WorldWideScience

Sample records for salinity sea level

  1. Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River

    Science.gov (United States)

    Bacopoulos, P.

    2015-12-01

    There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.

  2. Sea level change since 2005: importance of salinity

    Science.gov (United States)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  3. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  4. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  5. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  6. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  7. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  8. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.

    Science.gov (United States)

    Rice, Karen C; Hong, Bo; Shen, Jian

    2012-11-30

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity

  9. The effects of freshwater inflow, inlet conveyance and sea level rise on the salinity regime in the Loxahatchee Estuary

    International Nuclear Information System (INIS)

    Hu, G.

    2002-01-01

    The upstream migration of salt water into the historic freshwater reaches of the Loxahatchee River is the likely cause of the altered floodplain cypress forest community along the Northwest Fork and some of its tributaries. Mangroves are replacing cypress forest and areas of mixed swamp hardwoods have reacted to different degrees to the saltwater stress. A hydrodynamic/salinity model was developed to study the influence of freshwater input, tidal inlet deepening and sea level rise on the salinity regime in the estuary. Field data analysis and model simulations indicate that the salinity condition in the estuary is sensitive to the amount of freshwater input from the watershed. During dry seasons the salt front advances into areas that were historically freshwater habitats. Historic evidence indicates that the Loxahatchee estuary was periodically closed and opened to the sea. Due to the active long shore sediment transport, the tidal inlet was probably characterized by shifting sandbars through which ran a narrow and unstable channel. Inlet dredging in the past several decades has increased the hydraulic conveyance of the inlet and the tidal influence into the estuary. The sea level record from a site in south Florida indicates that the sea level has been rising at a rate of approximately 2.3-mm per year. The rise of sea level in the past century has probably raised the mean tide level by about 23 centimeters. If the sea level rise continues as predicted, it is foreseeable that the salt front will move further upstream along with the sea level rise. Field data analysis and the preliminary model output led us to believe that the advance of seawater up the estuary is the combined effect of watershed hydrological changes, inlet deepening and sea level rise. (author)

  10. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  11. NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains ocean heat content change, oceanic temperature and salinity changes, and steric sea level change (change in volume without change in mass),...

  12. Well Salinization Risk and Effects of Baltic Sea Level Rise on the Groundwater-Dependent Island of Öland, Sweden

    Directory of Open Access Journals (Sweden)

    Marcus Eriksson

    2018-02-01

    Full Text Available In this study, we estimate baseline conditions in terms of the current risk of well salinization on the Baltic Sea island of Öland, Sweden, and assess the effects of future sea level rise on the land area, infrastructure and cultural values. We use a multicriterion geographical information systems (GIS approach. Geomorphological and physical parameters affect the risk of saltwater intrusion into freshwater aquifers, including their hydrology, geomorphology, and climatology; the spatial distribution of the current risk of salinization is mapped in this study. In the event of a future 2 m sea level rise, a total land area of 67 km2 will be inundated on Öland, corresponding to approximately 5% of the island’s land surface. Inundation includes urban areas, nature reserves, and animal protection areas, implying the loss of environmental and socioeconomic values. A future 2 m sea level rise will also cause direct inundation of 3% of all wells on the island. Currently, 17.5% of all wells are at a high risk of becoming saltwater contaminated. More generally, the present results add evidence showing a relatively high vulnerability of major Baltic Sea islands and their infrastructure to future sea level rise. The approach used here and related results, including salinization risk maps, may prove useful for decision-makers in the planning of infrastructure. Drilling of new wells could for instance preferably be done in areas with identified lower risk-index values, which would facilitate an overall higher freshwater withdrawal in the interest of the entire island.

  13. Responses to salinity in invasive cordgrass hybrids and their parental species (Spartina) in a scenario of sea level rise and climate change

    Science.gov (United States)

    Background/Question/Methods: Salinity is one of the main abiotic factors in salt marshes. Studies rooted to analyzed salinity tolerance of halophytes may help to relate their physiological tolerances with distribution limits in the field. Climate change-induced sea level rise and higher temperatures...

  14. Salinity extrema in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shetye, S.R.; Gouveia, A.D.; Michael, G.S.

    are described. Two of the maxima arise from the influence of Red Sea and the Persian Gulf Water. The third, which lies at the bottom of the Equatorial Surface Water, forms due to freshening at the surface of high salinity Arabian Sea near-surface waters...

  15. Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis

    Science.gov (United States)

    Just, Janna; Hübscher, Christian; Betzler, Christian; Lüdmann, Thomas; Reicherter, Klaus

    2011-02-01

    High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.

  16. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  17. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian [Stockholm Univ. (Sweden). Dept. of Quaternary Research; Gustafsson, Bo [Oceanus Havsundersoekningar, Goeteborg (Sweden); Omstedt, Anders [SMHI, Norrkoeping (Sweden)

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times.

  18. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    International Nuclear Information System (INIS)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian; Omstedt, Anders

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times

  19. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  20. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  1. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  2. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  3. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  4. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  5. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  6. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  7. Statistical characterization of global Sea Surface Salinity for SMOS level 3 and 4 products

    Science.gov (United States)

    Gourrion, J.; Aretxabaleta, A. L.; Ballabrera, J.; Mourre, B.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency will soon provide sea surface salinity (SSS) estimates to the scientific community. Because of the numerous geophysical contamination sources and the instrument complexity, the salinity products will have a low signal to noise ratio at level 2 (individual estimates??) that is expected to increase up to mission requirements (0.1 psu) at level 3 (global maps with regular distribution) after spatio-temporal accumulation of the observations. Geostatistical methods such as Optimal Interpolation are being implemented at the level 3/4 production centers to operate this noise reduction step. The methodologies require auxiliary information about SSS statistics that, under Gaussian assumption, consist in the mean field and the covariance of the departures from it. The present study is a contribution to the definition of the best estimates for mean field and covariances to be used in the near-future SMOS level 3 and 4 products. We use complementary information from sparse in-situ observations and imperfect outputs from state-of-art model simulations. Various estimates of the mean field are compared. An alternative is the use of a SSS climatology such as the one provided by the World Ocean Atlas 2005. An historical SSS dataset from the World Ocean Database 2005 is reanalyzed and combined with the recent global observations obtained by the Array for Real-Time Geostrophic Oceanography (ARGO). Regional tendencies in the long-term temporal evolution of the near-surface ocean salinity are evident, suggesting that the use of a SSS climatology to describe the current mean field may introduce biases of magnitude similar to the precision goal. Consequently, a recent SSS dataset may be preferred to define the mean field needed for SMOS level 3 and 4 production. The in-situ observation network allows a global mapping of the low frequency component of the variability, i.e. decadal, interannual and seasonal

  8. Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise

    DEFF Research Database (Denmark)

    Joergensen, F.; Scheer, W.; Thomsen, S.

    2012-01-01

    Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect......, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt...... revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing...

  9. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  10. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  11. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  12. The Baltic Sea natural long-term variability of salinity

    Science.gov (United States)

    Schimanke, Semjon; Markus Meier, H. E.

    2015-04-01

    The Baltic Sea is one of the largest brackish sea areas of the world. The sensitive state of the Baltic Sea is sustained by a fresh-water surplus by river discharge and precipitation on one hand as well as inflows of highly saline and oxygen-rich water masses from the North Sea on the other. Major inflows which are crucial for the renewal of the deep water occur very intermittent with a mean frequency of approximately one per year. Stagnation periods (periods without major inflows) lead for instance to a reduction of oxygen concentration in the deep Baltic Sea spreading hypoxic conditions. Depending on the amount of salt water inflow and fresh-water supply the deep water salinity of the Baltic Sea varies between 11 to 14 PSU on the decadal scale. The goal of this study is to understand the contribution of different driving factors for the decadal to multi-decadal variability of salinity in the Baltic Sea. Continuous measurement series of salinity exist from the 1950 but are not sufficiently long for the investigation of long-term fluctuations. Therefore, a climate simulation of more than 800 years has been carried out with the Rossby Center Ocean model (RCO). RCO is a biogeochemical regional climate model which covers the entire Baltic Sea. It is driven with atmospheric data dynamical downscaled from a GCM mimicking natural climate variability. The analysis focus on the role of variations in river discharge and precipitation, changes in wind speed and direction, fluctuations in temperature and shifts in large scale pressure patterns (e.g. NAO). Hereby, the length of the simulation will allow to identify mechanisms working on decadal to multi-decadal time scales. Moreover, it will be discussed how likely long stagnation periods are under natural climate variability and if the observed exceptional long stagnation period between 1983-1993 might be related to beginning climate change.

  13. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  14. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... to become negative below 4.5 psu. We suggest that reduced ability to produce shell material at extremely low salinity may explain dwarfism of mussels in the Baltic Sea. Reduced bio-calcification at low salinity, however, may impede shell growth, but not somatic growth, and this may at first result...

  15. Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise

    Directory of Open Access Journals (Sweden)

    F. Jørgensen

    2012-07-01

    Full Text Available Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system, a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.

  16. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.

    2015-04-01

    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  17. Arctic Sea Level During the Satellite Altimetry Era

    DEFF Research Database (Denmark)

    Carret, A.; Johannessen, J. A.; Andersen, Ole Baltazar

    2017-01-01

    Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data....... However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry......-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled...

  18. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  19. Possible impact of rising sea levels on vector-borne infectious diseases

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2011-01-01

    Full Text Available Abstract Background Vector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised. Presentation of the hypothesis Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas. Testing the hypothesis The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings. Implications of the hypothesis Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly

  20. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  1. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  2. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  3. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  4. Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene

    NARCIS (Netherlands)

    Warden, L.A.; van der Meer, M.T.J.; Moros, Matthias; Sinninghe Damsté, J.S.

    2016-01-01

    The Baltic Sea has had a complex salinity history since the last deglaciation. Here we show how distributions of alkenones and their δD values varied with past fluctuations in salinity in the Baltic Sea over the Holocene by examining a Holocene record (11.2–0.1 cal kyr BP) from the Arkona Basin.

  5. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  6. Improving SMOS Sea Surface Salinity in the Western Mediterranean Sea through Multivariate and Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Estrella Olmedo

    2018-03-01

    Full Text Available A new methodology using a combination of debiased non-Bayesian retrieval, DINEOF (Data Interpolating Empirical Orthogonal Functions and multifractal fusion has been used to obtain Soil Moisture and Ocean Salinity (SMOS Sea Surface Salinity (SSS fields over the North Atlantic Ocean and the Mediterranean Sea. The debiased non-Bayesian retrieval mitigates the systematic errors produced by the contamination of the land over the sea. In addition, this retrieval improves the coverage by means of multiyear statistical filtering criteria. This methodology allows obtaining SMOS SSS fields in the Mediterranean Sea. However, the resulting SSS suffers from a seasonal (and other time-dependent bias. This time-dependent bias has been characterized by means of specific Empirical Orthogonal Functions (EOFs. Finally, high resolution Sea Surface Temperature (OSTIA SST maps have been used for improving the spatial and temporal resolution of the SMOS SSS maps. The presented methodology practically reduces the error of the SMOS SSS in the Mediterranean Sea by half. As a result, the SSS dynamics described by the new SMOS maps in the Algerian Basin and the Balearic Front agrees with the one described by in situ SSS, and the mesoscale structures described by SMOS in the Alboran Sea and in the Gulf of Lion coincide with the ones described by the high resolution remotely-sensed SST images (AVHRR.

  7. Preparing for SMOS: Sea Salinity Campaigns and Results

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Kristensen, Steen Savstrup

    2006-01-01

    Mapping of sea surface salinity, based on L-band radiometric measurements, is presently investigated as a preparation for space missions. Special concern is on correction for effects caused by the sea surface roughness, and this paper will address two campaigns, LOSAC and CoSMOS, with the aim...... of investigating these effects. Conclusions from LOSAC are presented, and open issues to be investigated during the presently ongoing CoSMOS campaign are outlined. Finally, the installation and campaign plan for CoSMOS are presented....

  8. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    Science.gov (United States)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  9. Sea-ice transport driving Southern Ocean salinity and its recent trends.

    Science.gov (United States)

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan

    2016-09-01

    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  10. Atoll groundwater movement and its response to climatic and sea-level fluctuations

    Science.gov (United States)

    Oberle, Ferdinand; Swarzenski, Peter W.; Storlazzi, Curt

    2017-01-01

    Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  11. Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations

    Directory of Open Access Journals (Sweden)

    Ferdinand K. J. Oberle

    2017-08-01

    Full Text Available Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  12. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  13. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  14. Bacterial use of choline to tolerate salinity shifts in sea-ice brines

    DEFF Research Database (Denmark)

    Firth, E.; Carpenter, S. D.; Sørensen, H. L.

    2016-01-01

    Bacteria within the brine network of sea ice experience temperature-driven fluctuations in salinity on both short and long temporal scales, yet their means of osmoprotection against such fluctuations is poorly understood. One mechanism used to withstand the ion fluxes caused by salinity shifts, w...

  15. Overview of the Nordic Seas CARINA data and salinity measurements

    Directory of Open Access Journals (Sweden)

    A. Olsen

    2009-11-01

    Full Text Available Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic. The data have been subject to rigorous quality control (QC in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS, the Atlantic (ATL and the Southern Ocean (SO. With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004 and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005.

  16. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Directory of Open Access Journals (Sweden)

    J. Boutin

    2013-02-01

    Full Text Available The sea surface salinity (SSS measured from space by the Soil Moisture and Ocean Salinity (SMOS mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days, 100 × 100 km2 in the open ocean and estimated by comparison to ARGO (Array for Real-Time Geostrophic Oceanography SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The averaged negative SSS bias (−0.1 observed in the tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS observations concomitant with rain events, as detected from SSM/Is (Special Sensor Microwave Imager rain rates, are removed from the SMOS–ARGO comparisons. The SMOS freshening is linearly correlated to SSM/Is rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with ARGO measurements concomitant with rain events collocated with SMOS measurements under no rain, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.

  17. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam.

    Science.gov (United States)

    Vu, D T; Yamada, T; Ishidaira, H

    2018-03-01

    In the context of climate change, salinity intrusion into rivers has been, and will be, one of the most important issues for coastal water resources management. A combination of changes, including increased temperature, change in regional rainfall, especially sea level rise (SLR) related to climate change, will have significant impacts on this phenomenon. This paper presents the outcomes of a study conducted in the Mekong Delta of Vietnam (MKD) for evaluating the effect of sea water intrusion under a new SLR scenario. Salinity intrusion was simulated by one-dimensional (1D) modeling. The relative sea level projection was constructed corresponding to the RCP 6.0 emission scenario for MKD based on the statistical downscaling method. The sea level in 2050 is projected to increase from 25 cm to 30 cm compared to the baseline period (in 2000). Furthermore, the simulated results suggested that salinity greater than 4 g/l, which affects rice yield, will intrude up to 50-60 km into the river. Approximately 30,000 ha of agricultural area will be affected if the sea level rise is 30 cm.

  18. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  19. Uncertainties in Steric Sea Level Change Estimation During the Satellite Altimeter Era: Concepts and Practices

    Science.gov (United States)

    MacIntosh, C. R.; Merchant, C. J.; von Schuckmann, K.

    2017-01-01

    This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However, tracking these steric changes still remains a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community "recipes" for quantifying the error covariances in observations and from sparse sampling and for estimating and propagating uncertainty across spatio-temporal scales.

  20. Vulnerability of marginal seas to sea level rise

    Science.gov (United States)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  1. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  2. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    Science.gov (United States)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  3. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  4. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  5. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    Science.gov (United States)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  6. Laser measure of sea salinity, temperature and turbidity in depth

    Science.gov (United States)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  7. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  8. Temperature, salinity, and nutrients data collected from North Atlantic Ocean, White Sea, Mediterranean Sea, Black Sea, and Sea of Azov from 1924-03-19 to 1989-11-19 by multiple Soviet Union institutes (NODC Accession 0077413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and nutrients data collected from North Atlantic Ocean, White Sea, Mediterranean Sea, Black Sea, and Sea of Azov from 1924-03-19 to 1989-11-19...

  9. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  10. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    Science.gov (United States)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1992-present, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  12. Mangrove sedimentation and response to relative sea-level rise

    Science.gov (United States)

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  13. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    Science.gov (United States)

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  14. Hydraulic theory of sea straits applied to the onset of the Messinian Salinity Crisis

    NARCIS (Netherlands)

    Meijer, P.Th.

    2012-01-01

    Theory for the dynamics of flow in sea straits holds promise to provide, in addition to geological evidence, insight into the configuration of the connection between the Mediterranean Sea and the Atlantic Ocean at the onset of the Messinian Salinity Crisis. This paper, for the first time,

  15. Land to sea record of the mega-eustatic cycle including the Messinian Salinity Crisis in the Mediterranean Andalusia

    Science.gov (United States)

    Jouannic, Gwénaël.; Gorini, Christian; Jolivet, Laurent; Clauzon, Georges; Suc, Jean-Pierre; Gargani, Julien; Melinte-Dobrinescu, Mihaela Carmen; Meyer, Bertrand

    2010-05-01

    The outstanding event of the Messinian Salinity Crisis is very well documented in the onshore Sorbas and Vera Andalusian basins where its process and chronology are now well-known (Gautier et al., 1994, Krijgsman et al., 1999; Clauzon et al., 2009). The detailed study of these basins was at the origin of the two-step scenario of the Messinian salinity crisis (Clauzon et al., 1996) which clarified several aspects of the "deep desiccated basin" model of Hsü et al. (1973). The scenario in two steps (first step: evaporite deposition in Mediterranean marginal basins between 5.96 and 5.60 Ma; second step: evaporites deposition between 5.60 and 5.46 Ma in the almost dried up Mediterranean central basins, and subaerial erosion and deep canyons formation on the margins; Clauzon et al., 1996, 2005, 2008) has now the broadest consensus within the scientific community (CIESM, 2008). The Sorbas and Vera basins present all the markers in terms of sequence stratigraphy whatever these events were caused by moderate or excessive sea-level changes: 1, coral reefs, showing the relative sea level before the crisis; 2, gypsum (120 m in thickness) deposited during the first sea level drop (about 150 m) between 5.96 and 5.60 Ma; 3, the widespread erosion surface during the maximum sea level fall(ca. -1500 m); 4, the re-flooding at 5.46 Ma These onshore markers have also been recorded in offshore seismic profiles, allowing a continuous mapping of the Messinian canyons from land to sea. These onshore and offshore areas (Mauffret et al., 2007; Ammar et al., 2008) have also undergone a tectonics according to their proximity to the Betic cordillera (the south of the Sorbas Basin was more affected for example). Stratigraphic markers of the messinian crisis are powerful tools to reconstruct the tectonic events since 5 Ma. This work has made possible the calibration of tectonic deformations on south Andalusia present-day onshore and offshore domains. Ammar, A., Mauffret, A., Gorini, C., Jabour

  16. The radioactivity of the sea

    International Nuclear Information System (INIS)

    Walker, M.I.; Rose, K.S.B.

    1990-01-01

    The radioactivity in the world's surface sea water averages 13.6 Bq/kg of water. Over 88% of this activity arises from a single natural radionuclide, 40 K, and 7% of the remainder results from nuclear weapon test fallout. Variations in the radioactivity occur due to changes in salinity, weapon test fallout and discharges of artificial radionuclides, and are examined here on the basis of published measurements. The most radioactive sea identified by these measurements is the Dead Sea, which averages 178 Bq/kg due to its high salinity. Other enclosed, highly saline waters can be expected to have similar levels. The radioactivity in open seas varies within a much narrower range, generally within 20% of the world average. The highest averages are found in the Persian Gulf (22 Bq/kg), the Red Sea (15 Bq/kg) and the Eastern Mediterranean (14.6 Bq/kg). The Irish Sea averaged 13.7 Bq/kg in 1987, with the effect of the Sellafield discharges being partly offset by lower than average salinity. Although higher levels occurred in the Irish Sea during the 1970s when the Sellafield discharges were higher, the average level has always been much less than that in the Dead Sea, so that the Irish Sea has never been the most radioactive sea in the world. Exceptionally low levels of radioactivity (4 Bq/kg) occur in the Baltic Sea due to dilution by fresh water. (author)

  17. Sea level trends in South East Asian Seas (SEAS)

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2014-10-01

    Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.

  18. Sea level report

    International Nuclear Information System (INIS)

    Schwartz, M.L.

    1979-01-01

    Study of Cenozoic Era sea levels shows a continual lowering of sea level through the Tertiary Period. This overall drop in sea level accompanied the Pleistocene Epoch glacio-eustatic fluctuations. The considerable change of Pleistocene Epoch sea level is most directly attributable to the glacio-eustatic factor, with a time span of 10 5 years and an amplitude or range of approximately 200 m. The lowering of sea level since the end of the Cretaceous Period is attributed to subsidence and mid-ocean ridges. The maximum rate for sea level change is 4 cm/y. At present, mean sea level is rising at about 3 to 4 mm/y. Glacio-eustacy and tectono-eustacy are the parameters for predicting sea level changes in the next 1 my. Glacio-eustatic sea level changes may be projected on the basis of the Milankovitch Theory. Predictions about tectono-eustatic sea level changes, however, involve predictions about future tectonic activity and are therefore somewhat difficult to make. Coastal erosion and sedimentation are affected by changes in sea level. Erosion rates for soft sediments may be as much as 50 m/y. The maximum sedimentation accumulation rate is 20 m/100 y

  19. Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.

    2014-12-01

    Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.

  20. Sea level change

    Digital Repository Service at National Institute of Oceanography (India)

    Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; Pfeffer, W.T.; Stammer, D.; Unnikrishnan, A.S.

    This chapter considers changes in global mean sea level, regional sea level, sea level extremes, and waves. Confidence in projections of global mean sea level rise has increased since the Fourth Assessment Report (AR4) because of the improved...

  1. Sea level trends in Southeast Asian seas

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2015-05-01

    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.

  2. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by the...

  3. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea.

    Science.gov (United States)

    Beier, Emilio; Bernal, Gladys; Ruiz-Ochoa, Mauricio; Barton, Eric Desmond

    2017-01-01

    Despite the heavy regional rainfall and considerable discharge of many rivers into the Colombian Basin, there have been few detailed studies about the dilution of Caribbean Surface Water and the variability of salinity in the southwestern Caribbean. An analysis of the precipitation, evaporation and runoff in relation to the climate variability demonstrates that although the salt balance in the Colombian Basin overall is in equilibrium, the area south of 12°N is an important dilution sub-basin. In the southwest of the basin, in the region of the Panama-Colombia Gyre, Caribbean Sea Water is diluted by precipitation and runoff year round, while in the northeast, off La Guajira, its salinity increases from December to May by upwelling. At the interannual scale, continental runoff is related to El Niño Southern Oscillation, and precipitation and evaporation south of 12°N are related to the Caribbean Low Level Jet. During El Niño years the maximum salinification occurs in the dry season (December-February) while in La Niña years the maximum dilution (or freshening), reaching La Guajira Coastal Zone, occurs in the wet season (September-November).

  4. Organic carbon source and salinity shape sediment bacterial composition in two China marginal seas and their major tributaries.

    Science.gov (United States)

    Wang, Kai; Zou, Li; Lu, Xinxin; Mou, Xiaozhen

    2018-08-15

    Marginal sea sediments receive organic substrates of different origins, but whether and to what extent sediment microbial communities are reflective of the different sources of organic substrates remain unclear. To address these questions, sediment samples were collected in two connected China marginal seas, i.e., Bohai Sea and Yellow Sea, and their two major tributaries (Yellow River and Liao River). Sediment bacterial community composition (BCC) was examined using 16S rRNA gene pyrosequencing. In addition, physicochemical variables that describe environmental conditions and sediment features were measured. Our results revealed that BCCs changed with salinity and organic carbon (OC) content. Members of Gaiellaceae and Comamonadaceae showed a rapid decrease as salinity and phytoplankton-derived OC increased, while Piscirickettsiaceae and Desulfobulbaceae exhibited an opposite distribution pattern. Differences of riverine vs. marginal sea sediment BCCs could be mostly explained by salinity. However, within the marginal seas, sediment BCC variations were mainly explained by OC-related variables, including terrestrial-derived fatty acids (Terr_FA), phytoplankton-derived polyunsaturated fatty acids (Phyto_PUFA), stable carbon isotopes (δ 13 C), and carbon to nitrogen ratio (C/N). In addition to environmental variables, network analysis suggested that interactions among individual bacterial taxa might be important in shaping sediment BCCs in the studied areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    National Research Council Canada - National Science Library

    Le Vine, David M; Abraham, Saji; Wentz, F; Lagerloef, G. S

    2005-01-01

    ... to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes...

