2; it phosphorylates VEGFR-2 at Y1173, facilitates association and activation of IQGAP1 and other signaling proteins to VEGFR-2. IQGAP1-dependent signaling, in part, is critically required for endothelial cell proliferation, a key step in angiogenesis. Thus, Y1057 of VEGFR-2 serves to regulate VEGFR-2 function in a combinatorial manner by

  20. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    Science.gov (United States)

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  1. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  2. Endothelial-Rac1 is not required for tumor angiogenesis unless alphavbeta3-integrin is absent.

    Directory of Open Access Journals (Sweden)

    Gabriela D'Amico

    2010-03-01

    Full Text Available Endothelial cell migration is an essential aspect of tumor angiogenesis. Rac1 activity is needed for cell migration in vitro implying a requirement for this molecule in angiogenesis in vivo. However, a precise role for Rac1 in tumor angiogenesis has never been addressed. Here we show that depletion of endothelial Rac1 expression in adult mice, unexpectedly, has no effect on tumor growth or tumor angiogenesis. In addition, repression of Rac1 expression does not inhibit VEGF-mediated angiogenesis in vivo or ex vivo, nor does it affect chemotactic migratory responses to VEGF in 3-dimensions. In contrast, the requirement for Rac1 in tumor growth and angiogenesis becomes important when endothelial beta3-integrin levels are reduced or absent: the enhanced tumor growth, tumor angiogenesis and VEGF-mediated responses in beta3-null mice are all Rac1-dependent. These data indicate that in the presence of alphavbeta3-integrin Rac1 is not required for tumor angiogenesis.

  3. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  5. Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2. Docket Nos. 50-373 and 50-374

    International Nuclear Information System (INIS)

    1984-03-01

    This supplement to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located in Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the full power operating license for Unit 2

  6. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction in Minipigs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following...... myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ₃ integrin has been found to be highly expressed in activated...... endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]₂ (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. In the present study, we induced myocardial infarction in Göttingen...

  7. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    OpenAIRE

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Ak...

  8. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    Science.gov (United States)

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Akt1–/–) mice also have reduced endothelial progenitor cell (EPC) mobilization in response to ischemia, and reintroduction of WT EPCs, but not EPCs isolated from Akt1–/– mice, into WT mice improves limb blood flow after ischemia. Mechanistically, the loss of Akt1 reduces the basal phosphorylation of several Akt substrates, the migration of fibroblasts and ECs, and NO release. Reconstitution of Akt1–/– ECs with Akt1 rescues the defects in substrate phosphorylation, cell migration, and NO release. Thus, the Akt1 isoform exerts an essential role in blood flow control, cellular migration, and NO synthesis during postnatal angiogenesis. PMID:16075056

  9. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    Science.gov (United States)

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented.

  11. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    Science.gov (United States)

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  13. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro

    NARCIS (Netherlands)

    Nieuw Amerongen, G.P. van; Koolwijk, P.; Versteilen, A.; Hinsbergh, V.W.M. van

    2003-01-01

    Objective - Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced

  14. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  15. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway.

    Directory of Open Access Journals (Sweden)

    Jessica L Reinardy

    Full Text Available The endothelial receptor tyrosine kinase (RTK Tie1 was discovered over 20 years ago, yet its precise function and mode of action remain enigmatic. To shed light on Tie1's role in endothelial cell biology, we investigated a potential threonine phosphorylation site within the juxtamembrane domain of Tie1. Expression of a non-phosphorylatable mutant of this site (T794A in zebrafish (Danio rerio significantly disrupted vascular development, resulting in fish with stunted and poorly branched intersomitic vessels. Similarly, T794A-expressing human umbilical vein endothelial cells formed significantly shorter tubes with fewer branches in three-dimensional Matrigel cultures. However, mutation of T794 did not alter Tie1 or Tie2 tyrosine phosphorylation or downstream signaling in any detectable way, suggesting that T794 phosphorylation may regulate a Tie1 function independent of its RTK properties. Although T794 is within a consensus Akt phosphorylation site, we were unable to identify a physiological activator of Akt that could induce T794 phosphorylation, suggesting that Akt is not the physiological Tie1-T794 kinase. However, the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1, which is required for angiogenesis and capillary morphogenesis, was found to associate with phospho-T794 but not the non-phosphorylatable T794A mutant. Pharmacological activation of Rac1 induced downstream activation of p21-activated kinase (PAK1 and T794 phosphorylation in vitro, and inhibition of PAK1 abrogated T794 phosphorylation. Our results provide the first demonstration of a signaling pathway mediated by Tie1 in endothelial cells, and they suggest that a novel feedback loop involving Rac1/PAK1 mediated phosphorylation of Tie1 on T794 is required for proper angiogenesis.

  16. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  17. A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Fan; Li, Yang; Arjunan, Pachiappan; Kumar, Anil; Lee, Chunsik; Li, Xuri

    2011-01-01

    A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea. PMID:21876523

  18. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  19. Angiogenesis and Therapeutic Approaches to NF1 Tumors

    National Research Council Canada - National Science Library

    Muir, David F

    2007-01-01

    .... Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results inexaggerated proliferation and angiogenesis in response to key pro-angiogenic factors...

  20. Cannabidiol inhibits angiogenesis by multiple mechanisms.

    Science.gov (United States)

    Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D

    2012-11-01

    Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  2. Palmistichus elaeisis Delvare & LaSalle (Hymenoptera, Eulophidae: a new parasitoid of Dione juno juno (Cramer (Lepidoptera, Nymphalidae Palmistichus elaeisis Delvare & LaSalle (Hymenoptera, Eulophidae: um novo parasitóide de Dione juno juno (Cramer (Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    Hélcio R. Gil-Santana

    2006-09-01

    Full Text Available Palmistichus elaeisis Delvare & LaSalle, 1993 (Hymenoptera, Eulophidae is recorded as parasitoid of Dione juno juno (Cramer, 1779 (Lepidoptera, Nymphalidae in the State of Rio de Janeiro, Brazil.Palmistichus elaeisis Delvare & LaSalle, 1993 (Hymenoptera, Eulophidae é registrado como parasitóide de Dione juno juno (Cramer, 1779 (Lepidoptera, Nymphalidae, no estado do Rio de Janeiro, Brasil.

  3. Gamabufotalin, a major derivative of bufadienolide, inhibits VEGF-induced angiogenesis by suppressing VEGFR-2 signaling pathway.

    Science.gov (United States)

    Tang, Ning; Shi, Lei; Yu, Zhenlong; Dong, Peipei; Wang, Chao; Huo, Xiaokui; Zhang, Baojing; Huang, Shanshan; Deng, Sa; Liu, Kexin; Ma, Tonghui; Wang, Xiaobo; Wu, Lijun; Ma, Xiao-Chi

    2016-01-19

    Gamabufotalin (CS-6), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. However, its effects on angiogenesis have not been known yet. Here, we sought to determine the biological effects of CS-6 on signaling mechanisms during angiogenesis. Our present results fully demonstrate that CS-6 could significantly inhibit VEGF triggered HUVECs proliferation, migration, invasion and tubulogenesis in vitro and blocked vascularization in Matrigel plugs impregnated in C57/BL6 mice as well as reduced vessel density in human lung tumor xenograft implanted in nude mice. Computer simulations revealed that CS-6 interacted with the ATP-binding sites of VEGFR-2 using molecular docking. Furthermore, western blot analysis indicated that CS-6 inhibited VEGF-induced phosphorylation of VEGFR-2 kinase and suppressed the activity of VEGFR-2-mediated signaling cascades. Therefore, our studies demonstrated that CS-6 inhibited angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways and CS-6 could be a potential candidate in angiogenesis-related disease therapy.

  4. Correlation of Hypoxia-Inducible Factor 1α with Angiogenesis in Liver Tumors After Transcatheter Arterial Embolization in an Animal Model

    International Nuclear Information System (INIS)

    Liang Bin; Zheng Chuansheng; Feng, Gan-Sheng; Wu Hanping; Wang Yong; Zhao Hui; Qian Jun; Liang Huimin

    2010-01-01

    This study sought to determine the expression of hypoxia-inducible factor 1α (HIF-1α) and its relation to angiogenesis in liver tumors after transcatheter arterial embolization (TAE) in an animal model. A total of 20 New Zealand White rabbits were implanted with VX2 tumor in liver. TAE-treated group animals (n = 10) received TAE with polyvinyl alcohol particles. Control group animals (n = 10) received sham embolization with distilled water. Six hours or 3 days after TAE, animals were humanely killed, and tumor samples were collected. Immunohistochemical staining was performed to evaluate HIF-1α and vascular endothelial growth factor (VEGF) protein expression and microvessel density (MVD). Real-time polymerase chain reaction was performed to examine VEGF mRNA levels. The levels of HIF-1α protein were significantly higher in TAE-treated tumors than those in the control tumors (P = 0.001). HIF-1α protein was expressed in viable tumor cells that were located predominantly at the periphery of necrotic tumor regions. The levels of VEGF protein and mRNA, and mean MVD were significantly increased in TAE-treated tumors compared with the control tumors (P = 0.001, 0.000, and 0.001, respectively). HIF-1α protein level was significantly correlated with VEGF mRNA (r = 0.612, P = 0.004) and protein (r = 0.554, P = 0.011), and MVD (r = 0.683, P = 0.001). We conclude that HIF-1α is overexpressed in VX2 tumors treated with TAE as a result of intratumoral hypoxia generated by the procedure and involved in activation of the TAE-associated tumor angiogenesis. HIF-1α might represent a promising therapeutic target for antiangiogenesis in combination with TAE against liver tumors.

  5. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis.

    Science.gov (United States)

    Yamato, Ichiro; Sho, Masayuki; Shimada, Keiji; Hotta, Kiyohiko; Ueda, Yuko; Yasuda, Satoshi; Shigi, Naoko; Konishi, Noboru; Tsujikawa, Kazutake; Nakajima, Yoshiyuki

    2012-09-15

    The PCA-1/ALKBH3 gene implicated in DNA repair is expressed in several human malignancies but its precise contributions to cancer remain mainly unknown. In this study, we have determined its functions and clinical importance in pancreatic cancer. PCA-1/ALKBH3 functions in proliferation, apoptosis and angiogenesis were evaluated in human pancreatic cancer cells in vitro and in vivo. Further, PCA-1/ALKBH3 expression in 116 patients with pancreatic cancer was evaluated by immunohistochemistry. siRNA-mediated silencing of PCA-1/ALKBH3 expression induced apoptosis and suppressed cell proliferation. Conversely, overexpression of PCA-1/ALKBH3 increased anchorage-independent growth and invasiveness. In addition, PCA-1/ALKBH3 silencing downregulated VEGF expression and inhibited angiogenesis in vivo. Furthermore, immunohistochemical analysis showed that PCA-1/ALKBH3 expression was abundant in pancreatic cancer tissues, where it correlated with advanced tumor status, pathological stage and VEGF intensity. Importantly, patients with low positivity of PCA-1/ALKBH3 expression had improved postoperative prognosis compared with those with high positivity. Our results establish PCA-1/ALKBH3 as important gene in pancreatic cancer with potential utility as a therapeutic target in this fatal disease.

  6. The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis

    Science.gov (United States)

    2013-01-01

    Background Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant’s hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant’s roots in animal models of inflammation-induced angiogenesis. Methods We first performed phytochemical screening and high-performance liquid chromatography (HPLC) fingerprinting of the hexane fraction of Ardisia crispa roots ethanolic extract (ACRH) and its quinone-rich fraction (QRF). The anti-inflammatory properties of ACRH and QRF were tested using the Miles vascular permeability assay and the murine air pouch granuloma model following oral administration at various doses. Results Preliminary phytochemical screening of ACRH revealed the presence of flavonoids, triterpenes, and tannins. The QRF was separated from ACRH (38.38% w/w) by column chromatography, and was isolated to yield a benzoquinonoid compound. The ACRH and QRF were quantified by HPLC. The LD50 value of ACRH was 617.02 mg/kg. In the Miles vascular permeability assay, the lowest dose of ACRH (10 mg/kg) and all doses of QRF significantly reduced vascular endothelial growth factor (VEGF)-induced hyperpermeability, when compared with the vehicle control. In the murine air pouch granuloma model, ACRH and QRF both displayed significant and dose-dependent anti-inflammatory effects, without granuloma weight. ACRH and QRF significantly reduced the vascular index, but not granuloma tissue weight. Conclusions In conclusion, both ACRH and QRF showed potential anti-inflammatory properties in a model of inflammation-induced angiogenesis model, demonstrating their potential anti-angiogenic properties. PMID:23298265

  7. Integrated Level 3 risk assessment for the LaSalle Unit 2 nuclear power plant

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Brown, T.D.; Miller, L.A.

    1991-01-01

    An integrated Level 3 probabilistic risk assessment (PRA) was performed on the LaSalle County Station nuclear power plant using state-of-the-art PRA analysis techniques. The objective of this study was to provide an estimate of the risk to the offsite population during full power operation of the plant and to include a characterization of the uncertainties in the calculated risk values. Uncertainties were included in the accident frequency analysis, accident progression analysis, and the source term analysis. Only weather uncertainties were included in the consequence analysis. In this paper selected results from the accident frequency, accident progression, source term, consequence, and integrated risk analyses are discussed and the methods used to perform a fully integrated Level 3 PRA are examined. LaSalle County Station is a two-unit nuclear power plant located 55 miles southwest of Chicago, Illinois. Each unit utilizes a Mark 2 containment to house a General Electric 3323 MWt BWR-5 reactor. This PRA, which was performed on Unit 2, included internal as well as external events. External events that were propagated through the risk analysis included earthquakes, fires, and floods. The internal event accident scenarios included transients, transient-induced LOCAs (inadvertently stuck open relief valves), anticipated transients without scram, and loss of coolant accidents

  8. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  9. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Saccharomyces boulardii (Sb can protect against intestinal injury and tumor formation, but how this probiotic yeast controls protective mucosal host responses is unclear. Angiogenesis is an integral process of inflammatory responses in inflammatory bowel diseases (IBD and required for mucosal remodeling during restitution. The aim of this study was to determine whether Sb alters VEGFR (vascular endothelial growth factor receptor signaling, a central regulator of angiogenesis.HUVEC were used to examine the effects of Sb on signaling and on capillary tube formation (using the ECMatrix™ system. The effects of Sb on VEGF-mediated angiogenesis were examined in vivo using an adenovirus expressing VEGF-A(164 in the ears of adult nude mice (NuNu. The effects of Sb on blood vessel volume branching and density in DSS-induced colitis was quantified using VESsel GENeration (VESGEN software.1 Sb treatment attenuated weight-loss (p<0.01 and histological damage (p<0.01 in DSS colitis. VESGEN analysis of angiogenesis showed significantly increased blood vessel density and volume in DSS-treated mice compared to control. Sb treatment significantly reduced the neo-vascularization associated with acute DSS colitis and accelerated mucosal recovery restoration of the lamina propria capillary network to a normal morphology. 2 Sb inhibited VEGF-induced angiogenesis in vivo in the mouse ear model. 3 Sb also significantly inhibited angiogenesis in vitro in the capillary tube assay in a dose-dependent manner (p<0.01. 4 In HUVEC, Sb reduced basal VEGFR-2 phosphorylation, VEGFR-2 phosphorylation in response to VEGF as well as activation of the downstream kinases PLCγ and Erk1/2.Our findings indicate that the probiotic yeast S boulardii can modulate angiogenesis to limit intestinal inflammation and promote mucosal tissue repair by regulating VEGFR signaling.

  10. AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium.

    Science.gov (United States)

    Nurro, Jussi; Halonen, Paavo J; Kuivanen, Antti; Tarkia, Miikka; Saraste, Antti; Honkonen, Krista; Lähteenvuo, Johanna; Rissanen, Tuomas T; Knuuti, Juhani; Ylä-Herttuala, Seppo

    2016-11-01

    Coronary heart disease remains a significant clinical problem, and new therapies are needed especially for patients with refractory angina for whom the current therapies do not provide sufficient relief. The aim of this study was to find out if angiogenic gene therapy using new members of the vascular endothelial growth factor (VEGF) family, VEGF-B 186 and VEGF-D ΔNΔC , increase myocardial perfusion as measured by the positron emission tomography (PET) 15 O-imaging, and whether there would be coronary steal effect to the contralateral side. Furthermore, safety of intramyocardial angiogenic adenoviral gene transfer was evaluated. Intramyocardial adenoviral (Ad) VEGF-B 186 or AdVEGF-D ΔNΔC gene transfers were given endovascularly into the porcine posterolateral wall of the left ventricle (n=34). Six days later, PET 15 O-imaging for myocardial perfusion and coronary angiography were performed. AdVEGF-B 186 and AdVEGF-D ΔNΔC induced angiogenesis and increased total microvascular area 1.8-fold (95% CI 0.2 to 3.5) and 2.8-fold (95% CI 1.4 to 4.3), respectively. At rest, perfusion was maintained at normal levels, but at stress, relative perfusion was increased 1.4-fold (95% CI 1.1 to 1.7) for AdVEGF-B 186 and 1.3-fold (95% CI 1.0 to 1.7) for AdVEGF-D ΔNΔC , without causing coronary steal effect in the control area. The therapy was well tolerated and did not lead to any significant changes in laboratory safety parameters. Both AdVEGF-B 186 and AdVEGF-D ΔNΔC gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  12. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-01-01

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  13. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    Science.gov (United States)

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis.

    Science.gov (United States)

    Basagiannis, Dimitris; Zografou, Sofia; Murphy, Carol; Fotsis, Theodore; Morbidelli, Lucia; Ziche, Marina; Bleck, Christopher; Mercer, Jason; Christoforidis, Savvas

    2016-11-01

    Endocytosis plays a crucial role in receptor signalling. VEGFR2 (also known as KDR) and its ligand VEGFA are fundamental in neovascularisation. However, our understanding of the role of endocytosis in VEGFR2 signalling remains limited. Despite the existence of diverse internalisation routes, the only known endocytic pathway for VEGFR2 is the clathrin-mediated pathway. Here, we show that this pathway is the predominant internalisation route for VEGFR2 only in the absence of ligand. Intriguingly, VEGFA induces a new internalisation itinerary for VEGFR2, the pathway of macropinocytosis, which becomes the prevalent endocytic route for the receptor in the presence of ligand, whereas the contribution of the clathrin-mediated route becomes minor. Macropinocytic internalisation of VEGFR2, which mechanistically is mediated through the small GTPase CDC42, takes place through macropinosomes generated at ruffling areas of the membrane. Interestingly, macropinocytosis plays a crucial role in VEGFA-induced signalling, endothelial cell functions in vitro and angiogenesis in vivo, whereas clathrin-mediated endocytosis is not essential for VEGFA signalling. These findings expand our knowledge on the endocytic pathways of VEGFR2 and suggest that VEGFA-driven internalisation of VEGFR2 through macropinocytosis is essential for endothelial cell signalling and angiogenesis. © 2016. Published by The Company of Biologists Ltd.

  15. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice.

    Science.gov (United States)

    Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2018-04-01

    Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.

  16. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    NARCIS (Netherlands)

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in

  17. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway.

    Science.gov (United States)

    Lin, Shiyu; Zhang, Qi; Shao, Xiaoru; Zhang, Tao; Xue, Changyue; Shi, Sirong; Zhao, Dan; Lin, Yunfeng

    2017-12-01

    The aim of this study was to investigate the role of insulin-like growth factor-1 (IGF-1) and crosstalk between endothelial cells (ECs) and adipose-derived stem cells (ASCs) in the process of angiogenesis. A three-dimensional collagen gel used to culture mouse ASCs and mouse ECs in vitro was established. The effects of angiogenesis after exposure to IGF-1 were observed by confocal laser scanning microscopy. Western blotting and qPCR were performed to elucidate the underlying mechanisms. IGF-1 treatment promoted the formation of vessel-like structures and the recruitment of ASCs in the three-dimensional collagen gel. The angiogenic genes and proteins in ECs were up-regulated by IGF-1 and in co-culture. Similar changes in the genes and in the proteins were detected in ASCs after exposure to IGF-1 and co-culture. p-Akt expression levels were high in ECs and ASCs after exposure to IGF-1 and co-culture. IGF-1 and co-culture between cells facilitate the process of angiogenesis via the PI3-kinase/Akt signalling pathway. In ECs, IGF-1 stimulates the expression of angiogenesis-related growth factors with the activation of the PI3-kinase/Akt signalling pathway. Co-cultured ECs exposed to excess VEGF-A and other angiogenesis-related growth factors para-secreted from ASCs exhibit high expression of angiogenesis-related genes and proteins. In ASCs, IGF-1 induces the recruitment and function of ASCs by up-regulating the expression of PDGFB, MMPs and α-SMA. Crosstalk with ECs further facilitates changes in ASCs. © 2017 John Wiley & Sons Ltd.

  18. Standardization of a method to study angiogenesis in a mouse model

    Directory of Open Access Journals (Sweden)

    DAVID FEDER

    2013-01-01

    Full Text Available In the adult organism, angiogenesis is restricted to a few physiological conditions. On the other hand, uncontrolled angiogenesis have often been associated to angiogenesis-dependent pathologies. A variety of animal models have been described to provide more quantitative analysis of in vivo angiogenesis and to characterize pro- and antiangiogenic molecules. However, it is still necessary to establish a quantitative, reproducible and specific method for studies of angiogenesis factors and inhibitors. This work aimed to standardize a method for the study of angiogenesis and to investigate the effects of thalidomide on angiogenesis. Sponges of 0.5 x 0.5 x 0.5 cm were implanted in the back of mice groups, control and experimental (thalidomide 200 mg/K/day by gavage. After seven days, the sponges were removed. The dosage of hemoglobin in sponge and in circulation was performed and the ratio between the values was tested using nonparametric Mann-Whitney test. Results have shown that sponge-induced angiogenesis quantitated by ratio between hemoglobin content in serum and in sponge is a helpful model for in vivo studies on angiogenesis. Moreover, it was observed that sponge-induced angiogenesis can be suppressed by thalidomide, corroborating to the validity of the standardized method.

  19. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  20. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis

    Directory of Open Access Journals (Sweden)

    Charlie Bridgewood

    2018-02-01

    Full Text Available The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  1. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis.

    Science.gov (United States)

    Bridgewood, Charlie; Fearnley, Gareth W; Berekmeri, Anna; Laws, Philip; Macleod, Tom; Ponnambalam, Sreenivasan; Stacey, Martin; Graham, Anne; Wittmann, Miriam

    2018-01-01

    The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα) and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  2. Safety evaluation report related to the operation of LaSalle County Station, Units 1 and 2, (Docket Nos. 50-373 and 50-374). Supplement No. 7

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 7 to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located on Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update our evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the operating license for Unit 2

  3. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  4. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK]2 in Induced Myocardial Infarction in Minipigs

    Directory of Open Access Journals (Sweden)

    Thomas Rasmussen

    2016-06-01

    Full Text Available Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK]2 (RGD has recently been developed by us as an angiogenesis positron-emission-tomography (PET ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.

  5. Angiogenesis and anti-angiogenesis: Perspectives for the treatment of solid tumors

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Collen, A.; Koolwijk, P.

    1999-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones. Many solid tumors depend on an extensive newly formed vascular network to become nourished and to expand. Tumor cells induce the formation of an extensive but aberrant vascular network by the secretion of angiogenic factors. A

  6. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  7. Solena amplexicaulis induces cell cycle arrest, apoptosis and inhibits angiogenesis in hepatocarcinoma cells and HUVECs.

    Science.gov (United States)

    Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun

    2014-01-01

    Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer.