  6. Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel

    International Nuclear Information System (INIS)

    Bergelson, G.; Nativ, R.; Bein, A.

    1999-01-01

    The mechanism governing salinization of ground water discharging into the Sea of Galilee in Israel has been the subject of debate for several decades. Because the lake provides 25% of the water consumed annually in Israel, correct identification of the salt sources is essential for the establishment of suitable water-management strategies for the lake and the ground water in the surrounding aquifers. Existing salinization models were evaluated in light of available and newly acquired data including general chemistry, and O, H, C and Cl isotopes. Based on the chemical and isotopic observations, the proposed salt source is an ancient, intensively evaporated brine (21- to 33-fold seawater) which percolated through the valley formations from a lake which had formed in the Rift Valley following seawater intrusion during the late Miocene. Low Na:Cl and high Br:Cl values support the extensive evaporation, whereas high Ca:Cl and low Mg:Cl values indicate the impact of dolomitization of the carbonate host rock on the residual solution. Based on radiocarbon and other isotope data, the dilution of the original brine occurred in two stages: the first took place similar30andpuncsp; omitted000 a ago by slightly evaporated fresh-to-brackish lake water to form the Sea of Galilee Brine. The second dilution phase is associated with the current hydrological regime as the Sea of Galilee Brine migrates upward along the Rift faults and mixes with the actively circulating fresh ground water to form the saline springs. The spatially variable chemical and isotopic features of the saline springs suggest not only differential dilution by fresh meteoric water, but also differential percolation timing of the original brine into the tectonically disconnected blocks, registering different evaporation stages in the original brine. Consequently, various operations to reduce the brine contribution to the lake may be differentially effective in the various areas. (Copyright (c) 1999 Elsevier Science

  7. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level

  8. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    Science.gov (United States)

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  9. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Geng, Chenfan; Tian, Yi; Shang, Yanpeng; Wang, Liqiang; Jiang, Yanan; Chang, Yaqing

    2016-01-01

    Sea cucumbers ( Apostichopus japonicus ) are an imperiled fauna exposed to a variety of environmental condition such as salinity and studies are urgently needed to assess their effects to guide aquaculture efforts. The effects of acute salinity stress on coelomic fluid osmotic pressure, ion concentrations, the activity of Na + /K + -ATPase in respiratory trees and the histological variations were measured to evaluate the salinity tolerance of sea cucumbers. Significant correlations in osmotic pressure were observed between coelomic fluid and ambient environmental salinity. In coelomic fluid, Na + concentration was observed fluctuated during salinity 18 psu and the inflection point presented at the 6 h. The Na + /K + -ATPase activity in respiratory trees indicated the "U-shaped" fluctuant change and the change trend was opposite with the Na + concentration. The ions (K + , Cl - ) concentration decreased and showed the same tendency at salinity 40 psu with salinity 18 psu. The total coelomocytes counts and phagocytosis of coelomic fluid Na + /K + -ATPase activity indicated fluctuating changes under different salinity stress. Histological variation revealed a negative relation between decreasing salt concentration and tissue integrity. Tissue damages were significantly observed in intestines, muscles and tube feet under low salinity environment (18, 23 and 27 psu). The connective tissue in intestines of A. japonicus exposed to 18 and 23 psu damaged and partly separated from the mucosal epithelium. The significant variations occurred in tube feet, which presented the swelling in connective tissue and a fracture in longitudinal muscles under low salinity (18 psu). The morphological change of tube feet showed the shrinkage of connective tissue under high salinity (40 psu). The amount of infusoria in the respiratory trees decreased or even disappeared in salinity treatment groups (18 and 23 psu). The results inferred that osmoconformity and ionoregulation were

  10. Salinity, temperature and density data for the Canadian Beaufort Sea shelf, March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during March 1988. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface. Ice thickness was also measured. Density was calculated using salinity and temperature values. CTD profiles were measured at five stations. The maximum depths of profiles measured from the ice surface ranged from 31.2 to 16.8 dbar. Salinity and temperature measurements ranged from 0.35 to 34.83, and -1.87 to 1.08/sup 0/C, respectively. The data presented in this report will assist in the identification and delineation of potential habitat types, as part of the Critical Arctic Estuarine and Marine Habitat Project of the Northern Oil and Gas Program. 5 refs., 7 figs., 6 tabs.

  11. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  12. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Yue O.O. Hu

    2016-05-01

    Full Text Available Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.

  13. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  14. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    Science.gov (United States)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  15. Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data

    Science.gov (United States)

    Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús

    2008-02-01

    Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.

  16. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    Science.gov (United States)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  17. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  18. Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Francesconi, K. A.

    2003-01-01

    Total arsenic concentrations were determined in three teleost species (herring Clupea harengus; cod Gadus morhua, and flounder Platichthys flesus) taken. from four locations in the Baltic and North Sea with salinities ranging from 8 to 32 psu. Individual arsenic concentrations ranged from 0.......04 to 10.9 mg/kg wet mass, and there was a positive linear relationship between arsenic concentration and salinity for all three species (r(2) 0.44 to 0.72, all P arsenic than do freshwater fish, the data reported...... here are the first showing a relationship between the total arsenic concentration in fish and salinity....

  19. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    Science.gov (United States)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  20. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  1. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    Science.gov (United States)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  2. Spatial and Temporal Distribution of Sea Surface Salinity in Coastal Waters of China Based on Aquarius

    International Nuclear Information System (INIS)

    Wang, Ying; Jiang, Hong; Zhang, Xiuying; Jin, Jiaxin

    2014-01-01

    Sea surface salinity (SSS) is a fundamental parameter for the study of global ocean dynamics, water cycle, and climate variability. Aquarius launched by NASA and the Space Agency of Argentina is a breakthrough which could achieve the remote sensing data of SSS. The present paper takes the coastal of China as study area, which is a representative area of ocean boundary and influenced by continental rivers (Yangtze River and Pearl River). After analyze the temporal and spatial variation of SSS in the coastal of China, the estuary area has obvious low salinity because the injected of freshwater from continent. Take the East China Sea (ECS) and South China Sea (SCS) as representative region to discuss the effect of freshwater to SSS. The salinity is almost equal in winter when the diluted water is inadequate in both rivers. However, an obvious decrease appeared in summer especial July in Yangtze River for abundance discharge inflow the ECS. This is a reasonable expression of Yangtze River discharge is remarkable influence the SSS in coastal area then Pearl River. Survey the distribution range of Yangtze River diluted water (SSS<31psu). The range is small in winter and expands to peak value in summer

  3. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  4. Projecting future sea level

    Science.gov (United States)

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  5. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    Science.gov (United States)

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  6. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  7. Comparative Genomics of the Baltic Sea Toxic Cyanobacteria Nodularia spumigena UHCC 0039 and Its Response to Varying Salinity.

    Science.gov (United States)

    Teikari, Jonna E; Hou, Shengwei; Wahlsten, Matti; Hess, Wolfgang R; Sivonen, Kaarina

    2018-01-01

    Salinity is an important abiotic factor controlling the distribution and abundance of Nodularia spumigena , the dominating diazotrophic and toxic phototroph, in the brackish water cyanobacterial blooms of the Baltic Sea. To expand the available genomic information for brackish water cyanobacteria, we sequenced the isolate Nodularia spumigena UHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing a chromosome of 5,294,286 base pairs (bp) and a single plasmid of 92,326 bp. Comparative genomics in Nostocales showed pronounced genetic similarity among Nodularia spumigena strains evidencing their short evolutionary history. The studied Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of insertion sequence (IS) elements compared to Nodularia spumigena CENA596 isolated from a shrimp production pond in Brazil. Nodularia spumigena UHCC 0039 proliferated similarly at three tested salinities, whereas the lack of salt inhibited its growth and triggered transcriptome remodeling, including the up-regulation of five sigma factors and the down-regulation of two other sigma factors, one of which is specific for strain UHCC 0039. Down-regulated genes additionally included a large genetic region for the synthesis of two yet unidentified natural products. Our results indicate a remarkable plasticity of the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and distribution of cyanobacterial blooms in the Baltic Sea.

  8. Comparative Genomics of the Baltic Sea Toxic Cyanobacteria Nodularia spumigena UHCC 0039 and Its Response to Varying Salinity

    Directory of Open Access Journals (Sweden)

    Jonna E. Teikari

    2018-03-01

    Full Text Available Salinity is an important abiotic factor controlling the distribution and abundance of Nodularia spumigena, the dominating diazotrophic and toxic phototroph, in the brackish water cyanobacterial blooms of the Baltic Sea. To expand the available genomic information for brackish water cyanobacteria, we sequenced the isolate Nodularia spumigena UHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing a chromosome of 5,294,286 base pairs (bp and a single plasmid of 92,326 bp. Comparative genomics in Nostocales showed pronounced genetic similarity among Nodularia spumigena strains evidencing their short evolutionary history. The studied Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of insertion sequence (IS elements compared to Nodularia spumigena CENA596 isolated from a shrimp production pond in Brazil. Nodularia spumigena UHCC 0039 proliferated similarly at three tested salinities, whereas the lack of salt inhibited its growth and triggered transcriptome remodeling, including the up-regulation of five sigma factors and the down-regulation of two other sigma factors, one of which is specific for strain UHCC 0039. Down-regulated genes additionally included a large genetic region for the synthesis of two yet unidentified natural products. Our results indicate a remarkable plasticity of the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and distribution of cyanobacterial blooms in the Baltic Sea.

  9. Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions.

    Science.gov (United States)

    Zhang, Libin; Feng, Qiming; Sun, Lina; Ding, Kui; Huo, Da; Fang, Yan; Zhang, Tao; Yang, Hongsheng

    2018-03-01

    Sea cucumber, Apostichopus japonicus is an important species for aquaculture, and its behavior and physiology can change in response to changing salinity conditions. For this reason, it is important to understand the molecular responses of A. japonicus when exposed to ambient changes in salinity. In this study, RNA-Seq provided a general overview of the gene expression profiles in the intestine of A. japonicus exposed to high salinity (SD40), normal salinity (SD30) and low salinity (SD20) environments. Screening for differentially expressed genes (DEGs) using the NOISeq method identified 109, 100, and 89 DEGs based on a fold change of ≥2 and divergence probability ≥0.8 according to the comparisons of SD20 vs. SD30, SD20 vs.SD40, and SD30 vs. SD40, respectively. Gene ontology analysis showed that the terms "metabolic process" and "catalytic activity" comprised the most enriched DEGs. These fell into the categories of "biological process" and "molecular function". While "cell" and "cell part" had the most enriched DEGs in the category of "cellular component". With these DEGs mapping to 2119, 159, and 160 pathways in the Kyoto Encyclopedia of Genes and Genomes database. Of these 51, 2, and 57 pathways were significantly enriched, respectively. The osmosis-specific DEGs identified in this study of A. japonicus will be important targets for further studies to understand the biochemical mechanisms involved with the adaption of sea cucumbers to changes in salinity. Copyright © 2017. Published by Elsevier Inc.

  10. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    Science.gov (United States)

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  11. Five Year Mean Sea-surface Salinity in the Northern Gulf of Mexico for 2005 through 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These images were created by combining the mean sea-surface salinity values to produce seasonal representations for winter, spring, summer and fall. Winter includes...

  12. Benthic foraminifera cultured over a large salinity gradient: first results and comparison with field data from the Baltic Sea.

    Science.gov (United States)

    Groeneveld, Jeroen; Filipsson, Helena L.; Austin, William E. N.; Darling, Kate; Quintana Krupinski, Nadine B.

    2015-04-01

    Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxy methods for climate reconstructions. This is especially important for shelf and coastal environments where increasing numbers of high-resolution paleorecords are being generated. These challenges are further highlighted in connection with ECORD/IODP Expedition 347: Baltic Sea Paleoenvironments. This large-scale drilling operation took place in the Baltic Sea region during the autumn of 2013. At this time, there is a pressing need for proxy calibrations directly targeted at the brackish Baltic environment. Within the CONTEMPORARY project we are investigating different temperature and salinity proxy variables through a combination of field- and culture-based benthic foraminiferal samples, together with genetic characterization (genotyping) of the morphospecies. We have completed two field campaigns where we collected (living) foraminifera and water samples at several sites, ranging from fully marine to low salinity conditions. The core-top foraminifera have been analysed for trace metal/Ca, stable oxygen and carbon isotopes, and faunal composition. Living foraminifera collected from the sediment-water interface were cultured in sea water in two long-term experiments at different temperatures (5°C and 10°C) and at three different salinities (15, 25, and 35). The first experiment yielded a large number of reproduced and experimentally-grown Elphidium specimens. The second experiment resulted in growth but no reproduction. We will provide a summary of the experimentally grown material and discuss the challenges of generating new proxy calibrations for foraminiferal shell geochemistry in the Baltic Sea. Furthermore, specimens of Elphidium and Ammonia, found at two sampling sites (Anholt, Kattegat and Hanöbay) with differing salinities, were genotyped and the results indicate that the same genotype of Elphidium is

  13. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0.98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity

  14. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes

    Directory of Open Access Journals (Sweden)

    Wenqing Tang

    2018-06-01

    Full Text Available Sea surface salinity (SSS links various components of the Arctic freshwater system. SSS responds to freshwater inputs from river discharge, sea ice change, precipitation and evaporation, and oceanic transport through the open straits of the Pacific and Atlantic oceans. However, in situ SSS data in the Arctic Ocean are very sparse and insufficient to depict the large-scale variability to address the critical question of how climate variability and change affect the Arctic Ocean freshwater. The L-band microwave radiometer on board the NASA Soil Moisture Active Passive (SMAP mission has been providing SSS measurements since April 2015, at approximately 60 km resolution with Arctic Ocean coverage in 1–2 days. With improved land/ice correction, the SMAP SSS algorithm that was developed at the Jet Propulsion Laboratory (JPL is able to retrieve SSS in ice-free regions 35 km of the coast. SMAP observes a large-scale contrast in salinity between the Atlantic and Pacific sides of the Arctic Ocean, while retrievals within the Arctic Circle vary over time, depending on the sea ice coverage and river runoff. We assess the accuracy of SMAP SSS through comparative analysis with in situ salinity data collected by Argo floats, ships, gliders, and in field campaigns. Results derived from nearly 20,000 pairs of SMAP and in situ data North of 50°N collocated within a 12.5-km radius and daily time window indicate a Root Mean Square Difference (RMSD less than ~1 psu with a correlation coefficient of 0.82 and a near unity regression slope over the entire range of salinity. In contrast, the Hybrid Coordinate Ocean Model (HYCOM has a smaller RMSD with Argo. However, there are clear systematic biases in the HYCOM for salinity in the range of 25–30 psu, leading to a regression slope of about 0.5. In the region North of 65°N, the number of collocated samples drops more than 70%, resulting in an RMSD of about 1.2 psu. SMAP SSS in the Kara Sea shows a consistent

  15. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  16. Sea level ~400 000 years ago (MIS 11: analogue for present and future sea-level?

    Directory of Open Access Journals (Sweden)

    D. Q. Bowen

    2010-01-01

    Full Text Available Comparison of the sea-level today with that of 400 000 years ago (MIS 11, when the Earth's orbital characteristics were similar may provide, under conditions of natural variability, indications of future sea-level during the present interglacial. Then, as now, orbital eccentricity was low and precession dampened. Evidence for MIS 11 sea-level occurs on uplifting coastlines where shorelines with geochronological ages have been preserved. The sea-level term and the uplift term may be separated with an "uplift correction" formula. This discovers the original sea-level at which the now uplifted shoreline was fashioned. Estimates are based on average uplift rates of the "last interglacial" sea-level (MIS 5.5 using a range of estimates for sea-level and age at that time at different locations. These, with varying secular tectonic regimes in different ocean basins, provide a band of estimates for the MIS 11 sea-level. They do not support the hypothesis of an MIS 11 sea-level at ~20 m, and instead show that it was closer to its present level.

  17. Teaching of the subject "density difference caused by salinity", one of the reasons that plays role in the occurrence of currents in straits, seas and oceans by the use of a teaching material

    Science.gov (United States)

    Gumussoy, Verim

    2015-04-01

    Large masses of moving water in seas and oceans are called currents. Root causes of currents are steady winds that occur due to the global atmospheric system and the density differences caused by different heat and salinity levels of water masses. Different feeding and evaporation characteristics of seas and oceans result in salinity and density levels. As a result, subsurface currents occur in straits where seas with different salinity and density levels meet and in the nearby seas. The Bosporus in Istanbul where I live and the school I am working at is has these subsurface currents. In the Black Sea where the rivers the Danube, Dnieper, Don, Yesilirmak, Kizilirmak and Sakarya flow into and the evaporation level is less due to the latitude effect, salinity level is less compared to Marmara and Aegean Seas. As Marmara Sea has higher salt amount than Black Sea, there is a great density difference between these two seas. Marmara Sea has a higher concentration of salt and therefore a higher density than Black Sea. And this leads to occurrence of subsurface currents in the Bosporus. I get my students to carry out a small demonstration to help them understand the occurrence of ocean currents and currents in the seas and the Bosporus by the use of a material. We need very simple materials to carry out this demonstration. These are an aquarium, a bowl, water, salt, dye and a mixer. The demonstration is carried out as follows: we put water, salt and dye in the bowl and mix it well. The salt will increase the density of the water and the dye will help distinguish the salty water. Then we put tap water half way to the aquarium and pour the mixture in the bowl to the aquarium slowly. As a result, the colored salty water sinks down due to its higher density, setting an example of a subsurface current. Natural events occur in very long periods by great dynamic systems, making understanding of them difficult. It is important to use different kinds of materials that address to

  18. Statistical analysis of the acceleration of Baltic mean sea-level rise, 1900-2012

    Directory of Open Access Journals (Sweden)

    Birgit Hünicke

    2016-07-01

    Full Text Available We analyse annual mean sea-level records from tide-gauges located in the Baltic and parts of the North Sea with the aim of detecting an acceleration of sea-level rise over the 20textsuperscript{th} and 21textsuperscript{st} centuries. The acceleration is estimated as a (1 fit to a polynomial of order two in time, (2 a long-term linear increase in the rates computed over gliding overlapping decadal time segments, and (3 a long-term increase of the annual increments of sea level.The estimation methods (1 and (2 prove to be more powerful in detecting acceleration when tested with sea-level records produced in global climate model simulations. These methods applied to the Baltic-Sea tide-gauges are, however, not powerful enough to detect a significant acceleration in most of individual records, although most estimated accelerations are positive. This lack of detection of statistically significant acceleration at the individual tide-gauge level can be due to the high-level of local noise and not necessarily to the absence of acceleration.The estimated accelerations tend to be stronger in the north and east of the Baltic Sea. Two hypothesis to explain this spatial pattern have been explored. One is that this pattern reflects the slow-down of the Glacial Isostatic Adjustment. However, a simple estimation of this effect suggests that this slow-down cannot explain the estimated acceleration. The second hypothesis is related to the diminishing sea-ice cover over the 20textsuperscript{th} century. The melting o of less saline and colder sea-ice can lead to changes in sea-level. Also, the melting of sea-ice can reduce the number of missing values in the tide-gauge records in winter, potentially influencing the estimated trends and acceleration of seasonal mean sea-level This hypothesis cannot be ascertained either since the spatial pattern of acceleration computed for winter and summer separately are very similar. The all-station-average-record displays an

  19. Ra-226 and Rn-222 in saline water compartments of the Aral Sea region

    International Nuclear Information System (INIS)

    Schettler, Georg; Oberhänsli, Hedi; Hahne, Knut

    2015-01-01

    Highlights: • 222 Rn and 226 Ra concentrations in different water compartments of the Aral Sea region. • 226 Ra-analysis based on 222 Rn-ingrowth versus MS-analysis after solid-phase extraction. • 226 Ra in different groundwater types of the Aral Sea Basin. • 222 Rn distribution in the Aral Sea, western basin. - Abstract: The Aral Sea has been shrinking since 1963 due to extensive irrigation and the corresponding decline in the river water inflow. Understanding of the current hydrological situation demands an improved understanding of the surface water/groundwater dynamics in the region. 222 Rn and 226 Ra measurements can be used to trace groundwater discharge into surface waters. Data of these radiometric parameters were not previously available for the study region. We determined 222 Rn activities after liquid phase extraction using Liquid Scintillation Counting (LSC) with peak-length discrimination and analyzed 226 Ra concentrations in different water compartments of the Amu Darya Delta (surface waters, unconfined groundwater, artesian water, and water profiles from the closed Large Aral Sea (western basin). The water samples comprise a salinity range between 1 and 263 g/l. The seasonal dynamics of solid/water interaction under an arid climate regime force the hydrochemical evolution of the unconfined groundwater in the Amu Darya Delta to high-salinity Na(Mg)Cl(SO 4 ) water types. The dissolved radium concentrations in the waters were mostly very low due to mineral over-saturation, extensive co-precipitation of radium and adsorption of radium on coexisting solid substrates. The analysis of very low 226 Ra concentrations (<10 ppq) at remote study sites is a challenge. We used the water samples to test and improve different analytical methods. In particular, we modified a procedure developed for the α-spectrometric determination of 226 Ra after solid phase extraction of radium using 3M Empore™ High Performance Extraction Disks (Purkl, 2002) for the

  20. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Suding, Katharine N; Kelly, N Maggi

    2017-02-01

    Climate change impacts, such as accelerated sea-level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade-offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space-for-time substitutions of stress factors and can give insight into future climate-related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus . We simulated sea-level rise across existing marsh elevations and those not currently found to reflect potential future sea-level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80-cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as

  1. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  2. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  3. Quality-controlled sea surface temperature, salinity and other measurements from the NCEI Global Thermosalinographs Database (NCEI-TSG)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains global in-situ sea surface temperature (SST), salinity (SSS) and other measurements from the NOAA NCEI Global Thermosalinographs Database...

  4. Tidal extension and sea-level rise: recommendations for a research agenda

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory

    2018-01-01

    Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.

  5. Simulating the Response of Estuarine Salinity to Natural and Anthropogenic Controls

    Directory of Open Access Journals (Sweden)

    Vladimir A. Paramygin

    2016-11-01

    Full Text Available The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D, an oyster population model, and probability analysis. The model uses input from river inflow, ocean and atmospheric forcing and is verified with long-term water level and salinity data, including data from the 2004 hurricane season when four hurricanes impacted the system. Strong freshwater flow from the Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed; some based on observed data and others using altered freshwater inflow. For observed flow, simulated salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1% upstream of the Apalachicola River, the model results show slightly (less than 5% increased salinity inside the Bay. A worst-case sea-level rise (~1 m by 2100 could increase the bay salinity by up to 20%. A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested and appears to be substantiated.

  6. Binned level-3 Sea Surface Salinity from Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission in support of the National Centers for Environmental Information (NCEI) data quality monitoring system (DQMS) from 2011-08-28 to 2015-06-10 (NCEI Accession 0151631)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data quality monitoring system (DQMS) for the Aquarius/Satélite de Aplicaciones Científicas (SAC)-D satellites level-2 sea-surface salinity (SSS) swath data...

  7. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  8. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  9. Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin from R/Vs GORIZONT and OKEANOGRAF, 1960 - 1969 (NODC Accession 0074609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin of the Mediterranean...