  8. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  9. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  10. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    International Nuclear Information System (INIS)

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-01-01

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  11. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  12. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  13. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  14. Mechanisms of angiogenesis in a Curculigoside A-treated rat model of cerebral ischemia and reperfusion injury

    International Nuclear Information System (INIS)

    Zhu, Haibo; He, Jie; Ye, Liang; Lin, Fei; Hou, Jian; Zhong, Yan; Jiang, Wanglin

    2015-01-01

    Curculigoside A has shown protective effects against rat cortical neuron damage in vivo. However, the molecular mechanisms through which Curculigoside A affords this protection are unclear. In the present study, we sought to elucidate the mechanisms of angiogenesis in rat aortic endothelial cells (RAEC), rat aortic smooth muscle cells (RASMC) as well as a rat model of cerebral ischemia and reperfusion injury following treatment with Curculigoside A. We examined the role of Curculigoside A on RAEC and RASMC proliferation, migration, and tube formation in vitro and in a cerebral ischemia and reperfusion injury rat model. We used the recombinant Dickkopf (DKK)-1 protein, a Wnt/β-catenin inhibitor, and the recombinant WIF-1 protein, a Wnt5a antagonist to determine mechanisms. In addition, we measured leakage of the blood–brain barrier (BBB) and tested for angiogenesis associated proteins. Our data suggest that Curculigoside A induces angiogenesis in vitro by increasing proliferation, migration and tube formation in RAEC and RASMC. The increase in Curculigoside A-induced proliferation and tube formation was counteracted by DKK-1 and WIF-1. Curculigoside A increased expression of VEGF, p-VEGFR, p-CREB, Egr-3, VCAM-1, Ang1 and Tie2 while prohibiting BBB leakage in cerebral ischemia and reperfusion injured rats. However, Cyclosporine A, a CREB inhibitor, reduced the expression of p-CREB, Egr-3, VCAM-1, Ang1 and Tie2. These data suggest that Curculigoside A induces cell proliferation and angiogenesis through the Wnt5a/β-catenin and VEGF/CREB/Egr-3/VCAM-1 signaling axis and promotes maturation and stability of new blood vessels via increasing Ang1 and Tie-2 expression. - Highlights: • Curculigoside A induces cell proliferation through Wnt5a/β-catenin pathway. • Curculigoside A induces angiogenesis via VEGF/CREB/Egr-3/VCAM-1 signaling axis. • Curculigoside A promotes blood vessel maturation via Ang1/Tie2 pathway.

  15. Mechanisms of angiogenesis in a Curculigoside A-treated rat model of cerebral ischemia and reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haibo [School of Public Health and Management, Binzhou Medical University, Yantai (China); Institute of Toxicology, Binzhou Medical University, Yantai (China); He, Jie [State Key Laboratory of Long-acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai 264003 (China); Ye, Liang [School of Public Health and Management, Binzhou Medical University, Yantai (China); Institute of Toxicology, Binzhou Medical University, Yantai (China); Lin, Fei; Hou, Jian; Zhong, Yan [State Key Laboratory of Long-acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai 264003 (China); Jiang, Wanglin, E-mail: jwl518@163.com [School of Pharmaceutical Sciences, Institute of Materia Medica, Binzhou Medical University, Yantai (China)

    2015-11-01

    Curculigoside A has shown protective effects against rat cortical neuron damage in vivo. However, the molecular mechanisms through which Curculigoside A affords this protection are unclear. In the present study, we sought to elucidate the mechanisms of angiogenesis in rat aortic endothelial cells (RAEC), rat aortic smooth muscle cells (RASMC) as well as a rat model of cerebral ischemia and reperfusion injury following treatment with Curculigoside A. We examined the role of Curculigoside A on RAEC and RASMC proliferation, migration, and tube formation in vitro and in a cerebral ischemia and reperfusion injury rat model. We used the recombinant Dickkopf (DKK)-1 protein, a Wnt/β-catenin inhibitor, and the recombinant WIF-1 protein, a Wnt5a antagonist to determine mechanisms. In addition, we measured leakage of the blood–brain barrier (BBB) and tested for angiogenesis associated proteins. Our data suggest that Curculigoside A induces angiogenesis in vitro by increasing proliferation, migration and tube formation in RAEC and RASMC. The increase in Curculigoside A-induced proliferation and tube formation was counteracted by DKK-1 and WIF-1. Curculigoside A increased expression of VEGF, p-VEGFR, p-CREB, Egr-3, VCAM-1, Ang1 and Tie2 while prohibiting BBB leakage in cerebral ischemia and reperfusion injured rats. However, Cyclosporine A, a CREB inhibitor, reduced the expression of p-CREB, Egr-3, VCAM-1, Ang1 and Tie2. These data suggest that Curculigoside A induces cell proliferation and angiogenesis through the Wnt5a/β-catenin and VEGF/CREB/Egr-3/VCAM-1 signaling axis and promotes maturation and stability of new blood vessels via increasing Ang1 and Tie-2 expression. - Highlights: • Curculigoside A induces cell proliferation through Wnt5a/β-catenin pathway. • Curculigoside A induces angiogenesis via VEGF/CREB/Egr-3/VCAM-1 signaling axis. • Curculigoside A promotes blood vessel maturation via Ang1/Tie2 pathway.

  16. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model.

    Science.gov (United States)

    Shi, Jian-Hong; Cui, Nai-Peng; Wang, Shuo; Zhao, Ming-Zhi; Wang, Bing; Wang, Ya-Nan; Chen, Bao-Ping

    2016-01-01

    Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.

  17. The LaSalle probabilistic safety analysis

    International Nuclear Information System (INIS)

    Frederick, L.G.; Massin, H.L.; Crane, G.R.

    1987-01-01

    A probabilistic safety analysis has been performed for LaSalle County Station, a twin-unit General Electric BWR5 Mark II nuclear power plant. A primary objective of this PSA is to provide engineers with a useful and useable tool for making design decisions, performing technical specification optimization, evaluating proposed regulatory changes to equipment and procedures, and as an aid in operator training. Other objectives are to identify the hypothetical accident sequences that would contribute to core damage frequency, and to provide assurance that the total expected frequency of core-damaging accidents is below 10 -4 per reactor-year in response to suggested goals. (orig./HSCH)

  18. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Gao, Zhong-Xiu-Zi; Huang, Da-Yong; Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong; Zheng, Jin-Hua

    2010-01-01

    Research highlights: → It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. → The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. → Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and m

  19. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  20. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis.

    Science.gov (United States)

    Casas, Bárbara S; Vitória, Gabriela; do Costa, Marcelo N; Madeiro da Costa, Rodrigo; Trindade, Pablo; Maciel, Renata; Navarrete, Nelson; Rehen, Stevens K; Palma, Verónica

    2018-02-22

    Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.

  1. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    International Nuclear Information System (INIS)

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik

    2007-01-01

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells

  2. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  3. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  4. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis.

    Science.gov (United States)

    Rosmorduc, O; Wendum, D; Corpechot, C; Galy, B; Sebbagh, N; Raleigh, J; Housset, C; Poupon, R

    1999-10-01

    We tested the potential role of vascular endothelial growth factor (VEGF) and of fibroblast growth factor-2 (FGF-2) in the angiogenesis associated with experimental liver fibrogenesis induced by common bile duct ligation in Sprague-Dawley rats. In normal rats, VEGF and FGF-2 immunoreactivities were restricted to less than 3% of hepatocytes. One week after bile duct ligation, hypoxia was demonstrated by the immunodetection of pimonidazole adducts unevenly distributed throughout the lobule. After 2 weeks, hypoxia and VEGF expression were detected in >95% of hepatocytes and coexisted with an increase in periportal vascular endothelial cell proliferation, as ascertained by Ki67 immunolabeling. Subsequently, at 3 weeks the density of von Willebrand-labeled vascular section in fibrotic areas significantly increased. Semiquantitative reverse transcription polymerase chain reaction showed that VEGF(120) and VEGF(164) transcripts, that correspond to secreted isoforms, increased within 2 weeks, while VEGF(188) transcripts remained unchanged. FGF-2 mainly consisting of a 22-kd isoform, according to Western blot, was identified by immunohistochemistry in 49% and 100% of hepatocytes at 3 and 7 weeks, respectively. Our data provide evidence that in biliary-type liver fibrogenesis, angiogenesis is stimulated primarily by VEGF in response to hepatocellular hypoxia while FGF-2 likely contributes to the maintenance of angiogenesis at later stages.

  5. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

    Science.gov (United States)

    Chen, Weiwei; Tang, Tracy; Eastham-Anderson, Jeff; Dunlap, Debra; Alicke, Bruno; Nannini, Michelle; Gould, Stephen; Yauch, Robert; Modrusan, Zora; DuPree, Kelly J.; Darbonne, Walter C.; Plowman, Greg; de Sauvage, Frederic J.; Callahan, Christopher A.

    2011-01-01

    Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo. PMID:21597001

  6. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi; Liu, Bo

    2016-01-01

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation and survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.

  7. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    Science.gov (United States)

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  8. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  9. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis.

    Science.gov (United States)

    Kuo, Shih-Wei; Ke, Ferng-Chun; Chang, Geen-Dong; Lee, Ming-Ting; Hwang, Jiuan-Jiuan

    2011-06-01

    Angiogenesis occurs during ovarian follicle development and luteinization. Pituitary secreted FSH was reported to stimulate the expression of endothelial mitogen VEGF in granulosa cells. And, intraovarian cytokine transforming growth factor (TGF)β1 is known to facilitate FSH-induced differentiation of ovarian granulosa cells. This intrigues us to investigate the potential role of FSH and TGFβ1 regulation of granulosa cell function in relation to ovarian angiogenesis. Granulosa cells were isolated from gonadotropin-primed immature rats and treated once with FSH and/or TGFβ1 for 48 h, and the angiogenic potential of conditioned media (granulosa cell culture conditioned media; GCCM) was determined using an in vitro assay with aortic ring embedded in collagen gel and immunoblotting. FSH and TGFβ1 increased the secreted angiogenic activity in granulosa cells (FSH + TGFβ1 > FSH ≈ TGFβ1 >control) that was partly attributed to the increased secretion of pro-angiogenic factors VEGF and PDGF-B. This is further supported by the evidence that pre-treatment with inhibitor of VEGF receptor-2 (Ki8751) or PDGF receptor (AG1296) throughout or only during the first 2-day aortic ring culture period suppressed microvessel growth in GCCM-treated groups, and also inhibited the FSH + TGFβ1-GCCM-stimulated release of matrix remodeling-associated gelatinase activities. Interestingly, pre-treatment of AG1296 at late stage suppressed GCCM-induced microvessel growth and stability with demise of endothelial and mural cells. Together, we provide original findings that both FSH and TGFβ1 increased the secretion of VEGF and PDGF-B, and that in turn up-regulated the angiogenic activity in rat ovarian granulosa cells. This implicates that FSH and TGFβ1 play important roles in regulation of ovarian angiogenesis during follicle development. Copyright © 2010 Wiley-Liss, Inc.

  10. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    2011-01-01

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  11. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  12. Application of a simplified seismic risk methodology to the La Salle County Station Unit 2 BWR

    International Nuclear Information System (INIS)

    Lappa, D.A.; Wells, J.E.

    1986-01-01

    It is important to bear in mind that no risk assessment of any U.S. nuclear power plant can be interpreted to be generally representative of more than a handful of other U.S. plants. Variations in factors ranging from plant age and operating experience to NRC licensing requirements and design guidelines have led to a wide diversity of power plants in the United States. Except for a few combinations of plants of comparable design and vintage, the extension of plant-specific results to other nuclear power plants should only be done with considerable trepidation. This situation is worsened for a seismic PRA because of the variability in the seismic hazard from site to site. In the case of this study, it would be a mistake to infer that all BWRs are sufficiently resistant to earthquakes because of the generally low seismic failure probabilities at La Salle. Unless those BWRs had similar site characteristics and were of a similar design and vintage as La Salle, no immediate extension of this study's results would be appropriate. With these thoughts in mind, we turn our attention to one of the questions which the La Salle seismic PRA is supposed to address, namely, the comparable seismic vulnerability of BWRs and PWRs. The La Salle study has provided us with some insight to the seismic risk at a particular BWR. This information may or may not be useful to understanding the seismic vulnerability of other BWRs

  13. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  15. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  16. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema.

    Science.gov (United States)

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Itoh, Masayuki; Nakamura, Hiroyuki; Nagai, Atsushi; Aoshiba, Kazutetsu

    2014-08-01

    Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Analysis of the LaSalle Unit 2 Nuclear Power Plant, Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Ferrell, W.L.; Payne, A.C. Jr.; Daniel, S.L.

    1992-10-01

    This report is a description of the internal flood analysis performed on the LaSalle County Nuclear Generating Station, Unit 2. A more detailed integration with the internal events analysis than in prior flood risk assessments was accomplished. The same system fault trees used for the internal events analysis were also used for the flood analysis, which included modeling of components down to the contact pair level. Subsidiary equations were created to map the effects of pipe failures. All component locations were traced and mapped into the fault trees. The effects of floods were then mapped directly onto the internal plant model and their relative importance was evaluated. A detailed screening analysis was performed which showed that most plant areas had a negligible contribution to the flood-induced core damage frequency. This was influenced strongly by the fact that the LaSalle plant was designed with a high level of concern about the effects of external events such as fire and flood and significant separation was maintained between systems in the original design. Detailed analysis of the remaining flood scenarios identified only two that contributed significantly to risk. The flood analysis resulted in a total (mean) core damage frequency of 3.23E-6 per year

  18. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  19. Evaluation of Genes Involved in Limb Development, Angiogenesis, and Coagulation as Risk Factors for Congenital Limb Deficiencies

    Science.gov (United States)

    Browne, Marilyn L.; Carter, Tonia C.; Kay, Denise M.; Kuehn, Devon; Brody, Lawrence C.; Romitti, Paul A.; Liu, Aiyi; Caggana, Michele; Druschel, Charlotte M.; Mills, James L.

    2012-01-01

    We conducted a population-based case-control study of single nucleotide polymorphisms (SNPs) in selected genes to find common variants that play a role in the etiology of limb deficiencies (LD)s. Included in the study were 389 infants with LDs of unknown cause and 980 unaffected controls selected from all births in New York State (NYS) for the years 1998 to 2005. We used cases identified from the NYS Department of Health (DOH) Congenital Malformations Registry. Genotypes were obtained for 132 SNPs in genes involved in limb development (SHH, WNT7A, FGF4, FGF8, FGF10, TBX3, TBX5, SALL4, GREM1, GDF5, CTNNB1, EN1, CYP26A1, CYP26B1), angiogenesis (VEGFA, HIF1A, NOS3), and coagulation (F2, F5, MTHFR). Genotype call rates were >97% and SNPs were tested for departure from Hardy-Weinberg expectations by race/ethnic subgroups. For each SNP, odds ratios (OR)s and confidence intervals (CI)s were estimated and corrected for multiple comparisons for all LDs combined and for LD subtypes. Among non-Hispanic white infants, associations between FGF10 SNPs rs10805683 and rs13170645 and all LDs combined were statistically significant following correction for multiple testing (OR=1.99; 95% CI=1.43-2.77; uncorrected p=0.000043 for rs10805683 heterozygous genotype, and OR=2.37; 95% CI=1.48-3.78; uncorrected p=0.00032 for rs13170645 homozygous minor genotype). We also observed suggestive evidence for associations with SNPs in other genes including CYP26B1 and WNT7A. Animal studies have shown that FGF10 induces formation of the apical ectodermal ridge and is necessary for limb development. Our data suggest that common variants in FGF10 increase the risk for a wide range of non-syndromic limb deficiencies. PMID:22965740

  20. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements

    OpenAIRE

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-01-01

    The limb skeletal elements that have unique morphology and distinct locations are developed from limb progenitors, derived from the lateral plate mesoderm. These skeletal elements arise during limb development. In this study, we show genetic evidence that function of Sall4 is essential prior to limb outgrowth for development of the anterior-proximal skeletal elements. Furthermore, genetic interaction between Sall4 and Gli3 is upstream of establishing Shh (Sonic hedgehog) expression, and there...

  1. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas

    International Nuclear Information System (INIS)

    Pinheiro, Céline; Garcia, Eduardo A.; Morais-Santos, Filipa; Moreira, Marise A. R.; Almeida, Fábio M.; Jubé, Luiz F.; Queiroz, Geraldo S.; Paula, Élbio C.; Andreoli, Maria A.; Villa, Luisa L.; Longatto-Filho, Adhemar; Baltazar, Fátima

    2015-01-01

    Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior. The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters. Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis. The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas

  3. Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis

    DEFF Research Database (Denmark)

    Andersen, Niels F; Kristensen, Ida B; Preiss, Birgitte S

    2014-01-01

    : In this study, we examined the association between bone marrow angiogenesis estimated as micro-vessel density (MVD) and gene expression of SDC1, HGF, VEGF and IL6 in whole bone marrow biopsies from healthy volunteers (n = 10), patients with monoclonal gammopathy of undetermined significance (MGUS) (n = 35...... plasma cell percentage and SDC1 gene expression was detected in patients with MM (P angiogenesis and gene...... expression of HGF, VEGF and IL6 was seen. CONCLUSION: Our study indicates that SDC1 expressed by the bone marrow microenvironment is involved in angiogenesis in MM....

  4. ANALYSIS OF PROFESSORS’ EVALUATION AT LA SALLE UNIVERSITY MÉXICO FROM 2010 TO 2016: WHAT THE RESULTS INDICATE?

    Directory of Open Access Journals (Sweden)

    Flegl, Martin

    2017-09-01

    Full Text Available La Salle University México (La Salle uses an internal system of professors’ evaluation, which main purpose is to evaluate professors’ performance and secure high quality of teaching at all of its faculties. Since its inception in 2010, La Salle has obtained 517,635 individual evaluations of 45,346 courses. However, no additional analysis of the obtained results has ever been done. This article provides introductory analysis of the accumulated results at faculty level. The main objective is to analyze whether there are differences between faculties regarding the evaluation. Although the results are highly skewed towards the maximal evaluation at all faculties, there are statistically significant differences. The next important task is to investigate what factors influence the evaluation. Moreover, as this is the introductory analysis, the article concludes with possible future steps that should be consider regarding eventual structural changes in the evaluation system.

  5. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by

  6. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells

    International Nuclear Information System (INIS)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika; Jiang Jiahua; Sliva, Daniel

    2005-01-01

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has not been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-β1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer

  7. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2017-01-01

    ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464

  8. Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia.

    Science.gov (United States)

    Zhao, Yin; Zheng, YanFang; Liu, XiaoXia; Luo, QingQing; Wu, Di; Liu, XiaoPing; Zou, Li

    2018-03-01

    Is it possible to improve vascular remodeling by inhibiting the excessive expression of protease-activated receptor 1 (PAR-1) in trophoblast of abnormal placenta? Inhibition of trophoblast PAR-1 overexpression may promote placental angiogenesis and vascular remodeling, offering an alternative therapeutic approach for preeclampsia. PAR-1 is high-affinity receptor of thrombin. Thrombin increases sFlt-1 secretion in trophoblast via the activation of PAR-1. It is reported that the expression of both thrombin and PAR-1 expression are increased in placentas of preeclampsia patients compared with normal placentas. Trophoblast cells were transfected with PAR-1 short hairpin RNA (shRNA) or PAR-1 overexpression plasmids in vitro. Tube formation assays and a villus-decidua co-culture system were used to study the effect of PAR-1 inhibition on placental angiogenesis and vascular remodeling, respectively. Placentas from rats with preeclampsia were transfected with PAR-1 shRNA to confirm the effect of inhibiting PAR-1 overexpression in placenta. The trophoblast cell line HTR-8/SVneo was transfected with PAR-1 shRNA or PAR-1 overexpression plasmids. After 48 h, supernatant was collected and the level of sFlt-1 secretion was measured by ELISA. Human umbilical cord epithelial cells and a villus-decidua co-culture system were treated with conditioned media to study the effect of PAR-1 inhibition on tube formation and villi vascular remodeling. A preeclampsia rat model was established by intraperitoneal injection of L-NAME. Plasmids were injected into the placenta of the preeclampsia rats and systolic blood pressure was measured on Days 15 and 19. The effect of different treatments was evaluated by proteinuria, placental weights, fetal weights and fetal numbers in study and control groups. The level of serum sFlt-1 in rats with preeclampsia was also measured. Changes in the placenta microvessels were studied by histopathological staining. PAR-1 shRNA inhibited PAR-1 expression and

  9. Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo.

    Science.gov (United States)

    Pantazis, Panayotis; Varman, Aarthi; Simpson-Durand, Cindy; Thorpe, Jessica; Ramalingam, Satish; Subramaniam, Dharmalingam; Houchen, Courtney; Ihnat, Michael; Anant, Shrikant; Ramanujam, Rama P

    2010-01-01

    Trivalent arsenic [As(III)] is currently approved by the FDA for the treatment of chronic and acute leukemias. However, As(III) has also demonstrated damaging effects on human health, including development of cardiovascular disease, diabetes, and cancer. Further, As(III) is a potent angiogenic agent. In this context, curcumin, an active ingredient in the dietary agent turmeric, has demonstrated potent antiproliferative, antiinflammatory, and antiangiogenic properties. In this report, we have shown that both curcumin and turmeric inhibit expression of vascular endothelial growth factor in HCT-116 human colon cancer cells exposed to As(III). Further, in the chicken chorioallantoic membrane assay model, treatment with low As(III) concentrations results in extensive increase in blood vessel density, which, however, is reduced in the presence of curcumin or turmeric. Collectively, the findings reported here strongly suggest that turmeric and curcumin can dramatically attenuate the process of angiogenesis induced by low As(III) concentrations.

  10. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  11. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  12. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jingshan Zhao

    Full Text Available The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL, a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF signaling and angiogenesis in endothelial cells (ECs. We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.

  13. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  14. The Multiple Roles of EG-VEGF/PROK1 in Normal and Pathological Placental Angiogenesis

    Directory of Open Access Journals (Sweden)

    Nadia Alfaidy

    2014-01-01

    Full Text Available Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF, also called prokineticin 1 (PROK1, has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL, gestational trophoblastic diseases (GTD, fetal growth restriction (FGR, and preeclampsia (PE. This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  15. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis.

    Science.gov (United States)

    Alfaidy, Nadia; Hoffmann, Pascale; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Benharouga, Mohamed; Feige, Jean-Jacques; Brouillet, Sophie

    2014-01-01

    Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF), also called prokineticin 1 (PROK1), has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL), gestational trophoblastic diseases (GTD), fetal growth restriction (FGR), and preeclampsia (PE). This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  16. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-01-01

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  17. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  18. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Guoyong Yin

    Full Text Available G protein coupled receptor kinase 2 (GRK2 interacting protein-1 (GIT1, is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31 were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.

  19. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  20. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  1. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma.

    Science.gov (United States)

    Jiang, Xuan; Shan, Jinlu; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Yang, Yuxing; Zhang, Shiheng; Li, Chongyi; Sui, Jiangdong; Ren, Tao; Li, Mengxia; Wang, Dong

    2015-10-01

    Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  2. A Role for PPAR/ in Ocular Angiogenesis

    Directory of Open Access Journals (Sweden)

    David Bishop-Bailey

    2008-01-01

    Full Text Available The uses of highly selective PPAR/ ligands and PPAR/ knockout mice have shown a direct ability of PPAR/ to regulate angiogenesis in vitro and in vivo in animal models. PPAR/ ligands induce the proangiogenic growth factor VEGF in many cells and tissues, though its actions in the eye are not known. However, virtually, all tissue components of the eye express PPAR/. Both angiogenesis and in particular VEGF are not only critical for the development of the retina, but they are also a central component in many common pathologies of the eye, including diabetic retinopathy and age-related macular degeneration, the most common causes of blindness in the Western world. This review, therefore, will discuss the recent evidence of PPAR/-mediated angiogenesis and VEGF release in the context of ocular disorders.

  3. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  4. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  5. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  6. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Iván González-Chavarría

    Full Text Available Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  7. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    Science.gov (United States)

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  8. Photoacoustic imaging of angiogenesis in subdermal islet transplant sites

    Science.gov (United States)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-03-01

    Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.

  9. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  10. Analysis of the LaSalle Unit 2 nuclear power plant: Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Wells, J.E.; Lappa, D.A.; Bernreuter, D.L.; Chen, J.C.; Chuang, T.Y.; Johnson, J.J.; Campbell, R.D.; Hashimoto, P.S.; Maslenikov, O.R.; Tiong, L.W.; Ravindra, M.K.; Kincaid, R.H.; Sues, R.H.; Putcha, C.S.

    1993-11-01

    This report describes the methodology used and the results obtained from the application of a simplified seismic risk methodology to the LaSalle County Nuclear Generating Station Unit 2. This study is part of the Level I analysis being performed by the Risk Methods Integration and Evaluation Program (RMIEP). Using the RMIEP developed event and fault trees, the analysis resulted in a seismically induced core damage frequency point estimate of 6.OE-7/yr. This result, combined with the component importance analysis, indicated that system failures were dominated by random events. The dominant components included diesel generator failures (failure to swing, failure to start, failure to run after started), and condensate storage tank

  11. Micromamíferos vallesienses del yacimiento La Salle en las Arcillas Rojas de Teruel

    OpenAIRE

    ADROVER, Rafael; ALCALÁ, Luís; MEIN, Pierre; MOISSENET, Etienne; PARICIO, Juan

    1982-01-01

    El hallazgo de unos restos de micromamiferos en las proximidades del Colegio La Salle de Teruel permite datar la formación de las arcillas rojas conocida con 10s nombres de "Los Monotos", "Formación de Los Tejares" y "Pera1 Formation". La ausencia casi total de fósiles ha hecho que la edad de esa formación fuera largamente discutida. Los fósiles recientemente encontrados permiten atribuirle una edad vallesiense (MN 10 basal). La fauna recogida comprende: Galerix (Parasorex) socialis, Crusafon...

  12. Fire environment determination in the LaSalle NPP control room

    Energy Technology Data Exchange (ETDEWEB)

    Usher, J.L.; Boccio, J.L.; Singhal, A.K.; Tam, L.T.

    1986-01-01

    One objective of NRC's Fire Protection Research Program (FPRP) is to improve the modeling of environments caused by fires in typical nuclear power plant enclosures. A three-dimensional fluid dynamics computer code (PHOENICS) has been adapted as a field-model fire code (SAFFIRE) for this purpose. The model has been applied to simulate two distinct fires in the control room of the LaSalle County power plant. The environments determined illustrate hazardous potential for both personnel and equipment.

  13. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    Directory of Open Access Journals (Sweden)

    Demin Jiao

    2016-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs, we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways.

  14. Statins and angiogenesis: Is it about connections?

    International Nuclear Information System (INIS)

    Khaidakov, Magomed; Wang, Wenze; Khan, Junaid A.; Kang, Bum-Yong; Hermonat, Paul L.; Mehta, Jawahar L.

    2009-01-01

    Statins, inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, have been shown to induce both angiogenic and angiostatic responses. We attempted to resolve this controversy by studying the effects of two different statins, rosuvastatin and simvastatin, in two different assay systems. In the matrigel angiogenesis assay, both statins enhanced tube formation by human umbilical vein endothelial cells (HUVECs, p < 0.01 vs. control). In the ex vivo mouse aortic ring sprouting assay, both statins virtually abolished new vessel formation (p < 0.01). As a basic difference between the two models of angiogenesis is dispersed state of endothelial cells vs. compact monolayer, we analyzed influence of statins on endothelial junction proteins. RT-PCR analysis and cytoimmunostaining of HUVECs treated with simvastatin revealed increased expression of VE-cadherin (p < 0.05). The blockade of VE-cadherin with a specific antibody reversed simvastatin-induced tube formation (p < 0.002). These data suggest that statins through VE-cadherin stimulation modulate cell-cell adhesion and diminish the ability of cells to proliferate and migrate. The observations of reduced angiogenesis in the intact vessel may relate to anti-atherosclerotic and anti-cancer effects of statins, and provide a feasible explanation for conflicting data under different experimental conditions.

  15. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  16. Lack of association between level of Plasminogen Activator Inhibitor-1 and estimates of tumor angiogenesis in early breast cancer

    DEFF Research Database (Denmark)

    Offersen, Birgitte Vrou; Riisbro, Rikke; Knoop, Ann

    2007-01-01

    Plasminogen Activator Inhibitor type-1 (PAI-1) is involved in tumor invasion and progression. High levels of PAI-1 are associated with poor prognosis in breast cancer, and PAI-1 has been shown to play a role in angiogenic processes. Since estimates of tumor angiogenesis may predict poor prognosis...... we studied the relationship between PAI-1 and estimates of angiogenesis in breast cancer. Tumor tissue specimens from 438 breast cancer patients were included. Median follow-up was 10.3 years. Protein levels of PAI-1 were measured using an ELISA. Angiogenesis scores were performed using a Chalkley.......009) were independent markers of death from breast cancer. This study confirms high PAI-1 or high Chalkley counts as markers of poor prognosis in breast cancer patients, and suggests that the prognostic impact of PAI-1 is independent of its supposed involvement in tumor angiogenesis. Udgivelsesdato: 2007...

  17. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  18. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    Science.gov (United States)

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  19. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  20. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Angiogenesis is a highly coordinated, extremely complex process orchestrated by multiple signaling molecules and blood flow conditions. While sprouting mode of angiogenesis is very well investigated, the molecular mechanisms underlying intussusception, the second mode of angiogenesis, remain largely unclear. In the current study two molecules involved in vascular growth and differentiation, namely endoglin (ENG/CD105 and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII were examined to unravel their specific roles in angiogenesis. Down- respectively up-regulation of both molecules tightly correlates with intussusceptive microvascular growth. Upon ENG inhibition in chicken embryo model, formation of irregular capillary meshwork accompanied by increased expression of COUP-TFII could be observed. This dynamic expression pattern of ENG and COUP-TFII during vascular development and remodeling correlated with formation of pillars and progression of intussusceptive angiogenesis. Similar findings could be observed in mammalian model of acute rat Thy1.1 glomerulonephritis, which was induced by intravenous injection of anti-Thy1 antibody and has shown upregulation of COUP-TFII in initial phase of intussusception, while ENG expression was not disturbed compared to the controls but decreased over the time of pillar formation. In this study, we have shown that ENG inhibition and at the same time up-regulation of COUP-TFII expression promotes intussusceptive angiogenesis.

  1. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn; Liu, Hongchun, E-mail: liuhch@aliyun.com; Zhang, Shuncai, E-mail: zhang.shuncai@zs-hospital.sh.cn

    2016-02-19

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGF in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1

  2. WNT Signaling Is Required for Peritoneal Membrane Angiogenesis.

    Science.gov (United States)

    Padwal, Manreet Kaur; Cheng, Genyang; Liu, Limin; Boivin, Felix J; Gangji, Azim; Brimble, Kenneth Scott; Bridgewater, Darren; Margetts, Peter J

    2018-01-24

    The WNT signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor beta (TGFB) mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGFΒ-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal b-catenin protein was significantly upregulated after infection with AdTGFB along with elements of the WNT signaling pathway. Treatment with a b-catenin inhibitor (ICG-001) in mice with AdTGFB-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf related protein (DKK) 1. In addition to this, DKK-1 blocked epithelial to mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

  3. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    International Nuclear Information System (INIS)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H.; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-01-01

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  4. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  5. circ-SHKBP1 Regulates the Angiogenesis of U87 Glioma-Exposed Endothelial Cells through miR-544a/FOXP1 and miR-379/FOXP2 Pathways

    Directory of Open Access Journals (Sweden)

    Qianru He

    2018-03-01

    Full Text Available Circular RNAs (circRNAs are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs. The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs. circ-SHKBP1 knockdown inhibited the viability, migration, and tube formation of GECs dramatically. The expressions of miR-379/miR-544a were downregulated in GECs, and circ-SHKBP1 functionally targeted miR-544a/miR-379 in an RNA-induced silencing complex (RISC manner. Dual-luciferase reporter assay demonstrated that forkhead box P1/P2 (FOXP1/FOXP2 were targets of miR-544a/miR-379. The expressions of FOXP1/FOXP2 were upregulated in GECs, and silencing of FOXP1/FOXP2 inhibited the viability, migration, and tube formation of GECs. Meanwhile, FOXP1/FOXP2 promoted angiogenic factor with G patch and FHA domains 1 (AGGF1 expression at the transcriptional level. Furthermore, knockdown of AGGF1 suppressed the viability, migration, and tube formation of GECs via phosphatidylinositol 3-kinase (PI3K/AKT and extracellular signal-regulated kinase (ERK1/2 pathways. Taken together, the present study demonstrated that circ-SHKBP1 regulated the angiogenesis of GECs through miR-544a/FOXP1 and miR-379/FOXP2 pathways, and these findings might provide a potential target and effective strategy for combined therapy of gliomas.

  6. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer.

    Science.gov (United States)

    Wang, Xinjing; Zhu, Qinyi; Lin, Yingying; Wu, Li; Wu, Xiaoli; Wang, Kai; He, Qizhi; Xu, Congjian; Wan, Xiaoping; Wang, Xipeng

    2017-10-24

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynaecologic malignancies and has a poor prognosis due to metastasis. Drugs targeting the angiogenesis pathway significantly improve patient outcome. However, the key factors linking angiogenesis and metastasis have not been elucidated. In this study, we found Tie2 expressing monocytes (CD14 + Tie2 + , TEMs) as key contributors to angiogenesis and metastasis of EOC. Tissue slides were evaluated by immunofluorescence for the presence of total tissue macrophages and TEMs. The correlation between microvascular density (MVD) values and the TEMs number or ratio was calculated in both ovarian cancer tissues and peritoneum. The rate of TEMs in monocytes was evaluated in the peripheral blood of female healthy donors, benign cysts patients, and EOC patients using flow cytometry. The TEMs rate in ascites from EOC patients was also evaluated by flow cytometry. The concentration of Ang2, as the ligand of Tie2, was examined by ELISA in serum samples of EOC patients, benign cysts patients, and ascites samples of EOC patients. The effects of Ang2 on the migration and the cytokine expression of TEMs were further examined. The pro- angiogenesis activity of TEMs via IGF1 was performed in both in vivo and in vitro. And the IGF1 blocking test was performed using neutralising antibody. TEMs were significantly higher in tumour foci, peripheral blood and ascites in EOC patients. The proportion of TEMs among total tissue macrophages was positively correlated with tumour MVD. In vivo animal results showed that TEMs promoted EOC angiogenesis and metastasis. Further functional and mechanisms studies revealed that concentration of angiopoietin 2 (Ang2), a ligand of Tie2, was elevated in EOC ascites which further recruit TEMs in a dose-dependent manner as a powerful chemokine to TEMs. Recruited TEMs promoted endothelial cell function through IGF1-activated downstream signalling. Blocking secreted IGF1 using inhibiting antibody

  7. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis.

    Science.gov (United States)

    Del Galdo, Sabrina; Vettel, Christiane; Heringdorf, Dagmar Meyer Zu; Wieland, Thomas

    2013-12-01

    Sphingosine-1-phosphate (S1P) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). S1P responses are mediated by five G protein coupled receptors of which three types (S1P1R-S1P3R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P1R regulates endothelial barrier function by coupling to Gαi and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P2R preferentially decreased the activation of RhoC. Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the Gα12/13 subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P2R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine S1P stimulating the S1P2R. This inhibitory pathway involves the activation of RhoC via Gα12/13 and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here. © 2013.

  8. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells

    Science.gov (United States)

    Asghar, Muhammad Yasir; Bergelin, Nina; Jaakkola, Panu; Törnquist, Kid

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1. PMID:23824493

  9. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Veronica Kalhori

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1 is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3, Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.

  10. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  11. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  12. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  13. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  14. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  15. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells.

    Science.gov (United States)

    You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya

    2017-08-03

    Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

  16. Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jun-Xiu Liu

    2014-05-01

    Full Text Available Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  17. 10-Hydroxy-2-decenoic Acid, a Major Fatty Acid from Royal Jelly, Inhibits VEGF-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Izuta

    2009-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is reported to be a potent pro-angiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. Royal jelly (RJ is a honeybee product containing various proteins, sugars, lipids, vitamins and free amino acids. 10-Hydroxy-2-decenoic acid (10HDA, a major fatty acid component of RJ, is known to have various pharmacological effects; its antitumor activity being especially noteworthy. However, the mechanism underlying this effect is unclear. We examined the effect of 10HDA on VEGF-induced proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs. Our findings showed that, 10HDA at 20 µM or more significantly inhibited such proliferation, migration and tube formation. Similarly, 10 µM GM6001, a matrix metalloprotease inhibitor, prevented VEGF-induced migration and tube formation. These findings indicate that 10HDA exerts an inhibitory effect on VEGF-induced angiogenesis, partly by inhibiting both cell proliferation and migration. Further experiments will be needed to clarify the detailed mechanism.

  18. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    Science.gov (United States)

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  19. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis.

    Science.gov (United States)

    Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui

    2018-01-01

    Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced

  20. Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences.

    Science.gov (United States)

    Conconi, Maria Teresa; Ghezzo, Francesca; Dettin, Monica; Urbani, Luca; Grandi, Claudio; Guidolin, Diego; Nico, Beatrice; Di Bello, Carlo; Ribatti, Domenico; Parnigotto, Pier Paolo

    2010-07-01

    It is well known that tumor growth is strictly dependent on neo-vessel formation inside the tumor mass and that cell adhesion is required to allow EC proliferation and migration inside the tumor. In this work, we have evaluated the in vitro and in vivo effects on angiogenesis of some peptides, originally designed to promote cell adhesion on biomaterials, containing RGD motif mediating cell adhesion via integrin receptors [RGD, GRGDSPK, and (GRGDSP)(4)K] or the heparin-binding sequence of human vitronectin that interacts with HSPGs [HVP(351-359)]. Cell adhesion, proliferation, migration, and capillary-like tube formation in Matrigel were determined on HUVECs, whereas the effects on in vivo angiogenesis were evaluated using the CAM assay. (GRGDSP)(4)K linear sequence inhibited cell adhesion, decreased cell proliferation, migration and morphogenesis in Matrigel, and induced anti-angiogenic responses on CAM at higher degree than that determined after incubation with RGD or GRGDSPK. Moreover, it counteracted both in vitro and in vivo the pro-angiogenic effects induced by the Fibroblast growth factor (FGF-2). On the other hand, HVP was not able to affect cell adhesion and appeared less effective than (GRGDSP)(4)K. Our data indicate that the activity of RGD-containing peptides is related to their adhesive properties, and their effects are modulated by the number of cell adhesion motifs and the aminoacidic residues next to these sequences. The anti-angiogenic properties of (GRGDSP)(4)K seem to depend on its interaction with integrins, whereas the effects of HVP may be partially due to an impairment of HSPGs/FGF-2.

  1. Protein Kinase B (Akt) Promotes Pathological Angiogenesis in Murine Model of Oxygen-Induced Retinopathy

    International Nuclear Information System (INIS)

    Wang, Peng; Tian, Xiao-Feng; Rong, Jun-Bo; Liu, Dan; Yi, Guo-Guo; Tan, Qian

    2011-01-01

    Akt, or protein kinase B, is an important signaling molecule that modulates many cellular processes such as cell growth, survival, and metabolism. However, the vivo roles and effectors of Akt in retinal angiogenesis are not explicitly clear. We therefore detected the expression of Akt using Western blotting or RT-PCR technologies in an animal model of oxygen-induced retinopathy, and investigated the effects of recombinant Akt on inhibiting vessels loss and Akt inhibitor on suppressing experimental retinal neovascularization in this model. We showed that in the hyperoxic phase of oxygen-induced retinopathy, the expression of Akt was greatly suppressed. In the hypoxic phase, the expression of Akt was increased dramatically. No significant differences were found in normoxic groups. Compared with control groups, administration of the recombinant Akt in the first phase of retinopathy markedly reduced capillary-free areas, while the administration of the Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization but capillary-free areas. These results indicate that Akt play a critical role in the pathological process (vessels loss and neovascularization) of mouse model of oxygen-induced retinopathy, which may provide a valubale therapeutic tool for ischemic-induced retinal diseases

  2. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis

    Science.gov (United States)

    Liu, Longwei; You, Zhifeng; Yu, Hongsheng; Zhou, Lyu; Zhao, Hui; Yan, Xiaojun; Li, Dulei; Wang, Bingjie; Zhu, Lu; Xu, Yuzhou; Xia, Tie; Shi, Yan; Huang, Chenyu; Hou, Wei; Du, Yanan

    2017-12-01

    The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.

  3. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  4. Angiogenesis in Schistosoma haematobium-associated urinary bladder cancer.

    Science.gov (United States)

    Dematei, Anderson; Fernandes, Rúben; Soares, Raquel; Alves, Helena; Richter, Joachim; Botelho, Monica C

    2017-12-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. During infection, eggs are deposited in the bladder causing an intense inflammatory reaction. Angiogenesis is defined as the formation of new blood vessels from preexisting ones and is recognized as a key event in cell proliferation and carcinogenesis and spread of malignant lesions. A growing amount of evidence points to angiogenesis playing a key role in schistosomiasis-associated bladder cancer. Thus, identifying biomarkers of this process plays an important role in the study of cancer. Here, we review recent findings on the role of angiogenesis in bladder cancer and the growth factors that induce and assist in their development, particularly SCC of the bladder associated to urogenital schistosomiasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  5. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  6. [Angiogenesis and endometriose].

    Science.gov (United States)

    Becker, C M; Bartley, J; Mechsner, S; Ebert, A D

    2004-08-01

    Endometriosis is considered a chronic disease of women during their reproductive phase, which resembles many signs of malignancy. So far, therapeutic options for endometriosis-associated pain and infertility are unsatisfactory and often lead to recurrence of disease after termination of treatment. Angiogenesis seems to play an important role in the pathogenesis of endometriosis. The use of angiogenesis inhibitors may add an important new tool to well-established treatment schedules. Therefore, it is very important to thoroughly investigate the role of angiogenesis in endometriosis with respect to the female reproductive system.

  7. Her-2/neu overexpression is associated with thrombospondin-1-related angiogenesis and thrombospondin-1-unrelated lymphangiogenesis in breast cancer

    Directory of Open Access Journals (Sweden)

    Ming-Chuan Hong

    2013-11-01

    Conclusion: Our in vivo results showed that Her-2/neu affects the biological manifestations of breast cancer by increasing angiogenesis (which is TSP-1-related and lymphangiogenesis, which is TSP-1-unrelated.

  8. Nivel de Lectura y Escritura Creativa de los Estudiantes del Primer Año de Pregrado de la Universidad La Salle, Arequipa. 2016

    OpenAIRE

    Mazeyra Guillén, Orlando Alonso

    2017-01-01

    El presente estudio tuvo como objetivo investigar el nivel de lectura y de escritura creativa de los estudiantes del primer año de pregrado de la Universidad La Salle; y establecer la relación que existe entre los niveles de lectura y escritura creativa de los estudiantes. La población estuvo conformada por 120 estudiantes de pregrado del primer año de la Universidad La Salle, que corresponde a los 3 programas profesionales con que cuenta la universidad: Derecho, Administración y Negocios Int...

  9. An IP-10 (CXCL10)-Derived Peptide Inhibits Angiogenesis

    Science.gov (United States)

    Yates-Binder, Cecelia C.; Rodgers, Margaret; Jaynes, Jesse; Wells, Alan; Bodnar, Richard J.; Turner, Timothy

    2012-01-01

    Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3) and, activation by its ligand IP-10 (CXCL10), both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77–98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis. PMID:22815829

  10. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  11. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  12. Effect of the micronutrient iodine in thyroid carcinoma angiogenesis.

    Science.gov (United States)

    Daniell, Kayla; Nucera, Carmelo

    2016-12-20

    Iodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentration of iodide within thyrocyte can have significant effects on the thyroid, specifically the surrounding vascular network. Insufficient levels of iodide can lead to increased expression or activity of several pathways, including vascular endothelial growth factor (VEGF). The VEGF protein fuel vessel growth (angiogenesis) and therefore enhances the nutrients available to surrounding cells. Alternatively, normal/surplus iodide levels can have inhibitory effects on angiogenesis. Varying levels of iodide in the thyroid can influence thyroid carcinoma cell proliferation and angiogenesis via regulation of the hypoxia inducible factor-1 (HIF-1) and VEGF-dependent pathway. We have reviewed a number of studies to investigate how the effect of iodide on angiogenic and oxidative stress regulation can affect the viability of thyroid carcinoma cells. The various studies outlined give key insights to the role of iodide in thyroid follicles function and vascular growth, generally highlighting that insufficient levels of iodide stimulate pathways resulting in vascular growth, and viceversa normal/surplus iodide levels inhibit such pathways. Intriguingly, TSH and iodine levels differentially regulate the expression levels of angiogenic factors. All cells, including carcinoma cells, increase uptake of blood nutrients, meaning the vascular profile is influential to tumor growth and progression. Importantly, variation in the iodine concentrations also influence BRAF V600E -mediated oncogenic activity and might deregulate tumor proliferation. Although the mechanisms are not well eluted, iodine

  13. Four jointed box 1 promotes angiogenesis and is associated with poor patient survival in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Nicole T Al-Greene

    Full Text Available Angiogenesis, the recruitment and re-configuration of pre-existing vasculature, is essential for tumor growth and metastasis. Increased tumor vascularization often correlates with poor patient outcomes in a broad spectrum of carcinomas. We identified four jointed box 1 (FJX1 as a candidate regulator of tumor angiogenesis in colorectal cancer. FJX1 mRNA and protein are upregulated in human colorectal tumor epithelium as compared with normal epithelium and colorectal adenomas, and high expression of FJX1 is associated with poor patient prognosis. FJX1 mRNA expression in colorectal cancer tissues is significantly correlated with changes in known angiogenesis genes. Augmented expression of FJX1 in colon cancer cells promotes growth of xenografts in athymic mice and is associated with increased tumor cell proliferation and vascularization. Furthermore, FJX1 null mice develop significantly fewer colonic polyps than wild-type littermates after combined dextran sodium sulfate (DSS and azoxymethane (AOM treatment. In vitro, conditioned media from FJX1 expressing cells promoted endothelial cell capillary tube formation in a HIF1-α dependent manner. Taken together our results support the conclusion that FJX1 is a novel regulator of tumor progression, due in part, to its effect on tumor vascularization.

  14. 75 FR 52932 - Notice of Intent To Grant an Exclusive License; Doar, Pekuin, Sall Limited Liability Company

    Science.gov (United States)

    2010-08-30

    ... DEPARTMENT OF DEFENSE National Security Agency Notice of Intent To Grant an Exclusive License; Doar, Pekuin, Sall Limited Liability Company AGENCY: National Security Agency, DoD. ACTION: Notice... Limited Liability Company a revocable, non- assignable, exclusive, license to practice the following...

  15. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo.

    Science.gov (United States)

    Yang, Feiya; Jiang, Xian; Song, Liming; Wang, Huiping; Mei, Zhu; Xu, Zhiqing; Xing, Nianzeng

    2016-03-01

    The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.