  10. Life-history responses to changing temperature and salinity of the Baltic Sea copepod Eurytemora affinis.

    Science.gov (United States)

    Karlsson, Konrad; Puiac, Simona; Winder, Monika

    2018-01-01

    To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod Eurytemora affinis from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.19', 17°37.52'; 65°10.14', 23°14.41'; 58°21.67', 24°30.83'). Using individuals with known family structure, we investigated within population variation of the reaction norm (genotype and salinity interaction) as a means to measure adaptive capacity. Our main finding was that low salinity has a detrimental effect on development time, the additive effects of high temperature and low salinity have a negative effect on survival, and their interaction has a negative effect on hatching success. We observed no variation in survival and development within populations, and all genotypes had similar reaction norms with higher survival and faster development in higher salinities. This suggests that there is no single genotype that performs better in low salinity or high salinity; instead, the best genotype in any given salinity is best in all salinities. Genotypes with fast development time also had higher survival compared to slow developing genotypes at all salinities. Our results suggest that E. affinis can tolerate close to freshwater conditions also in high temperatures, but with a significant reduction in fitness.

  11. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.).

    Science.gov (United States)

    Gregório, Sílvia F; Carvalho, Edison S M; Encarnação, Sandra; Wilson, Jonathan M; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2013-02-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.

  12. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  13. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  14. Atmospheric forcing of decadal Baltic Sea level variability in the last 200 years. A statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huenicke, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    This study aims at the estimation of the impact of different atmospheric factors on the past sealevel variations (up to 200 years) in the Baltic Sea by statistically analysing the relationship between Baltic Sea level records and observational and proxy-based reconstructed climatic data sets. The focus lies on the identification and possible quantification of the contribution of sealevel pressure (wind), air-temperature and precipitation to the low-frequency (decadal and multi-decadal) variability of Baltic Sea level. It is known that the wind forcing is the main factor explaining average Baltic Sea level variability at inter-annual to decadal timescales, especially in wintertime. In this thesis it is statistically estimated to what extent other regional climate factors contribute to the spatially heterogeneous Baltic Sea level variations around the isostatic trend at multi-decadal timescales. Although the statistical analysis cannot be completely conclusive, as the potential climate drivers are all statistically interrelated to some degree, the results indicate that precipitation should be taken into account as an explanatory variable for sea-level variations. On the one hand it has been detected that the amplitude of the annual cycle of Baltic Sea level has increased throughout the 20th century and precipitation seems to be the only factor among those analysed (wind through SLP field, barometric effect, temperature and precipitation) that can account for this evolution. On the other hand, precipitation increases the ability to hindcast inter-annual variations of sea level in some regions and seasons, especially in the Southern Baltic in summertime. The mechanism by which precipitation exerts its influence on Baltic Sea level is not ascertained in this statistical analysis due to the lack of long salinity time series. This result, however, represents a working hypothesis that can be confirmed or disproved by long simulations of the Baltic Sea system - ocean

  15. The Barbados Sea Level Record

    Science.gov (United States)

    Fairbanks, R. G.; Mortlock, R. A.; Abdul, N. A.; Wright, J. D.; Cao, L.; Mey, J. L.

    2013-12-01

    Additional offshore drill cores, nearly 100 new radiometric dates, and more than 1000 kilometers of Multibeam mapping greatly enhance the Barbados Sea Level record. Extensive Multibeam mapping around the entire island covers approximately 2650 km2 of the sea bottom and now integrates the offshore reef topography and Barbados Sea Level Record with the unparalleled onshore core collection, digital elevation maps, and Pleistocene sea level record spanning the past one million years. The reef crest coral, Acropora palmata, remains the stalwart indicator of sea level for many reasons that are validated by our redundant sea level records and redundant dating via Th/U and Pa/U analyses. Microanalysis and densitometry studies better explain why Acropora palmata is so well preserved in the Pleistocene reef records and therefore why it is the species of choice for sea level reconstructions and radiometric dating. New drill cores into reefs that formed during Marine Isotope Stage 3 lead us to a model of diagenesis that allows us to better prospect for unaltered coral samples in older reefs that may be suitable for Th/U dating. Equally important, our diagenesis model reinforces our rigorous sample quality criteria in a more quantitative manner. The Barbados Sea Level record has a sampling resolution of better than 100 years throughout much of the last deglaciation showing unprecedented detail in redundant drill cores. The Melt Water Pulses (MWP1A and MWP1B) are well resolved and the intervening interval that includes the Younger Dryas reveals sea level changes in new detail that are consistent with the terrestrial records of ice margins (see Abdul et al., this section). More than 100 paired Th/U and radiocarbon ages place the Barbados Sea Level Record unambiguously on the radiocarbon time scale for direct comparisons with the terrestrial records of ice margin changes.

  16. Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change

    Science.gov (United States)

    Chu, P. C.

    2017-12-01

    Sea level (S) change and ocean circulation largely affect the gravity field and in turns the marine geoid (N). Difference between the two, D = S - N, is the dynamic ocean topography (DOT), whose gradient represents the large-scale surface geostrophic circulations. Thus, temporal variability of marine geoid (δN) is caused by the sea level change (δS) and the DOT variation (δD), δN = δS - δD. Here, δS is identified from temporally varying satellite altimeter measures; δD is calculated from the change of DOT. For large-scale processes with conservation of potential vorticity, the geostrophic flows take minimum energy state. Based on that, a new elliptic equation is derived in this study to determine D. Here, H is the water depth; and (X, Y) are forcing functions calculated from the in-situ density. The well-posed elliptic equation is integrated numerically on 1o grids for the world oceans with the boundary values taken from the mean DOT (1993-2006) field at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/, the forcing function F calculated from the three-dimensional temperature and salinity of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2, and sea-floor topography (H) from the NOAA ETOPO5. The numerical solution compares reasonably well (relative root mean square difference of 0.09) with the NASA/JPL satellite observation of the difference between the time-averaged sea surface height and the geoid. In-situ ocean measurements of temperature, salinity, and velocity have also rapidly advanced such that the global ocean is now continuously monitored by near 4,000 free-drifting profiling floats (called Argo) from the surface to 2000 m depth with all data being relayed and made publicly available within hours after collection (http://www.argo.ucsd.edu/). This provides a huge database of temperature and salinity and in turns the forcing function F for the governing elliptic

  17. Caribbean Sea Level Network

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  18. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  19. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  20. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  1. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  2. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise

    Science.gov (United States)

    Cherry, J.A.; McKee, K.L.; Grace, J.B.

    2009-01-01

    1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and

  3. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0

  4. Temperature, salinity, oxygen and nutrients bottle and CTD data collected in the northern North Atlantic, Nordic and Arctic Seas from 1901 to 2011 (NODC Accession 0105532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen and nutrients bottle and CTD data collected in the Arctic Ocean, Barents Sea, Greenland Sea, Kara Sea, North Atlantic Ocean,...

  5. Seasonal salinity, temperature and density data for the Canadian Beaufort Sea shelf, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during 1987. A major objective of such data collection is to identify and characterize estuarine and marine habitats of significance to the biological communities, primarily fish, with a view to provide background data for assessing the implications of hydrocarbon development and production on those habitats. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface in March and May, and from a ship during July to September. Ice thickness and secchi depth were measured during periods of ice cover and open water, respectively. Salinity values for samples collected from bottle casts were measured with an Autosal Model 8400 salinometer. Density was calculated using salinity and temperature values. During the ice cover periods of March and May, CTD profiles were measured at five and nine stations, respectively. For the open water July to September period, CTD profiles were measured at 41 stations. One additional station was sampled using bottle casts. Replicate CTD profiling was conducted at a number of stations, on a seasonal basis. The maximum depths of profiles measured from the ice surface ranged from 3.1 to 23.5 dbar. Salinity and temperature measurements ranged from 0.00 to 31.70, and -1.74 to 0.02/sup 0/C, respectively. Maximum depths of profiles measured during the open water period ranged from 2.9 to 196.4 dbar. During this same period, profile measurements of salinity and temperature ranged from 0.08 to 33.94, and -1.62 to 16.51/sup 0/C, respectively. 4 refs., 60 figs., 57 tabs.

  6. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  7. Amplitude of late Miocene sea-level fluctuations from karst development in reef-slope deposits (SE Spain)

    Science.gov (United States)

    Reolid, Jesús; Betzler, Christian; Braga, Juan Carlos

    2016-11-01

    A prograding late Miocene carbonate platform in southern Spain revealing different sea-level pinning points was analysed with the aim to increase the accuracy of reconstruction of past sea-level changes. These pinning points are distinct diagenetic zones (DZ) and the position of reef-framework deposits. DZ1 is defined by the dissolution of bioclastic components and DZ2 by calcitic cement precipitation in dissolution pores. Calcite cements are granular and radiaxial fibrous, and are of meteoric origin as deduced from cathodoluminescence, EDX spectroscopy, as well as from δ13C and δ18O isotope analyses. DZ3 has moldic porosity after aragonitic bioclasts with minor granular calcitic cements. DZ1 and DZ2 indicate karstification and the development of a coastal palaeoaquifer during a sea-level lowstand. DZ3 diagenetic features are related to the final subaerial exposure of the section during the Messinian Salinity Crisis. Facies and diagenetic data reveal a complete cycle of sea-level fall (23 ± 1 m) and rise (31 ± 1 m). A robust age model based on magneto- and cyclostratigraphy for these deposits places this cycle between 5.89 and 5.87 Ma. Therefore, for the first time, this work allows a direct comparison of an outcrop with a pelagic marine proxy record of a specific Neogene sea-level fluctuation.

  8. Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-01-01

    Full Text Available The demand for salinity-tolerant turfgrasses is increasing due to augmented use of effluent or low-quality water (sea water for turf irrigation and the growing turfgrass industry in coastal areas. Experimental plants, grown in plastic pots filled with a mixture of river sand and KOSASR peat (9 : 1, were irrigated with sea water at different dilutions imparting salinity levels of 0, 8, 16, 24, 32, 40, or 48 dS m-1. Salinity tolerance was evaluated on the basis of leaf firing, shoot and root growth reduction, proline content, and relative water content. Paspalum vaginatum was found to be most salt tolerant followed by Zoysia japonica and Zoysia matrella, while Digitaria didactyla, Cynodon dactylon “Tifdwarf,” and Cynodon dactylon “Satiri” were moderately tolerant. The results indicate the importance of turfgrass varietal selection for saline environments.

  9. Change in coccolith morphology by responding to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi Seas

    Science.gov (United States)

    Saruwatari, K.; Satoh, M.; Harada, N.; Suzuki, I.; Shiraiwa, Y.

    2015-11-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic Oceans during the R/V MIRAI cruise in 2010 (MR10-05) were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains of MR57N isolated from the northern Bering Sea (56°58' N, 167°11' W) and MR70N at the Chukchi Sea (69°99' N, 168° W). This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of strain MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters, such as length of the distal shield (LDS), length of the inner central area (LICA), and the thickness of distal shield elements. The central area elements of coccoliths varied from grilled type to closed type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities due to their marked morphometric adaptation ability. Because all

  10. Comparison of the Retrieval of Sea Surface Salinity Using Different Instrument Configurations of MICAP

    Directory of Open Access Journals (Sweden)

    Lanjie Zhang

    2018-04-01

    Full Text Available The Microwave Imager Combined Active/Passive (MICAP has been designed to simultaneously retrieve sea surface salinity (SSS, sea surface temperature (SST and wind speed (WS, and its performance has also been preliminarily analyzed. To determine the influence of the first guess values uncertainties on the retrieved parameters of MICAP, the retrieval accuracies of SSS, SST, and WS are estimated at various noise levels. The results suggest that the errors on the retrieved SSS have not increased dues poorly known initial values of SST and WS, since the MICAP can simultaneously acquire SST information and correct ocean surface roughness. The main objective of this paper is to obtain the simplified instrument configuration of MICAP without loss of the SSS, SST, and WS retrieval accuracies. Comparisons are conducted between three different instrument configurations in retrieval mode, based on the simulation measurements of MICAP. The retrieval results tend to prove that, without the 23.8 GHz channel, the errors on the retrieved SSS, SST, and WS for MICAP could also satisfy the accuracy requirements well globally during only one satellite pass. By contrast, without the 1.26 GHz scatterometer, there are relatively large increases in the SSS, SST, and WS errors at middle/low latitudes.

  11. Revisiting the contemporary sea-level budget on global and regional scales.

    Science.gov (United States)

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-09

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.

  12. Sea Level Changes: Determination and Effects

    Science.gov (United States)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  13. Temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea (NODC Accession 0072200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0072200 contains temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea.

  14. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    Science.gov (United States)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  15. A study on Sea Level Change for Coast of Korean Peninsular from Global Warming and Its Influences I

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.W.; Kim, J.H. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    cm with a median value of 48cm. The projected range of the sea level rise is 2.2{approx} 4.4 times higher than that of 20th century. The ocean thermal expansion leads the 21st century sea level rise. The melting of glacier also gives considerable contribution to the 21st sea level rise. The regional distribution of future sea level change will be quite complex because of the regional distribution of thermal expansion, heat transport into ocean interiors, ocean circulation changes by the change of density structure with temperature and salinity changes, horizontal heat transport changes due to the ocean circulation changes, wind field changes to climate change, etc. It is projected that the regional variation will be large compared to the global mean value. The state-of-the-art climate model predictions on the regional distribution of the 21st sea level change show little similarity between models except the Arctic Ocean and Antarctic Ocean. This implies the confidence of current climate model is low in the prediction of the regional distribution of sea level change. In order to investigate the sea level change on the neighboring seas of Korea, the sea level trends of the 65 PSMSL(Permanent Service for Mean Sea Level) tide-station data located at the Korea, Japan, and China are calculated by a simple linear regression after a post-glacial rebound correction(Peltier, 2001). The mean sea level change is 1.63 mm/yr +2.15 mm/yr, which is in the rage of the IPCC assessment. The analysis of the 23 station at Korea reveals that the East Sea is in the low trend of 0.57 mm/yr than those of the South Sea(3.13mm/yr) and the West Sea(2.64 mm/yr) with an overall mean value of 2.31 mm/yr. However, it is quite questionable that the sea level trends with the tide gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. In the satellite altimeter data (Topex/Poseidon and ERS), the sea level

  16. The effect of salinity levels on the structure of zooplankton communities

    Directory of Open Access Journals (Sweden)

    Paturej Ewa

    2015-01-01

    Full Text Available The objective of this study was to determine the qualitative and quantitative structure of zooplankton communities in the Vistula Lagoon and to establish whether zooplankton abundance and biodiversity are affected by salinity levels. Samples for biological analyses were collected in the summer (June-September of 2007-2011 at eleven sampling sites. Statistical analysis revealed a significant correlation between salinity levels and the number of species (r= -0.2020, abundance (r= 0.1967 and biomass (r= 0.3139 of zooplankton. No significant correlations were found between salinity and the biodiversity of zooplankton. The results of the study suggest that salinity affects the abundance and structure, but not the diversity of zooplankton communities in the Vistula Lagoon.

  17. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  18. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring.

    Science.gov (United States)

    Poirier, Maude; Listmann, Luisa; Roth, Olivia

    2017-07-01

    Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring ( Clupea harengus ) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus . In addition, larvae were exposed to a Vibrio spp . infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.

  19. Eustatic and Relative Sea Level Changes

    NARCIS (Netherlands)

    Rovere, A.; Stocchi, P.; Vacchi, M.

    2016-01-01

    Sea level changes can be driven by either variationsin the masses or volume of the oceans, or bychanges of the land with respect to the sea surface. Inthe first case, a sea level change is defined ‘eustatic’;otherwise, it is defined ‘relative’. Several techniques canbe used to observe changes in sea

  20. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  1. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas

    Science.gov (United States)

    Saruwatari, Kazuko; Satoh, Manami; Harada, Naomi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2016-05-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic oceans in 2010 were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains, namely MR57N isolated from the northern Bering Sea and MR70N at the Chukchi Sea. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (estimated as the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters. The central area elements of coccoliths varied from thin lath type to well-calcified lath type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities with change in their morphology. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may

  2. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.

    Science.gov (United States)

    Horikawa, Keiji; Martin, Ellen E; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-06-29

    Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.

  3. Estimating sea-level allowances for Atlantic Canada under conditions of uncertain sea-level rise

    Directory of Open Access Journals (Sweden)

    B. Greenan

    2015-03-01

    Full Text Available This paper documents the methodology of computing sea-level rise allowances for Atlantic Canada in the 21st century under conditions of uncertain sea-level rise. The sea-level rise allowances are defined as the amount by which an asset needs to be raised in order to maintain the same likelihood of future flooding events as that site has experienced in the recent past. The allowances are determined by combination of the statistics of present tides and storm surges (storm tides and the regional projections of sea-level rise and associated uncertainty. Tide-gauge data for nine sites from the Canadian Atlantic coast are used to derive the scale parameters of present sea-level extremes using the Gumbel distribution function. The allowances in the 21st century, with respect to the year 1990, were computed for the Intergovernmental Panel on Climate Change (IPCC A1FI emission scenario. For Atlantic Canada, the allowances are regionally variable and, for the period 1990–2050, range between –13 and 38 cm while, for the period 1990–2100, they range between 7 and 108 cm. The negative allowances in the northern Gulf of St. Lawrence region are caused by land uplift due to glacial isostatic adjustment (GIA.

  4. Simulating Baltic Sea climate for the period 1902-1998 with the Rossby Centre coupled ice-ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Meier, H.E. Markus [Swedish Meteorological and Hydrological Inst., Rossby Centre, Norrkoeping (Sweden); Kauker, Frank [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)

    2002-12-01

    Hindcast simulations for the period 1902-1998 have been performed using a 3D coupled ice-ocean model for the Baltic Sea. Daily sea level observations in Kattegat, monthly basin-wide discharge data, and reconstructed atmospheric surface data have been used to force the Baltic Sea model. The reconstruction utilizes a statistical model to calculate daily sea level pressure and monthly surface air temperature, dew point temperature, precipitation, and cloud cover fields on a 1 deg x 1 deg regular horizontal grid for the Baltic Sea region. An improved turbulence scheme has been implemented into the Baltic Sea model to simulate saltwater inflows realistically. The results are validated against available observational datasets for sea level, salinity, saltwater inflow, volume transport, and sea ice. In addition, a comparison is performed with simulations for the period 1980-1993 using 3-hourly gridded atmospheric observations from synoptic stations. It is shown that the results of the Baltic Sea model forced with the reconstructed data are satisfactory. Sensitivity experiments have been performed to explore the impact of internal mixing, fresh and saltwater inflows, sea ice, and the sea level in Kattegat on the salinity of the Baltic Sea. It is found that the decadal variability of mean salinity is explained partly by decadal volume variations of the accumulated freshwater inflow from river runoff and net precipitation and partly by decadal variations of the large-scale sea level pressure over Scandinavia. During the last century two exceptionally long stagnation periods are found, the 1920s to the 1930s and the 1980s to the mid 1990s. During these periods precipitation, runoff and westerly winds were stronger than normal. Stronger westerly winds caused increased eastward surface-layer transports. Consequently, the mean eastward lower layer transports through the Stolpe Channel is reduced. The response time scale of the Baltic Sea is of the order of 30-40 years. The large

  5. The role of local and external factors in determining the interannual sea level variability of the Adriatic and Black Seas during the 20th century.

    Science.gov (United States)

    Scarascia, Luca; Lionello, Piero

    2016-04-01

    The Adriatic Sea and the Black Sea are two semienclosed basins connected to the Mediterranean Sea by the Otranto and the Bosporus straits, respectively. This work aims to reconstruction the sea level for both basins in the 20th century and to investigate main sources of interannual variability. Using 7 tide gauge timeseries located along the Adriatic coast and 5 along the Black Sea coast, provided by the PSMSL (Permanent service of mean sea level), a seamless sea level timeseries (1900-2009) has been obtained for each basin on the basis of statistical procedure involving PCA and Least Square Method. The comparison with satellite data in the period 1993 - 2009 confirms that these are reliable representations of the observed sea level for the whole basin, showing a great agreement with a correlation value of 0.87 and 0.72 for Adriatic and Black Sea respectively. The sea level has been decomposed in various contributions in order to analyze the role of the factors responsible for its interannual variability. The annual cycles of the local effect of pressure (inverse barometer effect IB), of the steric effect due to temperature and salinity variation and of the wind effect have been computed. The largest contribute for the Adriatic Sea is due to the wind, whilst inverse barometer effect plays a minor role and the steric effect seems to be almost negligible. For the Black Sea, on the contrary, wind effect is negligible, and the largest source of variability is due to the Danube river, which is estimated from the available discharge data of Sulina (one of the exits of the Danube delta. Steric and IB effects play both a minor role in this basin. A linear regression model, built considering as predictor the SLP gradient identified at large scale after having carried out the correlation analysis, is capable to explain a further percentage of variability (about 20-25%) of the sea level after subtracting all the factors considered above. Finally, residual sea levels show a

  6. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  7. High salinity tolerance in eggs and fry of a brackish Esox lucius population

    DEFF Research Database (Denmark)

    Jørgensen, A.T.; Hansen, B.W.; Vismann, B.

    2010-01-01

    Knowledge on the biology and physiology of pike, Esox lucius L., populations inhabiting saline environments is scarce. An experimental setup was used to examine egg development and fry behaviour and growth under varying salinity levels in a brackish-water pike population from the western Baltic Sea....... Eggs and fry developed at 8.5 psu, which is higher than hitherto reported for other populations. Fry exhibited stress behaviour and reduced growth when subjected to salinities above 13 psu. This indicates that early life stages of E. lucius tolerate ambient salinity conditions equivalent to the natural...

  8. Evaluation of Aquarius Version-5 Sea Surface Salinity on various spatial and temporal scales

    Science.gov (United States)

    Lee, T.

    2017-12-01

    Sea surface salinity (SSS) products from Aquarius have had three public releases with progressive improvement in data quality: Versions 2, 3, and 4, with the last one being released in October 2015. A systematic assessment of the Version-4, Level-3 Aquarius SSS product was performed on various spatial and temporal scales by comparing it with gridded Argo products (Lee 2016, Geophys. Res. Lett.). The comparison showed that the consistency of Aquarius Version-4 SSS with gridded Argo products is comparable to that between two different gridded Argo products. However, significant seasonal biases remain in high-latitude oceans. Further improvements are being made by the Aquarius team. Aquarius Version 5.0 SSS is scheduled to be released in October 2017 as the final version of the Aquarius Project. This presentation provides a similar evaluation of Version-5 SSS as reported by Lee (2016) and contrast it with the current Version-4 SSS.

  9. The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider

    Directory of Open Access Journals (Sweden)

    Christoph Petereit

    2009-10-01

    Full Text Available The small pelagic sprat (Sprattus sprattus is a key ecologic player in the Baltic Sea. However, there is long-term variability in recruitment which is thought to be influenced by fluctuations in abiotic and biotic conditions experienced during the early life stages. This study concentrates on the influence of different ambient salinities on sprat egg development, egg buoyancy and survival as well as early yolk sac larval morphometric traits. Egg buoyancy significantly decreased with increasing salinity experienced during fertilization and/or incubation experiments. Field egg buoyancy measurements in 2007 and 2008 exhibited annual and seasonal differences in specific gravity, potentially associated with changes in adult sprat vertical distribution. Neither egg development time nor the duration of the yolk sac phase differed among salinity treatments. At eye pigmentation, larval standard length exhibited high variance among individuals but did not differ among treatments. The largest ecological impact of salinity experienced during spawning was the modification the buoyancy of eggs and yolk sac larvae, which determines their vertical habitat in the Baltic Sea. There are strong thermo- and oxyclines in the Baltic Sea, and thus salinity can indirectly impact the survival of these early life stages by modifying the ambient temperatures and oxygen conditions experienced.

  10. Causes for contemporary regional sea level changes.

    Science.gov (United States)

    Stammer, Detlef; Cazenave, Anny; Ponte, Rui M; Tamisiea, Mark E

    2013-01-01

    Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.

  11. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  12. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  13. Agricultural vulnerability in Bangladesh to climate change induced sea level rise and options for adaptation: a study of a coastal Upazila

    Directory of Open Access Journals (Sweden)

    Md. Anowarul Islam

    2015-06-01

    Full Text Available This paper examines the vulnerabilities of agriculture in coastal regions of Bangladesh to the different adverse effects of sea level rise induced hazards, and also identifies option for future agricultural adaptations. It reveals that due to sea level rise, agriculture of the study area has already experienced noticeable adverse impacts especially in terms of area of inundation, salinity intrusion and reduction in crop production. The study is conducted based on both primary and secondary data. A total 303 out of 1200 respondents from three coastal villages were randomly interviewed. Samples are drawn proportionately from three villages. Descriptive and inferential statistics and logistic regression have been done to analysis data. The study find that the agricultural land, production of crops, local crop varieties, income and employment facilities of the farmers is highly vulnerable to various SLR induced hazards. Selection of various adaptive options such as control of saline water intrusion into agricultural land, coastal afforestation, cultivation of saline tolerant crops, homestead and floating gardening, embankment cropping and increase of income through alternative livelihoods are emerging need for sustainable coastal agricultural development. Therefore, this paper argues that further development and implementation of such adaptive measures could help to minimize vulnerabilities of agriculture in the long run.

  14. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  15. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  16. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida.

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Medeiros, Stephen C; Hagen, Scott C; Hall, Carlton R

    2018-07-15

    Saltwater intrusion (SWI) into root zone in low-lying coastal areas can affect the survival and spatial distribution of various vegetation species by altering plant communities and the wildlife habitats they support. In this study, a baseline model was developed based on FEMWATER to simulate the monthly variation of root zone salinity of a geo-typical area located at the Cape Canaveral Barrier Island Complex (CCBIC) of coastal east-central Florida (USA) in 2010. Based on the developed and calibrated baseline model, three diagnostic FEMWATER models were developed to predict the extent of SWI into root zone by modifying the boundary values representing the rising sea level based on various sea-level rise (SLR) scenarios projected for 2080. The simulation results indicated that the extent of SWI would be insignificant if SLR is either low (23.4cm) or intermediate (59.0cm), but would be significant if SLR is high (119.5cm) in that infiltration/diffusion of overtopping seawater in coastal low-lying areas can greatly increase root zone salinity level, since the sand dunes may fail to prevent the landward migration of seawater because the waves of the rising sea level can reach and pass over the crest under high (119.5cm) SLR scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    Science.gov (United States)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  18. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    Science.gov (United States)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  19. Sea-level Variation Along the Suez Canal

    Science.gov (United States)

    Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.

    1997-05-01

    The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.

  20. Continuous sea-level reconstructions beyond the Pleistocene: improving the Mediterranean sea-level method

    Science.gov (United States)

    Grant, K.; Rohling, E. J.; Amies, J.

    2017-12-01

    Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.

  1. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    Science.gov (United States)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  2. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  3. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  4. Influence of salinity on the life table demography of a rare Cladocera Latonopsis australis

    Digital Repository Service at National Institute of Oceanography (India)

    Haridevan, G.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Biju, A.

    , 12, 14, 16, 18, 20 and 22 salinity). Triplicates were maintained for each treatment. The desired salinity in the experiment vials was prepared by dilution of GF/C filtered and autoclaved sea water with the desired volume of distilled water... production -0.943 p<0.001 23    Table 3 Tukeys HSD Pair wise comparison for age specific fecundity (mx) in different salinity treatments. Bold values indicates at significance level at p < 0.05. Salinity F. water 2 4 6 8 10 12 14 F. water 1 2 0.968 1...

  5. Barrier response to Holocene sea-level rise

    DEFF Research Database (Denmark)

    Pejrup, Morten; Andersen, Thorbjørn Joest; Johannessen, Peter N

    Normally it is believed that sea-level rise causes coastal barrier retreat. However, sea-level is only one of the parameters determining the long term coastal development of barrier coasts. Sediment supply is an equally important determinant and may overshadow the effects of sea-level rise....... Conceptually this has been known for a long time but for the first time we can show the relative effect of these two parameters. We have studied three neighboring barrier islands in the Wadden Sea, and described their 3D morphological evolution during the last 8000 years. It appears that the barrier islands...... a much stronger component of sea-level control. The distance between the islands is only 50 km, and therefore our study shows that prediction of barrier development during a period of rising sea level may be more complicated than formerly believed....

  6. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  7. The Caribbean conundrum of Holocene sea level.

    Science.gov (United States)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  8. Rock encrusting assemblages: Structure and distribution along the Baltic Sea

    Science.gov (United States)

    Grabowska, Monika; Grzelak, Katarzyna; Kukliński, Piotr

    2015-09-01

    Aquatic community structure and dynamics are generally controlled by a variety of biological and physical factors. Among these factors in marine ecosystems, salinity is known to have a significant effect on species occurrence and composition. In this study, we investigated the large-scale distribution and abundance of encrusting fauna along a salinity gradient on the shallow Baltic Sea rocky coast. Rock samples collected from 14 locations distributed between the Gulf of Bothnia (salinity 0.6) and Skagerrak (salinity 28) supported a total number of 24 encrusting species. The faunas were composed mostly of marine species with opportunistic life histories; however, some brackish water specialists were also present. The number of species and abundance counts is strongly positively correlated with increases in salinity. No encrusting faunas were recorded below salinity level 4. Multivariate analysis (nMDS) revealed three major groups based on species composition that differed in terms of abundance and number of species. Each group was associated with specific salinity conditions. The first assemblage type occurred within salinity 4-7, the second within salinity between 22 and 27, and the third type was a mixture between the two observed at a salinity of approximately 17. This study indicates that to determine the assemblage structure of the Baltic Sea encrusting fauna, analyses at the family level were found to be a reliable surrogate for species composition.

  9. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: Matthew.currell@rmit.edu.au [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)

    2016-02-15

    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  10. Present-day sea level rise: a synthesis

    International Nuclear Information System (INIS)

    Cazenave, A.; Llovel, W.; Lombard, A.

    2008-01-01

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  11. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  12. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  13. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  14. A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability

    Directory of Open Access Journals (Sweden)

    J. Frigola

    2012-06-01

    Full Text Available Borehole PRGL1-4 drilled in the upper slope of the Gulf of Lion provides an exceptional record to investigate the impact of late Pleistocene orbitally-driven glacio-eustatic sea-level oscillations on the sedimentary outbuilding of a river fed continental margin. High-resolution grain-size and geochemical records supported by oxygen isotope chronostratigraphy allow reinterpreting the last 500 ka upper slope seismostratigraphy of the Gulf of Lion. Five main sequences, stacked during the sea-level lowering phases of the last five glacial-interglacial 100-kyr cycles, form the upper stratigraphic outbuilding of the continental margin. The high sensitivity of the grain-size record down the borehole to sea-level oscillations can be explained by the great width of the Gulf of Lion continental shelf. Sea level driven changes in accommodation space over the shelf cyclically modified the depositional mode of the entire margin. PRGL1-4 data also illustrate the imprint of sea-level oscillations at millennial time-scale, as shown for Marine Isotopic Stage 3, and provide unambiguous evidence of relative high sea-levels at the onset of each Dansgaard-Oeschger Greenland warm interstadial. The PRGL1-4 grain-size record represents the first evidence for a one-to-one coupling of millennial time-scale sea-level oscillations associated with each Dansgaard-Oeschger cycle.

  15. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  16. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor; Jakobsson, Martin

    2017-09-01

    Deglacial (12.8-10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM; ˜ 24 kiloannum or ka) minimum sea level of ˜ 125-130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ˜ 400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42-47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  17. Present day sea level changes: observation and causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2005-11-01

    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  18. Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses

    Science.gov (United States)

    Storto, Andrea; Masina, Simona; Balmaseda, Magdalena; Guinehut, Stéphanie; Xue, Yan; Szekely, Tanguy; Fukumori, Ichiro; Forget, Gael; Chang, You-Soon; Good, Simon A.; Köhl, Armin; Vernieres, Guillaume; Ferry, Nicolas; Peterson, K. Andrew; Behringer, David; Ishii, Masayoshi; Masuda, Shuhei; Fujii, Yosuke; Toyoda, Takahiro; Yin, Yonghong; Valdivieso, Maria; Barnier, Bernard; Boyer, Tim; Lee, Tony; Gourrion, Jérome; Wang, Ou; Heimback, Patrick; Rosati, Anthony; Kovach, Robin; Hernandez, Fabrice; Martin, Matthew J.; Kamachi, Masafumi; Kuragano, Tsurane; Mogensen, Kristian; Alves, Oscar; Haines, Keith; Wang, Xiaochun

    2017-08-01

    Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003-2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993-2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.

  19. Is sea-level rising?

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    correction in the estimation of trends obtained for tide gauge records. The altimeter data permits to prepare spatial maps of sea-level rise trends. We present a map prepared for the Indian Ocean (Figure 4) north of 10oS , which shows a fairly uniform... drawn information from research papers published by the author and report of the IPCC AR5 WG1 Chapter 13: Sea Level Changes, in which the author has served as a ‘Lead Author’. Figure1 is prepared using data from the University of Colorado. Nerem, R...

  20. Responses of Four Rice Varieties to Elevated CO2 and Different Salinity Levels

    Directory of Open Access Journals (Sweden)

    Sheidollah Kazemi

    2018-05-01

    Full Text Available Abstract:: This study was carried out in 2014 at Isfahan University of Technology, Iran, to evaluate the responses of four rice varieties (Neda, Deylamani, Shiroudi and Domsorkh to ambient (360 ± 50 μmol/mol and elevated (700 ± 50 μmol/mol air carbon dioxide (CO2 concentrations under four salinity levels (0, 30, 60 and 90 mmol/L NaCl. There was significant variation among rice varieties in response to elevated CO2 concentration under the four salinity levels. Under non-saline condition, elevated CO2 increased the dry weight of Neda, Deylamani and Domsorkh by 8%, 50% and 8%, respectively, but reversely decreased that of Shiroudi by 34%. Increasing CO2 concentration significantly reduced the negative effects of salinity on Shiroudi, but these effects were even increased in Deylamani and Domsorkh under all the salinity levels and in Neda only under 30 and 60 mmol/L NaCl. Significant correlations were established between plant dry weight, SPAD value and leaf area under both CO2 levels. However, this trend was observed only at ambient CO2 concentration in the presence of soluble carbohydrates. The results revealed the genotype and salinity dependence of the effects of CO2 concentrations on the rice traits investigated. Key words: CO2 concentration, genetic diversity, salt tolerance, water soluble carbohydrate

  1. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    Science.gov (United States)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant

  2. Sea level rise and the geoid: factor analysis approach

    Directory of Open Access Journals (Sweden)

    Alexey Sadovski

    2013-08-01

    Full Text Available Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical approach by using factor analysis of regional sea level rates of change. Unlike physical models and semi-empirical models that attempt to approach how much and how fast sea levels are changing, this methodology allows for a discussion of the factor(s that statistically affects sea level rates of change, and seeks patterns to explain spatial correlations.

  3. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida

    Science.gov (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.

    2016-03-15

    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  4. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  5. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  6. Coastal Sea Levels, Impacts, and Adaptation

    Directory of Open Access Journals (Sweden)

    Thomas Wahl

    2018-02-01

    Full Text Available Sea-level rise (SLR poses a great threat to approximately 10% of the world’s population residing in low-elevation coastal zones (i.e., land located up to 10 m of present-day mean sea-level (MSL[...

  7. Change in the intensity of low-salinity water inflow from the Bay of Bengal into the Eastern Arabian Sea from the Last Glacial Maximum to the Holocene: Implications for monsoon variations

    Digital Repository Service at National Institute of Oceanography (India)

    Mahesh, B.S.; Banakar, V.K.

    A 100–400 km wide region of the coastal Eastern Arabian Sea (EAS), off the west-coast of India, is characterized by a low-salinity tongue formed by the inflow of low-salinity surface water from the Bay of Bengal (BoB). This low-salinity tongue...

  8. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    Science.gov (United States)

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h-180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h-180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and

  9. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  10. Comparative study of salinity tolerance of an oceanic sea skater, Halobates micans and its closely related fresh water species, Metrocoris histrio

    Czech Academy of Sciences Publication Activity Database

    Sekimoto, T.; Osumi, Y.; Shiraki, T.; Kobayashi, A.; Emi, K.; Nakajo, M.; Moku, M.; Košťál, Vladimír; Katagiri, C.; Harada, T.

    2014-01-01

    Roč. 6, č. 14 (2014), s. 1141-1148 ISSN 2150-4091 Institutional support: RVO:60077344 Keywords : ocean ic sea skaters * fresh water halobatinae species * salinity tolerance Subject RIV: ED - Physiology http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49746

  11. Experiments in Reconstructing Twentieth-Century Sea Levels

    Science.gov (United States)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  12. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  13. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    OpenAIRE

    Andersen O.B., Passaro M., Benveniste J., Piccioni G.

    2016-01-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reproce...

  14. Sea level rise and the geoid: factor analysis approach

    OpenAIRE

    Song, Hongzhi; Sadovski, Alexey; Jeffress, Gary

    2013-01-01

    Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical...

  15. Analysis of Sea Level Rise in Singapore Strait

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  16. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  17. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  18. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor

    2017-01-01

    Deglacial (12.8–10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka) minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  19. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Directory of Open Access Journals (Sweden)

    T. M. Cronin

    2017-09-01

    Full Text Available Deglacial (12.8–10.7 ka sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1 and multicore SWERUS-L2-4-MC1 (4-MC1, and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1. Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.. Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1 followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  20. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  1. Optical measurements in the North Sea-Baltic Sea transition zone. I. On the origin of the deep water in the Kattegat

    Science.gov (United States)

    Højerslev, N. K.; Holt, N.; Aarup, T.

    1996-08-01

    In the North Sea-Baltic Sea region, several studies have shown that yellow substance can be treated as a quasi-conservative parameter that is negatively correlated with salinity. A review of more than 5000 historic and recently gathered yellow substance absorption and salinity measurements from the transition zone between the North Sea and the Baltic Sea have been analyzed for the purpose of water mass identification. Salinity-yellow substance scatter plots show that three water masses can be identified in the area: (1) North Sea water (high salinity, low yellow substance content); (2) Baltic Sea water (low salinity, intermediate-high yellow substance content); and (3) German Bight/Southern North Sea water (intermediate-high salinity, high yellow substance content). Based on the volume flow estimates used in a two-layer box-model of the Kattegat (Jørgensen, Continental Shelf Research, 12, 103-114, 1992) and conservation of yellow substance, it is argued that the long-term average composition of the bottom layer inflow to the Kattegat from the Skagerrak consists of about 90% North Sea/Atlantic water and 10% German Bight/Southern North Sea water. The German Bight content estimate is substantially lower than the ones given in earlier studies (50-67%) and implies that the Jutland Coastal Current only has a small impact on the water quality of the Kattegat.

  2. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  3. Nitrogen Nutrition of Sugar Beet as Affected by Water Salinity, Proline Acid and Nitrogen Forms Using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Abdel Aziz, H.A.

    2014-01-01

    A pot experiment was conducted under green house condition using sugar beet as a test crop. Saline water (sea water) was applied at different levels. i.e. fresh water, 4 and 8 dSm -1 . Labelled urea and ammonium sulphate (5% a.e.) were applied at rate of 120 kg N fed -1 . Also; proline amino acid was sprayed at rate of 25, and 50 ppm. Basal recommended doses of P and K were applied. Crop leaves and tuber yield were severely affected by sea water salinity. These parameters were improved by adding proline acid. Effect of proline acid was significantly varied according to rate of addition, water salinity levels and N forms. In this respect, the improvement of leaves and tuber was more pronounced at rate of 50 ppm proline under 8 dSm -1 salinity when plants fertilized with ammonium sulfate. Another picture was drawn with urea, where the improvement was detected at rate of 25 ppm proline, under 4dSm -1 water salinity level. Nitrogen, phosphorus, potassium and sodium uptake by leaves and tuber of sugar beet plants were significantly improved by addition of 50 ppm proline under 4 and /or 8 dSm -1 salinity levels. Nitrogen uptake was higher in tuber and fertilization with urea than those of leaves and ammonium sulfate, respectively. Other nutrients were varied according to N forms and proline levels. Nitrogen use efficiency was enhanced by spraying proline, despite of addition rates, and negatively affected by increasing salinity levels. In this regard, no big significant difference was detected between urea and ammonium sulfat

  4. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea.

    Directory of Open Access Journals (Sweden)

    Anna Akimova

    Full Text Available Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2° hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948-2013. Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod. We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks' dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models.

  5. Sea level rise and variability around Peninsular Malaysia

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  6. Palaeoenvironmental Evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its Response to Holocene Sea-Level Rise

    Science.gov (United States)

    Gabriel, J. J.; Reinhardt, E. G.; Peros, M. C.; Davidson, D. E.; van Hengstum, P. J.; Beddows, P. A.

    2008-12-01

    A 61-cm core was obtained from 4 metres below the water table in Cenote Aktun Ha, on the Yucatan Peninsula, Mexico. The cenote is 8.6 km from the Caribbean coast and its formation and evolution have been largely affected by sea-level change. The base of the core dates to 6940 - 6740 cal yr BP and overlying sediments were deposited rapidly over the subsequent ~200 years. The pollen record shows that the cenote evolved from a marsh dominated by red mangrove (Rhizophora mangle) and fern (Polypodiaceae) to an open-water system. These vegetation changes were controlled by water level and salinity and are thus useful indicators of past sea level. At the base, the d13C isotopic ratios reveal the influence of terrestrial vegetation (-29‰), but shift to more negative values up-core (-33‰), indicating an influence from particulate matter in the flooded cenote pool. Although microfossil populations were nearly absent through most of the core, the microfossil assemblage in the upper 6 cm of the core is dominated by juvenile Ammonia tepida and the thecamoebian genus Centropyxis. These populations indicate open-water conditions in the cenote and a major environmental shift around 6600 cal yr BP, which is related to sea-level rise in the Caribbean basin. These data fit well with previously established sea-level curves for the Caribbean Sea. Our reconstruction of the environmental history of Cenote Aktun Ha helps elucidate the floral and hydrological history of the region, and highlights the utility of cenote sediments for studying the Holocene sea-level history of the Caribbean Sea.

  7. Deposition of a saline giant in the Mississippian Windsor Group, Nova Scotia, and the nascent Late Paleozoic Ice Age

    Science.gov (United States)

    MacNeil, Laura A.; Pufahl, Peir K.; James, Noel P.

    2018-01-01

    Saline giants are vast marine evaporite deposits that currently have no modern analogues and remain one of the most enigmatic of chemical sedimentary rocks. The Mississippian Windsor Group (ca. 345 Ma), Maritimes Basin, Atlantic Canada is a saline giant that consists of two evaporite-rich sedimentary sequences that are subdivided into five subzones. Sequence 1 is composed almost entirely of thick halite belonging to Subzone A (Osagean). Sequence 2 is in unconformable contact and comprised of stacked carbonate-evaporite peritidal cycles of Subzones B through E (Meramecian). Subzone B, the focus of research herein, documents the transition from wholly evaporitic to open marine conditions and thus, preserves an exceptional window into the processes forming saline giants. Lithofacies stacking patterns in Subzone B reveal that higher-order fluctuations in relative sea level produced nine stacked parasequences interpreted to reflect high frequency glacioeustatic oscillations during the onset of the Late Paleozoic Ice Age. Each parasequence reflects progradation of intertidal and sabkha sediments over subtidal carbonate and evaporite deposits. Dissimilarities in cycle composition between sub-basins imply the development of contrasting brine chemistries from differing recharge rates with the open ocean. What the Windsor Group shows is that evaporite type is ostensibly linked to the amplitude and frequency of sea level rise and fall during deposition. True saline giants, like the basinwide evaporites of Sequence 1, apparently require low amplitude, long frequency changes in sea level to promote the development of stable brine pools that are only periodically recharged with seawater. By contrast, the high amplitude, short frequency glacioeustatic variability in sea level that controlled the accumulation of peritidal evaporites in Subzone B produce smaller, subeconomic deposits with more complex facies relationships.

  8. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  9. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  10. Sea level monitoring in Africa | Woodworth | African Journal of ...

    African Journals Online (AJOL)

    Information Network for Africa (ODINAfrica) programme are described and a survey of currently existing and planned sea level stations in Africa is presented, together with information on where data for existing stations may be found. Keywords: sea level data applications, sea level data telemetry, sea level networks. African ...

  11. Sea level change: lessons from the geologic record

    Science.gov (United States)

    ,

    1995-01-01

    Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.

  12. Sea level rise : A literature survey

    NARCIS (Netherlands)

    Oude Essink, G.H.P.

    1992-01-01

    In order to assess the impact of sea level rise on Water Management, it is useful to understand the mechanisrns that determine the level of the sea. In this study, a literature survey is executed to analyze these mechanisms. Climate plays a centra! role in these mechanisms, Climate mainly changes

  13. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season

    Science.gov (United States)

    Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji

    2008-02-01

    Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.

  14. Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change

    NARCIS (Netherlands)

    Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G.

    2017-01-01

    Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project

  15. Holocene sea level, a semi-empirical contemplation

    Science.gov (United States)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  16. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  17. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  18. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  19. A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Pablo Salgado

    Full Text Available Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP toxins and two types of cyclic imines, spirolides (SPXs and gymnodimines (GYMs. The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA. The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5-25.5°C and 5-21, respectively, with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX-3, GTX-2, and saxitoxin (STX, and GYMs (GYM-A and GYM-B/-C analogues was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate's growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed.

  20. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    Science.gov (United States)

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  1. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    Science.gov (United States)

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  2. Upper Limit for Regional Sea Level Projections

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  3. Sea-level rise risks to coastal cities

    Science.gov (United States)

    Nicholls, Robert J.

    2017-04-01

    Understanding the consequence of sea-level rise for coastal cities has long lead times and huge political implications. Civilisation has emerged and developed during a period of several thousand years during which in geological terms sea level has been unusually stable. We have now moved out of this period and the challenge will be to develop a long-term proactive assessment approach to manage this challenge. In 2005 there were 136 coastal cities with a population exceeding one million people and a collective population of 400 million people. All these coastal cities are threatened by flooding from the sea to varying degrees and these risks are increasing due to growing exposure (people and assets), rising sea levels due to climate change, and in some cities, significant coastal subsidence due to human agency (drainage and groundwater withdrawals from susceptible soils). In these cities we wish to avoid major flood events, with associated damage and potentially deaths and ultimately decline of the cities. Flood risks grow with sea-level rise as it raises extreme sea levels. As sea levels continue to rise, protection will have to be progressively upgraded. Even with this, the magnitude of losses when flood events do occur would increase as coastal cities expand, and water depths and hence unit damage increase with sea-level rise/subsidence. This makes it critical to also prepare for larger coastal flood disasters than we experience today and raises questions on the limits to adaptation. There is not an extensive literature or significant empirical information on the limits to adaptation in coastal cities. These limits are not predictable in a formal sense - while the rise in mean sea level raises the likelihood of a catastrophic flood, extreme events are what cause damage and trigger a response, be it abandonment, a defence upgrade or something else. There are several types of potential limits that could be categorised into three broad types: • Physical

  4. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  5. Sea level rise in the Arctic Ocean

    OpenAIRE

    Proshutinsky, Andrey; Pavlov, Vladimir; Bourke, Robert H.