  16. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma.

    Science.gov (United States)

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-06-30

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma.

  17. Apatinib Inhibits Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Zhijian Jin

    2017-12-01

    Full Text Available Background/Aims: Anaplastic thyroid carcinoma (ATC is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI, has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. Methods: In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Results: Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Conclusion: Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC.

  18. Optimasi Desain Akustik Bangunan Konservasi Pada Ruang Serbaguna Salle France Cccl Surabaya

    OpenAIRE

    C. Indrani, Hedy; Tansajaya, Felicia

    2011-01-01

    In multi-function rooms, the acoustic system usually becomes a vital issue because speech and music truly depend on sound in delivering message. The accuracy of a message and its meaning delivered to the audience increases with the quality of the acoustic system of the room. Conversely, choosing and applying the right materials for the interior elements and furnitures is truly vital in creating a good acoustic system. Results of observation in the multi-function room of Salle France CCCL Sura...

  19. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. ocular angiogenesis; corneal neovascularization; retinal neovascularization; diabetic retinopathy; age-related macular degeneration; retinopathy of prematurity; VEGF; PEDF; Flt-1; Flk-1; endostatin; angiopoietin; erythropoietin; Tie2; inflammation; complement; gene therapy; TLR-3; Robo4.

  20. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  1. Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model.

    Science.gov (United States)

    Li, Zhenyuan; Yan, Hao; Yuan, Jiangzi; Cao, Liou; Lin, Aiwu; Dai, Huili; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2018-04-01

    Molecular mechanisms of peritoneal dialysis (PD) ultrafiltration failure, peritoneal neo-angiogenesis, and fibrosis remain to be determined. We aimed to determine the role of heparin-binding EGF-like growth factor (HB-EGF) inhibition on angiogenesis of peritoneal membrane in a PD rat model. 32 male Wistar rats were assigned into (1) control group; (2) uremic non-PD group: subtotal nephrectomy-induced uremic rats without PD; (3) uremic rats subjected to PD: uremic rats that were dialyzed with Dianeal ® for 4 weeks; (4) CRM 197 group: dialyzed uremic rats were supplemented with CRM197, a specific HB-EGF inhibitor. Peritoneal transport function was examined by peritoneal equilibration test. Expression of HB-EGF and EGFR in peritoneal samples were examined by real-time PCR, immunohistochemical staining, and western blot. Progressive angiogenesis and fibrosis were observed in uremic PD rats, and there were associated with decreased net ultrafiltration (nUF), increased permeability of peritoneal membrane, and reduced expression of HB-EGF and EGFR protein and mRNA in uremic PD rats compared to uremic non-PD or control groups (both p CRM197 significantly induced peritoneal membrane permeability, decreased nUF, increased higher vessel density, and reduced pericyte count compared to that of uremic PD rats. The levels of HB-EGF and EGFR expression negatively correlated with vessel density in peritoneal membrane (both p < 0.001). PD therapy was associated with peritoneal angiogenesis, functional deterioration, and downregulation of HB-EGF/EGFR. Pharmacological inhibition of HB-EGF promoted PD-induced peritoneal angiogenesis and fibrosis and ultrafiltration decline, suggesting that HB-EGF downregulation contributes to peritoneal functional deterioration in the uremic PD rat model.

  2. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway.

    Science.gov (United States)

    Lee, Hsiang-Ping; Lin, Chih-Yang; Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-11-03

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.

  3. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  4. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    Science.gov (United States)

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  5. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    International Nuclear Information System (INIS)

    Kemp, Melissa M; Linhardt, Robert J; Kumar, Ashavani; Ajayan, Pulickel; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A

    2009-01-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  6. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Melissa M; Linhardt, Robert J [Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Kumar, Ashavani; Ajayan, Pulickel [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A, E-mail: Shaker.mousa@acphs.ed [Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208 (United States)

    2009-11-11

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  7. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Science.gov (United States)

    Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.

    2009-11-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (Pcancer and inflammatory diseases.

  8. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  9. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  10. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  11. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway.

    Science.gov (United States)

    Park, J H; Lee, J Y; Shin, D H; Jang, K S; Kim, H J; Kong, Gu

    2011-11-10

    Mel-18 has been implicated in several processes in tumor progression, in which the Akt pathway is involved as an important key molecular event. However, the function of Mel-18 in human cancers has not been fully established yet. Here, we examined the effect of Mel-18 on tumor angiogenesis in human breast cancer, and found that Mel-18 was a novel regulator of HIF-1α. Mel-18 negatively regulated the HIF-1α expression and its target gene VEGF transcription during both normoxia and hypoxia. We demonstrated that Mel-18 regulated the HIF-1α expression and activity via the PI3K/Akt pathway. Loss of Mel-18 downregulated Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression, consequently activating the PI3K/Akt/MDM2 pathway, and leading to an increase of HIF-1α protein level. Mel-18 modulated the HIF-1α transcriptional activity via regulating the cytoplasmic retention of FOXO3a, a downstream effector of Akt, and recruitment of HIF-1α/CBP complex to the VEGF promoter. Furthermore, our data shows that Mel-18 blocked tumor angiogenesis both in vitro and in vivo. Mel-18 overexpression inhibited in vitro tube formation in human umbilical endothelial cells (HUVECs). Xenografts in NOD/SCID mice derived from stably Mel-18 knocked down MCF7 human breast cancer cells showed increased tumor volume, microvessel density, and phospho-Akt and HIF-1α expression levels. In conclusion, our findings provide that Mel-18 is a novel regulator of tumor angiogenesis through regulating HIF-1α and its target VEGF expressions mediated by the PTEN/PI3K/Akt pathway, suggesting a new tumor-suppressive role of Mel-18 in human breast cancer.

  12. Study of the Impact of Uterine Artery Embolization (UAE) on Endometrial Microvessel Density (MVD) and Angiogenesis

    International Nuclear Information System (INIS)

    Tan Guosheng; Xiang Xianhong; Guo Wenbo; Zhang Bing; Chen Wei; Yang Jianyong

    2013-01-01

    PurposeTo investigate the influence of uterine artery embolization (UAE) on endometrial microvessel density (MVD) and angiogenesis.MethodsSixty female guinea pigs were divided into two groups, the control group (n = 15) and the UAE treatment group (n = 45). In the UAE group, tris–acryl gelatin microspheres were used to generate embolization. Animals were further divided into three subgroups, A1, A2, and A3 (n = 15 for each subgroup), with uterine specimens collected at 7–15, 16–30, and 31–45 days after UAE, respectively. Immunostaining for factor VIII and CD105 was performed to identify total endometrial MVD (MVD FVIII ) and CD105-positive angiogenesis (MVD CD105 ) at the indicated time points after UAE.ResultsQuantitative analysis revealed that MVD FVIII significantly decreased in the A1 (11.40 ± 2.76, p CD105 -positive angiogenesis in the A1 group (9.33 ± 2.37, p CD105 value returned to normal in the A3 group (8.07 ± 1.97).ConclusionUAE caused a temporal decrease in endometrial MVD that reversed over time as a result of the increase of CD105-positive angiogenesis. Although the UAE-induced reduction of endometrial MVD was reversible, its long-term effect on endometrial receptivity still needs further study

  13. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, S N

    2011-09-01

    Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac. Copyright ©2011 Wiley-Liss, Inc.

  14. Green tea and its anti-angiogenesis effects.

    Science.gov (United States)

    Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed

    2017-05-01

    The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    International Nuclear Information System (INIS)

    Jung, Myung Hwan; Kim, Kye Ryung

    2013-01-01

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  16. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  17. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    Science.gov (United States)

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  18. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    International Nuclear Information System (INIS)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long; Bao, Jin-ku

    2011-01-01

    Highlights: → ConA induces cancer cell death targeting apoptosis and autophagy. → ConA inhibits cancer cell angiogenesis. → ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca 2+ /Mn 2+ -dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  19. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    Science.gov (United States)

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  20. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy...... adults where it is primaily found in wound healing, pregnancy and during the menstrual cycle. This thesis focus on the negative consequences of angiogenesis in cancer. It consists of a an initial overview followed by four manuscripts. The overview gives a short introduction to the process of angiogenesis...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  1. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    Science.gov (United States)

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  2. Une révolution numérique dans les salles de classe de l'Uruguay ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    28 janv. 2011 ... Les élèves des écoles primaires publiques de l'Uruguay vont bientôt voir leurs salles de classe se colorer de vert. Grâce à une initiative pilote mondiale, des millions d'ordinateurs portables peu coûteux seront distribués aux enfants les plus pauvres de la planète au cours de l'an prochain.

  3. Marine Cyclotripeptide X-13 Promotes Angiogenesis in Zebrafish and Human Endothelial Cells via PI3K/Akt/eNOS Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2012-06-01

    Full Text Available Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508. We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or l-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.

  4. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Patterson, Tucker A; Bowyer, John F

    2009-10-01

    An amphetamine (AMPH) regimen that does not produce a prominent blood-brain barrier breakdown was shown to significantly alter the expression of genes regulating vascular tone, immune function, and angiogenesis in vasculature associated with arachnoid and pia membranes of the forebrain. Adult-male Sprague-Dawley rats were given either saline injections during environmentally-induced hyperthermia (EIH) or four doses of AMPH with 2 h between each dose (5, 7.5, 10, and 10 mg/kg d-AMPH, s.c.) that produced hyperthermia. Rats were sacrificed either 3 h or 1 day after dosing, and total RNA and protein was isolated from the meninges, arachnoid and pia membranes, and associated vasculature (MAV) that surround the forebrain. Vip, eNos, Drd1a, and Edn1 (genes regulating vascular tone) were increased by either EIH or AMPH to varying degrees in MAV, indicating that EIH and AMPH produce differential responses to enhance vasodilatation. AMPH, and EIH to a lesser extent, elicited a significant inflammatory response at 3 h as indicated by an increased MAV expression of cytokines Il1b, Il6, Ccl-2, Cxcl1, and Cxcl2. Also, genes related to heat shock/stress and disruption of vascular homeostasis such as Icam1 and Hsp72 were also observed. The increased expression of Ctgf and Timp1 and the decreased expression of Akt1, Anpep, and Mmp2 and Tek (genes involved in stimulating angiogenesis) from AMPH exposure suggest that angiogenesis was arrested or disrupted in MAV to a greater extent by AMPH compared to EIH. Alterations in vascular-related gene expression in the parietal cortex and striatum after AMPH were less in magnitude than in MAV, indicating less of a disruption of vascular homeostasis in these two regions. Changes in the levels of insulin-like growth factor binding proteins Igfbp1, 2, and 5 in MAV, compared to those in striatum and parietal cortex, imply an interaction between these regions to regulate the levels of insulin-like growth factor after AMPH damage. Thus, the

  5. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release

    NARCIS (Netherlands)

    Barralet, Jake E.; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J.

    2009-01-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and/or vascular cells. It represents an important process during the formation and repair of tissue and is essential for

  6. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    Science.gov (United States)

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  7. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis.

    Science.gov (United States)

    Yi, Huan; Ye, Jun; Yang, Xiao-Mei; Zhang, Li-Wen; Zhang, Zhi-Gang; Chen, Ya-Ping

    2015-01-01

    Ovarian cancer, the most lethal gynecological cancer, related closely to tumor stage. High-grade ovarian cancer always results in a late diagnose and high recurrence, which reduce survival within five years. Until recently, curable therapy is still under research and anti-angiogenesis proves a promising way. Tumor-derived exosomes are essential in tumor migration and metastases such as angiogenesis is enhanced by exosomes. In our study, we have made comparison between high-grade and unlikely high-grade serous ovarian cancer cells on exosomal function of endothelial cells proliferation, migration and tube formation. Exosomes derived from high-grade ovarian cancer have a profound impact on angiogenesis with comparison to unlikely high-grade ovarian cancer. Proteomic profiles revealed some potential proteins involved in exosomal function of angiogenesis such as ATF2, MTA1, ROCK1/2 and so on. Therefore, exosomes plays an influential role in angiogenesis in ovarian serous cancer and also function more effectively in high-grade ovarian cancer cells.

  8. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Aurore Gely-Pernot

    2015-10-01

    Full Text Available All-trans retinoic acid (ATRA is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG or all ATRA receptors (RARA, RARB and RARG. We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.

  9. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  10. Angiogenesis in liver fibrosis

    NARCIS (Netherlands)

    Adlia, Amirah

    2017-01-01

    Angiogenesis emerges in parallel with liver fibrosis, but it is still unclear whether angiogenesis is a defense mechanism of the body in response to fibrosis, or whether it aggravates the fibrotic condition. In this thesis, Amirah Adlia applied different approaches to elucidate the role of

  11. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  13. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  14. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Shen, Hsiao-Wei [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Hwang, Chia-Hsiang [Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung, Taiwan (China); Lai, Yiu-Kay [Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-06-25

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.

  15. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lin, Chen-Si; He, Pei-Juin; Hsu, Wei-Tung; Wu, Ming-Shiang; Wu, Chang-Jer; Shen, Hsiao-Wei; Hwang, Chia-Hsiang; Lai, Yiu-Kay; Tsai, Nu-Man; Liao, Kuang-Wen

    2010-01-01

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.

  16. TLX controls angiogenesis through interaction with the von Hippel-Lindau protein.

    Science.gov (United States)

    Zeng, Zhao-Jun; Johansson, Erik; Hayashi, Amiko; Chavali, Pavithra L; Akrap, Nina; Yoshida, Takeshi; Kohno, Kimitoshi; Izumi, Hiroto; Funa, Keiko

    2012-06-15

    TLX is known as the orphan nuclear receptor indispensable for maintaining neural stem cells in adult neurogenesis. We report here that neuroblastoma cell lines express high levels of TLX, which further increase in hypoxia to enhance the angiogenic capacity of these cells. The proangiogenetic activity of TLX appears to be induced by its direct binding to the von Hippel-Lindau protein (pVHL), which stabilizes TLX. In turn, TLX competes with hydroxylated hypoxia-inducible factor (HIF-α) for binding to pVHL, which contributes to the stabilization of HIF-2α in neuroblastoma during normoxia. Upon hypoxia, TLX increases in the nucleus where it binds in close proximity of the HIF-response element on the VEGF-promoter chromatin, and, together with HIF-2α, recruits RNA polymerase II to induce VEGF expression. Conversely, depletion of TLX by shRNA decreases the expression of HIF-2α and VEGF as well as the growth-promoting and colony-forming capacity of the neuroblastoma cell lines IMR-32 and SH-SY5Y. On the contrary, silencing HIF-2α will slightly increase TLX, suggesting that TLX acts to maintain a hypoxic environment when HIF-2α is decreasing. Our results demonstrate TLX to play a key role in controlling angiogenesis by regulating HIF-2α. TLX and pVHL might counterbalance each other in important fate decisions such as self-renewal and differentiation, as well as angiogenesis and anti-angiogenesis.

  17. TLX controls angiogenesis through interaction with the von Hippel-Lindau protein

    Directory of Open Access Journals (Sweden)

    Zhao-jun Zeng

    2012-04-01

    TLX is known as the orphan nuclear receptor indispensable for maintaining neural stem cells in adult neurogenesis. We report here that neuroblastoma cell lines express high levels of TLX, which further increase in hypoxia to enhance the angiogenic capacity of these cells. The proangiogenetic activity of TLX appears to be induced by its direct binding to the von Hippel-Lindau protein (pVHL, which stabilizes TLX. In turn, TLX competes with hydroxylated hypoxia-inducible factor (HIF-α for binding to pVHL, which contributes to the stabilization of HIF-2α in neuroblastoma during normoxia. Upon hypoxia, TLX increases in the nucleus where it binds in close proximity of the HIF-response element on the VEGF-promoter chromatin, and, together with HIF-2α, recruits RNA polymerase II to induce VEGF expression. Conversely, depletion of TLX by shRNA decreases the expression of HIF-2α and VEGF as well as the growth-promoting and colony-forming capacity of the neuroblastoma cell lines IMR-32 and SH-SY5Y. On the contrary, silencing HIF-2α will slightly increase TLX, suggesting that TLX acts to maintain a hypoxic environment when HIF-2α is decreasing. Our results demonstrate TLX to play a key role in controlling angiogenesis by regulating HIF-2α. TLX and pVHL might counterbalance each other in important fate decisions such as self-renewal and differentiation, as well as angiogenesis and anti-angiogenesis.

  18. Comparison of risk sensitivity to human errors in the Oconee and LaSalle PRAs

    International Nuclear Information System (INIS)

    Wong, S.; Higgins, J.

    1991-01-01

    This paper describes the comparative analyses of plant risk sensitivity to human errors in the Oconee and La Salle Probabilistic Risk Assessment (PRAs). These analyses were performed to determine the reasons for the observed differences in the sensitivity of core melt frequency (CMF) to changes in human error probabilities (HEPs). Plant-specific design features, PRA methods, and the level of detail and assumptions in the human error modeling were evaluated to assess their influence risk estimates and sensitivities

  19. Eucalyptus gall wasp, Leptocybe invasa Fisher & La Salle (Insecta: Hymenoptera: Eulophidae), an emerging pest of eucalyptus in Florida

    Science.gov (United States)

    A new emerging pest of eucalyptus, Leptocybe invasa Fisher & La Salle, was first found in Italy but mistakenly identified as Aprostocetus sp.. This was followed by another report of an infestation from Turkey in early 2000. It was first formally described in 2004 from Australia as Leptocybe invasa a...

  20. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    Science.gov (United States)

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  1. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  2. Ionizing radiation modulates the exposure of the HUIV26 cryptic epitope within collagen type IV during angiogenesis

    International Nuclear Information System (INIS)

    Brooks, Peter C.; Roth, Jennifer M.; Lymberis, Stella C.; DeWyngaert, Keith; Broek, Daniel; Formenti, Silvia C.

    2002-01-01

    Purpose: The majority of the research on the biologic effects of ionizing radiation has focused on the impact of radiation on cells in terms of gene expression, DNA damage, and cytotoxicity. In comparison, little information is available concerning the direct effects of radiation on the extracellular microenvironment, specifically the extracellular matrix and its main component, collagen. We have developed a series of monoclonal antibodies that bind to cryptic epitopes of collagen Type IV that are differentially exposed during matrix remodeling and are key mediators of angiogenesis. We have hypothesized that ionizing radiation might affect the process of angiogenesis through a direct effect on the extracellular matrix and specifically on collagen Type IV. Methods and Materials: Angiogenesis was induced in a chick chorioallantoic membrane (CAM) model; 24 h later, a single-dose treatment with ionizing radiation (0.5, 5, and 20 cGy) was administered. Angiogenesis was assessed, and the exposure of two cryptic regulatory epitopes within collagen Type IV (HUI77 and HUIV26) was studied in vitro by solid-phase ELISA and in vivo by immunofluorescence staining. Results: A dose-dependent reduction of angiogenesis with maximum inhibition (85%-90%) occurring at 20 cGy was demonstrated in the CAM model. Exposure of the cryptic HUIV26 site, an angiogenesis control element, was inhibited both in vitro and in vivo by the same radiation dose, whereas little if any change was observed for the HUI77 cryptic epitope. Conclusions: A dose-dependent alteration of the functional exposure of the HUIV26 cryptic epitope is induced by radiation in vitro and in the CAM model in vivo. This radiation-induced change in protein structure and function may contribute to the inhibitory effects of ionizing radiation on new blood vessel growth and warrants further studies in other models

  3. Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice

    Directory of Open Access Journals (Sweden)

    Jian-Li Gao

    2013-01-01

    Full Text Available Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Thus, there is a great need to develop new treatment regimens to suppress tumor cells that have escaped surgical removal or that may have already disseminated. We have found that tetrandrine (TET exhibits anticolon cancer activity. Here, we investigate the inhibition effect of TET to breast cancer metastasis, angiogenesis and its molecular basis underlying TET’s anticancer activity. We compare TET with chemotherapy drug doxorubicin in 4T1 tumor bearing BALB/c mice model and find that TET exhibits an anticancer metastatic and antiangiogenic activities better than those of doxorubicin. The lung metastatic sites were decreased by TET, which is confirmed by bioluminescence imaging in vivo. On the other hand, laser doppler perfusion imaging (LDI was used for measuring the blood flow of tumor in 4T1-tumor bearing mice. As a result, the local blood perfusion of tumor was markedly decreased by TET after 3 weeks. Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF-κB levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1α, integrin β5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo.

  4. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  5. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer

    OpenAIRE

    Wang, Xinjing; Zhu, Qinyi; Lin, Yingying; Wu, Li; Wu, Xiaoli; Wang, Kai; He, Qizhi; Xu, Congjian; Wan, Xiaoping; Wang, Xipeng

    2017-01-01

    Background: Epithelial ovarian cancer (EOC) is the leading cause of death from gynaecologic malignancies and has a poor prognosis due to metastasis. Drugs targeting the angiogenesis pathway significantly improve patient outcome. However, the key factors linking angiogenesis and metastasis have not been elucidated. In this study, we found Tie2 expressing monocytes (CD14+Tie2+, TEMs) as key contributors to angiogenesis and metastasis of EOC. Methods: Tissue slides were evaluated by immunofluore...

  6. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  7. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.

    Science.gov (United States)

    Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan

    2016-04-01

    The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  9. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm.

    Science.gov (United States)

    Herrera, Victoria L; Decano, Julius L; Tan, Glaiza A; Moran, Ann M; Pasion, Khristine A; Matsubara, Yuichi; Ruiz-Opazo, Nelson

    2014-01-01

    A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu) rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.

  10. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  11. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    Science.gov (United States)

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. History of research on angiogenesis.

    Science.gov (United States)

    Ribatti, Domenico

    2014-01-01

    Over the past 25 years, the number of Medline publications dealing with angiogenesis has increased in a nonlinear fashion, reflecting the interest among basic scientists and clinicians in this field. Under physiological conditions, angiogenesis is regulated by the local balance between endogenous stimulators and inhibitors of this process. In tumor growth, there is an imbalance between endogenous stimulator and inhibitor levels, leading to an 'angiogenic switch'. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. This paper offers an account of the most relevant discoveries in this field of biomedical research. Copyright © 2014 S. Karger AG, Basel.

  13. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  14. Imaging angiogenesis.

    Science.gov (United States)

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  15. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  16. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  17. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  18. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    International Nuclear Information System (INIS)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok; Payumo, Alexander Y.; Chen, James K.; Kwon, Ho Jeong

    2013-01-01

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases

  19. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    Science.gov (United States)

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (pabnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  20. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas.

    Science.gov (United States)

    Cortes-Santiago, Nahir; Hossain, Mohammad B; Gabrusiewicz, Konrad; Fan, Xuejun; Gumin, Joy; Marini, Frank C; Alonso, Marta M; Lang, Frederick; Yung, W K; Fueyo, Juan; Gomez-Manzano, Candelaria

    2016-03-29

    Glioblastoma recurrence after treatment with the anti-vascular endothelial growth factor (VEGF) agent bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. Our group has previously reported that Tie2-expressing monocytes (TEMs) are aberrantly present at the tumor/normal brain interface after anti-VEGF therapies and their significant role in the invasive outgrowth of these tumors. Here, we aimed to further understand the mechanisms leading to this pro-invasive tumor microenvironment. Examination of a U87MG xenogeneic glioma model and a GL261 murine syngeneic model showed increased tumor expression of angiopoietin 2 (Ang2), a natural ligand of Tie2, after anti-angiogenesis therapies targeting VEGF or VEGF receptor (VEGFR), as assessed by immunohistochemical analysis, immunofluorescence analysis, and enzyme-linked immunosorbent assays of tumor lysates. Migration and gelatinolytic assays showed that Ang2 acts as both a chemoattractant of TEMs and an enhancing signal for their tumor-remodeling properties. Accordingly, in vivo transduction of Ang2 into intracranial gliomas increased recruitment of TEMs into the tumor. To reduce invasive tumor outgrowth after anti-angiogenesis therapy, we targeted the Ang-Tie2 axis using a Tie2 decoy receptor. Using syngeneic models, we observed that overexpression of soluble Tie2 within the tumor prevented the recruitment of TEMs to the tumor and the development of invasion after anti-angiogenesis treatment. Taken together, these data indicate an active role for the Ang2-Tie2 pathway in invasive glioma recurrence after anti-angiogenesis treatment and provide a rationale for testing the combined targeting of VEGF and Ang-Tie2 pathways in patients with glioblastoma.

  1. [Markers of angiogenesis in tumor growth].

    Science.gov (United States)

    Nefedova, N A; Kharlova, O A; Danilova, N V; Malkov, P G; Gaifullin, N M

    2016-01-01

    Angiogenesis is a process of new blood vessels formation. The role of angiogenesis in growth, invasion and metastasis of malignant tumours is nowdays universally recognized. Though, investigation of mechanisms of blood vessels formation and elaboration methods for assessment of tumour angiogenesis are still up-dated. Another important concern are different aspects of usage of immunohistochemical markers of blood vessels endothelium (CD31 and CD34) for assessment of tumour aggressiveness and prognosis. The problems of malignant lymphangiogenesis are also up-to-date. The focus is on methods of immunohistochemical visualization of forming lymphatic vessels, role of podoplanin, the most reliable marker of lymphatic vessels, in their identification, and formulization of the main criteria for lymphangiogenesis estimation, its correlation with metastatic activity and prognostic potential. Studying of angiogenesis and lymph angiogenesis in malignant tumors is important and challenging direction for researching tumour progression and invention of antiangiogenic therapy.

  2. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats

    Science.gov (United States)

    Zonta, Yohan Ricci; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Lupi Júnior, Luiz Antonio; Pinheiro, Patricia Fernanda F.; Reiter, Russel J.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.

    2017-01-01

    Angiogenesis is a hallmark of ovarian cancer (OC); the ingrowth of blood vessels promotes rapid cell growth and the associated metastasis. Melatonin is a well-characterized indoleamine that possesses important anti-angiogenic properties in a set of aggressive solid tumors. Herein, we evaluated the role of melatonin therapy on the angiogenic signaling pathway in OC of an ethanol-preferring rat model that mimics the same pathophysiological conditions occurring in women. OC was chemically induced with a single injection of 7,12-dimethylbenz(a)anthracene (DMBA) under the ovarian bursa. After the rats developed serous papillary OC, half of the animals received intraperitoneal injections of melatonin (200 µg/100 g body weight/day) for 60 days. Melatonin-treated animals showed a significant reduction in OC size and microvessel density. Serum levels of melatonin were higher following therapy, and the expression of its receptor MT1 was significantly increased in OC-bearing rats, regardless of ethanol intake. TGFβ1, a transforming growth factor-beta1, was reduced only after melatonin treatment. Importantly, vascular endothelial growth factor (VEGF) was severely reduced after melatonin therapy in animals given or not given ethanol. Conversely, the levels of VEGF receptor 1 (VEGFR1) was diminished after ethanol consumption, regardless of melatonin therapy, and VEGFR2 was only reduced following melatonin. Hypoxia-inducible factor (HIF)-1α was augmented with ethanol consumption, and, notably, melatonin significantly reduced their levels. Collectively, our results suggest that melatonin attenuates angiogenesis in OC in an animal model of ethanol consumption; this provides a possible complementary therapeutic opportunity for concurrent OC chemotherapy. PMID:28398226

  4. Modulation of ephrinB2 leads to increased angiogenesis in ischemic myocardium and endothelial cell proliferation

    International Nuclear Information System (INIS)

    Mansson-Broberg, Agneta; Siddiqui, Anwar J.; Genander, Maria; Grinnemo, Karl-Henrik; Hao Xiaojin; Andersson, Agneta B.; Waerdell, Eva; Sylven, Christer; Corbascio, Matthias

    2008-01-01

    Eph/ephrin signaling is pivotal in prenatal angiogenesis while its potential role in postnatal angiogenesis largely remains to be explored. Therefore its putative angiogenic and therapeutic effects were explored in endothelium and in myocardial ischemia. In culture of human aortic endothelial cells the fusion protein ephrinB2-Fc induced cell proliferation (p < 0.0005) and in the murine aortic ring model ephrinB2-Fc induced increased sprouting (p < 0.05). Myocardial infarction was induced by ligation of the left anterior descending artery in mouse. During the following 2 weeks mRNA of the receptor/ligand pair EphB4/ephrinB2 was expressed dichotomously (p < 0.05) and other Eph/ephrin pairs were expressed to a lesser degree. Twenty-four hours after intraperitoneal administration of ephrinB2-Fc it was detected in abundance throughout the myocardium along capillaries, showing signs of increased mitosis. After 4 weeks the capillary density was increased 28% in the periinfarcted area (p < 0.05) to a level not different from healthy regions of the heart where no change was observed. These results implicate that EphB4/ephrinB2 is an important signaling pathway in ischemic heart disease and its modulation may induce therapeutic angiogenesis

  5. Loss of Cdh1 and Pten Accelerates Cellular Invasiveness and Angiogenesis in the Mouse Uterus1

    Science.gov (United States)

    Lindberg, Mallory E.; Stodden, Genna R.; King, Mandy L.; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako

    2013-01-01

    ABSTRACT E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1d/d Ptend/d) in the mouse uterus. We observed that Cdh1d/d Ptend/d mice died at Postnatal Days 15–19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1d/d Ptend/d mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1d/d Ptend/d mice. However, complex hyperplasia was not found in the uteri of Cdh1d/d Ptend/d mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death. PMID:23740945

  6. Suppression of VEGF-induced angiogenesis and tumor growth by Eugenia jambolana, Musa paradisiaca, and Coccinia indica extracts.

    Science.gov (United States)

    M, Harsha Raj; Ghosh, Debidas; Banerjee, Rita; Salimath, Bharathi P

    2017-12-01

    Abnormal angiogenesis and evasion of apoptosis are hallmarks of cancer. Accordingly, anti-angiogenic and pro-apoptotic therapies are effective strategies for cancer treatment. Medicinal plants, namely, Eugenia jambolana Lam. (Myrtaceae), Musa paradisiaca L. (Musaceae), and Coccinia indica Wight & Arn. (Cucurbitaceae), have not been greatly investigated for their anticancer potential. We investigated the anti-angiogenic and pro-apoptotic efficacy of ethyl acetate (EA) and n-butanol (NB) extracts of E. jambolana (seeds), EA extracts of M. paradisiaca (roots) and C. indica (leaves) with respect to mammary neoplasia. Effect of extracts (2-200 μg/mL) on cytotoxicity and MCF-7, MDA-MB-231 and endothelial cell (EC) proliferation and in vitro angiogenesis were evaluated by MTT, 3 [H]thymidine uptake and EC tube formation assays, respectively. In vivo tumour proliferation, VEGF secretion and angiogenesis were assessed using the Ehrlich ascites tumour (EAT) model followed by rat corneal micro-pocket and chicken chorioallantoic membrane (CAM) assays. Apoptosis induction was assessed by morphological and cell cycle analysis. EA extracts of E. jambolana and M. paradisiaca exhibited the highest cytotoxicity (IC 50 25 and 60 μg/mL), inhibited cell proliferation (up to 81%), and tube formation (83% and 76%). In vivo treatment reduced body weight (50%); cell number (16.5- and 14.7-fold), secreted VEGF (∼90%), neoangiogenesis in rat cornea (2.5- and 1.5-fold) and CAM (3- and 1.6-fold) besides EAT cells accumulation in sub-G1 phase (20% and 18.38%), respectively. Considering the potent anti-angiogenic and pro-apoptotic properties, lead molecules from EA extracts of E. jambolana and M. paradisiaca can be developed into anticancer drugs.

  7. Simulations of the recent LaSalle-2 incident with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Mallen, A.N.; Wulff, W.

    1989-01-01

    This paper presents the results of simulations of the recent power oscillation incident at the LaSalle-2 nuclear power plant using the BNL plant analyzer. The causes of the oscillation were investigated and the sensitivity of the oscillation to key parameters was studied. It is concluded that the observed power oscillation was caused by boiling instability (i.e., density wave oscillation) reinforced by the reactivity feedback in neutron kinetics, and that the density wave oscillation resulted from flow reduction due to recirculation pump trip and feedwater temperature reduction due to partial loss of feedwater heating capability as well as power peaking

  8. Extended LaSalle's Invariance Principle for Full-Range Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Mauro Di Marco

    2009-01-01

    Full Text Available In several relevant applications to the solution of signal processing tasks in real time, a cellular neural network (CNN is required to be convergent, that is, each solution should tend toward some equilibrium point. The paper develops a Lyapunov method, which is based on a generalized version of LaSalle's invariance principle, for studying convergence and stability of the differential inclusions modeling the dynamics of the full-range (FR model of CNNs. The applicability of the method is demonstrated by obtaining a rigorous proof of convergence for symmetric FR-CNNs. The proof, which is a direct consequence of the fact that a symmetric FR-CNN admits a strict Lyapunov function, is much more simple than the corresponding proof of convergence for symmetric standard CNNs.

  9. Ettore Spalletti: Salle des départs a Garches

    Directory of Open Access Journals (Sweden)

    Andrea Dall'Asta

    2012-06-01

    Full Text Available Ettore Spalletti re-inventa nel 1996 l’obitorio dell’ospedale Raymond Poincaré a Garches - alle porte di Parigi. È uno spazio privo di simboli religiosi, in cui i corpi, posti nella bara, sono esposti all’ultimo sguardo dei familiari e degli amici. È la Salle des départs, sala delle partenze, in cui ogni uomo è chiamato a soggiornare - musulmano, cristiano, non credente – per il breve transito dal mondo della vita a quello della morte, verso una nuova vita. L’intento di Spalletti è quello di umanizzare un luogo che aiuti le persone a elaborare il lutto, infondendo pace e serenità. Da uno spazio anonimo, grazie alla forza espressiva del colore azzurro, come quello del manto di una Madonna che accoglie i suoi figli, l’artista ci fa immergere in un luogo che si presenta come l’incarnazione della purezza, diventando simbolo della promessa della trascendenza e dell’assoluto.

  10. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Science.gov (United States)

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  11. Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Eide, S.A.; LaChance, J.C.; Whitehead, D.W.

    1992-10-01

    This volume presents the results of the initiating event and accident sequence delineation analyses of the LaSalle Unit II nuclear power plant performed as part of the Level III PRA being performed by Sandia National Laboratories for the Nuclear Regulatory Commission. The initiating event identification included a thorough review of extant data and a detailed plant specific search for special initiators. For the LaSalle analysis, the following initiating events were defined: eight general transients, ten special initiators, four LOCAs inside containment, one LOCA outside containment, and two interfacing LOCAs. Three accident sequence event trees were constructed: LOCA, transient, and ATWS. These trees were general in nature so that a tree represented all initiators of a particular type (i.e., the LOCA tree was constructed for evaluating small, medium, and large LOCAs simultaneously). The effects of the specific initiators on the systems and the different success criteria were handled by including the initiating events directly in the system fault trees. The accident sequence event trees were extended to include the evaluation of containment vulnerable sequences. These internal event accident sequence event trees were also used for the evaluation of the seismic, fire, and flood analyses

  12. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  13. Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-β-TAK1-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yulei Shang

    Full Text Available Several critical events dictate the successful establishment of nascent vasculature in yolk sac and in the developing embryos. These include aggregation of angioblasts to form the primitive vascular plexus, followed by the proliferation, differentiation, migration, and coalescence of endothelial cells. Although transforming growth factor-β (TGF-β is known to regulate various aspects of vascular development, the signaling mechanism of TGF-β remains unclear. Here we show that homeodomain interacting protein kinases, HIPK1 and HIPK2, are transcriptional corepressors that regulate TGF-β-dependent angiogenesis during embryonic development. Loss of HIPK1 and HIPK2 leads to marked up-regulations of several potent angiogenic genes, including Mmp10 and Vegf, which result in excessive endothelial proliferation and poor adherens junction formation. This robust phenotype can be recapitulated by siRNA knockdown of Hipk1 and Hipk2 in human umbilical vein endothelial cells, as well as in endothelial cell-specific TGF-β type II receptor (TβRII conditional mutants. The effects of HIPK proteins are mediated through its interaction with MEF2C, and this interaction can be further enhanced by TGF-β in a TAK1-dependent manner. Remarkably, TGF-β-TAK1 signaling activates HIPK2 by phosphorylating a highly conserved tyrosine residue Y-361 within the kinase domain. Point mutation in this tyrosine completely eliminates the effect of HIPK2 as a transcriptional corepressor in luciferase assays. Our results reveal a previously unrecognized role of HIPK proteins in connecting TGF-β signaling pathway with the transcriptional programs critical for angiogenesis in early embryonic development.

  14. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  15. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  16. Hypoxia independent drivers of melanoma angiogenesis

    Directory of Open Access Journals (Sweden)

    Svenja eMeierjohann

    2015-05-01

    Full Text Available Tumor angiogenesis is a process which is traditionally regarded as the tumor`s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a prerequisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia independent mechanisms of tumor angiogenesis in melanoma.

  17. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  18. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    Science.gov (United States)

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  19. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells.

    Science.gov (United States)

    Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan

    2016-01-01

    Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2 supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC and glioblastoma (GBM selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.

  1. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells.

    Science.gov (United States)

    Gao, Zhan; Wang, Hua; Xiao, Feng-Jun; Shi, Xue-Feng; Zhang, Yi-Kun; Xu, Qin Qin; Zhang, Xiao-Yan; Ha, Xiao-Qin; Wang, Li-Sheng

    2016-05-01

    Angiogenesis is one of the most important components of embryonic organ formation and vessel growth after birth. Sphingosine kinase 1 (Sphk1) and S1P has been confirmed to participate in various cell signaling pathways and physiological processes including neovascularisation. However, the mechanisms that Sphk1/S1P regulates neovascularisation remain unclear. In this study, we elucidated that Sphk1/S1P upregulates sirtuin 1 (SIRT1), a NAD+ dependent deacetylases protease which exerts multiple cellular functions, to regulate the proliferation and migration of endothelial cells. By using CCK8 and Transwell assays, we demonstrated that Sphk1 and SIRT1 knockdown could significantly decrease proliferation and migration of HUVEC cells. Sphk1 inhibition results in SIRT1 downregulation which could be reversed by exogenous S1P in HUVEC cells. Treatment of HUVECs with S1P reverses the impaired proliferation and migration caused by SIRT1 knockdown. Furthermore, Sphk1 knockdown inhibits the phosphorylation of P38 MAPK, ERK and AKT. Treatment of HUVECs with PD98059, SB203580 and Wortmannin, which are the inhibitors of ERK, P38 MAPK and AKT respectively, resulted in decreased SIRT1 expression and reduced migration of HUVEC cells. Thus, we conclude that Sphk1/S1P induces SIRT1 upregulation through multiple pathways including P38 MAPK, ERK and AKT signals. This is the first report to disclose the existence and roles of Sphk1/S1P/SIRT1 axis in regulation of endothelial cell proliferation and migration, which may provide a theoretical basis for angiogenesis. Copyright © 2016. Published by Elsevier Ltd.

  2. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  3. Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer.

    Science.gov (United States)

    Bharti, Rashmi; Dey, Goutam; Das, Anjan Kumar; Mandal, Mahitosh

    2018-04-26

    Monoamine oxidases (MAO) are mitochondrial enzymes functioning in oxidative metabolism of monoamines. The action of MAO-A has been typically described in neuro-pharmacological domains. Here, we have established a co-relation between IL-6/IL-6R and MAO-A and their regulation in hypoxia induced invasion/angiogenesis. We employed various in-vitro and in-vivo techniques and clinical samples. We studied a co-relation among MAO-A and IL-6/IL-6R and tumour angiogenesis/invasion in hypoxic environment in breast cancer model. Activation of IL-6/IL-6R and its downstream was found in hypoxic cancer cells. This elevation of IL-6/IL-6R caused sustained inhibition of MAO-A in hypoxic environment. Inhibition of IL-6R signalling or IL-6R siRNA increased MAO-A activity and inhibited tumour angiogenesis and invasion significantly in different models. Further, elevation of MAO-A with 5-azacytidine (5-Aza) modulated IL-6 mediated angiogenesis and invasive signatures including VEGF, MMPs and EMT in hypoxic breast cancer. High grade invasive ductal carcinoma (IDC) clinical specimen displayed elevated level of IL-6R and depleted MAO-A expression. Expression of VEGF and HIF-1α was unregulated and loss of E-Cadherin was observed in high grade IDC tissue specimen. Suppression of MAO-A by IL-6/IL-6R activation promotes tumour angiogenesis and invasion in hypoxic breast cancer environment.

  4. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis

    Science.gov (United States)

    Petit, Isabelle; Jin, David; Rafii, Shahin

    2010-01-01

    Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1–CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169

  5. Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy

    Science.gov (United States)

    Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.

    2012-01-01

    Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156

  6. Study of the Impact of Uterine Artery Embolization (UAE) on Endometrial Microvessel Density (MVD) and Angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tan Guosheng; Xiang Xianhong; Guo Wenbo; Zhang Bing; Chen Wei; Yang Jianyong, E-mail: kerisgz@126.com [The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Radiology (China)

    2013-08-01

    PurposeTo investigate the influence of uterine artery embolization (UAE) on endometrial microvessel density (MVD) and angiogenesis.MethodsSixty female guinea pigs were divided into two groups, the control group (n = 15) and the UAE treatment group (n = 45). In the UAE group, tris-acryl gelatin microspheres were used to generate embolization. Animals were further divided into three subgroups, A1, A2, and A3 (n = 15 for each subgroup), with uterine specimens collected at 7-15, 16-30, and 31-45 days after UAE, respectively. Immunostaining for factor VIII and CD105 was performed to identify total endometrial MVD (MVD{sub FVIII}) and CD105-positive angiogenesis (MVD{sub CD105}) at the indicated time points after UAE.ResultsQuantitative analysis revealed that MVD{sub FVIII} significantly decreased in the A1 (11.40 {+-} 2.76, p < 0.05) and A2 (15.37 {+-} 3.06, p < 0.05) groups compared to the control group (19.40 {+-} 2.50), and was restored to normal in the A3 group (18.77 {+-} 2.69). UAE caused a temporal up-regulation of MVD{sub CD105}-positive angiogenesis in the A1 group (9.33 {+-} 2.37, p < 0.05) and the A2 group (11.63 {+-} 1.56, p < 0.05) compared to the control group (7.12 {+-} 1.67), and the MVD{sub CD105} value returned to normal in the A3 group (8.07 {+-} 1.97).ConclusionUAE caused a temporal decrease in endometrial MVD that reversed over time as a result of the increase of CD105-positive angiogenesis. Although the UAE-induced reduction of endometrial MVD was reversible, its long-term effect on endometrial receptivity still needs further study.

  7. Molecular Imaging of Ovarian Carcinoma Angiogenesis

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2007-01-01

    .... Ovarian cancer is angiogenesis dependent. Integrin , a key player in tumor angiogenesis and metastasis, has been identified as a target for diagnostic and therapeutic interventions for several highly proliferative and metastatic tumor types...

  8. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  9. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Mun-Gyu Song

    2016-11-01

    Full Text Available Objective: Adipose tissue (AT expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC of subcutaneous and visceral fats in lean and obese mice. Methods: We compared the AC of epididymal fat (EF and inguinal fat (IF using an angiogenesis assay in diet-induced obese (DIO mice and diet-resistant (DR mice fed a high-fat diet (HFD. Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD, DIO mice, and DR mice fed a HFD. Results: DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a, Vegfa, Fgf1, Kdr, and Pecam1, macrophage recruitment, and inflammation (including Emr1, Ccr2, Itgax, Ccl2, Tnf, and Il1b correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. Conclusions: These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity. Keywords: Angiogenesis, Inflammation, Adipose tissue, Diet-induced obese mice, Diet-resistant mice, High-fat diet

  10. Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema.

    Science.gov (United States)

    Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew

    2017-06-01

    Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Directory of Open Access Journals (Sweden)

    Roma-Rodrigues C

    2016-06-01

    Full Text Available Catarina Roma-Rodrigues,1 Amelie Heuer-Jungemann,2 Alexandra R Fernandes,1 Antonios G Kanaras,2 Pedro V Baptista1 1UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal; 2Institute for Life Sciences, Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK Abstract: In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing or ought to be contravened, as in cancer development. Keywords: angiogenesis activators, antiangiogenic, CAM assay, gold nanoparticles, peptide-coated gold nanoparticles, vascular development

  12. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  13. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  14. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    Science.gov (United States)

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  15. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  16. DEspR Roles in Tumor Vasculo-Angiogenesis, Invasiveness, CSC-Survival and Anoikis Resistance: A ‘Common Receptor Coordinator’ Paradigm

    Science.gov (United States)

    Herrera, Victoria L.; Decano, Julius L.; Tan, Glaiza A.; Moran, Ann M.; Pasion, Khristine A.; Matsubara, Yuichi; Ruiz-Opazo, Nelson

    2014-01-01

    A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nudenu/nu rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface ‘common receptor coordinator’, DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma. PMID:24465725

  17. Entanglement and Transnational Transfer in the History of Infant Schools in Great Britain and "Salles D'asile" in France, 1816-1881

    Science.gov (United States)

    Burger, Kaspar

    2014-01-01

    The historical developments of infant schools in Great Britain and "salles d'asile" in France--both precursors of present-day preschools--were interconnected. However, historians have not yet analysed specifically how transnational exchange influenced the growth and nature of these institutions. Drawing on archival data and secondary…

  18. Galectins in angiogenesis: consequences for gestation.

    Science.gov (United States)

    Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela

    2015-04-01

    Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Angiogenesis in prostate cancer : onset, progression and imaging

    NARCIS (Netherlands)

    Russo, G.; Mischi, M.; Scheepens, W.; Rosette, de la J.J.M.C.H.; Wijkstra, H.

    2012-01-01

    Today, angiogenesis is known to play a key role in cancer growth and development. Emerging cancer treatments are based on the suppression of angiogenesis, and modern imaging techniques investigate changes in the microvasculature that are caused by angiogenesis. As for other forms of cancers,

  20. Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1

    International Nuclear Information System (INIS)

    Karavasilis, Vasilis; Malamou-Mitsi, Vasiliki; Briasoulis, Evangelos; Tsanou, Elena; Kitsou, Evangelia; Kalofonos, Haralambos; Fountzilas, George; Fotsis, Theodore; Pavlidis, Nicholas

    2005-01-01

    Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting

  1. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  2. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    Directory of Open Access Journals (Sweden)

    Kurki Eveliina

    2012-06-01

    Full Text Available Abstract Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR. Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy, lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice

  3. Angiogenesis Dysregulation in Term Asphyxiated Newborns Treated with Hypothermia

    Science.gov (United States)

    Shaikh, Henna; Boudes, Elodie; Khoja, Zehra; Shevell, Michael; Wintermark, Pia

    2015-01-01

    Background Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. Objective This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. Design/Methods Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. Results Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. Conclusions These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery. PMID:25996847

  4. Angiogenesis dysregulation in term asphyxiated newborns treated with hypothermia.

    Directory of Open Access Journals (Sweden)

    Henna Shaikh

    Full Text Available Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns.This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns.Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns.Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns.These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery.

  5. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  6. An allometric approach of tumor-angiogenesis.