    2001-01-01

    The article of record as published may be found at http://dx.doi.org/10.1029/2000GL012760 About 60 tide-gauge stations in the Kara, Laptev, East-Siberian and Chukchi Seas have recorded the sea level change from the 1950s through 1990s. Over this 40-year period, most of these stations show a significant sea level rise (SLR). In light of global change, this SLR could be a manifestation of warming in the Artic coupled with a decrease of sea ice extent, warming of Atlantic waters, changes in...

  6. The study of ikaite formation in sea ice

    Science.gov (United States)

    Hu, Y.; Nehrke, G.; Dieckmann, G.; Völker, C.; Wolf-Gladrow, D.

    2012-04-01

    Ikaite (CaCO3.6H2O) is a metastable mineral of calcium carbonate, which is usually found in environments characterized by low temperature (below 5° C), high pH, high alkalinity, high concentration of phosphate and organic matter. Although synthetic CaCO3.6H2O was already known from laboratory studies in 1865, ikaite was first observed in nature in 1963. Recently, Dieckmann et al. (2008, 2010) discovered this mineral in sea ice, which at the same time, was the first direct proof of CaCO3 precipitation in sea ice. However, little is known about the mechanism of ikaite formation in sea ice. Our study focuses on how physico-chemical processes in sea ice affect the formation of ikaite. Experiments were set up at pH ranging from 8.5 to 9.0, and salinity ranging from 0 to 105 at 0 ° C, in order to examine the effect of pH, salinity and also phosphate on the formation of ikaite. Preliminary results read: (1) Experiments show that ikaite can form at different pH levels (8.5~9.0). At high pH, the induction time (the time when the crystals start to precipitate) is shorter which means high pH favours the formation of ikaite. This might be expected given higher CO32- concentrations and thus higher saturation levels for ikaite with increasing pH. (2) The results of experiments with different salinities show that ikaite can form over wide range of salinities from 0 to 105 both in Artificial Sea Water (ASW) and NaCl solution in the presence of phosphate. In ASW, the induction time increases with salinity from S = 0 to S =105; while in NaCl solution, the induction time first increases with salinity and then decreases with the further increase of salinity. Salinity plays both positive and negative roles in the formation of ikaite. On the one hand, the increase in salinity will increase the fraction of CO32- in DIC. On the other hand, the increase in salinity means more ions are involved in the solution, which will reduce the activities of Ca2+ and CO32-by forming ion pairs with

  7. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  8. Global change and the measurement of absolute sea-level

    Science.gov (United States)

    Diamante, John M.; Pyle, Thomas E.; Carter, William E.; Scherer, Wolfgang

    To quantify properly the long-term response of sea-level to climate change, land motions must be separated from the apparent or relative sea-level change recorded by conventional tide/sea-level gauges. Here we present a concept for global measurement of the true or “absolute” sea-level change, which combines recent advances in space-based geodetic techniques with plans for a global sea-level network under the World Climate Research Programme (WCRP). Data from initial feasibility tests show that land motion, due to global (plate tectonic), regional (glacial rebound), or local (fluid withdrawal) effects, can probably be measured to ±1cm (on a single measurement basis) by an innovative combination of Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) tevhniques. By making repeated observations of position at a number of tide gauges using portable, economical GPS receivers in a differential mode relative to the fewer, more stable, but more expensive VLBI observatories, it will be possible to subtract land motion from the relative sea-level signal. Decadal to century scale trends at the 1-2mm y -1 level will be resolvable in the sea-level and vertical land motion time series within about a decade. Detection of subsidence or uplift at specific gauges will allow correction for land motion or deletion of bad data when computing regional or global, i.e. eustatic, sea-level changes. In addition to their applications in oceanography and climate studies, such data will test models by Peltier and other that relate mantle viscosity and deglaciation history to present rates of crustal subsidence or uplift. If the predicted crustal motions are confirmed, we can also have more confidence in the use of historical tide/sea-level gauge records in retrospective studies of sea-level change related to climate variability on decadal or longer time scales. It is concluded that as few as one-third (about 100) of the total number of tide/sea-level gauges (250

  9. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy); Fagnano, Massimo, E-mail: fagnano@unina.i [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy)

    2009-05-15

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O{sub 3} damages, we hypothesized that soil salinization may increase O{sub 3} tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O{sub 3} (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m{sup -1} reduced both stomatal conductance and plant O{sub 3} uptake, thus linearly reducing O{sub 3} effects on yield. Therefore a reliable flux-based model for assessing the effects of O{sub 3} on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  10. Sea level trend and variability around Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5-25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian-Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian-western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Nino-Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Nino events and positive phases of IOD, whilst rises are correlated with La Nina episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986-2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr-1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr-1), their corresponding geocentric sea level rise rates

  11. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    Science.gov (United States)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  12. Holocene sea-level changes in King George Island, West Antarctica, by virtue of geomorphological coastal evidences and diatom assemblages of sediment sections.

    Science.gov (United States)

    Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina; Jozhikov, Ilya

    2015-04-01

    A new curve of relative sea-level change is presented for the Fildes peninsula, King George Island, West Antarctic. This work is based on renewed paleogeography data, including coastal geomorphological evidence, diatom assemblages of lakes bottom sediments and radiocarbon datings of organics. The new data were obtained in several sections of quaternary sediments and groups of terraces, and allows us to expand and improve relevant conception about relative sea level changes in the King George Island region. The new radiocarbon datings of organics (mosses and shells) allows reconstructing Holocene conditions that maintain and cause the sea-level changes. Sea diatom assemblages of Dlinnoye lake bottom sediment core (that complies period about 8000 years B.P.) mark altitude of marine water penetrated into the lake. The altitudes of shell remains, which have certain life habits and expect specific salinity and depth conditions, coupled with their absolute datings, indicate the probable elevation of the past sea level. The Mid-Holocene marine transgression reached its maximum level of 18-20 m by 5760 years B.P. The transgression influenced the deglaciation of the Fildes peninsula and environment conditions integrally. The ratio of glacio-isostatic adjustment velocity and Holocene transgression leaded to the decrease of relative sea level during the Late Holocene excluding the short period of rising between 2000 and 1300 years B.P. Comparing this data with the curve for Bunger oasis, East Antarctica, introduced earlier gives an interesting result. Despite the maximum altitudes of relative sea-level rise in King George region were higher and occurred later than in Bunger oasis region, the short-term period of Late Holocene sea-level rising contemporizes. Besides that, this work allow to realize a correlation between regions of Antarctica and adjacent territory. That, in turn, lets answer the question of tectonic and eustatic factors ratio and their contribution to the

  13. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    Science.gov (United States)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  14. Sea-Level Allowances along the World Coastlines

    Science.gov (United States)

    Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.

    2017-12-01

    Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.

  15. Study on assessment scenarios of natural phenomena effected on groundwater flow system. Case study for the sea-level change (Contract research)

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2009-03-01

    It is important to evaluate effects on the groundwater flow system by the natural phenomena in the safety assessment of geological disposal of radioactive waste. Safety assessment is performed by using safety assessment methods, thus it is necessary to establish reasonable scenarios for safety assessment. In this report, we study change effecting on the groundwater flow system by literature reviews. The scenario of sea level change is expected to have a importance for a safety of disposal facility in coastal area. The recent information related to the groundwater flow condition in sedimentary rocks of sub-seabed coastal area shows that there are four groundwater domains as follows with depth; (1) modern meteoric water, (2) saline water in the transgression period, (3) paleo-fresh water which formed during the last glacial age when sea levels were lower than at present and (4) pre-glacial fossil saline water. This study suggests that the non-current (3) paleo-fresh water at present is possible to move to discharged area at sea floor in the next glacial period by denudation of marine-clay sediments and to become stagnant water again in the next interglacial period by deposition of marine-clay sediments in coastal region. Therefore it is important to predict the scenario considering the denudation and deposition correlated with transgression and regression that could affect the change of groundwater flow velocity, groundwater flow path and groundwater chemical characteristics during the glacial and interglacial period. (author)

  16. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    Science.gov (United States)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of

  17. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  18. Changing Sea Levels

    Science.gov (United States)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  19. Atmospheric variables, nutrients, pH, salinity, and temperature collected by bottle and from meteorological stations in the Sea of Japan and the Yellow Sea from 01 July 1952 to 31 December 1998 (NODC Accession 0000032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atmospheric variables, nutrients, pH, salinity, and temperature data were collected using bottle casts in the Sea of Japan from 01 July 1952 to 31 December 1998....

  20. Sea-level rise: towards understanding local vulnerability

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-06-01

    Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon

  1. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  2. The social values at risk from sea-level rise

    International Nuclear Information System (INIS)

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-01-01

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies

  3. The social values at risk from sea-level rise

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Barnett, Jon, E-mail: jbarn@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Hurlimann, Anna, E-mail: anna.hurlimann@unimelb.edu.au [Faculty of Architecture, Building and Planning, The University of Melbourne, Architecture and Planning Building, Parkville, Victoria 3010 (Australia); Mortreux, Colette, E-mail: colettem@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Waters, Elissa, E-mail: elissa.waters@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia)

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  4. Sea level oscillations over minute timescales: a global perspective

    Science.gov (United States)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  5. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  6. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  7. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  8. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  9. Salinity stratification of the Mediterranean Sea during the Messinian crisis: A first model analysis

    Science.gov (United States)

    Simon, Dirk; Meijer, Paul Th.

    2017-12-01

    In the late Miocene, a thick and complex sequence of evaporites was deposited in the Mediterranean Sea during an interruption of normal marine sedimentation known as the Messinian Salinity Crisis. Because the related deposits are mostly hidden from scrutiny in the deep basin, correlation between onshore and offshore sediments is difficult, hampering the development of a comprehensive stratigraphic model. Since the various facies correspond to different salinities of the basin waters, it would help to have physics-based understanding of the spatial distribution of salt concentration. Here, we focus on modelling salinity as a function of depth, i.e., on the stratification of the water column. A box model is set up that includes a simple representation of a haline overturning circulation and of mixing. It is forced by Atlantic exchange and evaporative loss and is used to systematically explore the degree of stratification that results under a wide range of combinations of parameter values. The model demonstrates counterintuitive behaviour close to the saturation of halite. For parameter values that may well be realistic for the Messinian, we show that a significantly stratified Mediterranean water column can be established. In this case, Atlantic connectivity is limited but may be closer to modern magnitudes than previously thought. In addition, a slowing of Mediterranean overturning and a larger deep-water formation region (both in comparison to the present day) are required. Under these conditions, we would expect a longer duration of halite deposition than currently considered in the MSC stratigraphic consensus model.

  10. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    Science.gov (United States)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  11. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  12. NODC Standard Product: International ocean atlas Volume 12 - Climatic atlas of the North Pacific Seas 2009 (NODC Accession 0098576)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas contains monthly climatic charts of temperature, salinity, and oxygen at the sea surface and at standard depth levels for the Bering Sea, Sea of Okhotsk,...

  13. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  14. Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)

    Science.gov (United States)

    Kotthoff, Ulrich; Groeneveld, Jeroen; Ash, Jeanine L.; Fanget, Anne-Sophie; Quintana Krupinski, Nadine; Peyron, Odile; Stepanova, Anna; Warnock, Jonathan; Van Helmond, Niels A. G. M.; Passey, Benjamin H.; Rønø Clausen, Ole; Bennike, Ole; Andrén, Elinor; Granoszewski, Wojciech; Andrén, Thomas; Filipsson, Helena L.; Seidenkrantz, Marit-Solveig; Slomp, Caroline P.; Bauersachs, Thorsten

    2017-12-01

    Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past ˜ 8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until ˜ 7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish-marine conditions of the Littorina Sea stage (more saline and warmer) occurred within ˜ 200 years when the connection to the Kattegat became established after ˜ 7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from

  15. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    Science.gov (United States)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  16. Oceanographic temperature, salinity, oxygen and meteorology measurements collected using CTD from multiple ships in the Sea of Azov from 1999 to 2006 (NODC Accession 0037021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity and other measurements found in dataset CTD taken from the ZODIAK (Motor boat), GROZA (Motor felucca) and other platforms in the Black Sea from...

  17. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  18. Spatial sea-level reconstruction in the Baltic Sea and in the Pacific Ocean from tide gauges observations

    Directory of Open Access Journals (Sweden)

    Marco Olivieri

    2016-07-01

    Full Text Available Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.

  19. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  20. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David; Antunes, Andre; Brune, Andreas; Stingl, Ulrich

    2011-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  1. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  2. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  3. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  4. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response strategy will depend on environmental, economic and social factors. Most small island nations do not have the resources to fight sea level rise in the way that the Dutch have. Retreat can occur as a gradual process or as catastrophic abandonment. Prohibiting construction close to the water's edge is a good approach. Sea level histories for each island state should be compiled and updated, island geomorphology and settlement patterns should be surveyed to determine risk areas, storm regimes should be determined, and information on coastal impacts of sea level rise should be disseminated to the public

  5. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    Science.gov (United States)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  6. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  7. Climate related sea-level variations over the past two millennia.

    Science.gov (United States)

    Kemp, Andrew C; Horton, Benjamin P; Donnelly, Jeffrey P; Mann, Michael E; Vermeer, Martin; Rahmstorf, Stefan

    2011-07-05

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

  8. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  9. Potential of sea level rise impact on South China Sea: a preliminary ...

    African Journals Online (AJOL)

    The effect of the sea level rise was involved the existence of sea water intrusion and coastal erosion phenomenon in the coastal of Terengganu. This study aim to determine fluctuation of high and low tides of the South China Sea in their relation to water quality value of Marang and Paka Rivers as well as from wells ...

  10. Climate And Sea Level: It's In Our Hands Now

    Science.gov (United States)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  11. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  12. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  13. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  14. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    Science.gov (United States)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  15. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    Science.gov (United States)

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  16. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  17. Sea level trend and variability around the Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2014-06-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. Resulting sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); while long-term sea level trend is related to global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability around the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 1.6 mm yr-1 and 2.7 ± 1.0 mm yr-1, respectively. Allowing for corresponding vertical land movements (VLM; 0.8 ± 2.6 mm yr-1 and 0.9 ± 2.2 mm yr-1), their absolute SLR rates are 3.2 ± 4.2 mm yr-1 and 3.6 ± 3.2 mm yr-1, respectively. For the common period 1993-2009, absolute SLR rates obtained from both tide gauge and satellite altimetry in Peninsular Malaysia are similar; and they are slightly higher than the global tendency. It further underlines that VLM should be taken into account to get better estimates of SLR observations. At interannual scale, ENSO affects sea level over the Malaysian coast in the range of ±5 cm with a very high correlation. Meanwhile, IOD modulates sea level anomalies mainly in the Malacca Strait in the range of ±2 cm with a high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index

  18. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970 through 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970...

  19. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976 through 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976...

  20. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    Science.gov (United States)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated

  1. Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Mazurais, David; Servili, Arianna

    2018-01-01

    . Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely......European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph......). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1...

  2. The rise of sea level. To understand and to anticipate

    International Nuclear Information System (INIS)

    2013-03-01

    By proposing and briefly commenting graphs and drawings, this publication propose brief presentations of the main issues related to sea level rise: global warming and climate disturbance, description of the phenomenon of sea level rise (difference between sea ice and ground ice, melting of glaciers), increase of sea level rise during the twentieth century, territories at risk (examples of Greenland, Tuvalu, Shanghai), acceleration of ice melting during the twenty first century with many coastal areas at risk, already noticed and possible future impacts in France (glaciers runoff, threatened coasts, example of the Xynthia tempest), how to be united and to anticipate (a threat for millions of people, adaptation to sea level rise, limitation of global warming to limit sea level rise)

  3. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world

    NARCIS (Netherlands)

    Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T; Stocchi, P.; Gómez-Pujolf, L.; Harris, D.L.; Casella, E.; O'Leary, M.J.; Hearty, P.J.

    2016-01-01

    The Last Interglacial (MIS 5e, 128–116 ka) is among the most studied past periods in Earth's history. The climate at that time was warmer than today, primarily due to different orbital conditions, with smaller ice sheets and higher sea-level. Field evidence for MIS 5e sea-level was reported from

  4. Association of Post-Saline Load Plasma Aldosterone Levels With Left Ventricular Hypertrophy in Primary Hypertension.

    Science.gov (United States)

    Catena, Cristiana; Verheyen, Nicolas D; Url-Michitsch, Marion; Kraigher-Krainer, Elisabeth; Colussi, GianLuca; Pilz, Stefan; Tomaschitz, Andreas; Pieske, Burkert; Sechi, Leonardo A

    2016-03-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity in hypertension. Current evidence suggests a contribution to LVH of plasma aldosterone levels that are inappropriately elevated for the salt status. The aim of this study was to investigate whether inappropriate modulation of aldosterone production by a saline load is associated with left ventricular (LV) mass in hypertensive patients. In 90 hypertensive patients free of clinically relevant cardiovascular complications in whom secondary forms of hypertension were ruled out, we performed a standard intravenous saline load (0.9% NaCl, 2 l in 4 hours) with measurement of plasma aldosterone and active renin at baseline and end of infusion. Bi-dimensional echocardiography was performed for the assessment of cardiac morphology and function. LVH was present in 19% of patients who had significantly worse renal function and higher body mass, blood pressure, and plasma aldosterone levels measured both at baseline and after the saline load than patients without LVH. LV mass was directly related to age, body mass, systolic blood pressure, duration of hypertension, baseline, and post-saline load plasma aldosterone levels and inversely to glomerular filtration. Multivariate regression analysis showed independent correlation of LV mass with body mass, systolic blood pressure, and plasma aldosterone levels measured after intravenous saline load, but not at baseline. In patients with hypertension, aldosterone levels measured after intravenous saline load are related to LV mass independent of age, body mass, and blood pressure, suggesting that limited ability of salt to modulate aldosterone production could contribute to LVH. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  6. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  7. Timescales for detecting a significant acceleration in sea level rise.

    Science.gov (United States)

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-04-14

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  8. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Formation of Barents Sea Branch Water in the north-eastern Barents Sea

    Directory of Open Access Journals (Sweden)

    Vidar S. Lien

    2013-09-01

    Full Text Available The Barents Sea throughflow accounts for approximately half of the Atlantic Water advection to the Arctic Ocean, while the other half flows through Fram Strait. Within the Barents Sea, the Atlantic Water undergoes considerable modifications before entering the Arctic Ocean through the St. Anna Trough. While the inflow area in the south-western Barents Sea is regularly monitored, oceanographic data from the outflow area to the north-east are very scarce. Here, we use conductivity, temperature and depth data from August/September 2008 to describe in detail the water masses present in the downstream area of the Barents Sea, their spatial distribution and transformations. Both Cold Deep Water, formed locally through winter convection and ice-freezing processes, and Atlantic Water, modified mainly through atmospheric cooling, contribute directly to the Barents Sea Branch Water. As a consequence, it consists of a dense core characterized by a temperature and salinity maximum associated with the Atlantic Water, in addition to the colder, less saline and less dense core commonly referred to as the Barents Sea Branch Water core. The denser core likely constitutes a substantial part of the total flow, and it is more saline and considerably denser than the Fram Strait branch as observed within the St. Anna Trough. Despite the recent warming of the Barents Sea, the Barents Sea Branch Water is denser than observed in the 1990s, and the bottom water observed in the St. Anna Trough matches the potential density at 2000 m depth in the Arctic Ocean.

  10. Genetic adaptability of durum wheat to salinity level at germination ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... Keys words: Durum wheat, genetic-adaptability, salinity level. ... tolerance of crop proves the first way to overcome the limitation of crops ... Analysis of variance using GLM procedures (SAS, 1990) were used ... Additive, dominance and environmental variance components were ..... Breeding for stability of.

  11. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    Science.gov (United States)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  12. Generalized Cauchy model of sea level fluctuations with long-range dependence

    Science.gov (United States)

    Li, Ming; Li, Jia-Yue

    2017-10-01

    This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.

  13. Glacial conditions in the Red Sea

    Science.gov (United States)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  14. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  15. Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model

    Science.gov (United States)

    Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.

    2016-12-01

    During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.

  16. Radioactivity levels in some sediment samples from Red Sea and Baltic Sea

    International Nuclear Information System (INIS)

    Salahel Din, K.; Vesterbacka, P.

    2012-01-01

    Levels of 226, 228 Ra, 232 Th, 210 Pb, 210 Po and 40 K in sediments from four monitoring areas, El Hamraween and Ras El Behar (Red Sea (Egypt)) and LL3A and JML (Baltic Sea (Finland)), have been investigated using alpha and gamma spectrometry. The average activity concentrations were 238±4 Bq kg -1 ( 226 Ra), 215±11 Bq kg -1 ( 210 Pb) and 311±18 Bq kg -1 ( 210 Po) for El Hamraween area. In Ras El Behar area, the corresponding values were 16±0.4, 18±1 and 20±5 Bq kg -1 , respectively. The activity concentrations for 226 Ra, 210 Pb and 210 Po (uranium series) in El Hamraween bottom sediment are much high compared with those in Ras El Behar area, which indicates the enhanced levels due to the activities of phosphate mining and shipment operations in El Hamraween area. Excluding the influence of phosphate mining activities, it can be concluded that the levels of radioactivity in Baltic Sea sediments are higher than those in Red Sea sediments. (authors)

  17. Millennial, centennial and decadal sea- level change in Florida, USA

    Science.gov (United States)

    Kemp, A.; Hawkes, A. D.; Donnelly, J. P.; Horton, B. P.

    2012-12-01

    Reconstructions of relative sea-level changes on millennial timescales provide data against which to test and calibrate Earth-Ice models. On the U.S. mid-Atlantic coast they constrain the geometry of the Laurentide Ice Sheet's collapsing forebulge. Sea -level data from southeastern Atlantic coast additionally constrain ice-equivalent meltwater input. Here we produce the first Holocene sea-level curve for Florida and Georgia from the St. Mary's River using agglutinated foraminifera preserved in radiocarbon-dated brackish and salt-marsh sediment. The use of foraminfera as sea-level indicators was underpinned by local and regional datasets describing the modern distribution of assemblages that are analogues for those preserved in buried sediment. This approach produced 25 index points that record 5.2 m of relative sea level rise over the last 8000 years with no evidence of a mid Holocene high stand. These reconstructions indicate that existing GIA models do not replicate proxy reconstructions and that northern Florida is subsiding in response to ongoing forebulge collapse at an estimated rate of approximately 0.3 mm/yr. Over multi decadal time scales, detailed sea level reconstructions provide an appropriate geological context for modern rates of sea-level rise. Reconstructions spanning the last 2000 years of known climate variability are important for developing models with predictive capacity that link climate and sea level changes. A reconstruction of sea-level changes since 2000 years BP was developed using a core of brackish marsh sediment from the Nassau River in Florida. Foraminifera estimated the elevation of former sea level with an uncertainty of ± 10 cm. Consistent downcore assemblages indicate that the marsh maintained its tidal elevation for 2000 years. An age depth model was developed for the core results from radiocarbon dating, 210Pb and 137Cs. The resulting relative sea level record was adjusted for the contribution made by glacio

  18. Holocene sea-level changes in the Falkland Islands

    Science.gov (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  19. Effects of tides on the cross-isobath movement of the low-salinity plume in the western Yellow and East China Seas in winter

    Science.gov (United States)

    Wang, Bin; Hirose, Naoki; Yuan, Dongliang; Moon, Jae-Hong; Pan, Xishan

    2017-07-01

    Offshore extension of the fresh Subei coast water is identified in winter based on in site salinity observation data in this and previous studies. A high-resolution regional ocean circulation model is used to investigate the cross-isobath movement of low salinity-water over the Yellow and East China Seas, and it has reproduced the salinity distribution observed in the winter of 2014-2015 successfully. The model suggests that the low-salinity water is basically degenerated back to the eastern coast of China in winter because of strong northeasterly wind. However, a part of the low-salinity water extends offshore in the southeast direction across the 20-50 m isobaths over the Yangtze Bank, which cannot be explained by either the northerly winter monsoon or the Changjiang discharge. Numerical experiments suggest that the cross-isobath transport of the soluble substances is highly attributed to the tidal residual current, flowing southeastward across 20-50 m isobaths over the whole Yangtze Bank. The results of controlled experiments also indicate that the bottom shear of the tidal current, rather than the tidal mixing, plays a significant role in the cross-isobath current during winter.