    Science.gov (United States)

    Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras

    2018-07-01

    Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.

  7. Efficacy and safety of angiogenesis inhibitors in advanced gastric cancer: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2016-10-01

    Full Text Available Abstract Monoclonal antibodies and small molecule tyrosine kinase inhibitors (TKIs directed against the vascular endothelial growth factor (VEGF or its receptors have been investigated in several studies for the treatment of advanced gastric cancer (GC. In the present study, we aimed to evaluate the efficacy and safety of angiogenesis inhibitors in advanced GC. We searched published randomized controlled trials (RCTs comparing angiogenesis inhibitors with non-angiogenesis inhibitors for the treatment of GC. MEDLINE, EMBASE, and the Cochrane Controlled Trials Register were searched. The extracted data on progression-free survival (PFS and overall survival (OS were measured in terms of hazard ratios (HR and corresponding 95 % confidence intervals (CIs. In addition, risk ratios (RR and corresponding 95 % CIs were pooled for objective response rate (ORR, disease control rate (DCR, and risk of adverse events (AEs. Ten RCTs involving 2786 patients were included. Compared with non-angiogenesis inhibitor-containing regimens, angiogenesis inhibitor-containing regimens resulted in a significant improvement in OS (HR 0.80, 95 % CI 0.69–0.93, P = 0.004, prolonged PFS (HR 0.66, 95 % CI 0.51–0.86, P = 0.002, and superior ORR (RR 1.34, 95 % CI 1.09–1.65, P = 0.005 and DCR (RR 1.37, 95 % CI 1.17–1.61, P = 0.0001. Angiogenesis inhibitors were associated with a greater number of AEs, but most of these were predictable and manageable. However, hand-foot syndrome, diarrhea, and gastrointestinal (GI perforation were significantly increased in patients treated with angiogenesis inhibitors. In summary, angiogenesis inhibitor-containing regimens were superior to non-angiogenesis inhibitor-containing regimens in terms of OS, PFS, RR, and DCR in patients with advanced GC.

  8. Energy savings program in Ville LaSalle; Programme d'economies d'energie a Ville LaSalle

    Energy Technology Data Exchange (ETDEWEB)

    Savard, M. [Ville de Montreal, PQ (Canada). Public Works

    2002-09-30

    In 1998, City of LaSalle implemented an energy efficiency program for two municipal buildings. The first building is a sports complex which comprises a swimming pool, an arena, areas for boxing, squash, racket ball, as well as a reception area. The second building is City Hall, which comprises two buildings, one with two storeys and the other with five storeys. This project was accomplished jointly with CIMA+ and Honeywell and investments of 360,000 dollars and a guaranteed payback period of five years. After three years of follow-up, energy savings of 314,000 dollars were realized. The author declared that the project to date has been a success, and offered a few points to ponder in this document. The author argued that preparation is vital for the success of such an initiative. The first step involves a detailed energy audit in order to better determine priorities. Answers to several questions must also be obtained, such as the scope of the project, the allocated budget, amount of work required and time available in which to complete, etc. By contacting a specialized firm, it is important for the manager to get involved at all stages. If financial incentives are available from governments or other organizations, consider them as a bonus into your budget. Do not base the success of the entire project on these incentives. Finally, the author discussed the advantages to be derived from partnerships with the private sector in energy efficiency initiatives.

  9. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  10. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer.

    Science.gov (United States)

    Gungor, Hilal; Ilhan, Nevin; Eroksuz, Hatice

    2018-06-01

    Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  12. Dendritic cells regulate angiogenesis associated with liver fibrogenesis.

    Science.gov (United States)

    Blois, Sandra M; Piccioni, Flavia; Freitag, Nancy; Tirado-González, Irene; Moschansky, Petra; Lloyd, Rodrigo; Hensel-Wiegel, Karin; Rose, Matthias; Garcia, Mariana G; Alaniz, Laura D; Mazzolini, Guillermo

    2014-01-01

    During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.

  13. Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist

    Science.gov (United States)

    Storgard, Chris M.; Stupack, Dwayne G.; Jonczyk, Alfred; Goodman, Simon L.; Fox, Robert I.; Cheresh, David A.

    1999-01-01

    Rheumatoid arthritis (RA) is an inflammatory disease associated with intense angiogenesis and vascular expression of integrin αvβ3. Intra-articular administration of a cyclic peptide antagonist of integrin αvβ3 to rabbits with antigen-induced arthritis early in disease resulted in inhibition of synovial angiogenesis and reduced synovial cell infiltrate, pannus formation, and cartilage erosions. These effects were not associated with lymphopenia or impairment of leukocyte function. Furthermore, when administered in chronic, preexisting disease, the αvβ3 antagonist effectively diminished arthritis severity and was associated with a quantitative increase in apoptosis of the angiogenic blood vessels. Therefore, angiogenesis appears to be a central factor in the initiation and persistence of arthritic disease, and antagonists of integrin αvβ3 may represent a novel therapeutic strategy for RA. PMID:9884333

  14. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Eok-Cheon; Min, Jeong-Ki; Kim, Tae-Yoon; Lee, Shin-Jeong; Yang, Hyun-Ok; Han, Sanghwa; Kim, Young-Myeong; Kwon, Young-Guen

    2005-01-01

    [6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has anti-bacterial, anti-inflammatory, and anti-tumor-promoting activities. Here, we describe its novel anti-angiogenic activity in vitro and in vivo. In vitro, [6]-gingerol inhibited both the VEGF- and bFGF-induced proliferation of human endothelial cells and caused cell cycle arrest in the G1 phase. It also blocked capillary-like tube formation by endothelial cells in response to VEGF, and strongly inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessel in the mouse cornea in response to VEGF. Moreover, i.p. administration, without reaching tumor cytotoxic blood levels, to mice receiving i.v. injection of B16F10 melanoma cells, reduced the number of lung metastasis, with preservation of apparently healthy behavior. Taken together, these results demonstrate that [6]-gingerol inhibits angiogenesis and may be useful in the treatment of tumors and other angiogenesis-dependent diseases

  15. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  16. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva

    2016-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis demonstrating tissue capillary supply is under strict control...... rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathologic) angiogenesis....

  17. Progesterone in Breast Cancer Angiogenesis

    OpenAIRE

    Botelho, Monica C.; Soares, Raquel; Alves, Helena

    2015-01-01

    The involvement of steroid hormones in breast carcinogenesis is well established. Recent evidence suggests that angiogenesis can be regulated by hormones. Both oestrogen and progesterone have been implicated in the angiogenic process of hormone-dependent cancers, such as breast cancer. Vascular Endothelial Growth Factor (VEGF) is a growth factor involved in angiogenesis in breast cancer that is up-regulated by estrogens. In our study we evaluated the role of progesterone in the expression of ...

  18. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  19. Manipulating Endothelial Progenitor Cell Homing with Sphingosine-1-Phosphate for Terapeutic Angiogenesis

    Science.gov (United States)

    Williams, Priscilla Anne

    Ischemic vascular diseases are the main cause of mortality worldwide and yet current therapies only delay disease progression and improve quality of life without addressing the fundamental problem of tissue loss. Within the field of tissue engineering, therapeutic angiogenesis provides a promising approach to alternatively provide new blood vessel formation via spatiotemporally controlled delivery of proangiogenic agents. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid that is upregulated under ischemic conditions, has recently gained great enthusiasm as a potential mediator in neovascularization strategies given its essential roles in promoting both neovessel formation and stabilization, and cellular trafficking along highly regulated endogenous gradients. Herein, the governing hypothesis guiding this dissertation is that local biomaterial-controlled delivery of S1P may be used to enhance migration and recruitment of vascular progenitor cells for enhanced therapeutic angiogenesis within ischemic tissue. The initial work in this dissertation investigated the effect of hypoxia on the angiogenic response of both mature and progenitor endothelial cells to S1P stimulation in vitro. Outgrowth endothelial cells (OECs) were isolated from human umbilical cord blood to provide a clinically relevant source of vascular progenitor cells for the studies conducted within this dissertation. S1P stimulation promoted angiogenic activity of both ECs and OECs under both ambient and hypoxic (1%) oxygen tensions. Furthermore, dual therapy with the combination of S1P and vascular endothelial growth factor (VEGF) further enhanced cellular responses. Interestingly, hypoxia substantially augmented the functional response of OECs to S1P, resulting in 25-fold and 6.5-fold increases in directed migration and sprouting, respectively. Thus, these studies highlighted the potential for S1P as a therapeutic agent for treatment of ischemic diseases. An injectable biomaterial system

  20. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    Science.gov (United States)

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle

    DEFF Research Database (Denmark)

    Pedersen, Line; Holkmann Olsen, Caroline; Pedersen, Bente Klarlund

    2012-01-01

    Serum levels and muscle expression of the chemokine CXCL1 increase markedly in response to exercise in mice. Because several studies have established muscle-derived factors as important contributors of metabolic effects of exercise, this study aimed at investigating the effect of increased expres...... in muscle angiogenesis. In conclusion, our data show that overexpression of CXCL1 within a physiological range attenuates diet-induced obesity, likely mediated through a CXCL1-induced improvement of fatty acid oxidation and oxidative capacity in skeletal muscle tissue....

  2. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Vasohibin-1 suppresses colon cancer

    OpenAIRE

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and co...

  4. ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats

    Czech Academy of Sciences Publication Activity Database

    Rakusan, K.; Chvojková, Zuzana; Oliviero, P.; Ošťádalová, Ivana; Kolář, František; Chassagne, C.; Samuel, J. L.; Ošťádal, Bohuslav

    2007-01-01

    Roč. 292, č. 3 (2007), H1237-H1244 ISSN 0363-6135 R&D Projects: GA MŠk 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : angiogenesis neonatal rat * ANG II type 1 receptor antagonist heart * ischemic tolerance Subject RIV: ED - Physiology Impact factor: 3.973, year: 2007

  5. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function....... The angiogenic process is initiated through changes in mechanical and/or metabolic factors during exercise and when exercise is repeated these stimuli may result in capillary growth if needed. The present PhD thesis is based on six studies in which the regulation of angiogenesis in skeletal muscle...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the interstitium...

  6. Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Aitana Braza-Boïls

    Full Text Available UNLABELLED: Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. METHODS: Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222 by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. RESULTS: Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion , this "in vitro

  7. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pourgholami, Mohammad H., E-mail: mh.pourgholami@unsw.edu.au [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia); Khachigian, Levon M.; Fahmy, Roger G. [Centre for Vascular Research, The University of New South Wales, Department of Haematology, The Prince of Wales Hospital, Sydney (Australia); Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia)

    2010-07-09

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  8. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H.; Khachigian, Levon M.; Fahmy, Roger G.; Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson

    2010-01-01

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  9. VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis

    Directory of Open Access Journals (Sweden)

    Pirjo Spuul

    2016-10-01

    Full Text Available During angiogenic sprouting, endothelial tip cells emerge from existing vessels in a process that requires vascular basement membrane degradation. Here, we show that F-actin/cortactin/P-Src-based matrix-degrading microdomains called podosomes contribute to this step. In vitro, VEGF-A/Notch signaling regulates the formation of functional podosomes in endothelial cells. Using a retinal neovascularization model, we demonstrate that tip cells assemble podosomes during physiological angiogenesis in vivo. In the retina, podosomes are also part of an interconnected network that surrounds large microvessels and impinges on the underlying basement membrane. Consistently, collagen-IV is scarce in podosome areas. Moreover, Notch inhibition exacerbates podosome formation and collagen-IV loss. We propose that the localized proteolytic action of podosomes on basement membrane collagen-IV facilitates endothelial cell sprouting and anastomosis within the developing vasculature. The identification of podosomes as key components of the sprouting machinery provides another opportunity to target angiogenesis therapeutically.

  10. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted ...... and promote adhesion, migration, proliferation, and angiogenesis as well as vascular repair. Mechanistically, DMBT1 interacts with galectin-3 and modulates the Notch signaling pathway as well as the differential expression of ephrin-B2 and EphB4....

  11. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice.

    Science.gov (United States)

    Aozuka, Yasushi; Koizumi, Keiichi; Saitoh, Yurika; Ueda, Yasuji; Sakurai, Hiroaki; Saiki, Ikuo

    2004-12-08

    We investigated the effect of bestatin, an inhibitor of aminopeptidase N (APN)/CD13 and aminopeptidase B, on the angiogenesis induced by B16-BL6 melanoma cells. Oral administration of bestatin (100-200 mg/kg/day) was found to significantly inhibit the melanoma cell-induced angiogenesis in a mouse dorsal air sac assay. Additionally, anti-APN/CD13 mAb (WM15), which neutralizes the aminopeptidase activity in tumor cells, as well as bestatin inhibited the tube-like formation of human umbilical vein endothelial cells (HUVECs) in vitro. Furthermore, the intraperitoneal administration of bestatin (50-100 mg/kg/day) after the orthotopic implantation of B16-BL6 melanoma cells into mice reduced the number of vessels oriented towards the established primary tumor mass on the dorsal side of mice. These findings suggest that bestatin is an active anti-angiogenic agent that may inhibit tumor angiogenesis in vivo and tube-like formation of endothelial cells in vitro through its inhibition of APN/CD13 activity.

  12. Inhibition of endothelial cell proliferation by targeting Rac1 GTPase with small interference RNA in tumor cells

    International Nuclear Information System (INIS)

    Xue Yan; Bi Feng; Zhang Xueyong; Pan Yanglin; Liu Na; Zheng Yi; Fan Daiming

    2004-01-01

    Hypoxia-induced angiogenesis plays an important role in the malignancy of solid tumors. A number of recent studies including our own have suggested that Rho family small GTPases are involved in this process, and Rac1, a prominent member of the Rho family, may be critical in regulating hypoxia-induced gene activation of several angiogenesis factors and tumor suppressors. To further define Rac1 function in angiogenesis and to explore novel approaches to modulate angiogenesis, we employed the small interference RNA technique to knock down gene expression of Rac1 in gastric cancer cell line AGS that expresses a high level of Rac1. Both the mRNA and protein levels of Rac1 in the AGS cells were decreased dramatically after transfection with a Rac1-specific siRNA vector. When the conditioned medium derived from the Rac1 downregulated AGS cells was applied to the human endothelial cells, it could significantly inhibit the cell proliferation. Further study proved that, VEGF and HIF-1α, two angiogenesis promoting factors, were found to be downregulated whereas p53 and VHL, which are tumor suppressors and angiogenesis inhibitors, were upregulated in the Rac1 siRNA transfected cells. Our results suggest that Rac1 may be involved in angiogenesis by controlling the expression of angiogenesis-related factors and provide a possible strategy for the treatment of tumor angiogenesis by targeting the Rac1 GTPase

  13. Molecular targeting of angiogenesis for imaging and therapy

    International Nuclear Information System (INIS)

    Brack, Simon S.; Neri, Dario; Dinkelborg, Ludger M.

    2004-01-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  14. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  15. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  16. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  17. A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution

    NARCIS (Netherlands)

    van Westrhenen, Roos; Zweers, Machteld M.; Kunne, Cindy; de Waart, Dirk R.; van der Wal, Allard C.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was

  18. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Thomas Kalinski

    Full Text Available Interleukin (IL-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.

  19. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    Science.gov (United States)

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  20. Prognostic implication of apoptosis and angiogenesis in cervical uteri cancer

    International Nuclear Information System (INIS)

    Zaghloul, Mohamed S.; El Naggar, Mervat; El Deeb, Amany; Khaled, Hussein; Mokhtar, Nadia

    2000-01-01

    Purpose: A retrospective study was performed to investigate the relationship between spontaneous apoptosis and angiogenesis uterine cervix squamous cell carcinoma patients. The prognostic value of each (and both) of these biologic parameters was also tested. Methods and Materials: The pathologic materials of 40 cervical uteri squamous cell carcinoma patients were examined and immunohistochemically stained to determine the tumor angiogenesis (tumor microvascular score), using factor VIII-related antigen, and their tumor apoptotic index (AI), using the TdT-mediated dUTP nick end-labeling (TUNEL) method. Three patients were Stage I, 18 were Stage II, 15 were Stage III, and 4 were Stage IV (FIGO classification). All patients were treated with radical radiotherapy and all had follow-up for more than 2 years. Results: The mean AI was 15.1 ± 12.8, with a median of 8.3. The mean tumor microvascular score was 3 9.7 ± 14.4, with a median of 3 8. The patients' age and tumor grade did not seem to significantly affect the prognosis. On the other hand, AI and angiogenesis (tumor microvascular score) were of high prognostic significance. The 3-year disease-free survival (DFS) rate for the patients having AI above the median was 78% (confidence interval [CI] 69-87%), compared to 32% (CI 22-42%) for those having AI below the median. The DFS was 18% (CI 9-27%) for patients having an angiogenesis score above the median, while it was 86% (CI 78-94%) for those patients having a score below the median. Conclusion: Determination of both tumor microvascular score and AI can identify patients with the best prognosis of 100% DFS (with low angiogenesis score and high AI). Women with a high score and low AI had the worst prognosis (DFS = 3%, CI 1-5%). Moreover, high AI can compensate partially for the aggressive behavior of tumors showing a high rate of angiogenesis.

  1. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  2. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells.

    Science.gov (United States)

    Chen, Yansu; Fu, Rui; Xu, Mengdie; Huang, Yefei; Sun, Guixiang; Xu, Lichun

    2018-04-15

    Angiogenesis is associated with the progression and mortality of gastric cancer. Epidemiological evidences indicate that long-term N-nitroso compounds (NOCs) exposure predominantly contributes to the mortality of gastric cancer. Therefore, further reduced mortality of gastric cancer demands to explore the exact mechanisms of NOCs induced angiogenesis. As a tumor suppressor gene, inhibitor of growth protein 4 (ING4) plays an important role in pathological angiogenesis. In this study, we will investigate ING4 expression level in human gastric epithelial cells after the long-term low dose exposure of N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and the pathological impact of MNNG-reduced ING4 on angiogenesis of transformed cells. The soft agar colony formation assay, Western blotting, immunofluorescence and wound healing assay were used to evaluate the characteristics of transformed cells. HUVEC growth and tube formation assays were performed to test the angiogenic abilities. EMSA, luciferase reporter gene assay, real-time PCR and Western blotting were used to explore the exact mechanism. By establishing transformed human gastric epithelial cells via chronic low dose treatment, a gradually ING4 downregulation was observed in the later-stage of MNNG-induced cell transformation. Moreover, we demonstrated that MNNG exposure-reduced ING4 expression significantly resulted into aggravating angiogenesis through increasing the phosphorylation level of NF-κB p65 and subsequently DAN binding activity and regulating the expressions of NF-κB p65 downstream pro-angiogenic genes, MMP-2 and MMP-9. Our findings provided a significant mechanistic insight into angiogenesis of MNNG-transformed human gastric epithelial cell and supported the concept that ING4 may be a relevant therapeutic target for gastric cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis

    International Nuclear Information System (INIS)

    Goeoz, Pal; Goeoz, Monika; Baldys, Aleksander; Hoffman, Stanley

    2009-01-01

    Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation and Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.

  4. The controversial origin of pericytes during angiogenesis - Implications for cell-based therapeutic angiogenesis and cell-based therapies.

    Science.gov (United States)

    Blocki, Anna; Beyer, Sebastian; Jung, Friedrich; Raghunath, Michael

    2018-01-01

    Pericytes reside within the basement membrane of small vessels and are often in direct cellular contact with endothelial cells, fulfilling important functions during blood vessel formation and homeostasis. Recently, these pericytes have been also identified as mesenchymal stem cells. Mesenchymal stem cells, and especially their specialized subpopulation of pericytes, represent promising candidates for therapeutic angiogenesis applications, and have already been widely applied in pre-clinical and clinical trials. However, cell-based therapies of ischemic diseases (especially of myocardial infarction) have not resulted in significant long-term improvement. Interestingly, pericytes from a hematopoietic origin were observed in embryonic skin and a pericyte sub-population expressing leukocyte and monocyte markers was described during adult angiogenesis in vivo. Since mesenchymal stem cells do not express hematopoietic markers, the latter cell type might represent an alternative pericyte population relevant to angiogenesis. Therefore, we sourced blood-derived angiogenic cells (BDACs) from monocytes that closely resembled hematopoietic pericytes, which had only been observed in vivo thus far. BDACs displayed many pericytic features and exhibited enhanced revascularization and functional tissue regeneration in a pre-clinical model of critical limb ischemia. Comparison between BDACs and mesenchymal pericytes indicated that BDACs (while resembling hematopoietic pericytes) enhanced early stages of angiogenesis, such as endothelial cell sprouting. In contrast, mesenchymal pericytes were responsible for blood vessel maturation and homeostasis, while reducing endothelial sprouting.Since the formation of new blood vessels is crucial during therapeutic angiogenesis or during integration of implants into the host tissue, hematopoietic pericytes (and therefore BDACs) might offer an advantageous addition or even an alternative for cell-based therapies.

  5. Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.

    Science.gov (United States)

    Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako

    2013-07-01

    E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.

  6. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  7. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation o...

  8. Overexpression of inhibitor of DNA-binding (ID)-1 protein related to angiogenesis in tumor advancement of ovarian cancers

    International Nuclear Information System (INIS)

    Maw, Min Khine; Fujimoto, Jiro; Tamaya, Teruhiko

    2009-01-01

    The inhibitor of DNA-binding (ID) has been involved in cell cycle regulation, apoptosis and angiogenesis. This prompted us to study ID functions in tumor advancement of ovarian cancers. Sixty patients underwent surgery for ovarian cancers. In ovarian cancers, the levels of ID-1, ID-2 and ID-3 mRNAs were determined by real-time reverse transcription-polymerase chain reaction. The histoscore with the localization of ID-1 was determined by immunohistochemistry. Patient prognosis was analyzed with a 36-month survival rate. Microvessel counts were determined by immunohistochemistry for CD34 and factor VIII-related antigen. ID-1 histoscores and mRNA levels both significantly (p < 0.001) increased in ovarian cancers according to clinical stage, regardless of histopathological type. Furthermore, 30 patients with high ID-1 expression had a lower survival rate (53%) compared to patients with low ID-1 expression (80%). ID-1 histoscores and mRNA levels significantly (p < 0.0001) correlated with microvessel counts in ovarian cancers. ID-1 increased in ovarian cancer cells during tumor progression. Moreover, ID-1 expression levels correlated with microvessel counts. Therefore, ID-1 might work on tumor advancement via angiogenesis and is considered to be a candidate for a prognostic indicator in ovarian cancers

  9. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.

    Science.gov (United States)

    Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya

    2017-08-26

    Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of paricalcitol and GcMAF on angiogenesis and human peripheral blood mononuclear cell proliferation and signaling.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco; Amato, Marcello; Aterini, Stefano

    2012-01-01

    In addition to its role in calcium homeostasis and bone mineralization, vitamin D is involved in immune defence, cardiovascular function, inflammation and angiogenesis, and these pleiotropic effects are of interested in the treatment of chronic kidney disease. Here we investigated the effects of paricalcitol, a nonhypercalcemic vitamin D analogue, on human peripheral blood mononuclear cell proliferation and signaling, and on angiogenesis. These effects were compared with those of a known inhibitor of angiogenesis pertaining to the vitamin D axis, the vitamin D-binding protein-derived Gc-macrophage activating factor (GcMAF). Since the effects of vitamin D receptor agonists are associated with polymorphisms of the gene coding for the receptor, we measured the effects of both compounds on mononuclear cells harvested from subjects harboring different BsmI polymorphisms. Paricalcitol inhibited mononuclear cell viability with the bb genotype showing the highest effect. GcMAF, on the contrary, stimulated cell proliferation, with the bb genotype showing the highest stimulatory effect. Both compounds stimulated 3'-5'-cyclic adenosine monophosphate formation in mononuclear cells with the highest effect on the bb genotype. Paricalcitol and GcMAF inhibited the angiogenesis induced by proinflammatory prostaglandin E1. Polymorphisms of the vitamin D receptor gene, known to be associated with the highest responses to vitamin D receptor agonists, are also associated with the highest responses to GcMAF. These results highlight the role of the vitamin D axis in chronic kidney disease, an axis which includes vitamin D, its receptor and vitamin D-binding protein-derived GcMAF.