  20. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  1. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  2. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity.

    Science.gov (United States)

    Nacke, Heiko; Schöning, Ingo; Schindler, Malte; Schrumpf, Marion; Daniel, Rolf; Nicol, Graeme W; Prosser, James I

    2017-11-01

    Coastal areas worldwide are challenged by climate change-associated increases in sea level and storm surge quantities that potentially lead to more frequent flooding of soil ecosystems. Currently, little is known of the effects of inundation events on microorganisms controlling nitrification in these ecosystems. The goal of this study was to investigate the impact of seawater flooding on the abundance, community composition and salinity tolerance of soil ammonia oxidisers. Topsoil was sampled from three islands flooded at different frequencies by the Wadden Sea. Archaeal ammonia oxidiser amoA genes were more abundant than their betaproteobacterial counterparts, and the distribution of archaeal and bacterial ammonia oxidiser amoA and 16S rRNA gene sequences significantly differed between the islands. The findings indicate selection of ammonia oxidiser phylotypes with greater tolerance to high salinity and slightly alkaline pH (e.g. Nitrosopumilus representatives) in frequently flooded soils. A cluster phylogenetically related to gammaproteobacterial ammonia oxidisers was detected in all samples analysed in this survey. Nevertheless, no gammaprotebacterial amoA genes could be amplified via PCR and only betaproteobacterial ammonia oxidisers were detected in enrichment cultures. A slurry-based experiment demonstrated the tolerance of both bacterial and archaeal ammonia oxidisers to a wide range of salinities (e.g. Wadden Sea water salinity) in soil naturally exposed to seawater at a high frequency. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Past and future changes in extreme sea levels and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Lawe, J.A.; Woodworth, P.L.; Knutson, T.; McDonald, R.E.; Mclnnes, K.L.; Woth, K.; Von Storch, H.; Wolf, J.; Swail, V.; Bernier, N.B.; Gulev, S.; Horsburgh, K.J.; Unnikrishnan, A.S.; Hunter, J.R.; Weisse, R.

    of Extreme Sea Level 11.3.1 An Introduction to Storms Both mid-latitude and tropical storms are associated with extremes of sea level. Storm surges are generated by low atmospheric pressure and intense winds over the ocean. The latter also cause high wave... timescales, extremes and mean-sea-level change are both major factors in determining coastal evolution including the development of coastal ecosystems. It will be seen below that, although it is difficult to determine how mean sea level has changed...

  4. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  5. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta.

    Science.gov (United States)

    Kefford, Ben J; Nugegoda, Dayanthi

    2005-04-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 microS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 microS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 microS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 microS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered.

  6. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21 (st) century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined

  7. Salton Sea ecosystem monitoring and assessment plan

    Science.gov (United States)

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The

  8. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-01-01

    , temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high

  9. Modelling regional sea-level changes in recent past and future

    NARCIS (Netherlands)

    Slangen, A.B.A.

    2012-01-01

    Sea-level change is one of the most important consequences of a warming climate, affecting many densely populated coastal communities. To improve coastal management and the planning of flood defences, information on the future development of sea-level rise is needed. However, sea-level rise is not

  10. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  11. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  12. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  13. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  14. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  15. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.)

    OpenAIRE

    Gregório, Sílvia F.; Carvalho, Edison Samir Mascarelhas; Encarnação, Sandra; Wilson, J.; Power, Deborah; Canario, Adelino V. M.; Fuentes, J.

    2013-01-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO3– secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 an...

  16. Course of sea-level change

    Science.gov (United States)

    Carlowicz, Michael

    This summer, the Environment and Climate Program of the European Union will offer an advanced study course on “sea-level changes on micro to macro timescales: measurements, modeling, interpretation, and application.” The short course will be taught from July 1-12 at the Aesclepon Conference Center on the island of Kos, Greece.The interdisciplinary course is designed to bring together at least 40 students from different disciplines in an attempt to share and disseminate fundamental ideas about sea level change, focusing particularly on changes influenced by anthropogenic factors. Participants will be selected by a scientific panel; the European Union will conduct the course free of charge and will provide free lodging. Students must pay for their own travel expenses and food.

  17. Effect of salinity level on TSH and thyroid hormones of grass carp, Ctenophayngodon idella

    Directory of Open Access Journals (Sweden)

    Rahim Peyghan

    2013-09-01

    Full Text Available Thyroid hormones (T3, T4 have marked effect on body metabolism and in controlling osmoregulation activity in fish. The aim of this study was to determine the effect of water salinity changes on thyroid hormones level and thyroid-stimulating hormone (TSH of grass carp. For this purpose 120 grass carp were divided randomly in to four groups (10 fish in each group and three replicates per treatment. Three groups were held in three different salinities at concentrations of 4, 8 and 12 g L-1. The fourth group was reared in fresh water and considered as control. After three weeks blood samples were collected from the caudal peduncle vein. Then serum was separated and serum thyroid hormones and TSH were measured by LISA on Microwell plates. Our results indicated that the average of T3 levels in 4, 8 and 12 g L-1 groups were 0.43 ± 0.11, 0.22 ± 0.04 and 0.21 ± 0.04 μg dL-1, respectively. T3 levels in all experimental groups were significantly lower than those of control group (p 0.05. The level of TSH in salinities of 4 and 8 g L-1 groups was significantly higher than that of control group (p < 0.05. The results showed that increasing water salinity can have significant effect on thyroid activity by decreasing T3 and increasing T4 level in serum of grass carp in experimental condition.

  18. Chronology of Fluctuating Sea Levels since the Triassic

    Science.gov (United States)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  19. Modelling of the effect of a sea-level rise and land subsidence on the evolution of the groundwater density in the subsoil of the northern part of the Netherlands

    NARCIS (Netherlands)

    Meij, J.L. van der; Minnema, B.

    1999-01-01

    The Province of Friesland is conducting a study on possible future changes in the surface water and groundwater systems of Friesland. The aim of the study is to assess what changes might be caused by land subsidence and a rise in sea level - focusing in particular on the salinization of the surface

  20. Mechanisms of long-term mean sea level variability in the North Sea

    Science.gov (United States)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  1. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Nugegoda, Dayanthi

    2005-01-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 μS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 μS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 μS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 μS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered. - Responses of snails to increasing salinity were non-linear

  2. Past sea level changes along the western continental margins of India: Evidences from morphology of the sea bed

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    -wide have been affected to a considerable extent by Pleistocene glaciations (Emery, 1968). The rate of sea-level rise has varied frequently and the sea-level still stands produced wave-cut terraces and platforms. In other words, the surface of a terrace... Merh (1992) while reviewing Quaternary sea level changes along India’s coasts observed that the Last Glacial Stage was a period of regression when the sea level went down to almost -150 m. With the advent of the Holocene, the sea started rising...

  3. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  4. Sea-level trend in the South China Sea observed from 20 years of along-track satellite altimetric data

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Xu, Qing; Andersen, Ole Baltazar

    2014-01-01

    The sea-level trend in the South China Sea (SCS) is investigated based on 20 years of along-track data from TOPEX and Jason-1/2 satellite altimetry. The average sea-level rise over all the regions in the study area is observed to have a rate of 5.1 ± 0.8 mm year-1 for the period from 1993 to 2012....... The steric sea level contributes 45% to the observed sea-level trend. These results are consistent with previous studies. In addition, the results demonstrate that the maximum sea-level rise rate of 8.4 mm year-1 is occurring off the east coast of Vietnam and eastern part of SCS. During 2010-2011, the La...... Niña event was highly correlated with the dramatic sea-level rise in the SCS; La Niña events were also associated with the maximum rate of sea rise off the east coast of Vietnam, which occurred during 1993 and 2012. We also evaluated the trends in the geophysical (e.g. dynamical atmospheric correction...

  5. Revisiting global mean sea level budget closure : Preliminary results from an integrative study within ESA's Climate Change Initiative -Sea level Budget Closure-Climate Change Initiative

    Science.gov (United States)

    Palanisamy, H.; Cazenave, A. A.

    2017-12-01

    The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan

  6. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  7. Overwintering of sea trout (Salmo trutta) in freshwater

    DEFF Research Database (Denmark)

    Thomsen, Dennis; Koed, Anders; Nielsen, Christian

    2007-01-01

    Brown trout (Salmo trutta) show large phenotypic plasticity. Juveniles may reside in their native freshwater habitat until maturation or migrate into the ocean as 1- to 3-year-old smolts. Sea-going fish (sea trout) reside at sea for 2-3 years until migrating back to their native stream for reprod......Brown trout (Salmo trutta) show large phenotypic plasticity. Juveniles may reside in their native freshwater habitat until maturation or migrate into the ocean as 1- to 3-year-old smolts. Sea-going fish (sea trout) reside at sea for 2-3 years until migrating back to their native stream...... for reproduction. However, immature fish may leave the ocean during their first or second winter at sea and overwinter in freshwater. The question is why does this occur? We tested the hypothesis that hypo-osmoregulatory capacity is compromised by low temperature in two coastal sea trout populations, one...... representing high salinity and the other, low salinity. Immature sea-run trout were caught in lower parts of two rivers during winter and acclimated to laboratory conditions. Subgroups were challenged with high salinity or low water temperature or both, and their osmoregulatory performance was investigated...

  8. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq

    NARCIS (Netherlands)

    Abdullah, Ali Dinar; Karim, Usama F.A.; Masih, Ilyas; Popescu, Ioana; van der Zaag, Pieter

    2016-01-01

    ABSTRACT: Understanding the salinity variation caused by a combination of anthropogenic and marine sources is important for water resource management in heavily used rivers impacted by tidal influence. A quantitative analysis of intra-annual variability of salinity levels was conducted in the Shatt

  9. Morphology of the Ovaries in Condition of Inhalation Intoxication with Dust-Saline Aerosols of the Aral Sea in Female White Rats

    Directory of Open Access Journals (Sweden)

    Yasminur G. Turdybekova

    2018-06-01

    CONCLUSIONS: Taking into account the proven effect of dust-saline aerosols on the production of estrogen, the violation of the postovulatory phase of the ovarian cycle, we trace the mechanism of folliculogenesis disturbance. This confirms the data of our previous studies on primary and secondary infertility in women living in the Aral Sea region and the necessity of creation and development of preventive measures for the inhabitants of the region.

  10. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  11. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting

    Directory of Open Access Journals (Sweden)

    P. Oddo

    2009-10-01

    Full Text Available A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006. A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.

  12. Temperature, salinity, oxygen, silicate, phosphate, nitrite, and pH data collected in Okhotsk Sea by multiple platforms from 1985-03-20 to 1989-09-07 (NODC Accession 0075740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, silicate, phosphate, nitrite, and pH data collected in the Okhotsk Sea by multiple Soviet Union platforms in March 1985 and...

  13. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry...

  14. Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

    Science.gov (United States)

    Huang, Bohua; Zhu, Jieshun; Marx, Lawrence; Wu, Xingren; Kumar, Arun; Hu, Zeng-Zhen; Balmaseda, Magdalena A.; Zhang, Shaoqing; Lu, Jian; Schneider, Edwin K.; Kinter, James L., III

    2015-01-01

    There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean-atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model's fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

  15. Certain growth related attributes of micropropagated banana under different salinity levels

    International Nuclear Information System (INIS)

    Haq, I.U.; Soomro, F.

    2011-01-01

    The effect of salinity (NaCl) was assessed on banana (Musa spp.) cv., Sindhri Banana (Basrai) propagating plantlets in aseptic condition. Four different NaCl levels [0 (control) 50, 100 and 150 mM] were maintained at shoot multiplication stage for 6-weeks. Salinity reduced the number of plantlets per explants and plant biomass significantly. A proportional relationship was observed for Na/sup +/ and Cl/sub -/ but K/sup +/, Ca/sup 2+/and NO/sub 3/ were observed to be inversely proportioned with NaCl stress. Similarly, total proteins as well as carbohydrate contents were decreased significantly. Increasing mode of secondary metabolites (proline, betaine contents and reducing sugars) were showing a negative relationship of saline stress with plant micro-propagation efficiency. Among photosynthetic pigments, total carotenoids were increased while chlorophyll contents (Chl a and b) decreased. Similarly, nitrate reductase activity also reduced. Overall, vegetative propagation of banana was affected significantly by NaCl stress under in-vitro conditions. (author)

  16. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  17. Do cold, low salinity waters pass through the Indo-Sri Lanka Channel during winter?

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, R.R.; Girishkumar, M.S.; Ravichandran, M.; Gopalakrishna, V.V.; Pankajakshan, T.

    -navigable shallow ISLC, the observed high resolution, advanced very high resolution radiometer (AVHRR) sea surface temperature (SST), and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll-a and historic sea surface salinity (SSS) data are utilized...

  18. Towards uncertainty estimation for operational forecast products - a multi-model-ensemble approach for the North Sea and the Baltic Sea

    Science.gov (United States)

    Golbeck, Inga; Li, Xin; Janssen, Frank

    2014-05-01

    Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In

  19. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  20. Tracking multidecadal trends in sea level using coral microatolls

    Science.gov (United States)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  1. Effect of Different Salinity levels on some Photosynthetic Characters of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    F Tahmasbi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important factors limiting crop production in arid and semiarid regions of the world that affects crop yield. Salt tolerance of Brassica species are very complex due to genetic relationships. Because of low erucic acid (less than 2% of total fatty acids and glucosinolates contents (less than 3 µmol g-1, oil of Canola has many consumers around the world. Because Canola have tolerance potential against toxicity of salinity and its minerals, its growth can be successful in saline condition. According to the recent ongoing drought and the need to use low quality irrigation water for crops such as Canola, aim of this experiment was to evaluate the effect of salinity on changes in carbon fixation process and photosynthetic pigments of three Canola genotypes under salinity as well as determine most salt tolerant genotype for use in saline regions. Materials and Methods An experiment was conducted in the greenhouse of Shahid Chamran University during 2007-2008 growing season in factorial test based on a completely randomized design with four replications. The first factor (genotype included Hayola 401, RGS0003 and Shiraly and the second factor (salinity levels had four levels of salinity (50, 100 and 150 mM NaCl as well as distilled water as a control. Sources of salinity were NaCl and CaCl2 with equal ratio as most resembles to lower water quality resources in the region. Date and time of stress were considered four weeks after planting (four-leaf stage. A Stepped irrigation method using saline water was done every 12 days over three steps period. To perform this study 10 liters volume pots were used. Three pots per each treatment, and totally 144 pots were used. SAS (version 9.1, Excel and MSTAT-C software's was used for statistical analysis. The comparison of means was done by Duncan method. Results and Discussion The results showed that content of chlorophyll a, b and carotenoids in all three genotypes

  2. Future sea level rise constrained by observations and long-term commitment

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  3. Future sea level rise constrained by observations and long-term commitment.

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  4. Sea-level rise caused by climate change and its implications for society

    Science.gov (United States)

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  5. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    Science.gov (United States)

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and

  6. Tourism development challenges on the Dead Sea shore

    Directory of Open Access Journals (Sweden)

    Wendt Jan A.

    2016-12-01

    Full Text Available The Dead Sea along with Jerusalem belongs to one of the most well-known spots visited by tourists in Israel. Because of many factors, such as the water level of the Dead Sea at a depth of 430 m b.s.l. (in 2015, average salinity of 26%, hot springs and many healing salts located there, it is a unique tourist attraction on a global level. Its attractiveness is heightened by its proximity to other sites of interest, such as the Jewish fortress at Masada, Jericho, Qumran, where the Dead Sea Scrolls were found, as well as Petra, Madaba and Al-Karak on the Jordanian side of the Dead Sea. High salinity and a microclimate create perfect conditions for the development of health resorts and medical tourism. Extracting healing salts from its waters for the needs of the chemical industry is important for both the economy and medical tourism. However, as a consequence of the agricultural and urban use of the waters of the River Jordan, which flows into the Dead Sea, a persistent decrease in the lake water level has been observed over the last century. This has created a number of economic and political issues. The problems which still have to be resolved are associated with the Red Sea-Dead Sea Conduit (Canal, the division of Jordan’s water resources, conservation of the unique reservoir of the Dead Sea and the threat of hindering the development of tourism within the region. The presentation of these issues is the main aim of this research paper. The study is based on the analysis of changes in tourism flows, results of research studies and the prognosis of changes in the water level of the Dead Sea. It presents an assessment of the effects of this phenomenon on the tourist economy. At the current level of tourism flows within the region, the tourist capacity of local beaches will be exceeded in areas where the most popular tourist resorts are located. Increased expenditure on development of tourism infrastructure in the coastal zone can also be observed

  7. ENSO-induced inter-annual sea level variability in the Singapore strait

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    Sea level data from four tide gauge stations in the SS (Tanjong Pagar, Sultan Shoal, Sembawang and Raffles Lighthouse) for the period 1970-2012 were extracted to study the ENSO-induced interannual sea level variability Sea level during this period...

  8. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  9. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  10. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  11. Late mid-Holocene sea-level oscillation: A possible cause

    Science.gov (United States)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  12. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    Science.gov (United States)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  13. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  14. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  15. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  16. Late Quaternary sea level and environmental changes from relic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Late Quaternary sea level; western margin of India; subsidence; uplift; depositional environment. ...... sea level rise by about 80m (between 12,000 and. 7,000 yr BP) or, .... from the Florida Keys; Palaentology 28 189–206. Carballo ...

  17. Sea-level changes on multiple spatial scales: estimates and contributing processes

    NARCIS (Netherlands)

    Frederikse, T.

    2018-01-01

    Being one of the major consequences of anthropogenic climate change, sea level rise forms a threat for many coastal areas and their inhabitants. Because all processes that cause sea-level changes have a spatially-varying fingerprint, local sea-level changes deviate substantially from the global

  18. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    Science.gov (United States)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    Shallow lakes provide extensive ecosystem services and are ecologically important aquatic resources supporting a diverse flora and fauna. In marginal-marine areas, where such lakes are subjected to the multiple pressures of coastal erosion, sea level rise, increasing sea surface temperature and increasing frequency and intensity of storm surges, environments are complex and unstable. They are characterised by physico-chemical variations due to climatic (precipitation/evaporation cycles) and dynamic factors (tides, currents, freshwater drainage and sea level changes). Combined with human activity in the catchment these processes can alter the salinity, habitat and ecology of coastal fresh- to brackish water ecosystems. In this study the chemical and biological stability of coastal lakes forming the Upper Thurne catchment in the NE of the Norfolk Broads, East Anglia, UK are seriously threatened by long-term changes in salinity resulting from storm surges, complex hydrogeology and anthropogenic activity in the catchment. Future management decisions depend on a sound understanding of the potential ecological impacts, but such understanding is limited by short-term observations and measurements. This research uses palaeolimnological approaches, which can be validated and calibrated with historical records, to reconstruct changes in the aquatic environment on a longer time scale than can be achieved by observations alone. Here, salinity is quantitatively reconstructed using the trace-element geochemistry (Sr/Ca and Mg/Ca) of low Mg-calcite shells of Ostracoda (microscopic bivalved crustaceans) and macrophyte and macroinvertebrate macrofossil remains are used as a proxy to assess ecological change in response to variations in salinity. δ13C values of Cladocera (which are potentially outcompeted by the mysid Neomysis integer with increasing salinity and eutrophication) can be used to reconstruct carbon cycling and energy pathways in lake food webs, which alongside

  19. Sea-Level Rise and Flood Potential along the California Coast

    Science.gov (United States)

    Delepine, Q.; Leung, C.

    2013-12-01

    Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future

  20. Sea-level rise caused by climate change and its implications for society.

    Science.gov (United States)

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  1. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  2. Land Sea Level Difference Impacts on Socio-Hydrological System.

    Science.gov (United States)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.

    2016-12-01

    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation

  3. A heuristic evaluation of long-term global sea level acceleration

    Science.gov (United States)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  4. Integrative study of the mean sea level and its components

    CERN Document Server

    Champollion, Nicolas; Paul, Frank; Benveniste, Jérôme

    2017-01-01

    This volume presents the most recent results of global mean sea level variations over the satellite altimetry era (starting in the early 1990s) and associated contributions, such as glaciers and ice sheets mass loss, ocean thermal expansion, and land water storage changes. Sea level is one of the best indicators of global climate changes as it integrates the response of several components of the climate system to external forcing factors (including anthropogenic forcing) and internal climate variability. Providing long, accurate records of the sea level at global and regional scales and of the various components causing sea level changes is of crucial importance to improve our understanding of climate processes at work and to validate the climate models used for future projections. The Climate Change Initiative project of the European Space Agency has provided a first attempt to produce consistent and continuous space-based records for several climate parameters observable from space, among them sea level. Th...

  5. Building more effective sea level rise models for coastal management

    Science.gov (United States)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  6. On the Balancing of the SMOS Ocean Salinity Retrieval Cost Function

    Science.gov (United States)

    Sabia, R.; Camps, A.; Portabella, M.; Talone, M.; Ballabrera, J.; Gourrion, J.; Gabarró, C.; Aretxabaleta, A. L.; Font, J.

    2009-04-01

    (10), 2196-2205, 2004. [2] Zine, S., J. Boutin, J. Font, N. Reul, P. Waldteufel, C. Gabarró, J. Tenerelli, F. Petitcolin, J.L. Vergely, M. Talone, and S. Delwart, Overview of the SMOS Sea Surface Salinity Prototype Processor, IEEE Trans. Geosc. Remote Sens, 46 (3), 621-645, 2008. [3] Gabarró, C., M. Portabella, M. Talone and J. Font, Analysis of the SMOS Ocean Salinity Inversion Algorithm, Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 971-974, 2007. [4] Sabia, R, Sea Surface Salinity Retrieval Error Budget within the ESA Soil Moisture and Ocean Salinity Mission, Ph.D. Dissertation, Barcelona, Spain, October 2008. [5] Talone, M., A. Camps, C. Gabarró, R. Sabia, J. Gourrion, M. Vall•llossera, B. Mourre, and J. Font, Contributions to the Improvement of the SMOS Level 2 Retrieval Algorithm: Optimization of the Cost Function, Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, Massachusetts USA, 2008.

  7. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    Science.gov (United States)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  8. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    OpenAIRE

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry calibration record into EOFs, and fitting these patterns to a historical tide gauge record.

  9. A sea ice model for the marginal ice zone with an application to the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, Max D.

    2004-01-01

    A model is presented that describes the formation, transport, and desalinization of frazil and pancake ice as it is formed in marginal seas. This model uses as input the total ice concentration evaluated from Special Sensor Microwave Imager and wind speed and direction. The model calculates...... the areal concentration, thickness, volume concentration, and salinity of frazil ice as well as the areal concentration, thickness, and salinity of pancakes. A simple parameterization for the Odden region of the Greenland Sea is presented. The model is run for the winter of 1996-1997. There are direct...... observations of the thickness and salinity of pancakes and the volume concentration of frazil ice to compare with the model. The model results compare very well with the measured data. This new ice model can be tuned to work in marginal seas elsewhere to calculate ice thickness, motion, and brine rejection...

  10. Impacts on Poverty of Encroaching Salinity on the Bengal (GBM) Delta: A Spatial Case Study in Southern Bangladesh

    Science.gov (United States)

    Amoako Johnson, F.; Hutton, C.; Hornby, D.; Lazar, A.; Mukhopadhyay, A.