  11. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  12. Targeting Angiogenesis and Tumor Microenvironment in Metastatic Colorectal Cancer: Role of Aflibercept

    Directory of Open Access Journals (Sweden)

    Guido Giordano

    2014-01-01

    Full Text Available In the last decades, we have progressively observed an improvement in therapeutic options for metastatic colorectal cancer (mCRC treatment with a progressive prolongation of survival. mCRC prognosis still remains poor with low percentage of 5-year survival. Targeted agents have improved results obtained with standard chemotherapy. Angiogenesis plays a crucial role in colorectal cancer growth, proliferation, and metastasization and it has been investigated as a potential target for mCRC treatment. Accordingly, novel antiangiogenic targeted agents bevacizumab, regorafenib, and aflibercept have been approved for mCRC treatment as the result of several phase III randomized trials. The development of a tumor permissive microenvironment via the aberrant expression by tumor cells of paracrine factors alters the tumor-stroma interactions inducing an expansion of proangiogenic signals. Recently, the VELOUR study showed that addition of aflibercept to FOLFIRI regimen as a second-line therapy for mCRC improved significantly OS, PFS, and RR. This molecule represents a valid second-line therapeutic option and its peculiar ability to interfere with placental growth factor (PlGF/vascular endothelial growth factor receptor 1 (VEGFR1 axis makes it effective in targeting angiogenesis, inflammatory cells and in overcoming resistances to anti-angiogenic first-line treatment. Here, we discuss about Aflibercept peculiar ability to interfere with tumor microenvironment and angiogenic pathway.

  13. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  14. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L J L; Weedon-Fekjær, Susanne M; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M

    2013-07-09

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1-mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis.

  15. Vasculogenesis and Angiogenesis: Molecular and Cellular Controls

    Science.gov (United States)

    Kubis, N.; Levy, B.I.

    2003-01-01

    Summary Angiogenesis characterizes embryonic development, but also occurs in adulthood in physiological situations such as adaptation to muscle exercise, and in pathological conditions like cancer. Major advances have been made in understanding the molecular mechanisms responsible for vasculogenesis and angiogenesis, largely due to the use of “knock-out mice”, i.e. mice in which the gene coding for the protein under investigation has been inactivated. Interestingly, the same growth factors and their receptors are equally involved in the different aspects of vasculogenesis and angiogenesis during development and in adulthood. This review aims to describe in detail their respective roles and how interactions between them lead to a newly formed vessel. PMID:20591248

  16. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Ito, K.; Scott, S.A.; Cutler, S.; Dong, L.-F.; Neužil, Jiří; Blanchard, H.; Ralph, S.J.

    2011-01-01

    Roč. 14, č. 3 (2011), s. 293-307 ISSN 0969-6970 Institutional research plan: CEZ:AV0Z50520701 Keywords : Galectin-1 inhibitor * oxidative stress * angiogenesis Subject RIV: FD - Oncology ; Hematology Impact factor: 6.063, year: 2011

  17. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  18. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  19. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  20. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    Science.gov (United States)

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  1. Angiogenesis and Tissue Engineering Research

    Science.gov (United States)

    2010-08-01

    Model with the Angiogenesis Inhibitor Sunitinib. American Pediatric Surgical Association – 40th Annual Meeting, Fajardo, Puerto Rico, May 2009...Res 149(1):115-9. 14 5. Ray NF, Denton WG, Thamer M, Henderson SC, Perry S (1998) Abdominal adhesiolysis: inpatient care and expenditures in the...nude mice (n¼ 9). Mice were injected with near- infrared agents and imaged using intravital fluorescence microscope at 0, 7, and 35 days to validate in

  2. Signaling and molecular basis of bone marrow niche angiogenesis in leukemia

    NARCIS (Netherlands)

    Shirzad, R.; Shahrabi, S.; Ahmadzadeh, A.; Kampen, K. R.; Shahjahani, M.; Saki, N.

    2016-01-01

    Angiogenesis, the process of blood vessel formation, is necessary for tissue survival in normal and pathologic conditions. Increased angiogenesis in BM niche is correlated with leukemia progression and resistance to treatment. Angiogenesis can interfere with disease progression and several

  3. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells12

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation ...

  4. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  5. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma.

    Science.gov (United States)

    Meng, Xin-Yu; Liu, Juan; Lv, Feng; Liu, Ming-Qiu; Wan, Jing-Ming

    2015-01-01

    To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (pcorrelation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.

  6. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  7. Biologic significance of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) as a pivotal regulator of tumor growth through angiogenesis in human uterine cancer.

    Science.gov (United States)

    Sonoda, Kenzo; Miyamoto, Shingo; Yamazaki, Ayano; Kobayashi, Hiroaki; Nakashima, Manabu; Mekada, Eisuke; Wake, Norio

    2007-11-01

    The expression of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is related significantly to the overall survival of patients with various cancers. RCAS1 reportedly induces apoptotic cell death in peripheral lymphocytes, which may contribute to the escape of tumor cells from immune surveillance. RCAS1 expression also has been related to tumor invasiveness and size in uterine cervical cancer. To clarify whether RCAS1 exacerbates tumor progression, the authors investigated the association between RCAS1 expression and tumor growth potential. The authors constructed small interfering ribonucleic acid (RNA) (siRNA) to target RCAS1. After transfection of siRNA and the RCAS1-encoding gene, growth of tumor cells was assessed in vitro and in vivo. The correlation between RCAS1 expression and angiogenesis was investigated in the transfected cells and in inoculated tumors from nude mice. In addition, the same association was investigated immunohistochemically with tissue samples from patients with uterine cervical cancer. Knockdown of RCAS1 expression by siRNA significantly suppressed the in vivo growth of SiSo and HOUA tumor cells (P cell growth was not affected significantly. Enhanced RCAS1 expression significantly promoted in vivo growth, but not in vitro growth, of tumors derived from COS-7 cells (P = .0039). Introduction of the RCAS1-encoding gene increased expression of vascular endothelial growth factor (VEGF). In uterine cervical cancer, RCAS1 expression was associated significantly with VEGF expression (P = .0407) and with microvessel density (P = .0108). RCAS1 may be a pivotal regulator of tumor growth through angiogenesis. Continued exploration of the biologic function of RCAS1 may allow the development of novel therapeutic strategies for uterine cancer.

  8. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2014-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  9. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  10. LincRNA-p21 Impacts Prognosis in Resected Non-Small Cell Lung Cancer Patients through Angiogenesis Regulation.

    Science.gov (United States)

    Castellano, Joan J; Navarro, Alfons; Viñolas, Nuria; Marrades, Ramon M; Moises, Jorge; Cordeiro, Anna; Saco, Adela; Muñoz, Carmen; Fuster, Dolors; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2016-12-01

    Long intergenic noncoding RNA-p21 (lincRNA-p21) is a long noncoding RNA transcriptionally activated by tumor protein p53 (TP53) and hypoxia inducible factor 1 alpha subunit (HIF1A). It is involved in the regulation of TP53-dependent apoptosis and the Warburg effect. We have investigated the role of lincRNA-p21 in NSCLC. LincRNA-p21 expression was assessed in tumor and normal tissue from 128 patients with NSCLC and correlated with time to relapse and cancer-specific survival (CSS). H23, H1299, and HCC-44 cell lines were cultured in hypoxic conditions after silencing of lincRNA-p21. The TaqMan human angiogenesis array was used to explore angiogenesis-related gene expression. Levels of the protein vascular endothelial growth factor A were measured by enzyme-linked immunosorbent assay in the cell supernatants. Angiogenic capability was measured by human umbilical vein endothelial cell tube formation assay. Microvascular density in tumor samples was analyzed by immunohistochemistry. LincRNA-p21 was down-regulated in tumor tissue, but no association was observed with TP53 mutational status. High lincRNA-p21 levels were associated with poor CSS in all patients (p = 0.032). When patients were classified according to histological subtypes, the impact of lincRNA-p21 was confined to patients with adenocarcinoma in both time to relapse (p = 0.006) and CSS (p < 0.001). To explain the poor outcome of patients with high lincRNA-p21 expression, we studied the role of lincRNA-p21 in angiogenesis in vitro and observed a global downregulation in the expression of angiogenesis-related genes when lincRNA-p21 was inhibited. Moreover, supernatants from lincRNA-p21-inhibited cells were significantly less angiogenic and had lower levels of secreted vascular endothelial growth factor A than controls did. Finally, tumor samples with high lincRNA-p21 levels had higher microvascular density. Our findings suggest that lincRNA-p21 affects outcome in patients with NSCLC adenocarcinoma through

  11. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  12. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway.

    Science.gov (United States)

    Bonavia, R; Inda, M M; Vandenberg, S; Cheng, S-Y; Nagane, M; Hadwiger, P; Tan, P; Sah, D W Y; Cavenee, W K; Furnari, F B

    2012-09-06

    Sustaining a high growth rate requires tumors to exploit resources in their microenvironment. One example of this is the extensive angiogenesis that is a typical feature of high-grade gliomas. Here, we show that expression of the constitutively active mutant epidermal growth factor receptor, ΔEGFR (EGFRvIII, EGFR*, de2-7EGFR) is associated with significantly higher expression levels of the pro-angiogenic factor interleukin (IL)-8 in human glioma specimens and glioma stem cells. Furthermore, the ectopic expression of ΔEGFR in different glioma cell lines caused up to 60-fold increases in the secretion of IL-8. Xenografts of these cells exhibit increased neovascularization, which is not elicited by cells overexpressing wild-type (wt)EGFR or ΔEGFR with an additional kinase domain mutation. Analysis of the regulation of IL-8 by site-directed mutagenesis of its promoter showed that ΔEGFR regulates its expression through the transcription factors nuclear factor (NF)-κB, activator protein 1 (AP-1) and CCAAT/enhancer binding protein (C/EBP). Glioma cells overexpressing ΔEGFR showed constitutive activation and DNA binding of NF-κB, overexpression of c-Jun and activation of its upstream kinase c-Jun N-terminal kinase (JNK) and overexpression of C/EBPβ. Selective pharmacological or genetic targeting of the NF-κB or AP-1 pathways efficiently blocked promoter activity and secretion of IL-8. Moreover, RNA interference-mediated knock-down of either IL-8 or the NF-κB subunit p65, in ΔEGFR-expressing cells attenuated their ability to form tumors and to induce angiogenesis when injected subcutaneously into nude mice. On the contrary, the overexpression of IL-8 in glioma cells lacking ΔEGFR potently enhanced their tumorigenicity and produced highly vascularized tumors, suggesting the importance of this cytokine and its transcription regulators in promoting glioma angiogenesis and tumor growth.

  13. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  14. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  15. Paradox between angiogenesis and oxygen effect in the treatment of tumor

    International Nuclear Information System (INIS)

    Hayashi, Masanobu

    2008-01-01

    The paradox in the title is described on recent findings concerning the effects of anti-angiogenetic drugs on possible radiation resistance and sensitivity of tumor tissue. Suppression of angiogenesis leads to inhibition of tumor growth, based on which anti-tumor drugs like anti- vascular endotherial growth factor (VEGF) antibody bevacizumab to suppress the genesis have been developed and clinically used, but they conceivably increase the population of hypoxic tumor cells. Those drugs are essentially used in combination with other chemotherapeutic agents and/or radiation. Hypoxic tumor cells present in the tissue are generally radioresistant. There are reported findings, however, that the drugs sometimes elevate the efficacy of radiotherapy, which hypothesizes that the drugs induces a proangiogenetic state, where increased level of growth factors in the tissue is reduced to normalize the vasculature and thereby reoxygenation occurs, the oxygen effect. Because copper is a cofactor of growth factors like VEGF and basic fibroblast growth factor (bFGF) and essential for angiogenesis, authors have studied the effect of a Cu-chelator, trientine, on transplanted mouse tumors which has been shown to induce apoptosis of the target cells. Combination of the chelator with X-ray irradiation is found effective in tumor growth inhibition and in survival increase. For more effective combination therapy, the interaction occurring in combinations of regimen should be elucidated. (R.T.)

  16. Evaluation of radiotracers for the detection of atherosclerotic vulnerable plaque and myocardial angiogenesis

    International Nuclear Information System (INIS)

    Dimastromatteo, Julien

    2010-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide. Coronary events are mainly caused by coronary plaque rupture or erosion. However, at present, there is no noninvasive tool available for the detection of vulnerable plaques. The first part of thesis is about evaluation of new radiotracers for the detection of atherosclerotic vulnerable plaques. 99m Tc-B2702p, 20 derivatives, 99m Tc-VP and 99m Tc-VINP28 were evaluated in an experimental model of atherosclerosis (ApoE-/- mice with left carotid artery ligation). 99m Tc- B2702p1 is a potentially useful radiotracer for the in vivo molecular imaging of VCAM-1 expression in atherosclerotic plaques. Myocardial angiogenesis is an important post infarction phenomenon. Angiogenic therapy improves experimentally cardiac parameters. However, clinical trials using the same therapy are more controversial. At present, clinical imaging tools don't allow us to assess angiogenesis therapy. The second part of thesis is about validation of 99m Tc-RAFT-RGD in the detection of myocardial angiogenesis. 99m Tc-RAFT-RGD allow us to perform noninvasive molecular imaging of myocardial angiogenesis in an experimental model. (author)

  17. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    Science.gov (United States)

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  18. Angiogenesis-Related Pathways in the Pathogenesis of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Aristotle Bamias

    2013-07-01

    Full Text Available Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in “feeding” cancer. Such molecules include the vascular endothelial growth factor (VEGF, the platelet derived growth factor (PDGF, the fibroblast growth factor (FGF, and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.

  19. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury.

    Science.gov (United States)

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-03-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production.

  20. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer.

    Directory of Open Access Journals (Sweden)

    Zhibin Jing

    Full Text Available Squamous cell carcinoma of the head and neck (SCCHN is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor. Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4 derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4 was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.

  1. Risk-based evaluation of technical specification problems at the La Salle County Nuclear Station: Final report

    International Nuclear Information System (INIS)

    Bizzak, D.J.; Trainer, J.E.; McClymont, A.S.

    1987-06-01

    Probabilistic risk assessment (PRA) methods are used to evaluate alternatives to existing requirements for three operationally burdensome technical specifications at La Salle Nuclear Station. The study employs a decision logic to minimize the detailed analysis necessary to show compliance with given acceptance criteria; in this case, no risk increase resulting from a proposed change. The analyses provide insights to choose from among alternative options. The SOCRATES computer code was used for the probabilistic analysis. Results support a change to less frequent diesel generator testing, eliminations of one reactor scram setpoint, and establishing an allowed out-of-service time for valves in a reactor scram system. In each case, the change would result in a safety improvement

  2. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  3. Lung cancer and angiogenesis imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Liu Xiaoxia; Zhao Jun; Xu, Lisa X; Sun Jianqi; Gu Xiang; Liu Ping; Xiao Tiqiao

    2010-01-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  4. Picrotoxane sesquiterpenoids from the stems of Dendrobium nobile and their absolute configurations and angiogenesis effect.

    Science.gov (United States)

    Meng, Chun-Wang; He, Yu-Lin; Peng, Cheng; Ding, Xing-Jie; Guo, Li; Xiong, Liang

    2017-09-01

    Five picrotoxane sesquiterpenoids belonging to the unusual dendrobine-type (1 and 4) and the picrotoxinin-type (2, 3, and 5) were isolated from the stems of Dendrobium nobile Lindl. Their structures were established by spectroscopic analyses and physical properties. Compound 1 was a new dendrobine analogue. Although the planar structure of 2 and 3 had been reported, their absolute configurations were first determined by single-crystal X-ray diffraction and circular dichroism. Compound 2 exhibited angiogenesis effect against sunitinib-induced damage on intersegmental blood vessels in Tg (flk1: EGFP) and Tg (fli1: nEGFP) transgenic zebrafish at concentrations of 3.13, 6.25, 12.50, and 25.00μM. Copyright © 2017. Published by Elsevier B.V.

  5. Perlecan Domain V induces VEGf secretion in brain endothelial cells through integrin α5β1 and ERK-dependent signaling pathways.

    Directory of Open Access Journals (Sweden)

    Douglas N Clarke

    Full Text Available Perlecan Domain V (DV promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs following stroke. In this study, we define the specific mechanism of DV interaction with the α(5β(1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV's angio-modulatory activity outside of the brain, binds poorly to α(5β(1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV's DGR sequence as an important element for the interaction of DV with α(5β(1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV's induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV's mechanism of action on BECs, and further support its potential as a novel stroke therapy.

  6. Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways

    Science.gov (United States)

    Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.

    2012-01-01

    Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886

  7. Angiogenesis stimulated by novel nanoscale bioactive glasses

    International Nuclear Information System (INIS)

    Mao, Cong; Chen, Xiaofeng; Miao, Guohou; Lin, Cai

    2015-01-01

    The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. (paper)

  8. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  9. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  10. Interfering with Gal-1–mediated angiogenesis contributes to the pathogenesis of preeclampsia

    Science.gov (United States)

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L. J. L.; Weedon-Fekjær, Susanne M.; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F.; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M.

    2013-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1–mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis. PMID:23798433

  11. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Nasim Akhtar

    2004-03-01

    Full Text Available We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy.

  12. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  13. Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-β and NF-κB signaling pathways.

    Science.gov (United States)

    Baba, Abdul Basit; Kowshik, Jaganathan; Krishnaraj, Jayaraman; Sophia, Josephraj; Dixit, Madhulika; Nagini, Siddavaram

    2016-09-01

    Aberrant activation of oncogenic signaling pathways plays a pivotal role in tumor initiation and progression. The purpose of the present study was to investigate the chemopreventive and therapeutic efficacy of blueberry in the hamster buccal pouch (HBP) carcinogenesis model based on its ability to target TGF-β, PI3K/Akt, MAPK and NF-κB signaling and its impact on invasion and angiogenesis. Squamous cell carcinomas were induced in the HBP by 7,12-dimethylbenz[a]anthracene (DMBA). The effect of blueberry on the oncogenic signaling pathways and downstream events was analyzed by quantitative real-time PCR and immunoblotting. Experiments with the ECV304 cell line were performed to explore the mechanism by which blueberry regulates angiogenesis. Blueberry supplementation inhibited the development and progression of HBP carcinomas by abrogating TGF-β and PI3K/Akt pathways. Although blueberry failed to influence MAPK, it suppressed NF-κB activation by preventing nuclear translocation of NF-κB p65. Blueberry also modulated the expression of the oncomiR miR-21 and the tumor suppressor let-7. Collectively, these changes induced a shift to an anti-invasive and anti-angiogenic phenotype as evidenced by downregulating matrix metalloproteinases and vascular endothelial growth factor. Blueberry also inhibited angiogenesis in ECV304 cells by suppressing migration and tube formation. The results of the present study suggest that targeting oncogenic signaling pathways that influence acquisition of cancer hallmarks is an effective strategy for chemointervention. Identification of modulatory effects on phosphorylation, intracellular localization of oncogenic transcription factors and microRNAs unraveled by the present study as key mechanisms of action of blueberry is critical from a therapeutic perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    Science.gov (United States)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  15. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  16. Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis

    NARCIS (Netherlands)

    Kapiteijn, K.; Koolwijk, P.; Weiden, R.M.F. van der; Nieuw Amerongen, G. van; Plaisier, M.; Hinsbergh, V.W.M. van; Helmerhorst, F.M.

    2006-01-01

    Objective: Successful implantation and placentation depend on the interaction between the endometrium and the embryo. Angiogenesis is crucial at this time. In this article we investigate the direct influence of the human embryo on in vitro endometrial angiogenesis. Design: In vitro study. Setting:

  17. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM

  18. Critical role of CDK11p58 in human breast cancer growth and angiogenesis

    International Nuclear Information System (INIS)

    Chi, Yayun; Huang, Sheng; Peng, Haojie; Liu, Mengying; Zhao, Jun; Shao, Zhiming; Wu, Jiong

    2015-01-01

    A capillary network is needed in cancer growth and metastasis. Induction of angiogenesis represents one of the major hallmarks of cancer. CDK11 p58 , a Ser/Thr kinase that belongs to the Cell Division Cycle 2-like 1 (CDC2L1) subfamily is associated with cell cycle progression, tumorigenesis, sister chromatid cohesion and apoptotic signaling. However, its role in breast cancer proliferation and angiogenesis remains unclear. Tumorigenicity assays and blood vessel assessment in athymic mice were used to assess the function of CDK11 p58 in tumor proliferation and angiogenesis. CCK-8 assay was used to detect breast cancer cell growth. Immunohistochemistry was used to detect the expression of vascular endothelial growth factor (VEGF), CD31 and CD34 in CDK11 positive patient breast cancer tissues. Dual-Luciferase array was used to analyze the function of CDK11 p58 in the regulation of VEGF promoter activity. Western blot was used to detect related protein expression levels. CDK11 p58 inhibited breast cancer growth and angiogenesis in breast cancer cells and in nude mice transplanted with tumors. Immunohistochemistry confirmed that CDK11 p58 was negatively associated with angiogenesis-related proteins such as VEGF, CD31 and CD34 in breast cancer patients. Real-time PCR and dual-luciferase assay showed CDK11 p58 inhibited the mRNA levels of VEGF and the promoter activity of VEGF. As CDK11 p58 is a Ser/Thr kinase, the kinase-dead mutant failed to inhibit VEGF mRNA and promoter activity. Western blot analysis showed the same pattern of related protein expression. The data suggested angiogenesis inhibition was dependent on CDK11 p58 kinase activity. This study indicates that CDK11 p58 inhibits the growth and angiogenesis of breast cancer dependent on its kinase activity. The online version of this article (doi:10.1186/s12885-015-1698-7) contains supplementary material, which is available to authorized users

  19. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells

    International Nuclear Information System (INIS)

    Soula-Rothhut, Mahdhia; Coissard, Cyrille; Sartelet, Herve; Boudot, Cedric; Bellon, Georges; Martiny, Laurent; Rothhut, Bernard

    2005-01-01

    Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF-but not TSP-1-stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development

  20. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  1. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor.

    Science.gov (United States)

    Chen, Haimin; Yan, Xiaojun; Lin, Jing; Wang, Feng; Xu, Weifeng

    2007-08-22

    Since angiogenesis is involved in initiating and promoting several diseases such as cancer and cardiovascular events, this study was designed to evaluate the anti-angiogenesis of low-molecular-weight (LMW), highly sulfated lambda-carrageenan oligosaccharides (lambda-CO) obtained by carrageenan depolymerization, by CAM (chick chorioallantoic membrane) model and human umbilical vein endothelial cells (HUVECs). Significant inhibition of vessel growth was observed at 200 microg/pellet. A histochemistry assay also revealed a decrease of capillary plexus and connective tissue in lambda-CO treated samples. lambda-CO inhibited the viability of cells at the high concentration of 1 mg/mL, whereas it affected the cell survival slightly (>95%) at a low concentration (lambda-CO among three kinds of cells. Furthermore, the inhibitory action of lambda-CO was also observed in the endothelial cell invasion and migration at relatively low concentration (150-300 microg/mL), through down-regulation of intracellular matrix metalloproteinases (MMP-2) expression on endothelial cells. Taken together, these findings demonstrate that lambda-CO is a potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration, and proliferation.