    2014-12-01

    Salinity intrusion is a major climate and human induced hazard in coastal deltaic regions resulting in substantial adverse effects on crop production. Impacts are ‎exacerbated by intensified cyclones, sea level rise and storm surges. In this regard, many farmers in the populous Ganges-Brahmaputra Delta of ‎Bangladesh have adopted saline shrimp (Bagda) farming with associated displacement of tenant farmers and potential long term damage to the soil through chemicals used to enhance shrimp production. Despite the impact of salinity intrusion on the environment and the commonly perceived effects of shrimp farming on poverty, there has not been any systematic study that examines the associative relationships between salinisation, shrimp farming and poverty in this delta region. Using the 2011 Bangladesh Population and Housing Census and 2010 LandSat remote sensing data this study examines the spatially explicit impact of salinization as well as saline and freshwater shrimp farming on poverty in the Delta, ‎accounting for important environmental and socio-economic predictors. The findings shows that after accounting for important environmental and socioeconomic predictors, levels and intensities of salinization as well as the extent of saline and freshwater shrimp farming in a union are significantly associated with poverty. The results of the study demonstrate that increases in levels and intensities of salinity increases the probability of a union being in the poorest quintile. As such saline water shrimp farming has the potential to reduce poverty only at high intensities, whilst low levels of freshwater shrimp farming are associated with a reduction in poverty.

  11. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  12. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    Science.gov (United States)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  13. Last Interglacial (Eemian) hydrographic conditions in the south-eastern Baltic Sea, NE Europe, based on dinoflagellates and pollen

    DEFF Research Database (Denmark)

    Head, Martin J.; Seidenkrantz, Marit Solveig Louise Schramm; Janczyk-Kopikowa, Zofia

    2005-01-01

    of arctic waters. Warm and saline conditions of 15–20 psu or more, at least twice present levels, persisted throughout the early Eemian. A rise in sea level at Licze appears to correlate with a similar event in eastern Denmark, as both coincide with the increase in Corylus (ca. 750 years...... into the interglacial). This sea-level rise might therefore have a basinwide extent, and has been attributed to an opening of the Danish Belts. Whereas dinoflagellate cysts reflect sustained high salinites within the upper water column, a concomitant increase in abundance of the chlorococcalean alga Pediastrum within......A rich organic-walled dinoflagellate cyst and pollen record from the Licze borehole in northern Poland has been used to reconstruct the hydrographic history of the southeastern Baltic Sea during the Eemian Stage (Last Interglacial) of the Upper Pleistocene. Warm and saline waters (ca. 10–15 psu...

  14. Chemical, temperature, pressure, and salinity data from bottle and CTD casts in the Arabian Sea as part of the Joint Global Ocean Flux Study / Arabian Sea Process Studies (JGOFS/Arabian) project, from 1995-07-17 to 1995-09-15 (NODC Accession 9800037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, temperature, pressure, and salinity data were collected using bottle and CTD casts from the R/V Thomas G. Thompson in the Arabian Sea. Data were collected...

  15. Thermosteric contribution of warming oceans to the global sea level variations

    OpenAIRE

    Bâki Iz H.

    2016-01-01

    Thermosteric contribution of warming oceans to the global sea level variations during the last century was evaluated at globally distributed 27 tide gauge stations with records over 80 years. The assessment was made using a recently proposed lagged model inclusive of a sea level trend, long and decadal periodicities, and lagged sea surface temperature measurements. The new model solutions revealed that almost all the long period periodic sea level changes experienced a...

  16. Detailed Tropical Sea Level Record Spanning the Younger Dryas Chronozone

    Science.gov (United States)

    Abdul, N. A.; Mortlock, R. A.; Wright, J. D.; Fairbanks, R. G.

    2010-12-01

    Variability in sea level is a fundamental measure of past changes in continental ice volume and provides an important benchmark to test climate change hypotheses. Records of the most recent deglaciation show two pulses of accelerated sea-level rise (Meltwater Pulses 1A and 1B) separated by an interval of slower sea level rise. The Younger Dryas chronozone falls within the interval between MWP 1A and 1B. It was first described over 100 years ago and remains one of the most studied periods in Earth’s history. The Younger Dryas was originally constrained with 14C dating to the interval between 11,000 and 10,000 14C years BP, which converts to 13,000 to 11,640 calendar years BP. The climatic expression of the Younger Dryas was most pronounced in the circum North Atlantic where climate proxies returned in some regions to near glacial values. Interpretations of the Younger Dryas’ significance range from a catastrophic global cooling event accompanied by Northern hemisphere ice sheet growth to simply regional changes in ocean and air mass mixing zones confined mainly to the North Atlantic. A detailed sea level record containing the interval from the end of MWP 1A to the beginning of MWP 1B (~14,000 to 11,300 years BP) was generated using 26 new U/Th dates from our 2007 Barbados offshore drilling expedition combined with our 1988 expedition measurements. 16 of these dates fall within the Younger Dryas Chronozone. Younger Dryas sea level positions were based on Acropora palmata samples from 3 overlapping and contemporaneous offshore drill cores (RGF 12 and BBDS 9 & 10) and corrected for minor tectonic uplift. From 14,000 to 11,300 years BP, sea level rose from ~81 to 56.5 m below present sea level with an initial rate of 10 m/kyr that decreased smoothly to <5 m/kyr at the base of MWP 1B. At the beginning of the Younger Dryas, sea level was at 69 m below present and rose 8 m by the end of this interval. In the context of the Barbados sea level record, the Younger Dryas

  17. Changes in extreme regional sea level under global warming

    NARCIS (Netherlands)

    Brunnabend, S. E.; Dijkstra, H. A.; Kliphuis, Michael; Bal, Henri E.; Seinstra, Frank J.; van Werkhoven, Ben; Maassen, J.; van Meersbergen, Maarten

    2017-01-01

    An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a high-resolution version of the Parallel Ocean Program and

  18. Measuring progress of the global sea level observing system

    Science.gov (United States)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  19. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  20. An operational coupled wave-current forecasting system for the northern Adriatic Sea

    Science.gov (United States)

    Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.

    2012-04-01

    Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave

  1. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities.

    Science.gov (United States)

    Sinha, Amit Kumar; Rasoloniriana, Rindra; Dasan, Antony Franklin; Pipralia, Nitin; Blust, Ronny; De Boeck, Gudrun

    2015-03-01

    We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32ppt), to brackish water (20ppt and 10ppt) and to hyposaline water (2.5ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20mg/L ∼1.18mM representing 50% of 96h LC50 value for ammonia) for 12h, 48h, 84h and 180h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Biochemical responses such as ammonia (Jamm) and urea excretion rate, plasma ammonia, urea and lactate, plasma ions (Na(+), Cl(-) and K(+)) and osmolality, muscle water content (MWC) and liver and muscle energy budget (glycogen, lipid and protein), as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA and Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) were investigated in order to understand metabolic and ion- osmoregulatory consequences of the experimental conditions. During HEA, Jamm was inhibited in fasted fish at 10ppt, while fed fish were still able to excrete efficiently. At 2.5ppt, both feeding groups subjected to HEA experienced severe reductions and eventually a reversion in Jamm. Overall, the build-up of plasma ammonia in HEA exposed fed fish was much lower than fasted ones. Unlike fasted fish, fed fish acclimated to lower salinities (10ppt-2.5ppt) could maintain plasma osmolality, [Na(+)], [Cl(-)] and MWC during HEA exposure. Thus fed fish were able to sustain ion-osmotic homeostasis which was associated with a more pronounced up-regulation in NKA expression and activity. At 2.5ppt both feeding groups activated H(+)-ATPase. The expression of NKCC1 was down-regulated at lower salinities in both fed and fasted fish, but was upregulated within each salinity after a few days of HEA exposure. Though an

  2. Atmospheric forcing of salinity in the overflow of Denmark Strait

    Directory of Open Access Journals (Sweden)

    J. Holfort

    2007-09-01

    Full Text Available The temporal evolution of the characteristics of Denmark Strait Overflow Water (DSOW is reconstructed using hydrographic data and compared with possible atmospheric forcing mechanisms. It is concluded that the main factor influencing the DSOW characteristics at a time scale of one to several years is the difference in mean sea level pressure across Denmark Strait or, in other words, the wind along Denmark Strait. At these time scales upstream changes in the characteristics of the different water masses involved in the formation of DSOW are only of minor importance. The main process responsible for the observed salinity changes in the DSOW is mixing in Denmark Strait. Triggered by the wind, different water masses contribute with changing amounts to the formation of DSOW, leading to the observed changes in the salinity of DSOW.

  3. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    Science.gov (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  4. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  5. Analysis of Sea Level Rise in Action

    Science.gov (United States)

    Gill, K. M.; Huang, T.; Quach, N. T.; Boening, C.

    2016-12-01

    NASA's Sea Level Change Portal provides scientists and the general public with "one-stop" source for current sea level change information and data. Sea Level Rise research is a multidisciplinary research and in order to understand its causes, scientists must be able to access different measurements and to be able to compare them. The portal includes an interactive tool, called the Data Analysis Tool (DAT), for accessing, visualizing, and analyzing observations and models relevant to the study of Sea Level Rise. Using NEXUS, an open source, big data analytic technology developed at the Jet Propulsion Laboratory, the DAT is able provide user on-the-fly data analysis on all relevant parameters. DAT is composed of three major components: A dedicated instance of OnEarth (a WMTS service), NEXUS deep data analytic platform, and the JPL Common Mapping Client (CMC) for web browser based user interface (UI). Utilizing the global imagery, a user is capable of browsing the data in a visual manner and isolate areas of interest for further study. The interfaces "Analysis" tool provides tools for area or point selection, single and/or comparative dataset selection, and a range of options, algorithms, and plotting. This analysis component utilizes the Nexus cloud computing platform to provide on-demand processing of the data within the user-selected parameters and immediate display of the results. A RESTful web API is exposed for users comfortable with other interfaces and who may want to take advantage of the cloud computing capabilities. This talk discuss how DAT enables on-the-fly sea level research. The talk will introduce the DAT with an end-to-end tour of the tool with exploration and animating of available imagery, a demonstration of comparative analysis and plotting, and how to share and export data along with images for use in publications/presentations. The session will cover what kind of data is available, what kind of analysis is possible, and what are the outputs.

  6. A scaling approach to project regional sea level rise and its uncertainties

    Directory of Open Access Journals (Sweden)

    M. Perrette

    2013-01-01

    Full Text Available Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011. Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6 with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%. Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.

  7. What Causes the North Sea Level to Rise Faster over the Last Decade ?

    Science.gov (United States)

    Karpytchev, Mikhail; Letetrel, Camille

    2013-04-01

    We combined tide gauge records (PSMSL) and satellite altimetry data (TOPEX/POSEIDON-JASON 1-2) to reconstruct the mean level of the North Sea and the Norwegian Sea Shelf (NS-NSS) over 1950-2012. The reconstructed NS-NSS mean sea level fluctuations reveal a pronounced interannual variability and a strong sea level acceleration since the mid-1990's. In order to understand the causes of this acceleration, the NS-NSS mean sea level was cross-correlated with the North Atlantic Oscillation and Arctic Oscillation indices. While the interannual variability of the mean sea level correlates well with the NAO/AO indices, the observed acceleration in the NS-NSS mean level is not linked linearly to the NAO/AO fluctuations. On the other hand, the Empirical Orthogonal Functions (EOF) analysis of steric sea level variations in the eastern North Atlantic gives a dominant EOF pattern (55% of variance explained) that varies on a decadal scale very closely to the NS-NSS mean level flcutuations. Also, the amplification in the temporal amplitude of the dominant steric sea level EOF corresponds to the acceleration observed in the NS-NSS mean sea level signal. This suggests that decadal variations in the mean level of the North Sea - the Norwegian Sea Shelf reflect changes in the Subpolar Front currents (Rossby, 1996).

  8. Modal recovery of sea-level variability in the South China Sea using merged altimeter data

    Science.gov (United States)

    Jiang, Haoyu; Chen, Ge

    2015-09-01

    Using 20 years (1993-2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed "amphidrome twins", comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

  9. Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean

    Science.gov (United States)

    Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.

    2017-07-01

    We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.

  10. Orthogonal stack of global tide gauge sea level data

    Science.gov (United States)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  11. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  12. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan; Rö thig, Till; Voolstra, Christian R.; Ochsenkuhn, Michael A.; Lattemann, Sabine; Amy, Gary L.

    2014-01-01

    - specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess

  13. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions

    Directory of Open Access Journals (Sweden)

    D. Neumann

    2016-03-01

    Full Text Available Coarse sea salt particles are emitted ubiquitously from the ocean surface by wave-breaking and bubble-bursting processes. These particles impact the atmospheric chemistry by affecting the condensation of gas-phase species and, thus, indirectly the nucleation of new fine particles, particularly in regions with significant air pollution. In this study, atmospheric particle concentrations are modeled for the North Sea and Baltic Sea regions in northwestern Europe using the Community Multiscale Air Quality (CMAQ modeling system and are compared to European Monitoring and Evaluation Programme (EMEP measurement data. The sea salt emission module is extended by a salinity-dependent scaling of the sea salt emissions because the salinity in large parts of the Baltic Sea is very low, which leads to considerably lower sea salt mass emissions compared to other oceanic regions. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is considered separately. Additionally, the impacts of sea salt particles on atmospheric nitrate and ammonium concentrations and on nitrogen deposition are evaluated. The comparisons with observational data show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated farther inland. The introduced salinity scaling improves the predicted Baltic Sea sea salt concentrations considerably. The dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to minor increases in NH3 +  NH4+ and HNO3 +  NO3− and a decrease in NO3− concentrations. However, the overall effect on NH3 +  NH4+ and HNO3 +  NO3− concentrations is smaller than the deviation from the measurements. Nitrogen wet deposition is

  15. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  16. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    Science.gov (United States)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  17. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD

    DEFF Research Database (Denmark)

    Grinsted, Aslak; Moore, John; Jevrejeva, Svetlana

    2010-01-01

    -proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (-19 to -26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 AD. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B...

  18. Present day sea level changes: observations and climatic causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2007-01-01

    After a few thousand years of relative stability, sea level has risen of about 20 cm since the beginning of the 20. century. It currently rises at an average rate of about 3 mm/yr in response to global warming. About half of this rate is directly attributed to thermal expansion of sea water due to ocean warming, while the other half is mainly due to the melting of mountain glaciers and ice sheets. Satellite observations show that sea level rise is highly non-uniform. (author)

  19. About the seasonal variability of the Alboran Sea circulation

    Science.gov (United States)

    Vargas-Yáñez, M.; Plaza, F.; García-Lafuente, J.; Sarhan, T.; Vargas, J. M.; Vélez-Belchi, P.

    2002-07-01

    Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity-temperature-depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations. During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.

  20. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Science.gov (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  1. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments.

    Science.gov (United States)

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-06-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.

  2. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R

    2013-05-11

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. 2013 The

  3. Impact of sea level rise on tide gate function.

    Science.gov (United States)

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  4. Inter-annual sea level variability in the southern South China Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    (SCS) is one of the western marginal seas of the Pacific Ocean, surrounded by South China, Indo China Peninsula, Malaysian Peninsula, Philippines and Borneo Island. The SCS is a semi- enclosed basin connected to the western Pacific Ocean through Taiwan.... Sea level trend and variability in the Singapore Strait. Ocean Science, 9(2). Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61-78. Vargas‐Hernandez, J.M., Wijffels...

  5. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise

    Science.gov (United States)

    Hatfield, Jeff S.; Reynolds, Michelle H.; Seavy, Nathaniel E.; Krause, Crystal M.

    2012-01-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.

  6. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    OpenAIRE

    Lindh, Markus V.; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria ...

  7. Evaluation of sea level rise in Bohai Bay and associated responses

    Directory of Open Access Journals (Sweden)

    Ke-Xiu LIU

    2017-03-01

    Full Text Available Tide gauge data from 1950 to 2015 are used to analyze sea level change, tidal change, return levels, and design tide levels under rising sea level scenarios in Bohai Bay. Results show the following: 1 Since 1950 sea levels in Bohai Bay show a significant rising trend of 3.3 mm per year. The speed has been particularly rapid in 1980–2015 at a rate of 4.7 mm per year. 2 Astronomical tides showed a clear long-term trend in 1950–2015. The amplitude and phase lag of the M2 tide constituent decreased at a rate of 0.21 cm per year and 0.11° per year, respectively and the phase lag of K1 decreased at a rate of 0.09° per year, whereas there was little change in its amplitude. The mean high and low tides increased at a rate of 0.08 and 0.52 cm per year, respectively, whereas the mean tidal range decreased at a rate of 0.44 cm per year. Results from numerical experiments show that local sea level rise plays an important role in the tidal dynamics change in Bohai Bay. 3 It is considered that the sea level return periods will decrease owing to the influence of sea level rise and land subsidence, therefore design tide level will change in relation to sea level rise. Therefore, the ability of seawalls to withstand water will diminish, and storm surge disasters will become more serious in the future.

  8. Predicting the impact of tsunami in California under rising sea level

    Science.gov (United States)

    Dura, T.; Garner, A. J.; Weiss, R.; Kopp, R. E.; Horton, B.

    2017-12-01

    The flood hazard for the California coast depends not only on the magnitude, location, and rupture length of Alaska-Aleutian subduction zone earthquakes and their resultant tsunamis, but also on rising sea levels, which combine with tsunamis to produce overall flood levels. The magnitude of future sea-level rise remains uncertain even on the decadal scale, with future sea-level projections becoming even more uncertain at timeframes of a century or more. Earthquake statistics indicate that timeframes of ten thousand to one hundred thousand years are needed to capture rare, very large earthquakes. Because of the different timescales between reliable sea-level projections and earthquake distributions, simply combining the different probabilities in the context of a tsunami hazard assessment may be flawed. Here, we considered 15 earthquakes between Mw 8 to Mw 9.4 bound by -171oW and -140oW of the Alaska-Aleutian subduction zone. We employed 24 realizations at each magnitude with random epicenter locations and different fault length-to-width ratios, and simulated the tsunami evolution from these 360 earthquakes at each decade from the years 2000 to 2200. These simulations were then carried out for different sea-level-rise projections to analyze the future flood hazard for California. Looking at the flood levels at tide gauges, we found that the flood level simulated at, for example, the year 2100 (including respective sea-level change) is different from the flood level calculated by adding the flood for the year 2000 to the sea-level change prediction for the year 2100. This is consistent for all sea-level rise scenarios, and this difference in flood levels range between 5% and 12% for the larger half of the given magnitude interval. Focusing on flood levels at the tide gauge in the Port of Los Angeles, the most probable flood level (including all earthquake magnitudes) in the year 2000 was 5 cm. Depending on the sea-level predictions, in the year 2050 the most probable

  9. Measuring the Rate of Change in Sea Level and Its Adherence to USACE Sea Level Rise Planning Scenarios Using Timeseries Metrics

    Science.gov (United States)

    White, K. D.; Huang, N.; Huber, M.; Veatch, W.; Moritz, H.; Obrien, P. S.; Friedman, D.

    2017-12-01

    In 2013, the United States Army Corps of Engineers (USACE) issued guidance for all Civil Works activities to incorporate the effects of sea level change as described in three distinct planning scenarios.[1] These planning scenarios provided a useful framework to incorporate these effects into Civil Works activities, but required the manual calculation of these scenarios for a given gage and set of datum. To address this need, USACE developed the Sea Level Change Curve Calculator (SLCCC) in 2014 which provided a "simple, web-based tool to provide repeatable analytical results."[2]USACE has been developing a successor to the SLCCC application which retains the same, intuitive functionality to calculate these planning scenarios, but it also allows the comparison of actual sea level change between 1992 and today against the projections, and builds on the user's ability to understand the rate of change using a variety of timeseries metrics (e.g. moving averages, trends) and related visualizations. These new metrics help both illustrate and measure the complexity and nuances of sea level change. [1] ER 1000-2-8162. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf. [2] SLCC Manual. http://www.corpsclimate.us/docs/SLC_Calculator_Manual_2014_88.pdf.

  10. The Offlap Break Position Vs Sea Level: A Discussion

    Science.gov (United States)

    Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.

    Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of

  11. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  12. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.

    Science.gov (United States)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

  13. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  14. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2011-01-01

    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining......, waterlogging of marsh soils, which has retarded ecological succession. To conclude, we stress the need for a multitemporal perspective that recognizes the significance of short-term sea-level fluctuations nested within long-term trends......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...... to drive the increased frequency of flooding and such retarded succession. Skallingen, however, has showed more or less equilibrated yearly rates between sea-level rise and surface accretion. This implies that the long-term, gradual sea-level rise alone might not be enough to explain the increased...

  15. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  16. Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway

    DEFF Research Database (Denmark)

    Idžanović, Martina; Ophaug, Vegard; Andersen, Ole Baltazar

    2017-01-01

    Conventional (pulse-limited) altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Sea surface heights and tide-gauge sea level serve as each other’s buddy check. However, in coastal areas, altimetry suffers from numerous effects, which degrade its...... conventional altimeters. In this study, we explore the potential of CryoSat-2 to provide valid observations in the Norwegian coastal zone. We do this by comparing time series of CryoSat-2 sea level anomalies with time series of in situ sea level at 22 tide gauges, where the CryoSat-2 sea level anomalies...... are averaged in a 45-km area around each tide gauge. For all tide gauges, CryoSat-2 shows standard deviations of differences and correlations of 16 cm and 61%, respectively. We further identify the ocean tide and inverted barometer geophysical corrections as the most crucial, and note that a large amount...

  17. Greenhouse effect, sea level rise, and coastal drainage systems

    Energy Technology Data Exchange (ETDEWEB)

    Titus, J G; Kuo, C Y; Gibbs, M J; LaRoche, T B; Webb, M K; Waddell, J O

    1987-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century, which would raise sea level a few feet and alter precipitation patterns. Both of these changes would have major impacts on the operation of coastal drainage systems. However, because sea level rise and climate change resulting from the greenhouse effect are still uncertain, most planners and engineers are ignoring the potential implications. Case studies of the potential impact on watersheds in Charleston, South Carolina, and Fort Walton Beach, Florida, suggest that the cost of designing a new system to accommodate a rise in sea level will sometimes be small compared with the retrofit cost that may ultimately be necessary if new systems are not designed for a rise. Rather than ignore the greenhouse effect until its consequences are firmly established, engineers and planners should evaluate whether it would be worthwhile to insure that new systems are not vulnerable to the risks of climate change and sea level rise.

  18. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  19. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  20. The land-ice contribution to 21st-century dynamic sea level rise

    Science.gov (United States)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  1. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  2. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  3. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  4. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  5. Monthly Variations in Sea Level at the Island of Zanzibar

    African Journals Online (AJOL)

    The trend in sea level. (9%) appeared ... There is a strong likelihood that physical processes other .... a bell-shaped curve. To avoid erroneous conclusions, residual analysis tests were carried ..... prediction of sea level, regardless of the units ...

  6. Predictability of twentieth century sea-level rise from past data

    International Nuclear Information System (INIS)

    Bittermann, Klaus; Rahmstorf, Stefan; Perrette, Mahé; Vermeer, Martin

    2013-01-01

    The prediction of global sea-level rise is one of the major challenges of climate science. While process-based models are still being improved to capture the complexity of the processes involved, semi-empirical models, exploiting the observed connection between global-mean sea level and global temperature and calibrated with data, have been developed as a complementary approach. Here we investigate whether twentieth century sea-level rise could have been predicted with such models given a knowledge of twentieth century global temperature increase. We find that either proxy or early tide gauge data do not hold enough information to constrain the model parameters well. However, in combination, the use of proxy and tide gauge sea-level data up to 1900 AD allows a good prediction of twentieth century sea-level rise, despite this rise being well outside the rates experienced in previous centuries during the calibration period of the model. The 90% confidence range for the linear twentieth century rise predicted by the semi-empirical model is 13–30 cm, whereas the observed interval (using two tide gauge data sets) is 14–26 cm. (letter)

  7. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    Science.gov (United States)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  8. On the regional characteristics of past and future sea-level change (Invited)

    Science.gov (United States)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  9. Doubling of coastal flooding frequency within decades due to sea-level rise

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  10. Doubling of coastal flooding frequency within decades due to sea-level rise.