  3. Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1

    Directory of Open Access Journals (Sweden)

    Fanlu Wang

    2017-06-01

    Full Text Available The marine origin polysaccharide fucoidan combines multiple biological activities. As demonstrated by various studies in vitro and in vivo, fucoidans show anti-viral, anti-tumor, anti-oxidant, anti-inflammatory and anti-coagulant properties, although the detailed molecular action remains to be elucidated. The aim of the present study is to assess the impact of crude fucoidan extracts, on the formation of vascular structures in co-culture models relevant for bone vascularization during bone repair and for vascularization processes in osteosarcoma. The co-cultures consisted of bone marrow derived mesenchymal stem cells, respectively the osteosarcoma cell line MG63, and human blood derived outgrowth endothelial cells (OEC. The concentration dependent effects on the metabolic activity on endothelial cells and osteoblast cells were first assessed using monocultures of OEC, MSC and MG63 suggesting a concentration of 100 µg/mL as a suitable concentration for further experiments. In co-cultures fucoidan significantly reduced angiogenesis in MSC/OEC but also in MG63/OEC co-cultures suggesting a potential application of fucoidan to lower the vascularization in bone tumors such as osteosarcoma. This was associated with a decrease in VEGF (vascular endothelial growth factor and SDF-1 (stromal derived factor-1 on the protein level, both related to the control of angiogenesis and furthermore discussed as crucial factors in osteosarcoma progression and metastasis. In terms of bone formation, fucoidan slightly lowered on the calcification process in MSC monocultures and MSC/OEC co-cultures. In summary, these data suggest the suitability of lower fucoidan doses to limit angiogenesis for instance in osteosarcoma.

  4. Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1.

    Science.gov (United States)

    Wang, Fanlu; Schmidt, Harald; Pavleska, Dijana; Wermann, Thees; Seekamp, Andreas; Fuchs, Sabine

    2017-06-20

    The marine origin polysaccharide fucoidan combines multiple biological activities. As demonstrated by various studies in vitro and in vivo, fucoidans show anti-viral, anti-tumor, anti-oxidant, anti-inflammatory and anti-coagulant properties, although the detailed molecular action remains to be elucidated. The aim of the present study is to assess the impact of crude fucoidan extracts, on the formation of vascular structures in co-culture models relevant for bone vascularization during bone repair and for vascularization processes in osteosarcoma. The co-cultures consisted of bone marrow derived mesenchymal stem cells, respectively the osteosarcoma cell line MG63, and human blood derived outgrowth endothelial cells (OEC). The concentration dependent effects on the metabolic activity on endothelial cells and osteoblast cells were first assessed using monocultures of OEC, MSC and MG63 suggesting a concentration of 100 µg/mL as a suitable concentration for further experiments. In co-cultures fucoidan significantly reduced angiogenesis in MSC/OEC but also in MG63/OEC co-cultures suggesting a potential application of fucoidan to lower the vascularization in bone tumors such as osteosarcoma. This was associated with a decrease in VEGF (vascular endothelial growth factor) and SDF-1 (stromal derived factor-1) on the protein level, both related to the control of angiogenesis and furthermore discussed as crucial factors in osteosarcoma progression and metastasis. In terms of bone formation, fucoidan slightly lowered on the calcification process in MSC monocultures and MSC/OEC co-cultures. In summary, these data suggest the suitability of lower fucoidan doses to limit angiogenesis for instance in osteosarcoma.

  5. Angiogenesis-related protein expression in bevacizumab-treated metastatic colorectal cancer: NOTCH1 detrimental to overall survival

    International Nuclear Information System (INIS)

    Paiva, Tadeu Ferreira Jr.; Jesus, Victor Hugo Fonseca de; Marques, Raul Amorim; Costa, Alexandre André Balieiro Anastácio da; Macedo, Mariana Petaccia de; Peresi, Patricia Maria; Damascena, Aline; Rossi, Benedito Mauro; Begnami, Maria Dirlei; Lima, Vladmir Cláudio Cordeiro de

    2015-01-01

    The development of targeted therapies has undoubtedly broadened therapeutic options for patients with colorectal cancer (CRC). The use of bevacizumab to reduce angiogenesis has been associated with improved clinical outcomes. However, an urgent need for prognostic/predictive biomarkers for anti-angiogenic therapies still exists. Clinical data of 105 CRC patients treated with bevacizumab in conjunction with chemotherapy were analyzed. The expression of vascular endothelial growth factor (VEGF) receptors, NOTCH1 receptor and its ligand DLL4 were determined by immunohistochemistry. Tumor samples were arranged on a tissue microarray. The association between protein expression and clinicopathological characteristics and outcomes was determined. Bevacizumab was administered as a first-line of treatment in 70.5 % of our cases. The median progression-free survival (PFS) was 10.2 months. The median overall survival (OS) of the total cohort was 24.4 months. Bevacizumab, as the first-line of treatment, and the presence of liver metastasis were independently associated with objective response rate. Membrane VEGFR1 and VEGFR3 expressions were associated with the presence of lung metastasis; interestingly, VEGFR3 was associated with less liver metastasis. NOTCH1 expression was associated with lymph node metastasis. There was a trend toward association between improved PFS and lower NOTCH1 expression (p = 0.06). Improved OS was significantly associated with lower NOTCH1 expression (p = 0.01). In a multivariate analysis, ECOG (Eastern Cooperative Oncology Group) performance status, liver metastasis, histological grade, and NOTCH1 expression were independently associated with OS. Our findings illustrated the expression profile of angiogenesis-related proteins and their association with clinicopathological characteristics and outcomes. NOTCH1 expression is a detrimental prognostic factor in metastatic CRC patients treated with chemotherapy plus bevacizumab. The online version of

  6. Sports hall: a technical challenge; Gym artistique en Suisse romande. Salle de sport: defit technique

    Energy Technology Data Exchange (ETDEWEB)

    Scaramiglia, V.

    2004-07-01

    Not far away from the airport at Vernier, the city of Geneva has built a novel gym hall, 'la Salle de l'Ecu'. It's an oblong building of 39 x 54 meters ground surface covered by a curved roof reaching a height of 8 meters at the center and 4 meters at the sides. The building shape allows to minimize the facade area resulting in low costs for heating and maintenance. The main building materials are wood, glass and metal. The facades consist of two thermovarnished metal sheets perforated on the inner side and embracing the thermal/acoustical insulation. The area of openings and insulating windows is minimized for energetic reasons and a number of photovoltaic arrays has been mounted on the roof for energetic and ecological reasons.

  7. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis.

    Science.gov (United States)

    Bronckaers, Annelies; Hilkens, Petra; Martens, Wendy; Gervois, Pascal; Ratajczak, Jessica; Struys, Tom; Lambrichts, Ivo

    2014-08-01

    Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes

    International Nuclear Information System (INIS)

    Yin, Nina; Han, Yongming; Xu, Hanlin; Gao, Yisen; Yi, Tao; Yao, Jiale; Dong, Li; Cheng, Dejun; Chen, Zebin

    2016-01-01

    Type 1 diabetes was a life-long disease that affected numerous people around the world. Insulin therapy has its limitations that may involve hyperglycemia and heavy burden of patient by repeated dose. Islet transplantation emerged as a promising approach to reach periodical reverse of diabetes, however, transplanted islets suffer from foreign body reaction and lack of nutrition and oxygen supply, especially in the blood-vessel-shortage subcutaneous site which was preferred by patient and surgeon. In this study, we designed and synthesized a vascular endothelial growth factor (VEGF) conjugated alginate material to encapsulate the transplanted islets via 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction, and successful conjugation was confirmed by Nuclear Magnetic Resonance H1 spectrum. The best VEGF concentration (100 ng/ml) was determined by the combined studies of the mechanical property and endothelial cell growth assay. In vivo study, conjugated VEGF on alginate exhibited sustained promoting angiogenesis property after subcutaneous transplantation by histology study and islets encapsulated in this material achieved long term therapeutic effect (up to 50 days) in the diabetic mice model. In conclusion, this study establishes a simple biomaterial strategy for islet transplantation to enhance islet survival and function, which could be a feasible therapeutic alternative for type 1 diabetes. - Highlights: • We synthesized VEGF-conjugated alginate material to encapsulate the transplanted islets. • The biomaterials improve islet engraftment and function due to angiogenesis. • The biomaterials could be a strong support for cell therapy with islet transplantation in type 1 diabetes.

  9. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Nina; Han, Yongming [Department of Anatomy, Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Xu, Hanlin [Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Gao, Yisen; Yi, Tao [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Yao, Jiale; Dong, Li; Cheng, Dejun [Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Chen, Zebin, E-mail: chenzebin-hbtcm@outlook.com [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, Hubei (China)

    2016-02-01

    Type 1 diabetes was a life-long disease that affected numerous people around the world. Insulin therapy has its limitations that may involve hyperglycemia and heavy burden of patient by repeated dose. Islet transplantation emerged as a promising approach to reach periodical reverse of diabetes, however, transplanted islets suffer from foreign body reaction and lack of nutrition and oxygen supply, especially in the blood-vessel-shortage subcutaneous site which was preferred by patient and surgeon. In this study, we designed and synthesized a vascular endothelial growth factor (VEGF) conjugated alginate material to encapsulate the transplanted islets via 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction, and successful conjugation was confirmed by Nuclear Magnetic Resonance H1 spectrum. The best VEGF concentration (100 ng/ml) was determined by the combined studies of the mechanical property and endothelial cell growth assay. In vivo study, conjugated VEGF on alginate exhibited sustained promoting angiogenesis property after subcutaneous transplantation by histology study and islets encapsulated in this material achieved long term therapeutic effect (up to 50 days) in the diabetic mice model. In conclusion, this study establishes a simple biomaterial strategy for islet transplantation to enhance islet survival and function, which could be a feasible therapeutic alternative for type 1 diabetes. - Highlights: • We synthesized VEGF-conjugated alginate material to encapsulate the transplanted islets. • The biomaterials improve islet engraftment and function due to angiogenesis. • The biomaterials could be a strong support for cell therapy with islet transplantation in type 1 diabetes.

  10. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Milad S. Bitar

    2015-01-01

    Full Text Available Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could

  11. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  12. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Aseervatham Anusha Amali

    Full Text Available Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM at 13 hours post fertilization (hpf. Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation.

  13. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  14. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    Science.gov (United States)

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  15. Myocyte specific overexpression of myoglobin impairs angiogenesis after hind-limb ischemia.

    Science.gov (United States)

    Hazarika, Surovi; Angelo, Michael; Li, Yongjun; Aldrich, Amy J; Odronic, Shelley I; Yan, Zhen; Stamler, Jonathan S; Annex, Brian H

    2008-12-01

    In preclinical models of peripheral arterial disease the angiogenic response is typically robust, though it can be impaired in conditions such as hypercholesterolemia and diabetes where the endothelium is dysfunctional. Myoglobin (Mb) is expressed exclusively in striated muscle cells. We hypothesized that myocyte specific overexpression of myoglobin attenuates ischemia-induced angiogenesis even in the presence of normal endothelium. Mb overexpressing transgenic (MbTg, n=59) and wild-type (WT, n=56) C57Bl/6 mice underwent unilateral femoral artery ligation/excision. Perfusion recovery was monitored using Laser Doppler. Ischemia-induced changes in muscle were assessed by protein and immunohistochemistry assays. Nitrite/nitrate and protein-bound NO, and vasoreactivity was measured. Vasoreactivity was similar between MbTg and WT. In ischemic muscle, at d14 postligation, MbTg increased VEGF-A, and activated eNOS the same as WT mice but nitrate/nitrite were reduced whereas protein-bound NO was higher. MbTg had attenuated perfusion recovery at d21 (0.37+/-0.03 versus 0.47+/-0.02, P<0.05), d28 (0.40+/-0.03 versus 0.50+/-0.04, P<0.05), greater limb necrosis (65.2% versus 15%, P<0.001), a lower capillary density, and greater apoptosis versus WT. Increased Mb expression in myocytes attenuates angiogenesis after hind-limb ischemia by binding NO and reducing its bioavailability. Myoglobin can modulate the angiogenic response to ischemia even in the setting of normal endothelium.

  16. Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1α.

    Directory of Open Access Journals (Sweden)

    Adam J Byrne

    Full Text Available HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to

  17. Tip Cells in Angiogenesis

    NARCIS (Netherlands)

    M.G. Dallinga (Marchien); S.E.M. Boas (Sonja); I. Klaassen (Ingeborg); R.M.H. Merks (Roeland); C.J.F. van Noorden; R.O. Schlingemann (Reinier)

    2015-01-01

    htmlabstractIn angiogenesis, the process in which blood vessel sprouts grow out from a pre-existing vascular network, the so-called endothelial tip cells play an essential role. Tip cells are the leading cells of the sprouts; they guide following endothelial cells and sense their environment for

  18. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  19. Reproductive performance of Palmistichus elaeisis Delvare and LaSalle (Hymenoptera: Eulophidae) with previously refrigerated pupae of Bombyx mori L. (Lepidoptera: Bombycidae)

    OpenAIRE

    Pereira, FF.; Zanuncio, JC.; Serrão, JE.; Pastori, PL.; Ramalho, F.S.

    2009-01-01

    The mass rearing of parasitoids represents a fundamental stage for programmes of biological control. The progeny of the parasitoid Palmistichus elaeisis Delvare and LaSalle (Hymenoptera: Eulophidae) were evaluated on previously refrigerated pupae of Bombyx mori L. (Lepidoptera: Bombycidae). Forty-eight to 72 hours-old pupae of B. mori were stored at 10 ºC for five, 10, 15 or 20 days and then exposed to parasitism by P. elaeisis females. This parasitoid showed shorter duration of the life cycl...

  20. Estudio retrospectivo de masas cutáneas neoplásicas en caninos diagnosticadas histopatológicamente en la Universidad de La Salle (1999-2003

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Aparicio Ortiz

    2008-12-01

    Full Text Available El propósito del trabajo fue realizar un análisis retrospectivo de las neoplasias cutáneas en caninos diagnosticadas en la Universidad de La Salle, en Bogotá, en el período 1999-2003. El presente estudio se llevó a cabo con la información obtenida de los registros del área diagnóstica e histopatológica de la Universidad de La Salle. La información fue discriminada y analizada teniendo en cuenta las siguientes variables: diagnóstico, raza, sexo, edad, malignidad y localización del tumor. Los 192 casos de pacientes abordados en el estudio fueron agrupados de acuerdo con las neoplasias con el fin de determinar las características y el comportamiento de dichas patologías. La edad promedio de los pacientes fue de 6,5 años, la raza más afectada el Bóxer con el 19,1% (32 perros, seguido del Labrador con un 13% (26 perros y el Caniche con un 10,5% (22 perros; los pacientes machos fueron los más afectados con un 58% (107 perros. Se reveló la gran incidencia del tumor de células de mast (26,2% en el 2003 y 20% en el 2002 y el histiocitoma (12,3% en el 2003 y 10% en el año 2002. Entre otras neoplasias que se observaron de forma recurrente en el estudio se destacan el lipoma, tricoepitelioma, carcinoma de células escamosas y papilomatosis.

  1. SPRY4-mediated ERK1/2 signaling inhibition abolishes 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Li, Mingjiang; Zhang, Hui; Zhao, Xingbo; Yan, Lei; Wang, Chong; Li, Chunyan; Li, Changzhong

    2014-08-01

    Basic fibroblast growth factor (FGF2)-mediated Extracellular signal-regulated kinases1/2 (ERK1/2) signaling is a critical modulator in angiogenesis. SPRY4 has been reported to be a feedback negative regulator of FGFs-induced ERK1/2 signaling. The aim of this study was to explore the role of SPRY4 in endometrial adenocarcinoma cell. The effect of SPRY4 expression on FGF2-mediated ERK1/2 signaling was detected by luciferase assay and Western blot analysis. The growth of Ishikawa cells was detected using colony formation assay and cell number counting experiment. We found that plasmid-driven SPRY4 expression efficiently blocked the activity of FGF2-induced ERK1/2 signaling in Ishikawa cells. SPRY4 expression significantly reduced the proliferation and 17β-estradiol-induced proliferation of Ishikawa cells. SPRY4 may function as a tumor suppressor in endometrial adenocarcinoma.

  2. QUANTIFICATION OF ANGIOGENESIS IN THE CHICKEN CHORIOALLANTOIC MEMBRANE (CAM

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    2011-05-01

    Full Text Available The chick chorioallantoic membrane (CAM provides a suitable in vivo model to study angiogenesis and evaluate several pro- and anti-angiogenic factors and compounds. In the present work, new developments in image analysis are used to quantify CAM angiogenic response from optical microscopic observations, covering all vascular components, from the large supplying and feeding vessels down to the capillary plexus. To validate our methodology angiogenesis is quantified during two phases of CAM development (day 7 and 13 and after treatment with an antiangiogenic modulator of the angiogenesis. Our morphometric analysis emphasizes that an accurate quantification of the CAM vasculature needs to be performed at various scales.

  3. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow

    Directory of Open Access Journals (Sweden)

    Shimizu Takashi

    2011-06-01

    Full Text Available Abstract Background After ovulation in the cow, the corpus luteum (CL rapidly develops within a few days with angiogenesis and progesterone production. CL formation resembles an inflammatory response due to the influx of immune cells. Neutrophils play a role in host defense and inflammation, and secrete chemoattractants to stimulate angiogenesis. We therefore hypothesized that neutrophils infiltrate in the developing CL from just after ovulation and may play a role in angiogenesis of the CL. Methods and Results Polymorphonuclear neutrophils (PMN were detected in CL tissue by Pas-staining, and interleukin-8 (IL-8, a neutrophil-specific chemoattractant was measured in supernatant of the CL tissue culture: considerable amounts of PMNs and the high level of IL-8 were observed during the early luteal phase (days 1-4 of the estrous cycle. PMNs and IL-8 were low levels in the mid and late luteal phases, but IL-8 was increased during luteal regression. The PMN migration in vitro was stimulated by the supernatant from the early CL but not from the mid CL, and this activity was inhibited by neutralizing with an anti-IL-8 antibody, indicating the major role of IL-8 in inducing active PMN migration in the early CL. Moreover, IL-8 stimulated proliferation of CL-derived endothelial cells (LECs, and both the supernatant of activated PMNs and IL-8 stimulated formation of capillary-like structures of LECs. Conclusion PMNs migrate into the early CL partially due to its major chemoattractant IL-8 produced at high levels in the CL, and PMNs is a potential regulator of angiogenesis together with IL-8 in developing CL in the cow.

  4. PGE2-induced colon cancer growth is mediated by mTORC1

    International Nuclear Information System (INIS)

    Dufour, Marc; Faes, Seraina; Dormond-Meuwly, Anne; Demartines, Nicolas; Dormond, Olivier

    2014-01-01

    Highlights: • PGE 2 activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE 2 induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE 2 induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E 2 (PGE 2 ) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE 2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE 2 -induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE 2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE 2 EP 4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE 2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE 2 -induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE 2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE 2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth

  5. Vasohibin-1 suppresses colon cancer

    Science.gov (United States)

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo. PMID:25797264

  6. Vasohibin-1 suppresses colon cancer.

    Science.gov (United States)

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-04-10

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.

  7. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  8. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Science.gov (United States)

    Khajavi, Mehrdad; Zhou, Yi; Birsner, Amy E; Bazinet, Lauren; Rosa Di Sant, Amanda; Schiffer, Alex J; Rogers, Michael S; Krishnaji, Subrahmanian Tarakkad; Hu, Bella; Nguyen, Vy; Zon, Leonard; D'Amato, Robert J

    2017-06-01

    Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and

  9. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Directory of Open Access Journals (Sweden)

    Mehrdad Khajavi

    2017-06-01

    Full Text Available Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs. Of these, we found the expression of peptidyl arginine deiminase type II (Padi2, known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for

  10. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  11. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  12. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  13. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    Science.gov (United States)

    Jin, David K; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V; Young, Lauren M; Hooper, Andrea T; Amano, Hideki; Avecilla, Scott T; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping; Dunn, Ashley; Salari, Hassan; Werb, Zena; Hackett, Neil R; Crystal, Ronald G; Lyden, David; Rafii, Shahin

    2009-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2−/−Csf3−/−), profound impairment in neovascularization was detected in sKitL-deficient Mmp9−/− as well as thrombocytopenic Thpo−/− and TPO receptor–deficient (Mpl−/−) mice. SDF-1–mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo−/−, Mpl−/− and Mmp9−/− mice. Transplantation of CXCR4+VEGFR1+ hemangiocytes into Mmp9−/− mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A–mediated mobilization of CXCR4+VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies. PMID:16648859

  14. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  15. Suppression of β3-integrin in mice triggers a neuropilin-1-dependent change in focal adhesion remodelling that can be targeted to block pathological angiogenesis

    Directory of Open Access Journals (Sweden)

    Tim S. Ellison

    2015-09-01

    Full Text Available Anti-angiogenic treatments against αvβ3-integrin fail to block tumour growth in the long term, which suggests that the tumour vasculature escapes from angiogenesis inhibition through αvβ3-integrin-independent mechanisms. Here, we show that suppression of β3-integrin in mice leads to the activation of a neuropilin-1 (NRP1-dependent cell migration pathway in endothelial cells via a mechanism that depends on NRP1's mobilisation away from mature focal adhesions following VEGF-stimulation. The simultaneous genetic targeting of both molecules significantly impairs paxillin-1 activation and focal adhesion remodelling in endothelial cells, and therefore inhibits tumour angiogenesis and the growth of already established tumours. These findings provide a firm foundation for testing drugs against these molecules in combination to treat patients with advanced cancers.

  16. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

    Science.gov (United States)

    Li, Haile; Liu, Danping; Li, Chen; Zhou, Shanjian; Tian, Dachuan; Xiao, Dawei; Zhang, Huan; Gao, Feng; Huang, Jianhua

    2017-12-01

    Mesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-Exos MU ) or wild-type HIF-1α (BMSC-Exos WT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-Exos MU or BMSC-Exos WT , and the angiogenesis effects of BMSC-Exos MU and BMSC-Exos WT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-Exos MU was higher than the wild-type group in vitro. In addition, BMSC-Exos MU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-Exos WT or PBS control group, the injection of BMSC-Exos MU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-Exos MU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis. © 2017 International Federation for Cell Biology.

  17. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis.

    Science.gov (United States)

    Proulx, Kira; Lu, Annie; Sumanas, Saulius

    2010-12-01

    Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers

    Directory of Open Access Journals (Sweden)

    Mthembu NN

    2017-03-01

    Full Text Available Nonkululeko N Mthembu,1 Zukile Mbita,2 Rodney Hull,1 Zodwa Dlamini1 1Research, Innovation and Engagements, Mangosuthu University of Technology, Durban, 2Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa Abstract: Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies. Keywords: vascular endothelial growth factor, oncogenic viruses, hypoxia induced factor 1, Kaposi’s sarcoma, non-Hodgkin’s lymphoma, therapies targeting alternative splicing

  19. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling

    International Nuclear Information System (INIS)

    Sun, Yunliang; Wu, Congshan; Ma, Jianxia; Yang, Yu; Man, Xiaohua; Wu, Hongyu; Li, Shude

    2016-01-01

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.

  20. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunliang; Wu, Congshan [Department of Gastroenterology, Lianyungang Ganyu People’s Hospital, Ganyu, Jiangsu (China); Ma, Jianxia, E-mail: yz_mjx@163.com [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Yang, Yu [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Man, Xiaohua; Wu, Hongyu; Li, Shude [Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai (China)

    2016-10-01

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.