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L; Fletcher, Charles H; Frazer, Neil; Erikson, Li; Storlazzi, Curt D

    2017-05-18

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  11. Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels

    Directory of Open Access Journals (Sweden)

    Daniela S. Coelho

    Full Text Available ABSTRACT Adaptation of plants to saline environments depends on the activation of mechanisms that minimize the effects of excess ions on vital processes, such as photosynthesis. The objective of this study was to evaluate the leaf gas exchange, chlorophyll, and organic solute in ten genotypes of forage sorghum irrigated with solutions of different salinity levels. The experiment was conducted in a randomized block design, in a 10 x 6 factorial arrangement, with three replications, using ten genotypes - F305, BRS-655, BRS-610, Volumax, 1.015.045, 1.016.005, 1.016.009, 1.016.013, 1.016.015 and 1.016.031 - and six saline solutions, with electrical conductivity (ECw of 0, 2.5, 5.0, 7.5, 10 and 12.5 dS m-1. The photosynthetic activity in forage sorghum plants reduces with increasing salinity, and this response was found in the ten genotypes evaluated. The chlorophyll and protein contents were not affected by salinity, whereas carbohydrates and amino acid contents increased with increasing ECw. Soluble sugars are essential for osmoregulation of forage sorghum due to its high content in leaves.

  12. Probabilistic reanalysis of twentieth-century sea-level rise.

    Science.gov (United States)

    Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X

    2015-01-22

    Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.

  13. Bipolar seesaw control on last interglacial sea level.

    Science.gov (United States)

    Marino, G; Rohling, E J; Rodríguez-Sanz, L; Grant, K M; Heslop, D; Roberts, A P; Stanford, J D; Yu, J

    2015-06-11

    Our current understanding of ocean-atmosphere-cryosphere interactions at ice-age terminations relies largely on assessments of the most recent (last) glacial-interglacial transition, Termination I (T-I). But the extent to which T-I is representative of previous terminations remains unclear. Testing the consistency of termination processes requires comparison of time series of critical climate parameters with detailed absolute and relative age control. However, such age control has been lacking for even the penultimate glacial termination (T-II), which culminated in a sea-level highstand during the last interglacial period that was several metres above present. Here we show that Heinrich Stadial 11 (HS11), a prominent North Atlantic cold episode, occurred between 135 ± 1 and 130 ± 2 thousand years ago and was linked with rapid sea-level rise during T-II. Our conclusions are based on new and existing data for T-II and the last interglacial that we collate onto a single, radiometrically constrained chronology. The HS11 cold episode punctuated T-II and coincided directly with a major deglacial meltwater pulse, which predominantly entered the North Atlantic Ocean and accounted for about 70 per cent of the glacial-interglacial sea-level rise. We conclude that, possibly in response to stronger insolation and CO2 forcing earlier in T-II, the relationship between climate and ice-volume changes differed fundamentally from that of T-I. In T-I, the major sea-level rise clearly post-dates Heinrich Stadial 1. We also find that HS11 coincided with sustained Antarctic warming, probably through a bipolar seesaw temperature response, and propose that this heat gain at high southern latitudes promoted Antarctic ice-sheet melting that fuelled the last interglacial sea-level peak.

  14. Impact of Seawater Nonlinearities on Nordic Seas Circulation

    Science.gov (United States)

    Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.

    2017-12-01

    The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.

  15. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    International Nuclear Information System (INIS)

    Le Cozannet, Gonéri; Raucoules, Daniel; Garcin, Manuel; Lavigne, Franck; Wöppelmann, Guy; Gravelle, Médéric; Da Sylva, Sylvestre; Meyssignac, Benoit

    2015-01-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year −1 . Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)

  16. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  17. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  18. Expression and localization of Aquaporin 1a in the sea-bass (Dicentrarchus labrax during ontogeny

    Directory of Open Access Journals (Sweden)

    Ivone eGiffard-Mena

    2011-07-01

    Full Text Available The successful establishment of a species in a given habitat depends on the ability of each of its developing stages to adapt to the environment. In order to understand this process we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax, to various salinities during its ontogeny. The expression and localization of Aquaporin 1a (AQP1a mRNA and protein were determined in different osmoregulatory tissues. In larvae, the sites of AQP1a expression are variable and they shift according to age, implying functional changes. In juveniles after metamorphosis (D32-48 post hatch, 15 - 25 mm and in pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and the AQP1a location was observed in the intestine. In juveniles (D87-100 post hatch, 38 - 48 mm, the transcript levels of AQP1a in the digestive tract and in the kidney were higher in sea water than at lower salinity. These observations, in agreement with existing models, suggest that in sea water-acclimated fish, the imbibed water is absorbed via AQP1a through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a may play a role in water reabsorption in the kidney. These mechanisms compensate dehydratation in sea water, and they contribute to the adaptation of juveniles to salinity changes during sea-lagoon migrations. These results contribute to the interpretation of the adaptation of populations to habitats where salinity varies.

  19. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  20. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    International Nuclear Information System (INIS)

    Brydsten, Lars; Engqvist, Anders; Naeslund, Jens-Ove; Lindborg, Tobias

    2009-01-01

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about ± 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  1. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  2. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    Science.gov (United States)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Baumert, Niklas; Kloos, Julia; Renaud, Fabrice G; La Jeunesse, Isabelle; Mabrouk, Badr; Savić, Dragan A; Kapelan, Zoran; Ludwig, Ralf; Fischer, Georg; Roson, Roberto; Zografos, Christos

    2015-01-15

    CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors. This paper summarises key results from an integrated assessment of potential challenges to water-related security issues, focusing on expected sea-level rise impacts by the middle of the century. We use this common focus to illustrate the added value of project clustering. CLIWASEC pursued multidisciplinary research by adopting a single research objective: sea-level rise related water security threats, resulting in a more holistic view of problems and potential solutions. In fragmenting research, policy-makers can fail to understand how multiple issues can materialize from one driver. By combining efforts, an integrated assessment of water security threats in the lower Nile is formulated, offering policy-makers a clearer picture of inter-related issues to society and environment. The main issues identified by each project (land subsidence, saline intrusion - CLIMB; water supply overexploitation, land loss - WASSERMed; employment and housing security - CLICO), are in fact related. Water overexploitation is exacerbating land subsidence and saline intrusion, impacting on employment and placing additional pressure on remaining agricultural land and the underdeveloped housing market. All these have wider implications for regional development. This richer understanding could be critical in making better

  3. Limits on the adaptability of coastal marshes to rising sea level

    Science.gov (United States)

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn

    2010-01-01

    Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.

  4. Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk

    Science.gov (United States)

    Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki

    2017-09-01

    The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.

  5. Evolution of the Rømø barrier island in the Wadden Sea: Impacts of sea-level change on coastal morphodynamics

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Andersen, Thorbjørn Joest; Johannessen, Peter

    , and falling sea-level, whereas wash-over sedimentation was promoted during periods of rapid sea-level rise when shoreface, beach and coastal dune deposits were reworked. In contrast, lagoonal sedimentation has been relatively continuous and kept pace with the long-term Holocene sea-level rise. Our findings...

  6. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  7. Evidence of exceptional oyster-reef resilience to fluctuations in sea level.

    Science.gov (United States)

    Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel

    2017-12-01

    Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n  = 3) constructed in 1997 and 2000, young reefs ( n  = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and

  8. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise.

    Science.gov (United States)

    Hatfield, Jeff S; Reynolds, Michelle H; Seavy, Nathaniel E; Krause, Crystal M

    2012-08-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds. Conservation Biology ©2012 Society for Conservation Biology. No claim to original

  9. Groundwater salinity study in the Mekong Delta using isotope techniques

    International Nuclear Information System (INIS)

    Le Van Khoi, Nguyen Kien Chinh; Do Tien Hung

    2002-01-01

    Environmental isotopes D, 18 O and chemical composition were used for study of recharge and salinization of groundwater in the are located between Bassac and Mekong Rivers. The results showed that: (a) Pleistocene aquifers are recharged through flood plains and outcrops located at the same altitude. The sanility of groundwater in these aquifers is mostly due to dissolution of the aquifer material, (b) Pliocene and Miocene aquifers receive recharge through outcrops located at the higher altitude on the northeast extension of the Delta and Cambodia. The salinity of groundwater in the coastal region of the aquifer is attributable to sea water intrusion. There appears to be significant retention of sea water in the coastal sediment during intrusion. (Author)

  10. Integrating Non-Tidal Sea Level data from altimetry and tide gauges for coastal sea level prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric...... NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL...... from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model...

  11. High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica).

    Science.gov (United States)

    Audemard, Corinne; Kator, Howard I; Reece, Kimberly S

    2018-08-20

    High salinity relay of Eastern oysters (Crassostrea virginica) was evaluated as a post-harvest processing (PHP) method for reducing Vibrio vulnificus. This approach relies on the exposure of oysters to natural high salinity waters and preserves a live product compared to previously approved PHPs. Although results of prior studies evaluating high salinity relay as a means to decrease V. vulnificus levels were promising, validation of this method as a PHP following approved guidelines is required. This study was designed to provide data for validation of this method following Food and Drug Administration (FDA) PHP validation guidelines. During each of 3 relay experiments, oysters cultured from 3 different Chesapeake Bay sites of contrasting salinities (10-21 psu) were relayed without acclimation to high salinity waters (31-33 psu) for up to 28 days. Densities of V. vulnificus and densities of total and pathogenic Vibrio parahaemolyticus (as tdh positive strains) were measured using an MPN-quantitative PCR approach. Overall, 9 lots of oysters were relayed with 6 exhibiting initial V. vulnificus >10,000/g. As recommended by the FDA PHP validation guidelines, these lots reached both the 3.52 log reduction and the levels ranged from 2 to 61% after 28 days of relay. Although the identification of the factors implicated in oyster mortality will require further examination, this study strongly supports the validation of high salinity relay as an effective PHP method to reduce levels of V. vulnificus in oysters to endpoint levels approved for human consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    Science.gov (United States)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  14. Observed Sea-Level Changes along the Norwegian Coast

    Directory of Open Access Journals (Sweden)

    Kristian Breili

    2017-07-01

    Full Text Available Norway’s national sea level observing system consists of an extensive array of tide gauges, permanent GNSS stations, and lines of repeated levelling. Here, we make use of this observation system to calculate relative sea-level rates and rates corrected for glacial isostatic adjustment (GIA along the Norwegian coast for three different periods, i.e., 1960 to 2010, 1984 to 2014, and 1993 to 2016. For all periods, the relative sea-level rates show considerable spatial variations that are largely due to differences in vertical land motion due to GIA. The variation is reduced by applying corrections for vertical land motion and associated gravitational effects on sea level. For 1960 to 2010 and 1984 to 2014, the coastal average GIA-corrected rates for Norway are 2.0 ± 0.6 mm/year and 2.2 ± 0.6 mm/year, respectively. This is close to the rate of global sea-level rise for the same periods. For the most recent period, 1993 to 2016, the GIA-corrected coastal average is 3.5 ± 0.6 mm/year and 3.2 ± 0.6 mm/year with and without inverse barometer (IB corrections, respectively, which is significantly higher than for the two earlier periods. For 1993 to 2016, the coastal average IB-corrected rates show broad agreement with two independent sets of altimetry. This suggests that there is no systematic error in the vertical land motion corrections applied to the tide-gauge data. At the same time, altimetry does not capture the spatial variation identified in the tide-gauge records. This could be an effect of using altimetry observations off the coast instead of directly at each tide gauge. Finally, we note that, owing to natural variability in the climate system, our estimates are highly sensitive to the selected study period. For example, using a 30-year moving window, we find that the estimated rates may change by up to 1 mm/year when shifting the start epoch by only one year.

  15. Evaluation of the effects of sea-level change and coastal canal management on saltwater intrusion in the Biscayne aquifer of south Florida, USA

    Science.gov (United States)

    Hughes, J. D.; Sifuentes, D. F.; White, J.

    2015-12-01

    Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.

  16. Coastal sea level rise with warming above 2 °C.

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke P; Riva, Riccardo E M; Grinsted, Aslak; Moore, John C

    2016-11-22

    Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This "2 °C" threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age.

  17. Mediterranean-Paratethys connectivity during the Messinian salinity crisis : The Pontian of Azerbaijan

    NARCIS (Netherlands)

    van Baak, Christiaan G C; Stoica, Marius; Grothe, Arjen; Aliyeva, Elmira; Krijgsman, Wout

    2016-01-01

    Prior to the onset of the Messinian Salinity Crisis, a connection was established between the Mediterranean Sea and the Paratethys region to the north. Rivers currently draining into the Caspian Sea thereby became important for the Mediterranean hydrological budget. The role of this connection and

  18. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012

    Directory of Open Access Journals (Sweden)

    Gaia Galassi

    2015-03-01

    Full Text Available We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04 mm yr-1, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of ∼20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.

  19. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  20. Principles and reconstruction of the ancient sea levels during the Quaternary

    International Nuclear Information System (INIS)

    Martin, L.; Flexor, J.M.; Suguio, K.

    1986-01-01

    This work focused the multiple aspects related to the ''reconstruction of the ancient sea level during the Quaternary''. The relative sea level, fluctuations are produced by true variations of the level (eustasy) and by changes in the land level (tectonism and isostasy). The changes of the relative levels are reconstructed through several evidence of these fluctuations, which are recognised in time and space. To define their situation in space is necessary to know their present altitude in relation to their original altitude, that is, to determine their position in relation to the sea level during their formation or sedimentation. Their situation in time is determined by measuring the moment of their formation or sedimentation, using for this the dating methods (isotopic, archeological, etc.) When numerous ancient levels could be reconstructed, spread through a considerable time interval, is possible to delineate the sea level fluctuation curve for this period. (C.D.G.) [pt

  1. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  2. History of Aral Sea level variability and current scientific debates

    Science.gov (United States)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel

    2013-11-01

    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  3. Guiding Users to Sea Level Change Data Through Content

    Science.gov (United States)

    Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Boeck, A.; Moore, B.; Moore, J.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is an immersive and innovative web portal for sea level change research that addresses the needs of diverse audiences, from scientists across disparate disciplines to the general public to policy makers and businesses. Since sea level change research involves vast amounts of data from multiple fields, it becomes increasingly important to come up with novel and effective ways to guide users to the data they need. News articles published on the portal contains links to relevant data. The Missions section highlights missions and projects as well as provide a logical grouping of the data. Tools available on the portal, such as the Data Analysis Tool, a data visualization and high-performance environment for sea level analysis, and the Virtual Earth System Laboratory, a 3D simulation application, describes and links to the source data. With over 30K Facebook followers and over 23K Twitter follower, the portal outreach team also leverages social media to guide users to relevant data. This presentation focuses on how the portal uses news articles, mission and project pages, tools, and social media to connect users to the data.

  4. Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059

    Directory of Open Access Journals (Sweden)

    U. Kotthoff

    2017-12-01

    Full Text Available Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial, paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059 over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86 can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant

  5. Climate Adaptation and Sea Level Rise

    Science.gov (United States)

    EPA supports the development and maintenance of water utility infrastructure across the country. Included in this effort is helping the nation’s water utilities anticipate, plan for, and adapt to risks from flooding, sea level rise, and storm surge.

  6. Climatic anomalies in Northern South China Sea during 1986-1987 El Nino

    Energy Technology Data Exchange (ETDEWEB)

    Chen Tegu (Academia Sinica, Beijing (China)); Zhou Qiang

    1990-05-01

    In this paper, the climatic anomalies in Northern South China Sea (NSCS) during 1986-1987 El Nino were analyzed according to meteorological and hydrographic observation data. The results showed that the most apparent anomalies were: (1) continuously weaker monsoon strength, (2) continuously much higher South China Sea High Pressure strength; (3) in 1987 only six typhoons occurred in NSCS (four less than normal), with the first typhoon occurring on 25 June, (about one month later than usual); (4) positive air temperature anomaly, negative annual precipitation and evaporation anomaly; (5) sea surface temperature and surface salinity anomaly was positive; (6) monthly mean sea level was 1 to 10cm lower than normal.

  7. Sea-level Rise Impacts on Oregon Estuaries: Biology and Hydrology

    Science.gov (United States)

    Estuaries are transitional ecosystems located at the margin of the land and ocean and as a result they are particularly sensitive to sea level rise and other climate drivers. In this presentation, we summarize the potential impacts of sea level rise on key estuarine habitats inc...

  8. PERSPECTIVE: The tripping points of sea level rise

    Science.gov (United States)

    Hecht, Alan D.

    2009-12-01

    When President Nixon created the US Environmental Protection Agency (EPA) in 1970 he said the environment must be perceived as a single, interrelated system. We are nowhere close to achieving this vision. Jim Titus and his colleagues [1] highlight one example of where one set of regulations or permits may be in conflict with another and where regulations were crafted in the absence of understanding the cumulative impact of global warming. The issue here is how to deal with the impacts of climate change on sea level and the latter's impact on wetland polices, clean water regulations, and ecosystem services. The Titus paper could also be called `The tripping points of sea level rise'. Titus and his colleagues have looked at the impact of such sea level rise on the east coast of the United States. Adaptive responses include costly large- scale investment in shore protection (e.g. dikes, sand replenishment) and/or ecosystem migration (retreat), where coastal ecosystems move inland. Shore protection is limited by available funds, while ecosystem migrations are limited by available land use. The driving factor is the high probability of sea level rise due to climate change. Estimating sea level rise is difficult because of local land and coastal dynamics including rising or falling land areas. It is estimated that sea level could rise between 8 inches and 2 feet by the end of this century [2]. The extensive data analysis done by Titus et al of current land use is important because, as they observe, `property owners and land use agencies have generally not decided how they will respond to sea level rise, nor have they prepared maps delineating where shore protection and retreat are likely'. This is the first of two `tripping points', namely the need for adaptive planning for a pending environmental challenge that will create economic and environment conflict among land owners, federal and state agencies, and businesses. One way to address this gap in adaptive management

  9. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir......This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea level...... and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...

  10. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  11. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents

    Science.gov (United States)

    Geerken, Esmee; de Nooijer, Lennart Jan; van Dijk, Inge; Reichart, Gert-Jan

    2018-04-01

    Accurate reconstructions of seawater salinity could provide valuable constraints for studying past ocean circulation, the hydrological cycle and sea level change. Controlled growth experiments and field studies have shown the potential of foraminiferal Na / Ca as a direct salinity proxy. Incorporation of minor and trace elements in foraminiferal shell carbonate varies, however, greatly between species and hence extrapolating calibrations to other species needs validation by additional (culturing) studies. Salinity is also known to impact other foraminiferal carbonate-based proxies, such as Mg / Ca for temperature and Sr / Ca for sea water carbonate chemistry. Better constraints on the role of salinity on these proxies will therefore improve their reliability. Using a controlled growth experiment spanning a salinity range of 20 units and analysis of element composition on single chambers using laser ablation-Q-ICP-MS, we show here that Na / Ca correlates positively with salinity in two benthic foraminiferal species (Ammonia tepida and Amphistegina lessonii). The Na / Ca values differ between the two species, with an approximately 2-fold higher Na / Ca in A. lessonii than in A. tepida, coinciding with an offset in their Mg content ( ˜ 35 mmol mol-2 versus ˜ 2.5 mmol mol-1 for A. lessonii and A. tepida, respectively). Despite the offset in average Na / Ca values, the slopes of the Na / Ca-salinity regressions are similar between these two species (0.077 versus 0.064 mmol mol-1 change per salinity unit). In addition, Mg / Ca and Sr / Ca are positively correlated with salinity in cultured A. tepida but show no correlation with salinity for A. lessonii. Electron microprobe mapping of incorporated Na and Mg of the cultured specimens shows that within chamber walls of A. lessonii, Na / Ca and Mg / Ca occur in elevated bands in close proximity to the primary organic lining. Between species, Mg banding is relatively similar, even though Mg content is 10 times lower and

  12. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    Science.gov (United States)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent

  13. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C

  14. Tides, surges and mean sea-level

    National Research Council Canada - National Science Library

    Pugh, D. T

    1987-01-01

    .... Interest in mean sea-level changes has recently been focused on the possibility of significant increases over the coming century as a result of global warming. Examples of applications from North America, Europe and other parts of the world are included.

  15. Effect of salinity level on TSH and thyroid hormones of grass carp, Ctenophayngodon idella

    OpenAIRE

    Peyghan, Rahim; Enayati, Ala; Sabzevarizadeh, Mostafa

    2013-01-01

    Thyroid hormones (T3, T4) have marked effect on body metabolism and in controlling osmoregulation activity in fish. The aim of this study was to determine the effect of water salinity changes on thyroid hormones level and thyroid-stimulating hormone (TSH) of grass carp. For this purpose 120 grass carp were divided randomly in to four groups (10 fish in each group and three replicates per treatment). Three groups were held in three different salinities at concentrations of 4, 8 and 12 g L-1. T...

  16. ENSO signals on sea-surface salinity in the eastern tropical pacific ocean

    Directory of Open Access Journals (Sweden)

    1998-01-01

    types collected in the tropical Pacific are analyzed to assess the regional impacts of past (1972-1996 El Niño Southern Oscillation (ENSO events. Focus is made on the regional changes in sea-surface temperature and salinity. Commercial vessels were recently equipped with automated thermosalinographs which allows to monitor the location of salinity front along the Panama-Tahiti line, separating the Panama Gulf from the South Pacific water masses. The latitudinal change of the salinity front is well correlated with the latitudinal change of the ITCZ. Salinity distribution gives additional information on El-Niño development. How future real time SSS data might provide interesting information on the development of ENSO phenomenon in the eastern tropical Pacific area will be discussed.

  17. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    Science.gov (United States)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  18. Hydrographic Data from the U.S. Naval Oceanographic Office: Persian Gulf, Southern Red Sea, and Arabian Sea 1923-1996

    National Research Council Canada - National Science Library

    Alessi, Carrol

    1999-01-01

    Temperature-salinity-depth profile data were obtained for the Persian Gulf, Southern Red Sea and parts of the Arabian Sea from the Master Oceanographic Observations Data Set (MOODS), located at the U.S...

  19. Topex-Poseidon analysis of sea level variability over the Atlantic Ocean

    Science.gov (United States)

    Catalan P-U, M.; Villares, P.; Catalan, M.; Gomez-Enri, J.

    2003-04-01

    The variability of sea level and surface geostrophic currents in Atlantic Ocean is investigated using 333 cycles of altimeter information obtained by TOPEX-POSEIDON satellite. After the improvements of orbit accuracy, the most important concern to studies of sea level variability from altimeter height data are related with the formalism used for modelling the altimetric measurement corrections. Presently, one of the main sources of potential error is the correction for atmospheric pressure loading, the so-called ‘inverse barometer effect’. As is well known, this correction is intended to adjust the sea surface elevation for the static effects of the downward force of the mass of the atmosphere on the sea surface, adjusted, in this oversimplified model in 1cm/mbar. The exact response of the sea surface to atmospheric pressure loading depends on the space and time scales of the pressure field and must be specially a concern at high latitudes where atmospheric pressure fluctuations are large due to the intensity of low pressure fields at these latitudes and the additional uncertainty in the model estimates of the local sea level pressure. To study these effects over the whole Atlantic Ocean we compute a linear regression adjustment and an Empirical Orthogonal Functions Decomposition (EOFD), between sea level variation without inverse barometer correction and the atmospheric pressure, in all the Topex-Poseidon cross points over the whole Atlantic, including both the Artic and Antarctic Oceans. We use the barometric factor computed from the linear regression to correct the satellite mean sea level variation, comparing the correlation with the pressure. Our results show an important improvement in the decorrelation between sea level and atmospheric pressure time series, compared with the use of Inverse Barometer model, at most of the satellite cross points. The complicated nature of sea level variability at high latitudes justify that EOFD analysis conclusions

  20. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir...