WorldWideScience

Sample records for salinity gradients

  1. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  2. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  3. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  4. Coastal microbial mat diversity along a natural salinity gradient.

    Directory of Open Access Journals (Sweden)

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  5. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Science.gov (United States)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under

  6. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Directory of Open Access Journals (Sweden)

    N. Bischoff

    2018-01-01

    Full Text Available Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak by assessing the organic carbon (OC stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity, and the microbial community composition based on phospholipid fatty acid (PLFA patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i soil OC stocks decrease along the salinity gradient, (ii the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii sodicity reduces the proportion and stability of mineral-associated OM, and (iv the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only  <  10 % in all three soil types, while mineral-associated OM contributed  >  90 %. Isotopic data (δ13C, 14C activity and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe

  7. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern

    Science.gov (United States)

    Telesh, Irena; Schubert, Hendrik; Skarlato, Sergei

    2013-12-01

    A recently discovered paradoxical maximum of planktonic protistan species in the salinity gradient of the Baltic Sea revealed an inverse trend of species number/salinity relation in comparison to the previously accepted species-minimum model for macrozoobenthos. Here, we review long-term data on organisms of different size classes and ecological groups to show that eukaryotic and prokaryotic microbes in plankton demonstrate a maximum species richness in the challenging zone of the critical salinity 5-8, where the large-bodied bottom dwellers (macrozoobenthos, macroalgae and aquatic higher plants) experience large-scale salinity stress which leads to an impoverished diversity. We propose a new conceptual model to explain why the diversity of small, fast-developing, rapidly evolving unicellular plankton organisms benefits from relative vacancy of brackish-water ecological niches and impaired competitiveness therein. The ecotone theory, Hutchinson's Ecological Niche Concept, species-area relationships and the Intermediate Disturbance Hypothesis are considered as a theoretical framework for understanding extinctions, speciation and variations in the evolution rates of different aquatic species in ecosystems with the pronounced salinity gradient.

  8. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  9. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Directory of Open Access Journals (Sweden)

    Alf B Josefson

    Full Text Available The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive

  10. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Science.gov (United States)

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  11. Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology

    Science.gov (United States)

    Lu, H.; Walton, J. C.; Hein, H.

    2002-08-01

    MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat.

  12. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    Science.gov (United States)

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  13. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  14. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    Science.gov (United States)

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  15. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  16. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  17. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    Science.gov (United States)

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  18. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  19. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    Science.gov (United States)

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Towards implementation of reverse electrodialysis for power generation from salinity gradients

    NARCIS (Netherlands)

    Post, J.W.; Goeting, C.H.; Valk, J.; Goinga, S.; Veerman, J.; Hamelers, H.V.M.; Hack, P.J.F.M.

    2010-01-01

    Reverse electrodialysis is a conversion technique to obtain electricity from salinity gradients. Over the past few years, the performance of reverse electrodialysis on laboratory scale has improved considerably. In this paper, we discuss the challenges we are still facing concerning the economic and

  1. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  2. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    Science.gov (United States)

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  3. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage

    NARCIS (Netherlands)

    Tufa, Ramato Ashu; Pawlowski, Sylwin; Veerman, Joost; Bouzek, Karel; Fontananova, Enrica; di Profio, Gianluca; Velizarov, Svetlozar; Goulão Crespo, João; Nijmeijer, Kitty; Curcio, Efrem

    2018-01-01

    Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of

  4. Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients

    NARCIS (Netherlands)

    Sales, B.B.; Liu, F.; Schaetzle, O.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    Salinity gradients could be a great source of energy in the future. Capacitive energy extraction based on Donnan Potential (CDP) is a new technique to directly convert this energy into electricity. COP uses a supercapacitor-like device combining ion exchange membranes and capacitive materials to

  5. Electrochemical Systems for Renewable Energy Conversion from Salinity and Proton Gradients

    OpenAIRE

    Morais, William G.; Lima, Gilberto; Gomes, Wellington J. A. S.; Huguenin, Fritz

    2018-01-01

    Ever-rising energy demand, fossil fuel dependence, and climate issues have harmful consequences to the society. Exploring clean and renewable energy to diversify the world energy matrix has become an urgent matter. Less explored or unexplored renewable energy sources like the salinity and proton gradient energy are an attractive alternative with great energy potential. This paper discusses important electrochemical systems for energy conversion from natural and artificial concentration gradie...

  6. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  7. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-01-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic

  8. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    Science.gov (United States)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  9. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  10. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    Science.gov (United States)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  11. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  12. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    Science.gov (United States)

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  13. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    Science.gov (United States)

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  14. A Tree-Ring Reconstruction of the Salinity Gradient in the Northern Estuary of San Francisco Bay

    Directory of Open Access Journals (Sweden)

    David W. Stahle

    2011-04-01

    Full Text Available Blue oak tree-ring chronologies correlate highly with winter–spring precipitation totals over California, with Sacramento and San Joaquin river stream flow, and with seasonal variations in the salinity gradient in San Francisco Bay. The convergence of fresh and saline currents can influence turbidity, sediment accumulation, and biological productivity in the estuary. Three selected blue oak chronologies were used to develop a 625-year-long reconstruction of the seasonal salinity gradient, or low salinity zone (LSZ, which provides a unique perspective on the interannual-to-decadal variability of this important estuarine habitat indicator. The reconstruction was calibrated with instrumental LSZ data for the winter–spring season, and explains 73% of the variance in the February–June position of the LSZ from 1956 to 2003. Because this calibration period post-dates the sweeping changes that have occurred to land cover, channel morphology, and natural streamflow regimes in California, the reconstruction provides an idealized estimate for how the LSZ might have fluctuated under the seasonal precipitation variations of the past 625 years, given the modern geometry and bathymetry of the estuary and land cover across the drainage basin. The February–June season integrates precipitation and runoff variability during the cool season, and does not extend into the late-summer dry season when LSZ extremes can negatively affect Sacramento–San Joaquin Delta (Delta agriculture and some aquatic organisms. However, there is such strong inter-seasonal persistence in the instrumental LSZ data that precipitation totals during the cool season can strongly pre-condition LSZ position in late summer. The 625-year-long reconstruction indicates strong interannual and decadal variability, the frequent recurrence of consecutive 2-year LSZ maxima and minima, large-scale ocean atmospheric forcing, and an interesting asymmetrical influence of warm El Ni

  15. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    Science.gov (United States)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  16. Sensitivity to cadmium along a salinity gradient in populations of the periwinkle, Littorina littorea, using time-to-death analysis

    International Nuclear Information System (INIS)

    Wolf, Hans de; Backeljau, Thierry; Blust, Ronny

    2004-01-01

    In this study, we assessed the combined effect of Cd concentration and salinity, on Cd uptake and mortality rate of Littorina littorea, collected along a salinity and pollution gradient in the Western Scheldt estuary (The Netherlands). Animals kept at their field salinity levels were exposed to three Cd concentrations (i.e. 10, 40 and 320 μM), while animals kept in 10 μM of Cd were subjected to five salinity treatments (i.e. 15, 20, 25, 30 and 35%o). Mortality was recorded every 24 h and Cd body burdens were measured with ICP-AES. Time-to-death data were analysed via Cox proportional hazard models, including the co-variates 'site-Cd treatment' in the Cd experiment and 'site-salinity treatment' in the salinity experiment. 'Cd-treatment' and 'field-salinity' affected mortality rates significantly in the Cd experiment, such that the mortality risk increased by 2.3 times when salinity was lowered from 35 to 15%o, while it decreased by 19.7 times when Cd dropped from 320 to 10 μM. 'Site' did not significantly affect the mortality risk in the salinity experiment but affected time-to-death via its interaction with the 'salinity-treatment'. Generally, mortality did not occur at a given threshold Cd tissue level, but changed over time and treatments, in function of the site. The results demonstrate the importance of the animals' environmental history and illustrate the usefulness of time-to-death analyses in ecotoxicological experiments

  17. Salinity gradient in the Manamo River, a dammed distributary of the Orinoco Delta, and its influence on the presence of Eichhornia crassipes and Paspalum repens

    International Nuclear Information System (INIS)

    Olivares, E.; Colonnello, G.

    2000-01-01

    We describe a saline gradient established by the damming of the Manamo River, a former freshwater environment, in the Orinoco Delta and the influence of this gradient on the distribution of Eichhornia crassipes Solms (water hyacinth), and Paspalum repens Berg, The two most abundant aquatic macrophytes. The present work demonstrates, on the basis of measurements of leaf osmolality and ion concentrations, that salinity is acting in the dammed river as a regulator of the studied species E. Crassipes is a potential weed which was originally controlled by the hydrodynamics of waters in the Orinoco River. Plants and river water were sampled in ten sites, three of them with high salinity. The osmolality as well as relative proportions of the main soluble ions explain the relative tolerance to salinity of E. Crassipes in comparison with P. Repens. In sites where both species were present, the K+/Na+ ratio in the leaf sap was higher in the E. Crassipes than in P. repens (authors)

  18. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.

  19. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  20. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay?

    Science.gov (United States)

    Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco

    2015-12-01

    Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.

  1. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Yue O.O. Hu

    2016-05-01

    Full Text Available Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.

  2. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    DEFF Research Database (Denmark)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the......Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC......). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal...... H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min−1, air flow rate of 12–20 mL min−1, cathode potential of −0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L−1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L−1 h−1...

  3. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient

    International Nuclear Information System (INIS)

    Swarzenski, P.W.; McKee, B.A.; Booth, J.G.

    1995-01-01

    The size distribution of U was examined in surface waters of the Amazon shelf. Water samples were collected during a low discharge river stage across a broad salinity gradient (0.3-35.4%) and fractionated by planar filtration and tangential-flow ultrafiltration into (1) solution (U s , c , 10,000 MW-0.4 μm), (3) dissolved (U d p >0.4 μm) phases. Concentrations of colloidal U comprise up to 92% of the dissolved U fraction at the river mouth and attain highest values (∼0.45 μg/L) in the productive, biogenic region of the Amazon shelf (salinities above ∼20%). U d and U c distributions are highly nonconservative relative to ideal dilution of river water and seawater, indicating extensive removal at salinities below ∼10%. The distribution of U s also shows some nonconservative behavior, yet removal, if any, is minimal. Saltwater-induced precipitation and aggregation of riverine colloidal material is most likely the dominant mechanism of U removal in the low salinity, terrigenous region of the Amazon shelf. There is evident of a substantial colloidal U input (∼245% of the riverine U c flux) into surface waters above 5%. Such U c enrichment most likely is the result of colloidal U-rich porewater diffusion/advection from the seabed and fluid muds or shelf-wide particle-colloid disaggregation. Removal of solution and dissolved phase U via a colloidal intermediate and U c aggregation in terms of coagulation phase U via a colloidal intermediate and U c aggregation was examined in terms of coagulation theory. The high reactive nature of all U phases on the Amazon shelf suggests that remobilization and fractionation of U may also occur in other river-influenced coastal environments

  4. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    Full Text Available Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1 A simple one-dimensional (1D finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2 A three-dimensional (3D hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3 A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to

  5. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    Science.gov (United States)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  6. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  7. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2013-01-01

    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients.

  8. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  9. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Science.gov (United States)

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  10. A THEORETICAL AND NUMERICAL STUDY OF THERMOSOLUTAL CONVECTION: STABILITY OF A SALINITY GRADIENT SOLAR POND

    Directory of Open Access Journals (Sweden)

    Djamel Kalache

    2011-01-01

    Full Text Available A theoretical and numerical study of the effect of thermodiffusion on the stability of a gradient layer is presented. It intends to clarify the mechanisms of fluid dynamics and the processes which occur in a salinity gradient solar pond. A mathematical modelling is developed to describe the thermodiffusion contribution on the solar pond where thermal, radiative, and massive fluxes are coupled in the double diffusion. More realistic boundary conditions for temperature and concentration profiles are used. Our results are compared with those obtained experimentally by authors without extracting the heat flux from the storage zone. We have considered the stability analysis of the equilibrium solution. We assumed that the perturbation of quantities such as velocity, temperature, and concentration are infinitesimal. Linearized equations satisfying appropriate prescribed boundary conditions are then obtained and expanded into polynomials form. The Galerkin method along with a symbolic algebra code (Maple are used to solve these equations. The effect of the separation coefficient y is analyzed in the positive and negative case. We have also numerically compared the critical Rayleigh numbers for the onset of convection with those obtained by the linear stability analysis for Le = 100, µa = 0.8, and f = 0.5.

  11. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    Science.gov (United States)

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  12. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    Science.gov (United States)

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  13. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  14. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  15. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  16. Ultrastructural and physiological responses of potato (Solanum tuberosum L. plantlets to gradient saline stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan eGao

    2015-01-01

    Full Text Available Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. ‘Longshu No. 3’ plantlets to gradient saline stress (0, 25, 50, 100 and 200 mM NaCl with two consequent observations (two and six weeks, respectively. The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1 the number of chloroplasts and cell intercellular spaces markedly decreased, (2 cell walls were thickened and even ruptured, (3 mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4 leaf Na and Cl contents increased while leaf K content decreased, (5 leaf proline content and the activities of catalase (CAT and superoxide dismutase (SOD increased significantly, and (6 leaf malondialdehyde (MDA content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  17. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    Science.gov (United States)

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  18. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  19. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  20. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  1. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  2. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay

    Science.gov (United States)

    Monismith, Stephen G.; Kimmerer, W.; Burau, J.R.; Stacey, M.T.

    2002-01-01

    The structure of the salinity field in northern San Francisco Bay and how it is affected by freshwater flow are discussed. Two datasets are examined: the first is 23 years of daily salinity data taken by the U.S. Bureau of Reclamation along the axis of northern San Francisco Bay: the second is a set of salinity transects taken by the U.S. Geological Survey between 1988 and 1993. Central to this paper is a measure of salinity intrusion. X2: the distance from the Golden Gate Bridge to where the bottom salinity is 2 psu. Using X2 to scale distance, the authors find that for most flow conditions, the mean salinity distribution of the estuary is nearly self-similar with a salinity gradient in the center 70% of the region between the Golden Gate and X2 that is proportional to X2-1. Analysis of covariability of Q and X2 showed a characteristics timescale of adjustment of the salinity field of approximately 2 weeks. The steady-state response deduced from the X2 time series implies that X2 is proportional to riverflow to the 1/7 power. This relation, which differs from the standard 1/3 power dependence that is derived theoretically assuming constant exchange coefficients, shows that the upstream salt flux associated with gravitational circulation is more sensitive to the longitudinal salinity gradient than theory supposes. This is attributed to the strengthening of stratification caused by the stronger longitudinal salinity gradient that accompanies larger river flows.

  3. Fine-scale variability of isopycnal salinity in the California Current System

    Science.gov (United States)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  4. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  5. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  6. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  7. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  8. Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil.

    Science.gov (United States)

    Silva, Camila Magalhães; Evangelista-Barreto, Norma Suely; Vieira, Regine Helena Silva Dos Fernandes; Mendonça, Kamila Vieira; Sousa, Oscarina Viana de

    2014-12-15

    The main objective of this study was to quantify population and identify culturable species of Aeromonas in sediment and surface water collected along a salinity gradient in an urban estuary in Northeastern Brazil. Thirty sediment samples and 30 water samples were collected from 3 sampling locations (A, B and C) between October 2007 and April 2008. The Aeromonas count was 10-7050CFU/mL (A), 25-38,500CFU/mL (B) andwater samples, and ∼100-37,500CFU/g (A), 1200-43,500CFU/g (B) andantibiotics tested. Resistance to erythromycin was mostly plasmidial. In conclusion, due to pollution, the Cocó River is contaminated by pathogenic strains of Aeromonas spp. with a high incidence of antibacterial resistance, posing a serious risk to human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Characteristics of the ichthyofauna of a temperate microtidal estuary with a reverse salinity gradient, including inter-decadal comparisons.

    Science.gov (United States)

    Veale, L; Tweedley, J R; Clarke, K R; Hallett, C S; Potter, I C

    2014-11-01

    Data on the fish fauna of the Leschenault Estuary on the lower west coast of Australia were collected and used as a model to elucidate the characteristics of permanently open estuaries with a reverse salinity gradient, which undergo seasonal changes similar to many other estuaries with Mediterranean climate. Focus was placed on determining (1) the relationships of the number of species, density, life cycle category and species composition of fishes with region (within estuary), season and year and salinity, (2) whether species are partitioned along the lengths of such systems and (3) the extent and significance of any inter-decadal changes in species composition. The analyses and interpretation involved using multi-factorial permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANOSIM) designs, and three new or recently published visualization tools, i.e. modified non-metric multidimensional scaling (nMDS) plots, coherent species curves and segmented bubble plots. The base, lower, upper and apex regions of the Leschenault Estuary, along which the salinity increased in each season except in winter when most rainfall occurs, were sampled seasonally for the 2 years between winter 2008 and autumn 2010. Estuarine residents contributed twice as many individuals, but less than half the number of species as marine taxa. While the numbers of marine species and estuarine residents declined between the base or lower and apex regions, the individuals of marine species dominated the catches in the base region and estuarine residents in the other three regions. Ichthyofaunal composition in each region underwent conspicuous annual cyclical changes, due to time-staggered differences in recruitment among species, and changed sequentially along the estuary, both paralleling salinity trends. Different groups of species characterized the fauna in the different regions and seasons, thereby partitioning resources among species. The ichthyofauna of the

  10. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Thottathil, S.D.; Balachandran, K.K.; Jayalakshmy, K.V.; Gupta, G.V.M.; Nair, S.

    , P.A., 2002. Compositional change in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnology and Oceanography 47, 453e470. Cottrell, M.T., Kirchman, D.L., 2000. Natural assemblages of marine proteo- bacteria...) according to a salinity gradient. Estuarine, Coastal and Shelf Science 24, 95e108. Pullin, M.J., Bertilsson, S., Goldstone, J.V., Voelker, B.M., 2004. Effects of sunlight and hydroxyl radical on dissolved organic matter: bacterial growth efficiency...

  11. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    Science.gov (United States)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  12. Identification of RAPD markers linked to salinity tolerance in wheat

    African Journals Online (AJOL)

    armghan_shehzad

    The individual plants from F2 population segregation for salinity tolerance and the parents ..... plasma membrane Na+/H+ antiporters that are energized by proton gradients ... tonoplast by vascular Na+/ H+ antiporters into the cell vacuoles ...

  13. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  14. Modified whole effluent toxicity test to assess and decouple wastewater effects from environmental gradients.

    Directory of Open Access Journals (Sweden)

    Sebastián Sauco

    Full Text Available Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd and salinity controls (SC: without canal water. CWd were prepared by diluting the water effluent (sampled during the pesticide application period with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.

  15. Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Garrett, C.M. Jr.; Posey, J.S.; Han, J.H.; Jirik, L.A.

    1981-11-01

    Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.

  16. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  17. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  18. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    KAUST Repository

    Thompson, Luke R

    2016-07-15

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community

  19. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae.

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    Full Text Available A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae and Enochrus (Hydrophilidae. Their osmoregulatory strategy (osmoconformity or osmoregulation was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1. In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1 across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1, respectively, and maintained osmotic gradients over 3500 mosmol kg(-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels

  20. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  1. Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

    OpenAIRE

    Etienne, Brauns

    2013-01-01

    Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a c...

  2. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David; Antunes, Andre; Brune, Andreas; Stingl, Ulrich

    2011-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  3. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  4. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  5. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  6. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  7. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  8. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  9. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    Science.gov (United States)

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  10. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  11. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  12. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    Science.gov (United States)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  13. Salinity shapes food webs in shallow lakes: implications for increasing aridity with climate change

    DEFF Research Database (Denmark)

    Vidal, Nicolas; Yu, Jinlei; Gutierrez, Maria Florencia

    2015-01-01

    on community and food web structure in 24 lakes along a wide salinity gradient, from freshwater (0.5 g L-1) to hypersaline lakes (115 g L-1), in a semiarid region in North West China. Fish, zooplankton and macroinvertebrate communities were sampled during July 2014 for determination of taxonomy and size......A reduction in runoff and higher evaporation rates are expected to occur towards 2050 in arid and semiarid regions of the world, resulting in a reduction of water level and salinization of inland waters. Besides the natural process of catchment erosion, human activities such as irrigation of crops...... may also increase salinization. Reduced biodiversity in freshwater systems is the most commonly reported effect of salinization, which may have implications for food web structure and likely for ecosystem functioning as well. The objective of the study was to analyze the effects of salinity...

  14. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  15. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  16. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  17. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    Science.gov (United States)

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  18. Disentangling diversity patterns in sandy beaches along environmental gradients.

    Science.gov (United States)

    Barboza, Francisco R; Gómez, Julio; Lercari, Diego; Defeo, Omar

    2012-01-01

    Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative

  19. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  20. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  1. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    Directory of Open Access Journals (Sweden)

    Vanessa eRobitzch

    2015-02-01

    Full Text Available The Red Sea is the world’s northernmost tropical sea. The 2,000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south with an opposing temperature gradient from 21-27°C in the north to 27-33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from ten reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo

  2. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.; Banguera Hinestroza, Eulalia; Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Voolstra, Christian R.

    2015-01-01

    The Red Sea is the world's northernmost tropical sea. The 2000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south) with an opposing temperature gradient from 21 to 27°C in the north to 27–33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from 10 reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo-Pacific and Arabian

  3. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.

    2015-02-11

    The Red Sea is the world\\'s northernmost tropical sea. The 2000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south) with an opposing temperature gradient from 21 to 27°C in the north to 27–33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from 10 reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo-Pacific and

  4. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  5. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  6. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  7. Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters

    DEFF Research Database (Denmark)

    Nielsen, Mette Møller; Manns, Dirk Martin; D'Este, Martina

    2016-01-01

    , the highest protein content (7.5% of dry matter), and the highest capacity for bio-remediation of nitrogen (1.88% N of dry matter) at high salinities, as opposed to the highest concentrations of fermentable sugars (90% of dry matter) and pigments at low salinities. Thus, areas suitable for high biomass...

  8. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  9. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    Science.gov (United States)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone

  10. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  11. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    Science.gov (United States)

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  12. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    Science.gov (United States)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in

  13. Salinity and Temperature Tolerance of the Nemertean Worm Carcinonemertes errans, an Egg Predator of the Dungeness Crab.

    Science.gov (United States)

    Dunn, Paul H; Young, Craig M

    2015-04-01

    Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.

  14. A retrospective analysis to explore the applicability of fish biomarkers and sediment bioassays along contaminated salinity transects

    NARCIS (Netherlands)

    Schipper, C.A.; Lahr, J.; Brink, van den P.J.; George, S.G.; Hansen, P.D.; Silva de Assis, Da H.C.; Oost, van der R.; Thain, J.E.; Livingstone, D.; Mitchelmore, C.; Schooten, van F.J.; Ariese, F.; Murk, A.J.; Grinwis, G.C.M.; Klamer, H.; Kater, J.; Postma, J.F.; Werf, van der B.; Vethaak, A.D.

    2009-01-01

    Biological-effects monitoring in estuarine environments is complex as a result of strong gradients and fluctuations in salinity and other environmental conditions, which may influence contaminant bioavailability and the physiology and metabolism of the organisms. To select the most robust and

  15. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  16. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    Science.gov (United States)

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: Insights into an estuarine invasion.

    Science.gov (United States)

    Caño, Lidia; Fuertes-Mendizabal, Teresa; García-Baquero, Gonzalo; Herrera, Mercedes; González-Moro, M Begoña

    2016-05-01

    Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands. In two greenhouse experiments, we grew plants derived from seeds and cuttings collected through interspersed patches differing in edaphic salinity from an invasive population. We estimated parental environmental salinity from leaf Na(+) content in parental plants, and we measured fitness and ion homeostasis of the offspring grown in contrasting salinity conditions. Baccharis halimifolia tolerates high salinity but experiences drastic biomass reduction at moderate salinity. At moderate salinity, responses to salinity are affected by the parental salinity: flowering initiation in seedlings and male cuttings is positively correlated with parental leaf Na(+) content, and biomass is positively correlated with maternal leaf Na(+) in female cuttings and seedlings. Plant height, leaf production, specific leaf area, and ionic homeostasis at the low part of the gradient are also affected by parental salinity, suggesting enhanced shoot growth as parental salinity increases. Our results support plasticity to salinity and transgenerational effects as factors with great potential to contribute to the invasive ability of B. halimifolia through estuarine communities of high conservation value. © 2016 Botanical Society of America.

  18. Benthic foraminifera cultured over a large salinity gradient: first results and comparison with field data from the Baltic Sea.

    Science.gov (United States)

    Groeneveld, Jeroen; Filipsson, Helena L.; Austin, William E. N.; Darling, Kate; Quintana Krupinski, Nadine B.

    2015-04-01

    Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxy methods for climate reconstructions. This is especially important for shelf and coastal environments where increasing numbers of high-resolution paleorecords are being generated. These challenges are further highlighted in connection with ECORD/IODP Expedition 347: Baltic Sea Paleoenvironments. This large-scale drilling operation took place in the Baltic Sea region during the autumn of 2013. At this time, there is a pressing need for proxy calibrations directly targeted at the brackish Baltic environment. Within the CONTEMPORARY project we are investigating different temperature and salinity proxy variables through a combination of field- and culture-based benthic foraminiferal samples, together with genetic characterization (genotyping) of the morphospecies. We have completed two field campaigns where we collected (living) foraminifera and water samples at several sites, ranging from fully marine to low salinity conditions. The core-top foraminifera have been analysed for trace metal/Ca, stable oxygen and carbon isotopes, and faunal composition. Living foraminifera collected from the sediment-water interface were cultured in sea water in two long-term experiments at different temperatures (5°C and 10°C) and at three different salinities (15, 25, and 35). The first experiment yielded a large number of reproduced and experimentally-grown Elphidium specimens. The second experiment resulted in growth but no reproduction. We will provide a summary of the experimentally grown material and discuss the challenges of generating new proxy calibrations for foraminiferal shell geochemistry in the Baltic Sea. Furthermore, specimens of Elphidium and Ammonia, found at two sampling sites (Anholt, Kattegat and Hanöbay) with differing salinities, were genotyped and the results indicate that the same genotype of Elphidium is

  19. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient; Migration de particules et de solutes en milieu poreux. Modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.

  20. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  1. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  2. Soil Fertility Gradient in the Restinga Ecosystem

    Science.gov (United States)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  3. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  4. Rocky intertidal macrobenthic communities across a large-scale estuarine gradient

    Directory of Open Access Journals (Sweden)

    Luis Giménez

    2010-03-01

    Full Text Available We evaluated relationships between (1 salinity and species richness and (2 frontal zones and community structure for the rocky intertidal macrobenthic community of the Uruguayan coast. A large-scale sampling design (extent ~500 km covering 9 rocky shores across 3 intertidal levels was performed between September and November 2002. The linear relationship between salinity and species richness (minimum at the freshwater extreme and the lack of correlation between variation in salinity and richness rejected two previous empirical models, explaining variations in species richness along the salinity gradient. Other factors (e.g. turbidity may explain this discrepancy. The estuarine front defined two communities—freshwater and estuarine-marine—differing in species composition and richness. The freshwater community was characterised by low richness and few individuals confined to crevices or tide pools, and must be structured by physical processes (e.g. desiccation; the estuarine-marine community, with individuals occupying almost all available substrata, must be structured by both physical and biological processes. A marine front, separating estuarine and marine habitats, had a weak effect on community structure although estuarine and marine assemblages differed according to species characterising different functional groups. We conclude that the position of the estuarine frontal zones is important for explaining large-scale patterns of community structure in the study area.

  5. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    Science.gov (United States)

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the

  6. Changes in standing stocks and fluxes of carbon due to salinization: tidal freshwater wetland forest retreat to marsh

    Science.gov (United States)

    Krauss, K.; Noe, G. B.; Duberstein, J. A.; Conner, W. H.; Stagg, C. L.; Jones, M.; Bernhardt, C. E.; Cormier, N.

    2017-12-01

    Assessments of organic carbon (C) standing stocks and fluxes as wetland ecosystems transition from tidally influenced freshwater forested wetlands to low-salinity marshes are not typically included in "blue carbon" accounting. However, these ecosystems have the potential to store and convey large quantities of C. Here, we report on data collected from eight riverine sites along salinity and hydro-edaphic gradients in South Carolina and Georgia to provide the first complete estimates of C storage, flux, and burial, including estimation of C export to aquatic environments, in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. Total standing stocks of C ranged from 280 to 891 Mg C/ha along both rivers but with no consistent trend in standing stock shifts along salinity gradients between the two rivers. Soil C standing stocks were most variable among sites. Furthermore, we assessed input (litterfall, woody growth, herbaceous growth, root growth and surface sediment C accretion) in comparison with output (surface litter decomposition, root decomposition and gaseous C) fluxes over periods ranging from 2 to 11 years. C sequestration from mass balance calculations ranged from 103 to 728 g C/m2/year among sites, with generally greater C sequestration on sites with prominent salinity-mediated conversion to oligohaline marsh. Dissolved C export was estimated as the difference between C sequestration and soil C burial using 14C dating of cores, and ranged from 144 to 404 g C/m2/year, representing a large amount of C export to feed aquatic biogeochemical transformations and secondary productivity. Along with C accounting, these sites also differed in how N and P were mineralized in soils, with considerable N mineralization on salinity-stressed (2.4-4.3 parts per thousand) forested sites with newly encroached marsh plants and considerable P mineralization on slightly higher salinity marshes. In all, C storage from tidal freshwater forested wetlands

  7. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    Science.gov (United States)

    Giménez, Luis

    2003-01-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  8. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Science.gov (United States)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  9. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity.

    Science.gov (United States)

    Lau, Clive L F; Jacobs, David K

    2017-01-01

    We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi , the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences) show genotypic (RAG1, microsatellites) evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi . Bayesian group assignment (STRUCTURE) on six microsatellite loci and multivariate analyses (DAPC) on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be altered, impacting

  10. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity

    Directory of Open Access Journals (Sweden)

    Clive L.F. Lau

    2017-12-01

    Full Text Available We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi, the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences show genotypic (RAG1, microsatellites evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi. Bayesian group assignment (STRUCTURE on six microsatellite loci and multivariate analyses (DAPC on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be

  11. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    Science.gov (United States)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent

  12. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  13. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  14. Impacts of Salinity and Oxygen on Particle-Associated Microbial Communities in the Broadkill River, Lewes DE

    Directory of Open Access Journals (Sweden)

    Kristin M. Yoshimura

    2018-03-01

    Full Text Available Particulate matter in estuarine systems hosts microbial communities that can impact biogeochemical cycles. While the bacterial community composition on suspended particles has been previously investigated, especially with regards to how salinity may structure these communities, the archaeal fraction of the microbial community has not received the same attention. Here we investigate both the bacterial and archaeal community composition on two sizes of particles along a riverine discharge gradient in the Broadkill River, DE, USA, to determine whether the archaeal community is selected by similar environmental stressors as the bacteria. We measured salinity, nutrients, and diatom abundances, and use particle size as a proxy for oxygen concentrations. We show that salinity is a strong environmental factor that controls both bacterial and archaeal community composition and oxygen is an additional factor, impacting archaea more than bacteria.

  15. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  16. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  17. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica.

    Science.gov (United States)

    Czechowski, Paul; White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I

    2016-12-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales.

  18. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring.

    Science.gov (United States)

    Poirier, Maude; Listmann, Luisa; Roth, Olivia

    2017-07-01

    Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring ( Clupea harengus ) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus . In addition, larvae were exposed to a Vibrio spp . infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.

  19. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  20. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  1. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  2. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  3. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  4. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Jesse G Dillon

    2013-12-01

    Full Text Available The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 & 380 g l-1 total salts respectively compared to Pond 9 (180 g l-1 total salts. Both Pond 11 and 12 communities had high representation (47 and 45% of clones respectively by Haloquadratum walsbyi-like (99% similarity lineages. The archaeal community in Pond 9 was dominated (79% by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community. This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted.

  5. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)

    2006-04-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)

  6. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    International Nuclear Information System (INIS)

    Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan

    2006-01-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond

  7. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  8. Trophic–salinity gradients and environmental redundancy resolve mesozooplankton dynamics in a large tropical coastal lagoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rakesh, M.; Madhavirani, K.S.V.K.S.; Kumar, B.C.; Raman, A.V.; Kalavati, C.; Rao, Y.P.; Stephen, R.; Rao, V.R.; Gupta, G.V.M.; Subramanian, B.R.

    –light gradients majorly influence MSP structure in one of Asia’s largest brackish water lagoons in India. Multivariate analysis of environmental variables (May 2004–September 2006; View the MathML source) and MSP examined (May 2004 to October 2005; View the Math...

  9. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  10. Algal and cyanobacterial saline biofilms of the Grande Coastal Lagoon, Lima, Peru

    OpenAIRE

    Montoya, Haydee

    2009-01-01

    Tropical coastal wetland ecosystems are widely distributed in arid regions. The Grande coastal lagoon in Peru's central plain is shallow, eutrophic and alkaline, exposed to the annual hydrological regime with flooding and desiccation periods, when a salt crust is formed. The brackish to hypersaline habitats showed salinity gradients from 2-90 ppt (NaCl) to saturation, pH values from 7.0 to 10.5, temperatures from 18 to 31 C, phosphate concentrations from 0.5 to 50 mg 1-1. Dominance of halophi...

  11. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  12. Influence of salinity on prevalence of the parasite Loxothylacus panopaei in the xanthid Panopeus obesus in SW Florida.

    Science.gov (United States)

    Tolley, S Gregory; Winstead, James T; Haynes, Lesli; Volety, Aswani K

    2006-06-23

    This study was conducted to examine the potential influence of salinity, a proxy for freshwater inflow, on the prevalence of the castrator parasite Loxothylacus panopaei on saltmarsh mud crabs Panopeus obesus on SW Florida oyster reefs. Spatial and seasonal patterns of the presence of potential host crabs and the prevalence of the parasite were assessed in the Caloosahatchee, Estero, and Faka Union estuaries. Lift nets (1 m2) containing 5 1 of oyster clusters were deployed on intertidal reefs at 3 sites along the salinity gradient of each estuary. Nets were deployed during 3 seasonally dry and 3 seasonally wet months for a period of 30 d. P. obesus densities tended to increase downstream in higher salinity waters, with crabs being absent from the upper station in the Caloosahatchee during both seasons and absent from the upper station of the Faka Union during wet months. Parasite prevalence was reduced upstream in each estuary during wet months compared to dry months, and for those estuaries that experienced higher relative levels of freshwater inflow. Furthermore, parasite prevalence was positively correlated with the mean salinity of capture of host crabs. Based on the distribution of P. obesus and the above patterns related to salinity, it appears that freshwater inflow and seasonal rains might regulate the prevalence of this parasite in SW Florida by creating spatiotemporal, low salinity refuges for its host.

  13. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    Science.gov (United States)

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  14. Latitudinal environmental gradients and diel variability influence abundance and community structure of Chaetognatha in Red Sea coral reefs

    KAUST Repository

    Al-aidaroos, Ali M.

    2016-08-15

    The Red Sea has been recognized as a unique region to study the effects of ecohydrographic gradients at a basin-wide scale. Its gradient of temperature and salinity relates to the Indian Ocean monsoon and associated wind-driven transport of fertile and plankton-rich water in winter from the Gulf of Aden into the Red Sea. Subsequent evaporation and thermohaline circulation increase the salinity and decrease water temperatures toward the North. Compared with other ocean systems, however, relatively little is known about the zooplankton biodiversity of the Red Sea and how this relates to Red Sea latitudinal gradients. Among the most abundant zooplankton taxa are Chaetognatha, which play an important role as secondary consumers in most marine food webs. Since Chaetognatha are sensitive to changes in temperature and salinity, we surmised latitudinal changes in their biodiversity, community structure and diel variability along the coast of Saudi Arabia. Samples were collected at nine coral reefs spanning approximately 1500km, from the Gulf of Aqaba in the northern Red Sea to the Farasan Archipelago in the southern Red Sea. Thirteen Chaetognatha species belonging to two families (Sagittidae and Krohnittidae) were identified. Latitudinal environmental changes and availability of prey (i.e. Copepoda, Crustacea) altered Chaetognatha density and distribution. The cosmopolitan epiplanktonic Flaccisagitta enflata (38.1%) dominated the Chaetognatha community, and its abundance gradually decreased from South to North. Notable were two mesopelagic species (Decipisagitta decipiens and Caecosagitta macrocephala) in the near-reef surface mixed layers at some sites. This was related to wind-induced upwelling of deep water into the coral reefs providing evidence of trophic oceanic subsidies. Most Sagittidae occurred in higher abundances at night, whereas Krohnittidae were more present during the day. Chaetognatha with developing (stage II) or mature ovaries (stage III) were more active

  15. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  16. Influence of salinity on bacterioplankton communities from the brazilian rain forest to the coastal Atlantic Ocean

    OpenAIRE

    Silveira, Cynthia Barbosa da; Vieira, Ricardo Pilz; Cardoso, Alexander Machado; Paranhos, Rodolfo Pinheiro da Rocha; Albano, Rodolpho Mattos; Martins, Orlando Bonifácio

    2011-01-01

    BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. MET...

  17. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    Science.gov (United States)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  18. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    Science.gov (United States)

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  19. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  20. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  1. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine

    International Nuclear Information System (INIS)

    Kumar, Rahi; Wang, Zhen J.; Forsythe, Carlos; Fu Yanjun; Chen, Yunn-Yi; Yeh, Benjamin M.

    2012-01-01

    Objective: To evaluate the feasibility of dual-energy CT (DECT) for monitoring dynamic changes in the renal corticomedullary sodium gradient in swine. Material and methods: This study was approved by our Institutional Animal Care and Use Committee. Four water-restricted pigs were CT-scanned at 80 and 140 kVp at baseline and at 5 min intervals for 30 min during saline or furosemide diuresis. The renal cortical and medullary CT numbers were recorded. A DECT basis material decomposition method was used to quantify renal cortical and medullary sodium concentrations and medulla-to-cortex sodium ratios at each time point based on the measured CT numbers. The sodium concentrations and medulla-to-cortex sodium ratios were compared between baseline and at 30 min diuresis using paired Student t-tests. The medulla-to-cortex sodium ratios were considered to reflect the corticomedullary sodium gradient. Results: At baseline prior to saline diuresis, the mean medullary and cortical sodium concentrations were 103.8 ± 8.7 and 65.3 ± 1.7 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.59. At 30 min of saline diuresis, the medullary and cortical sodium concentrations decreased to 72.3 ± 1.0 and 56.0 ± 1.4 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.29 (P < 0.05). At baseline prior to furosemide diuresis, the mean medullary and cortical sodium concentrations were 110.5 ± 3.6 and 66.7 ± 4.1 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.66. At 30 min of furosemide diuresis, the medullary and cortical sodium concentrations decreased to 68.5 ± 0.3 and 58.9 ± 4.0 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.16 (P < 0.05). One of the 4 pigs developed acute tubular necrosis likely related to prolonged hypoxia during intubation prior to the furosemide diuresis experiment. The medulla-to-cortex sodium ratio for this

  2. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  3. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  4. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA

    Science.gov (United States)

    LaPeyre, Megan K.; Eberline, Benjamin S.; Soniat, Thomas M.; La Peyre, Jerome F.

    2013-01-01

    Understanding how different life history stages are impacted by extreme or stochastic environmental variation is critical for predicting and modeling organism population dynamics. This project examined recruitment, growth, and mortality of seed (25–75 mm) and market (>75 mm) sized oysters along a salinity gradient over two years in Breton Sound, LA. In April 2010, management responses to the Deepwater Horizon oil spill resulted in extreme low salinity (25 °C) significantly and negatively impacted oyster recruitment, survival and growth in 2010, while low salinity (25 °C). With increasing management of our freshwater inputs to estuaries combined with predicted climate changes, how extreme events affect different life history stages is key to understanding variation in population demographics of commercially important species and predicting future populations.

  5. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  6. Assessing sandy beach macrofaunal patterns along large-scale environmental gradients: A Fuzzy Naïve Bayes approach

    Science.gov (United States)

    Bozzeda, Fabio; Zangrilli, Maria Paola; Defeo, Omar

    2016-06-01

    A Fuzzy Naïve Bayes (FNB) classifier was developed to assess large-scale variations in abundance, species richness and diversity of the macrofauna inhabiting fifteen Uruguayan sandy beaches affected by the effects of beach morphodynamics and the estuarine gradient generated by Rio de la Plata. Information from six beaches was used to estimate FNB parameters, while abiotic data of the remaining nine beaches were used to forecast abundance, species richness and diversity. FNB simulations reproduced the general increasing trend of target variables from inner estuarine reflective beaches to marine dissipative ones. The FNB model also identified a threshold value of salinity range beyond which diversity markedly increased towards marine beaches. Salinity range is suggested as an ecological master factor governing distributional patterns in sandy beach macrofauna. However, the model: 1) underestimated abundance and species richness at the innermost estuarine beach, with the lowest salinity, and 2) overestimated species richness in marine beaches with a reflective morphodynamic state, which is strongly linked to low abundance, species richness and diversity. Therefore, future modeling efforts should be refined by giving a dissimilar weigh to the gradients defined by estuarine (estuarine beaches) and morphodynamic (marine beaches) variables, which could improve predictions of target variables. Our modeling approach could be applied to a wide spectrum of issues, ranging from basic ecology to social-ecological systems. This approach seems relevant, given the current challenge to develop predictive methodologies to assess the simultaneous and nonlinear effects of anthropogenic and natural impacts in coastal ecosystems.

  7. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  8. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    Science.gov (United States)

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  10. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  11. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    Science.gov (United States)

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  12. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  13. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  14. Saline flushing fluids restricting contamination of the near-face zone

    Energy Technology Data Exchange (ETDEWEB)

    Weil, W

    1982-01-01

    Questions are covered which concern the characteristics and main properties of saline solutions without solid phase and their use as flushing fluids. Attention is drawn to the fact that these solutions are universally used in flushing and other operations of wells with high gradients of bed pressures, and also in those cases where the oil and gas levels are especially sensitive to negative influence of traditional clay solutions which cause irreversible decrease in permeability of the reservoirs through contamination and plugging of the pores in the near-face zone, and consequently, influence the decrease in bed productivity. The described methods and chemical reagents decrease the filtering of these solutions in the reservoirs, improve viscosity and stabilize the near-face zone.

  15. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France)

    Science.gov (United States)

    Dur, Gaël; Souissi, Sami

    2018-01-01

    Temperature and salinity are important factors shaping the habitats of estuarine ectotherms. Their respective effect varies along the life history moments of species with a complex life cycle. Estuarine species, particularly those living in the salinity gradient, are concerned by habitat changes that can reduce their fitness. Consequently, efforts to define the importance of those two environmental variables on developmental stages are required to enable forecasting estuarine species' future distributions. The present study focuses on the main component of the Seine estuary's zooplankton, i.e. the calanoid copepod Eurytemora affinis, and aims: (i) to establish the role of temperature and salinity in designing the habitat of E. affinis within the Seine estuary; and (ii) to model the habitat of three groups of E. affinis defined through the life cycle as follows: all larval instars (N1-N6), the first to fourth juvenile instars (C1-C4), and the pre-adult and adults instars (C5-Adults). For this purpose, data from intensive field studies of zooplankton sampling during 2002-2010 were used. The fine-scale data, i.e., every 10-20 min, on density and abiotic conditions (salinity, temperature) provided inputs for the computation. We established regions in salinity-temperature space where the three groups of developmental instars exhibit higher densities. The computed habitats differ between developmental groups. In general, the preferendum of salinity increases with ontogeny. The optima of temperature are rather constant between developmental stages (∼14 °C). Our model can be used to determine E. affinis functional habitat (i.e., the spatial relation with structuring factors), to carry out retrospective analysis, and to test future distributions. The present study also emphasizes the need of data from appropriate sampling strategies to conduct habitat definition.

  16. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  17. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  18. Mesohaline submerged aquatic vegetation survey along the U.S. gulf of Mexico coast, 2001 and 2002: A salinity gradient approach

    Science.gov (United States)

    Merino, J.H.; Carter, J.; Merino, S.L.

    2009-01-01

    Distribution of marine submerged aquatic vegetation (SAV; i.e., seagrass) in the northern Gulf of Mexico coast has been documented, but there are nonmarine submersed or SAV species occurring in estuarine salinities that have not been extensively reported. We sampled 276 SAV beds along the gulf coast in Florida, Alabama, Mississippi, Louisiana, and Texas in 2001 and 2002 in oligohaline to polyhaline (0 to 36 parts per thousand) waters to determine estuarine SAV species distribution and identify mesohaline SAV communities. A total of 20 SAV and algal species was identified and habitat characteristics such as salinity, water depth, pH, conductivity, turbidity, dissolved oxygen, and sediment composition were collected. Fourteen SAV species occurred two or more times in our samples. The most frequently occurring species was Ruppia maritima L. (n = 148), occurring in over half of SAV beds sampled. Eleocharis sp. (n = 47), characterized with an emergent rather than submerged growth form, was a common genus in the SAV beds sampled. A common marine species was Halodule wrightii Asch. (n = 36). Nonindigenous species Myriophyllum spicatum L. (n = 31) and Hydrilla verticillata (L. f.) Royle (n = 6) were present only in oligohaline water. Analyzing species occurrence and environmental characteristics using canonical correspondence and two-way indicator species analysis, we identify five species assemblages distinguished primarily by salinity and depth. Our survey increases awareness of nonmarine SAV as a natural resource in the gulf, and provides baseline data for future research. ?? 2009 by the Marine Environmental Sciences Consortium of Alabama.

  19. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  20. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    Science.gov (United States)

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  1. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  2. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  3. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  4. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  5. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    Science.gov (United States)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  6. Salty or Sweet: Exploring the Challenges of Groundwater Salinization Within a Sustainability Framework

    Science.gov (United States)

    Basu, N. B.; Van Meter, K. J.; Tate, E.

    2012-12-01

    In semi-arid to arid landscapes under intensive irrigation, groundwater salinization can be a persistent and critical problem, leading to reduced agricultural productivity, limited access to fresh drinking water, and ultimately desertification. It is estimated that in India alone, problems of salinity are now affecting over 6 million hectares of agricultural land. In villages of the Mewat district of Haryana in Northern India, subsistence-level farming is the primary source of income, and farming families live under serious threat from increasing salinity levels, both in terms of crop production and adequate supplies of drinking water. The Institute for Rural Research and Development (IRRAD), a non-governmental organization (NGO) working in Mewat, has taken an innovative approach in this area to problems of groundwater salinization, using check dams and rainwater harvesting ponds to recharge aquifers in the freshwater zones of upstream hill areas, and to create freshwater pockets within the saline groundwater zones of down-gradient areas. Initial, pilot-scale efforts have led to apparent success in raising groundwater levels in freshwater zones and changing the dynamics of encroaching groundwater salinity, but the expansion of such efforts to larger-scale restoration is constrained by the availability of adequate resources. Under such resource constraints, which are typical of international development work, it becomes critical to utilize a decision-analysis framework to quantify both the immediate and long-term effectiveness and sustainability of interventions by NGOs such as IRRAD. In the present study, we have developed such a framework, linking the climate-hydrological dynamics of monsoon driven systems with village-scale socio-economic attributes to evaluate the sustainability of current restoration efforts and to prioritize future areas for intervention. We utilize a multi-dimensional metric that takes into account both physical factors related to water

  7. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    Science.gov (United States)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  8. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  9. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  10. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  11. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  12. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  13. Environmental drivers defining linkages among life-history traits: mechanistic insights from a semiterrestrial amphipod subjected to macroscale gradients.

    Science.gov (United States)

    Gómez, Julio; Barboza, Francisco R; Defeo, Omar

    2013-10-01

    Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22 months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies.

  14. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  15. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  16. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  17. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  18. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  19. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  20. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  1. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  2. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  3. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.)

    KAUST Repository

    Shah, Syed Haleem

    2017-09-12

    .85) was determined based on a large (n = 277) dataset. We demonstrate that the SPAD-502 readings and plant photosynthetic pigment content per-leaf area are profoundly affected by salinity and nutrient stress, but that the general form of their relationship remains largely unaffected by the stress. As such, a generalized regression model can be used for Chlt and Ct estimation, even across a range of salinity and fertilizer gradients.

  4. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  5. Variation of Archaeal Populations Along a Salinity Gradient in the Pearl River Estuary, China: Implications for Synergy Between Different Metabolic Processes

    Science.gov (United States)

    Zhang, C.

    2016-02-01

    Marine archaea mainly include marine group I (MGI) that function as chemolithoautotrophs growing on ammonia and marine group II (MGII) that live heterotrophically. In this study, we quantified the abundance of MGI (represented by archaeal amoA gene) and MGII (16S rRNA gene) using qPCR in the water column of different salinities (A: 0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰) in the Pearl River Estuary over a 12-month period. The results showed that the abundance of MG II in site C (8.5±10.1×107 copies/L) was significantly higher than the other three sites (A: 3.5±8.8×105 copies/L; B: 2.7±4.5×107 copies/L; D: 2.2±4.4×107 copies/L) in all seasons, indicating the perennial blooming of MGII that might be due to the optimal combination of available organic carbon and salinity at this site. We also observed that the correlation between MGI and MGII became better toward the marine water and was significant at site D (R2: A, 0.06; B, 0.1; C, 0.24; D, 0.64), indicating the potential functional relationship between them with increasing salinity. This allows us to hypothesize that the growth of MGI in the coastal site is more dependent on release of ammonia from organic matter degradation by MGII and other heterotrophic organisms. The Pearl River Estuary may be an ideal environment for testing this hypothesis, which may provide insight into the mechanisms of carbon cycle performed by different archaea in continental margin systems.

  6. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  7. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  8. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  9. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  10. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  11. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    Science.gov (United States)

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  12. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) Larvae exposed to subsequent salinity stress.

    Science.gov (United States)

    Miller, Seth H; Zarate, Sonia; Smith, Edmund H; Gaylord, Brian; Hosfelt, Jessica D; Hill, Tessa M

    2014-01-01

    Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms.

  13. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  14. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    Science.gov (United States)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  15. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  16. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  17. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  18. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  19. Meteorological Aspects of the Eastern North American Pattern with Impacts on Long Island Sound Salinity

    Directory of Open Access Journals (Sweden)

    Justin A. Schulte

    2017-07-01

    Full Text Available The eastern North American sea level pressure dipole (ENA pattern is a recently identified teleconnection pattern that has been shown to influence mid-Atlantic United States (U.S streamflow variability. Because the pattern was only recently identified, its impacts on U.S. precipitation and estuaries on daily to seasonal timescales is unknown. Thus, this paper presents the first seasonal investigation of ENA relationships with global atmospheric fields, U.S. precipitation, and mid-Atlantic estuarine salinity. We show that the ENA pattern explains up to 25–36% of precipitation variability across Texas and the western U.S. We also show that, for the Northeast U.S, the ENA pattern explains up to 65% of precipitation variability, contrasting with previous work showing how well-known climate indices can only explain a modest amount of precipitation variability. The strongest ENA-precipitation relationships are in the spring and fall. The relationships between the ENA pattern and precipitation across remote regions reflect the upper-atmospheric Rossby wave pattern associated with the ENA pattern that varies seasonally. The El-Nino/Southern Oscillation (ENSO is related to the spring ENA pattern, indicating that extended outlooks of the ENA pattern may be possible. We also show that the ENA index is strongly correlated with salinity and vertical haline stratification across coastal portions of the mid-Atlantic Bight so that hypoxia forecasts based on the ENA index may be possible. Statistical connections between vertical salinity gradient and ENSO were identified at lags of up two years, further highlighting the potential for extended hypoxia outlooks. The strong connection between anomalies for precipitation and mid-Atlantic Bight salinity suggests that the ENA pattern may be useful at an interdisciplinary level for better understanding historical regional climate variability and future impacts of climate change on regional precipitation and the

  20. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  1. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  2. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  3. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    Science.gov (United States)

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  4. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  5. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  6. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    Science.gov (United States)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  8. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    by calculating statistical indices such as maximum error (ME, normalized root mean square error (nRMSE, modeling efficiency (EF, and coefficient of residual mass (CRM. At the end of the experiment, dry matter yield at the different treatments was measured and relative yield was calculated by dividing dry matter yield of treatments on dry matter yield at no stress treatment (control treatment. Leaching requirement in experimental treatments was calculated by Ayarset al., (2012 equation. Results and Discussion: The results indicated that Basil threshold value based on soil salinity was 2.25 dSm-1 with the yield reduction of 7.2% per dSm-1. The mathematical model of van Genuchten and Hoffman (1984 had a higher precision than other models in simulating Basil yield reduction function based on saturated soil extract salinity. The overall observations revealed that van Genuchten and Hoffman (1984, Steppuhnet al., (2005 and Homaeeet al., (2002 models were accurate for simulating Basil root water uptake and yield response to saturated soil extract salinity. Considering the presented results, it seems that among math-empirical models for salinity stress conditions, model of van Genuchten and Hoffman (1984 is more accurate than Maas and Hoffman (1977, Dirksen and Augustijn (1988 and Homaeeet al., (2002a models. The works of Green et al., (2006 and Skaggs et al., (2006 came to the same conclusion. Our work indicated that mostly statistical models have lower precision than math-empirical models. Steppuhn et al., (2005a reported that statistical models had the higher accuracy than math-empirical model of Maas and Hoffman (1977 and among statistical models, the modified Weibull model had the best fit on measured data which is in good agreement with the results of this study. Conclusion: The goals of this research were to evaluate Basil response to saturated soil extract salinity, to estimate threshold value of Basil crop coefficients, to obtain yield reduction gradient, and also to

  9. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  10. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  11. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  12. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  13. Rank gradient and p-gradient of amalgamated free products and HNN extensions

    OpenAIRE

    Pappas, Nathaniel

    2013-01-01

    We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.

  14. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  15. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  16. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  17. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  18. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  19. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  20. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  1. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  2. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  3. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  4. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  5. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    Science.gov (United States)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  6. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  7. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    Science.gov (United States)

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  8. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  9. Synthesis and pH- and salinity-controlled self-assembly of novel amphiphilic block-gradient copolymers of styrene and acrylic acid

    Czech Academy of Sciences Publication Activity Database

    Borisova, O.; Billon, L.; Zaremski, M.; Grassl, B.; Bakaeva, Zulfiya; Lapp, A.; Štěpánek, Petr; Borisov, O.

    2012-01-01

    Roč. 8, č. 29 (2012), s. 7649-7659 ISSN 1744-683X R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : block-gradient copolymers * light scattering * small-angle neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.909, year: 2012

  10. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    Directory of Open Access Journals (Sweden)

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  11. Dose gradient curve: A new tool for evaluating dose gradient.

    Science.gov (United States)

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  12. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  13. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... to become negative below 4.5 psu. We suggest that reduced ability to produce shell material at extremely low salinity may explain dwarfism of mussels in the Baltic Sea. Reduced bio-calcification at low salinity, however, may impede shell growth, but not somatic growth, and this may at first result...

  14. Ternary gradient metal-organic frameworks.

    Science.gov (United States)

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  15. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  16. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  17. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy

    Science.gov (United States)

    Isaji, Yuta; Kawahata, Hodaka; Kuroda, Junichiro; Yoshimura, Toshihiro; Ogawa, Nanako O.; Suzuki, Atsushi; Shibuya, Takazo; Jiménez-Espejo, Francisco J.; Lugli, Stefano; Santulli, Andrea; Manzi, Vinicio; Roveri, Marco; Ohkouchi, Naohiko

    2017-07-01

    We investigated changes in the chemical characteristics of evaporating seawater under the influence of microbial activity by conducting geochemical analyses of the brines and evaporite sediments collected from solar salterns in Trapani, Italy. The microbial activity had a substantial effect on the carbonate system parameters. Dissolved inorganic carbon (DIC) was substantially removed from the brine during the course of evaporation from the seawater to the point where calcium carbonate precipitates, with an accompanying decrease in its carbon isotopic composition (δ13CDIC) to as low as -10.6‰. Although the removal of DIC was due to calcium carbonate precipitation, photosynthesis, and the degassing of CO2(aq) induced by evaporation, the presence of 13C-depleted δ13CDIC in ponds where calcium carbonate precipitates can be attributed to the dissolution of atmospheric CO2 because of intensive CO2(aq) uptake by photosynthesis, and/or mineralization of organic matter by sulfate reduction. In contrast, δ13CDIC increased up to 7.2‰ in the salinity range where halite precipitates, which can be ascribed to the domination of the effect of degassing of CO2(aq) under conditions with reduced microbial activity. A gradual decrease in microbial activity was also reflected in compound-specific δ13C of photosynthetic pigments; isotopic fractionation associated with DIC assimilation increased linearly as the evaporation proceeded, indicating DIC-limited conditions within the microbial mats and gypsum crusts because of restricted DIC diffusion from the overlying brine and/or suppression of primary production at higher salinity.

  18. $L_{0}$ Gradient Projection.

    Science.gov (United States)

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  19. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    Science.gov (United States)

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    Science.gov (United States)

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  2. Gradient waveform pre-emphasis based on the gradient system transfer function.

    Science.gov (United States)

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  4. Population specific salinity tolerance in eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Pedersen, Morten Foldager; Boström, Christoffer

    2014-01-01

    and that the lowsaline population is better adapted to hyposaline conditions. Despite the long-term adaptation of the low saline population to stable, low salinity, these plants were still able to function normally in high salinities, indicating remarkable plasticity. The results further suggest that altered salinity...

  5. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  6. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  7. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    Science.gov (United States)

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  8. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  9. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  10. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    processes (diffusion, gravity current formation, impact of tidal asymmetries, etc.) is balanced by salinity-egress induced by runoff. Here we point out that the salinity field of the estuaries that are located on the coasts of the Indian subcontinent...

  11. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  13. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  14. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  15. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  16. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  17. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  18. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  19. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  20. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  1. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  2. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    Science.gov (United States)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  3. Sodium kinetics in hypertonic saline abortion

    International Nuclear Information System (INIS)

    Telfer, N.; Ballard, C.S.; McKee, D.R.

    1975-01-01

    The sodium kinetics of hypertonic saline abortions have been followed by measuring the radioactivity and the sodium concentrations in amniotic fluid, maternal plasma, urine, the foetus and placenta after intrauterine installation of 20% hypertonic saline labelled with 22 Na in order to determine the reason for abortion of a dead foetus in 24 to 48 hours, and reasons for sodium reactions. There is dilution of the 300 ml of amniotic fluid to a maximum of 1.5 to 2.0 litres in an exponential fashion, by the influx of mainly maternal water, slowing after 8 hours. There is an exponential type of increase in plasma radioactivity, also slowing after 8 hours. However, equilibration is never reached, the specific activity of the amniotic fluid remaining 10 times that of the plasma, and the sodium concentration 3 times that of the plasma. The urine equilibrates with the plasma, and about 3% of the administered dose is lost in 22 hours. The largest foetus and placenta picked up the least radioactivity. Thus, a more mature foetus may be protected to some degree against the hypertonic saline action; this has been observed clinically. Hyperkaliaemia was found in all four subjects, and hypoglycaemia occurred sporadically. These were not accompanied by any symptoms. Factors associated with expulsion of the dead foetus are dehydration and decreased circulation associated with fibrinoid necrosis of the placenta, which may also account for cessation of equilibration between maternal plasma and amniotic fluid. Although no saline reactions occurred, the role of extrauterine deposition of hypertonic saline, as shown in one subject, might be considered. (author)

  4. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  5. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    Science.gov (United States)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  6. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise

    OpenAIRE

    Zhang, Mingji; Or, Siu Wing

    2017-01-01

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...

  7. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  8. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  9. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  10. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  11. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  12. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  13. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  14. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    International Nuclear Information System (INIS)

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  15. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  16. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  17. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    Science.gov (United States)

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  18. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  19. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  20. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  1. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  2. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  3. Low-gradient aortic stenosis.

    Science.gov (United States)

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  4. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  5. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  6. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  7. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  8. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  9. Hypertonic saline for cystic fibrosis: worth its salt?

    Science.gov (United States)

    Goralski, Jennifer L; Donaldson, Scott H

    2014-06-01

    Airway dehydration in cystic fibrosis (CF) leads to chronic inflammation, ongoing infection and progressive lung disease. Restoration of airway hydration by inhalation of an osmotic agent (hypertonic saline) has been shown to be safe, effective and well-tolerated in adults with CF. Although the safety of hypertonic saline in infants and young children with CF has also been established, recent studies have reported inconclusive evidence about its efficacy. In this editorial, we discuss the evidence behind hypertonic saline use for adults, children and infants with CF.

  10. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  11. Loess ecosystems of northern Alaska: Regional gradient and toposequence at Prudhoe Bay

    International Nuclear Information System (INIS)

    Walker, D.A.; Everett, K.R.

    1991-01-01

    Loess-dominated ecosystems cover ∼ 14% (11,000 km 2 ) of the Arctic Coastal Plain and much of the northern portion of the Arctic Foothills. Knowledge of this poorly known ecosystem is important for sound land-use planning of the expanding developments in the region and for understanding the paleoecological dynamics of eolian systems that once dominated much of northern Alaska. A conceptual alkaline-tundra toposequence includes eight common vegetation types and associated soils and vegetation downwind of the Sagavanirktok River. Properties of loess tundra important for land-use planning include: (1) its high ice content, which contributes to its susceptibility to thermokarst; (2) high salinities, which hamper revegetation efforts; and (3) presence of certain plant species such as Dryas intergrifolia, which are particularly sensitive to disturbance. The loess gradient provides a natural analogue for road dust, and extensive disturbance associated with oil-field development

  12. Nonlinear dynamics and synchronization of saline oscillator’s model

    International Nuclear Information System (INIS)

    Fokou Kenfack, W.; Siewe Siewe, M.; Kofane, T.C.

    2016-01-01

    Highlights: • A model of saline oscillator is derived and tested through numerical simulations. • Interaction between globally coupled saline oscillators is modeled. • Dependence of coupling coefficients on physical parameters is brought out. • Synchronization behaviors are studied using the model equations. - Abstract: The Okamura model equation of saline oscillator is refined into a non-autonomous ordinary differential equation whose coefficients are related to physical parameters of the system. The dependence of the oscillatory period and amplitude on remarkable physical parameters are computed and compared to experimental results in order to test the model. We also model globally coupled saline oscillators and bring out the dependence of coupling coefficients on physical parameters of the system. We then study the synchronization behaviors of coupled saline oscillators by the mean of numerical simulations carried out on the model equations. These simulations agree with previously reported experimental results.

  13. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  14. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  15. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    Science.gov (United States)

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  16. Testing the limits of gradient sensing.

    Directory of Open Access Journals (Sweden)

    Vinal Lakhani

    2017-02-01

    Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.

  17. Salinity stress and some physiological relationships in Kochia (Kochia scoparia

    Directory of Open Access Journals (Sweden)

    Jafar Nabati

    2018-06-01

    Full Text Available Introduction Soil salinity is one of the major abiotic stresses affecting plant growth and production. It is estimated that approximately half of the irrigated lands of Iran are affected by salinity and much of the agricultural lands of Iran especially in the central regions are susceptible to salinity. According to the development of saline soils and water resources, utilization of halophytes as alternatives for cultivation in saline conditions could be a suitable strategy to crop production. In addition to understanding the physiological salinity tolerance pathways, studying such crops could help to plant breeding and transferring these useful traits to crop species and also domestication of these plants. Materials and methods This experiment was conducted in 2009-2010 in Salinity Research Station of faculty of agriculture, Ferdowsi University of Mashhad as split-plot based on Complete Randomized Block Design with three replications. Salinity as the main plot had two levels of 5.2 and 16.5 dSm-1 and five kochia ecotypes including Birjand, Urmia, Borujerd, Esfahan and Sabzevar were allocated as sub-plot. Seedlings were irrigated with saline water having electrical conductivity (EC of 5.2 dSm-1 until the full establishment and thereafter salinity stress was imposed with saline water having EC=16.5 dSm-1. Physiological and biochemical traits were measured in the youngest fully expanded leaf at the beginning of the anthesis and shoot biomass at the end of the growth season. Data analysis was performed using Minitab 16 and means were compared by LSD test at a significance level of 0.05. Results and Discussion Results indicated that biomass was increased in Birjand, Isfahan and Urmia ecotypes as salinity level increased while it was decreased in Sabzevar and Boroujerd ecotypes. A reduction of 34, 31, 11 and 29 percentage and an increase of 4 percentage in seed yield was seen in Sabzevar, Birjand, Boroujerd, Urmia and Isfahan, respectively. Harvest

  18. Response of stream invertebrates to short-term salinization: A mesocosm approach

    International Nuclear Information System (INIS)

    Cañedo-Argüelles, Miguel; Grantham, Theodore E.; Perrée, Isabelle; Rieradevall, Maria; Céspedes-Sánchez, Raquel; Prat, Narcís

    2012-01-01

    Salinization is a major and growing threat to freshwater ecosystems, yet its effects on aquatic invertebrates have been poorly described at a community-level. Here we use a controlled experimental setting to evaluate short-term stream community responses to salinization, under conditions designed to replicate the duration (72 h) and intensity (up to 5 mS cm −1 ) of salinity pulses common to Mediterranean rivers subjected to mining pollution during runoff events. There was a significant overall effect, but differences between individual treatments and the control were only significant for the highest salinity treatment. The community response to salinization was characterized by a decline in total invertebrate density, taxon richness and diversity, an increase in invertebrate drift and loss of the most sensitive taxa. The findings indicate that short-term salinity increases have a significant impact on the stream invertebrate community, but concentrations of 5 mS cm −1 are needed to produce a significant ecological response. - Highlights: ► Short-term salinization has a significant impact on the aquatic invertebrates. ► A significant short-term ecological response is registered at 5 mS cm −1 . ► Salinization causes a decline in invertebrate density, richness and diversity. ► Biotic quality indices decline with increasing salinity and exposure time. - Short-term salinization in a stream mesocosm caused a significant response in the aquatic invertebrate community and led to declines in biological quality indices.

  19. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  20. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  1. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  2. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  3. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  4. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  5. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  6. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  7. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale

    Directory of Open Access Journals (Sweden)

    Elia Scudiero

    2016-10-01

    Full Text Available Soil salinity undermines global agriculture by reducing crop yield and impairing soil quality. Irrigation management can help control salinity levels within the soil root-zone. To best manage water and soil resources, accurate regional-scale inventories of soil salinity are needed. The past decade has seen several successful applications of soil salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment based on analysis of surface soil reflectance (the most popular approach, and indirect assessment of root-zone (e.g., 0-1 m soil salinity based on analysis of crop canopy reflectance. In this perspective paper, we call on researchers and funding agencies to pay greater attention to the indirect approach because it is better suited for surveying agriculturally important lands. A joint effort between agricultural producers, irrigation specialists, environmental scientists, and policy makers is needed to better manage saline agricultural soils, especially because of projected future water scarcity in arid and semi-arid irrigated areas. The remote sensing community should focus on providing the best tools for mapping and monitoring salinity in such areas, which are of vital relevance to global food production.

  8. Salinity Effects on Germination Properties ofPurslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    m Kafi

    2011-02-01

    Full Text Available Abstract In order to study seed germination and seedling growth responses of purslane to different levels of salinity, an experiment was conducted in a completely randomized desgin with six levels of salinity (0, 7, 14, 21, 28 and 35 dS/m using NaCl and five replications. Persentage and rate of germination, length and dry weight of radicle and plumule were measured, and ratio radicle to plumule length, mean germination time and seedling vigor index were calculated. The results showed that up to 28 dS/m salinity did not impose any significant different in germination percentage compared with control, but in 35 dS/m salinity it decreased to 19%. germination rate did not show any significant different up to 14 dS/m in comparison with control but beyond this level it significantly decreased with increasing salt stress. Mean germination time up to 21 dS/m did not have significant different in comparison with control, but increased with increasing salinity significantly. Length, fresh and dry weight of radicle and plumule, and seedling vigor index significantly decreased by increasing salinity. Ratio of radicle to plumule length decreased with increasing salt concentration, but there were not significant different among salt levels. According to the results, the germination stage of purslane is remarkably resistant to elevated levels of salinity and it seems that by exerting proper management in farms, it could be established in saline environments. Keywords: Plumule, Radicle, Seedlings of purslane

  9. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  10. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  11. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  12. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  13. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    Science.gov (United States)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  14. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  15. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P

  16. Salinity-driven decadal changes in phytoplankton community in the NW Arabian Gulf of Kuwait.

    Science.gov (United States)

    Al-Said, Turki; Al-Ghunaim, Aws; Subba Rao, D V; Al-Yamani, Faiza; Al-Rifaie, Kholood; Al-Baz, Ali

    2017-06-01

    Evaluation of hydrological data obtained between 2000 and 2013 from a time series station in Kuwait Bay (station K6) and an offshore southern location (station 18) off Kuwait showed drastic increase in salinity by 6 units. We tested the hypothesis that increased salinity impacted phytoplankton community characteristics in these semiarid waters. The Arabian Gulf receives seasonal freshwater discharge in the north via Shatt Al-Arab estuary with a peak during March-July. A north to south gradient in the proportion of the freshwater exists between station A in the vicinity of Shatt Al-Arab estuary and station 18 in the southern offshore area. At station A, the proportion of freshwater was the highest (25.6-42.5%) in 1997 but decreased to 0.8-4.6% by 2012-2013. The prevailing hyperhaline conditions off Kuwait are attributed to decrease in the river flow. Phytoplankton data showed a decrease in the number of constituent taxa in the last one decade from 353 to 159 in the Kuwait Bay and from 164 to 156 in the offshore area. A shift in their biomass was caused by a decrease in diatom species from 243 to 92 in the coastal waters and from 108 to 83 in the offshore areas with a concomitant increase of smaller algae. Mutivariate agglomerative hierarchical cluster analysis, non-metric multi-dimensional scaling, and one-way analysis of similarity analyses on phytoplankton data at different taxonomic levels confirmed significant changes in their community organization on a decadal scale. These evidences support our hypothesis that the salinity-related environmental changes have resulted in a coincidental decrease in species diversity and significant changes in phytoplankton community between the years 2000-2002 and 2012-2013, off Kuwait. This in turn would affect the pelagic trophodynamics as evident from a drastic decrease in the catch landings of Tenulosa ilisha (Suboor), Carangoides sp. (Hamam), Otolithes ruber (Nowaiby), Parastromateus niger (Halwaya), and Epinephelus

  17. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  18. Effect of increase in salinity on ANAMMOX-UASB reactor stability.

    Science.gov (United States)

    Xing, Hui; Wang, Han; Fang, Fang; Li, Kai; Liu, Lianwei; Chen, Youpeng; Guo, Jinsong

    2017-05-01

    The effect of salinity on the anaerobic ammonium oxidation (ANAMMOX) process in a UASB reactor was investigated by analysing ammonium, nitrite, nitrate and TN concentrations, and TN removal efficiency. Extracellular polymeric substances (EPSs) and specific ANAMMOX activity (SAA) were evaluated. Results showed the effluent deteriorated after salinity was increased from 8 to 13 g/L and from 13 to 18 g/L, and TN removal efficiency decreased from 80% to 30% and 80% to 50%, respectively. However, ANAMMOX performance recovered and TN removal efficiency increased to 80% after 40 days when the influent concentrations of [Formula: see text] and [Formula: see text] were 200 mg/L and salinity levels were at 13 and 18 g/L, respectively. The amount of EPSs decreased from 58.9 to 37.1 mg/g volatile suspended solids (VSS) when the reactor was shocked by salinity of 13 g/L, and then increased to 57.2 mg/g VSS when the reactor recovered and ran stably at 13 g/L. The amount of EPSs decreased from 57.2 to 49.1 mg/g VSS when the reactor was shocked by salinity of 18 g/L, and then increased to 60.7 mg/g VSS when the reactor recovered and ran stably at 18 g/L. The amount of EPS and the amounts of polysaccharide, protein and humus showed no evident difference when the reactor recovered from different levels of salinity shocks. Batch tests showed salinity shock load from 8 to 38 g/L inhibited the SAA. However, when the reactor recovered from salinity shocks, SAA was higher compared to that when the reactor was subjected to the same level of salinity shock.

  19. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  20. Isotonic saline nasal irrigation in clinical practice: a literature review

    Directory of Open Access Journals (Sweden)

    Sabrina Costa Lima

    Full Text Available Abstract Introduction: Nasal instillation of saline solution has been used as part of the treatment of patients with upper respiratory tract diseases. Despite its use for a number of years, factors such as the amount of saline solution to be used, degree of salinity, method and frequency of application have yet to be fully explained. Objective: Review the reported outcomes of saline nasal irrigation in adults with allergic rhinitis, acute or chronic sinusitis and after functional endoscopic sinus surgery (FESS, and provide evidence to assist physiotherapists in decision making in clinical practice. Methods: A search was conducted of the Pubmed and Cochrane Library databases between 2007 and 2014. A combination of the following descriptors was used as a search strategy: nasal irrigation, nasal lavage, rhinitis, sinusitis, saline, saline solution. Results: Eight clinical trials were included, analyzed according to participant diagnosis. Conclusion: The evidence found was heterogeneous, but contributed to elucidating uncertainties regarding the use of nasal lavage in the clinical practice of physical therapy, such as the protocols used.

  1. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  2. Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.

    Science.gov (United States)

    Henderson, A C; Sá, R C; Barash, I A; Holverda, S; Buxton, R B; Hopkins, S R; Prisk, G K

    2012-03-15

    Rapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (pchanges in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approach to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.

  4. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  5. Microbial Fuel Cells under Extreme Salinity

    Science.gov (United States)

    Monzon del Olmo, Oihane

    I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another

  6. Gradient Boosting Machines, A Tutorial

    Directory of Open Access Journals (Sweden)

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  7. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  8. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  9. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  10. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  11. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  12. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  13. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes?

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume; Pedersen, Morten Foldager

    2012-01-01

    Subitaneous eggs from an euryhaline calanoid copepod Acartia tonsa were challenged by changes in salinity within the range from full strength salinity, down to zero and up to >70 psu. Egg volume changed immediately, increasing from 2.8 × 105 μm3 at full strength salinity (35 psu) to 3.8 × 105 μm3...... at 0 psu and back to its initial volume when gradually being returned to full strength salinity. Egg osmolality followed the molality of the surrounding water when challenged within a salinity range from 2 to 50 psu. Egg respiration was not affected when eggs kept at 35 psu was exposed to low salinity...... (2 psu). These results suggest that eggs are unable to regulate their volume or osmolality when challenged with changes in salinity. Gradual changes in salinity from 35 to 2 psu and back did not harm the eggs (embryos), since the hatching success remained unaffected by such changes in salinity...

  14. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    Science.gov (United States)

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  15. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    Science.gov (United States)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  16. Block-conjugate-gradient method

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  17. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  18. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  19. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-01-01

    The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  20. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed.

  1. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong

    1997-01-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed

  2. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  3. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  4. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land].

    Science.gov (United States)

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong

    2015-04-01

    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities.

  5. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  6. Influence of net freshwater supply on salinity in Florida Bay

    Science.gov (United States)

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  7. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  8. PENGARUH PERBAIKAN TANAH SALIN TERHADAP KARAKTER FISIOLOGIS Calopogonium mucunoides

    Directory of Open Access Journals (Sweden)

    F Kusmiyati

    2015-06-01

    Full Text Available Peralihan fungsi lahan pertanian menjadi wilayah pemukimam dan industri menyebabkan semakinberkurangnya lahan pertanian.Hal tersebut menyebabkan pengembangan pertanian perlu diarahkan padalahan-lahan marginal seperti tanah salin.Tanah salin adalah tanah yang mengandung garam terlarut netraldalam jumlah tertentu yang berpengaruh buruk terhadap pertumbuhan dan produksi tanaman.Penelitian yangdilaksanakan bertujuan mengkaji pengaruh perbaikan tanah salin secara kimia dan biologi terhadap karakterfisiologis Calopogonium mucunoides. Rancangan yang digunakan adalah rancangan acak lengkap dengan 3ulangan. Perbaikan tanah salin dilakukan melalui penambahan gipsum (P1, pupuk kandang (P2, abu sekampadi (P3, tanaman halofita (P4, gipsum dan pupuk kandang (P5, gipsum dan abu sekam padi (P6, gipsumdantanamanhalofita (P7, pupuk kandang dan abu sekam padi (P8, pupuk kandang dan tanaman halofita(P9, abusekam padi dan tanaman halofita (P10 dan tanpa penambahan sebagai kontrol (P0. Parameter yangdiamati adalah kandungan klorofil a, kandungan klorofil b, kandungan total klorofil, aktivitas nitrat reduktase,luas daun dan laju fotosintesis.Data yang diperoleh dianalisis dengan sidik ragam dan uji lanjut dengan ujiwilayah ganda Duncan. Hasil penelitian menunjukkan kandungan klorofil a, klorofil b, total klorofil, aktivitasnitrat reduktase dan laju fotosintesis calopo berbeda nyata (P<0,05 lebih tinggi pada perlakuan perbaikantanah salin dibandingkan kontrol. Kandungan klorofil a, klorofil b dan total klorofil calopo pada perlakuankombinasi pupuk kandang dan abu sekam padi serta kombinasi gipsum dan pupuk kandang berbeda nyata(P<0,05 lebih tinggi dibandingkan perlakuan lainnya. Aktivitas nitrat reduktase dan laju fotosintesis calopopada perlakuan kombinasi pupuk kandang dan abu sekam padi serta perlakuan pupuk kandang berbeda nyata(P<0,05 lebih tinggi daripada perlakuan lainnya. Simpulan adalah perbaikan tanah salin dengan penambahankombinasi pupuk kandang dan abu

  9. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  10. Morphological responses of forage sorghums to salinity and ...

    African Journals Online (AJOL)

    The response of forage sorghum [Sorghum bicolor (L.) Moench] varieties to salinity and irrigation frequency were studied from December 2007 to December 2009. Two forage sorghum varieties (Speedfeed and KFS4) were grown under salinity levels of 0, 5, 10 and 15 dS m-1 and irrigated when the leaf water potential ...

  11. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  12. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  13. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  14. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  15. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  16. Hypertonic Saline in Treatment of Pulmonary Disease in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2012-01-01

    Full Text Available The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  17. Seed Priming to Overcome Salinity Stress in Persian Cultivars of Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Ali SEPEHRI

    2015-03-01

    Full Text Available In order to investigate the effect of hydro-priming on seed germination with distilled water on germination of five Alfalfa cultivars under salinity stress, an experiment was conducted as a factorial experiment based on a completely randomized design with three replications. Seven levels of hydro-priming and salinity of NaCl including prime and non-salinity, prime and 50 mM salinity, prime and 100 mM salinity, prime and 150 mM salinity, prime and 200 mM salinity, prime and 250 mM salinity and without prime and salinity and five alfalfa varieties, including ‘Hamedani’, ‘Isfahani’, ‘Bami’, ‘Yazdi’ and ‘Ghareh Yonjeh’ were used. The results showed that the main effect of prime, salinity and cultivars and their interaction in all studied traits were significantly affected at the 5% probability level. Priming treatments in non-salinity of all cultivars were the highest. In all cultivars, final germination percentage, length and weight of radicle, plumule and seedling, germination rate and time, relative radicle elongation, vigor index and stress index, were significantly improved in response to priming in salinity levels of 50-200 mM, compared to control. Radicle produced higher length and weight than the plumule in hydro- priming and salinity treatments. ‘Hamedani’ cultivar in most of studied characteristics had a better response than others. The lowest response to salinity stress and priming was observed in ‘Yazdi’ cultivar.

  18. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China

    Directory of Open Access Journals (Sweden)

    Jumeniyaz Seydehmet

    2018-02-01

    Full Text Available Significant anthropogenic and biophysical changes have caused fluctuations in the soil salinization area of the Keriya Oasis in China. The Driver-Pressure-State-Impact-Response (DPSIR sustainability framework and Bayesian networks (BNs were used to integrate information from anthropogenic and natural systems to model the trend of secondary soil salinization. The developed model predicted that light salinization (vegetation coverage of around 15–20%, soil salt 5–10 g/kg of the ecotone will increase in the near term but decelerate slightly in the future, and that farmland salinization will decrease in the near term. This trend is expected to accelerate in the future. Both trends are attributed to decreased water logging, increased groundwater exploitation, and decreased ratio of evaporation/precipitation. In contrast, severe salinization (vegetation coverage of around 2%, soil salt ≥20 g/kg of the ecotone will increase in the near term. This trend will accelerate in the future because decreased river flow will reduce the flushing of severely salinized soil crust. Anthropogenic factors have negative impacts and natural causes have positive impacts on light salinization of ecotones. In situations involving severe farmland salinization, anthropogenic factors have persistent negative impacts.

  19. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    Science.gov (United States)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  20. Gradient Alloy for Optical Packaging

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...

  1. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  2. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  3. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  4. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  5. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity.

    Science.gov (United States)

    Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-03-01

    This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge. © 2015. Published by The Company of Biologists Ltd.

  6. Buried straw layer and plastic mulching increase microlfora diversity in salinized soil

    Institute of Scientific and Technical Information of China (English)

    LI Yu-yi; PANG Huan-cheng; HAN Xiu-fang; YAN Shou-wei; ZHAO Yong-gan; WANG Jing; ZHAI Zhen; ZHANG Jian-li

    2016-01-01

    Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.

  7. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China

    Science.gov (United States)

    Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue

    2018-02-01

    In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.

  8. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  9. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  10. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  11. Does increased salinity influence the competitive outcome of two producer species?

    Science.gov (United States)

    Venâncio, C; Anselmo, E; Soares, A; Lopes, I

    2017-02-01

    Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC 25,72 h for growth rate was 4.63 and 10.3 mS cm -1 for R. subcapitata and 6.94 and 15.4 mS cm -1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis

  12. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1988-11-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  13. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Science.gov (United States)

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  14. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  15. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  16. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  17. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  18. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  19. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  20. Salinity effects on radiation utilization characteristics of Kochia (Kochia Scoparia L. Schrad.)

    International Nuclear Information System (INIS)

    Jami Al-Ahmadi, M.; Kafi, M.; Nassiri Mahalati, M.

    2008-01-01

    In order to evaluate light extinction coefficient and radiation use efficiency of Kochia scoparia in response to saline stress, a study was performed at Birjand, South Khorasan, using three levels of salinity in irrigation water (1.5, 8.6 and 28.2 dSm-1) with three replications. Several measurements were conducted during growth season to calculate radiation fraction passed through plant canopy, and also leaf area index (LAI) and total dry matter (TDM). Light extinction coefficient calculated with correcting fraction of plant light absorption for whole day, and using dry matter accumulation, radiation use efficiency obtained in each different salinity level. The results showed that light extinction coefficient of Kochia was equal to 0.59 for solar noon and 0.75 for whole day. The radiation absorption of kochia rose as LAI increased, and 95% of radiation was absorbed at LAI equal to 4 to 5. LAI and total dry matter accumulation were highest in moderate salinity level. In general, increase in salinity caused a delay in early season development, and accelerated plant maturity at late season. This caused plant canopies at the highest salinity reached to maximum light absorption later in growth season. Increase of salinity from 1.5 to 8.6 dSm-1 was responsible for little increase in RUE from 2.4 to 2.5 g per MJ absorbed PAR; however, it reduced with further increase in salinity. Thus, it seems that moderate salinity levels stimulate growth and dry matter accumulation of kochia and cause kochia canopy convert the absorbed radiation to dry matter more effectively. Key words: Kochia scoparia, Salinity, Light extension coefficient, Radiation use efficiency, Leaf Area Index

  1. Changes in microbial diversity in industrial wastewater evaporation ponds following artificial salination.

    Science.gov (United States)

    Ben-Dov, Eitan; Shapiro, Orr H; Gruber, Ronen; Brenner, Asher; Kushmaro, Ariel

    2008-11-01

    The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.

  2. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  3. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  4. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  6. Spatiotemporal Distribution of Soil Moisture and Salinity in the Taklimakan Desert Highway Shelterbelt

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2015-08-01

    Full Text Available Salinization and secondary salinization often appear after irrigation with saline water. The Taklimakan Desert Highway Shelterbelt has been irrigated with saline ground water for more than ten years; however, soil salinity in the shelterbelt has not been evaluated. The objective of this study was to analyze the spatial and temporal distribution of soil moisture and salinity in the shelterbelt system. Using a non-uniform grid method, soil samples were collected every two days during one ten-day irrigation cycle in July 2014 and one day in spring, summer, and autumn. The results indicated that soil moisture declined linearly with time during the irrigation cycle. Soil moisture was greatest in the southern and eastern sections of the study area. In contrast to soil moisture, soil electrical conductivity increased from 2 to 6 days after irrigation, and then gradually decreased from 6 to 8 days after irrigation. Soil moisture was the greatest in spring and the least in summer. In contrast, soil salinity increased from spring to autumn. Long time drip-irrigation with saline groundwater increased soil salinity slightly. The soil salt content was closely associated with soil texture. The current soil salt content did not affect plant growth, however, the soil in the shelterbelt should be continuously monitored to prevent salinization in the future.

  7. Cellulolytic activity of some cellulose-decomposing fungi in salinized soils

    Directory of Open Access Journals (Sweden)

    R. A. Badran

    2014-08-01

    Full Text Available Maximum evolution of CO2 was marked in control soil inoculated by tested fungi but its rate decreased with the increasing salinity. The period of 10 days was most suitable for cellulose degradation by A. niger and P. chrysoecnum and 15 days by A. flavus and C. globosum in control soil. High salinity levels affected greatly the cellulolylic activities of tesled fungi. Carbon content of saline soils increased white the nitrogen content decreased.

  8. Screening of recombinant inbred lines for salinity tolerance in bread ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... 2Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran ... indexes for screening bread wheat genotypes for salinity tolerance. ... published on screening methods in salinity tolerance in.

  9. Effects of salinity on trace elements in otoliths of Masu salmon

    International Nuclear Information System (INIS)

    Nagata, Yoshihisa; Arai, Nobuaki; Sakamoto, Wataru; Tago, Yasuhiko; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in otoliths of Masu salmon Oncorhynchus masou masou to examine relationship between trace elements and environmental salinity. The otoliths were removed from salmon juveniles reared in four values of salinity and wild ones. The otolith Sr concentrations of reared individuals are positively related to salinity and there is significant difference between freshwater and seawater. The otoliths of smolts contain more Sr than those of parrs. It seems that the Sr concentrations in otoliths of Masu salmon reflect salinity where they had stayed and show the migration pattern. (author)

  10. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  11. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  12. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  13. Gradient Flow Convolutive Blind Source Separation

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Nielsen, Chinton Møller

    2004-01-01

    Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...

  14. An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model

    NARCIS (Netherlands)

    Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.

    2011-01-01

    Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting

  15. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  16. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  17. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-12-01

    Full Text Available In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC-probe measurements, electrical cone penetration tests (ECPT to field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (Dmix and Bmix. Recharge, seepage flux, and drainage depth are the controlling factors.

  18. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  20. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  1. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  2. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    Science.gov (United States)

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  3. Dynamics of rainwater lenses on upward seeping saline groundwater

    NARCIS (Netherlands)

    Eeman, Sara

    2017-01-01

    Fresh water is generally a limited resource in coastal areas which are often densely populated. In low-lying areas, groundwater is mostly saline and both agriculture and freshwater nature depend on a thin lens of rainwater that is formed by precipitation surplus on top of saline, upward seeping

  4. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  5. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  6. Tearing modes with pressure gradient effect in pair plasmas

    International Nuclear Information System (INIS)

    Cai Huishan; Li Ding; Zheng Jian

    2009-01-01

    The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.

  7. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  8. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  9. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  10. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  11. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    Science.gov (United States)

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  12. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use.

    Science.gov (United States)

    Amirul Alam, Md; Juraimi, A S; Rafii, M Y; Hamid, A A; Aslani, F; Alam, M Z

    2015-02-15

    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  14. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity.

    Science.gov (United States)

    Ye, Yangfang; An, Yanpeng; Li, Ronghua; Mu, Changkao; Wang, Chunlin

    2014-04-16

    Extreme low salinity influences normal crab growth, morphogenesis, and production. Some individuals of swimming crab Portunus trituberculatus have, however, an inherent ability to adapt to such a salinity fluctuation. This study investigated the dynamic metabolite alterations of two P. trituberculatus strains, namely, a wild one and a screened (low-salinity tolerant) one in response to low-salinity challenge by combined use of NMR spectroscopy and high-throughput data analysis. The dominant metabolites in crab muscle were found to comprise amino acids, sugars, carboxylic acids, betaine, trimethylamine-N-oxide, 2-pyridinemethanol, trigonelline, and nucleotides. These results further showed that the strategy of metabolic modulation of P. trituberculatus after low-salinity stimulus includes osmotic rebalancing, enhanced gluconeogenesis from amino acids, and energy accumulation. These metabolic adaptations were manifested in the accumulation of trimethylamine-N-oxide, ATP, 2-pyridinemethanol, and trigonelline and in the depletion of the amino acid pool as well as in the fluctuation of inosine levels. This lends support to the fact that the low-salinity training accelerates the responses of crabs to low-salinity stress. These findings provide a comprehensive insight into the mechanisms of metabolic modulation in P. trituberculatus in response to low salinity. This work highlights the approach of NMR-based metabonomics in conjunction with multivariate data analysis and univariate data analysis in understanding the strategy of metabolic phenotype modulation against stressors.

  15. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  16. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    Science.gov (United States)

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  17. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  18. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  19. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  20. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods

    Science.gov (United States)

    Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo

    2012-01-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.

  1. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Science.gov (United States)

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.

  2. Nutritional value and chemical composition of Cichorium spinosum L. under saline conditions

    OpenAIRE

    Petropoulos, Spyridon Α.; Vasilios, Antoniadis; Efi, Levizou; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C.F.R.

    2016-01-01

    Soil salinity is an ever‐growing problem that hinders vegetable cultivation in many areas within the Mediterranean basin. Cichorium spinosum is native to the Mediterranean basin and is usually found in coastal areas and plateaus. In the present study, C. spinosum plants were grown under saline conditions (1.8, 4 and 8 dS/m), in order to evaluate the effect of salinity on their nutritional value and chemical composition. From the results it was observed that high salinity levels...

  3. STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Nataša Krejić

    2014-12-01

    Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.

  4. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2017-02-01

    Full Text Available Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant on the control of soil salinity and soil reclamation.The experimental design was randomized complete block design. Irrigation water salinities were 0.68(blank, 2, 4, 6, 8 and 10 dS/m, respectively, which artificially were constructed using sodium chloride and calcium chloride. At first, vetiver was transplanted and then moved to the farm. The amount of soil moisture was measured by the neutron probe. Irrigation depth was applied to refill soil water deficit up to field capacity. To evaluate the soil salinity in above salinity treatments, soil was sampled in each plot from 0-30, 30-60 and 60-90 cm depths and for each layer, electrical conductivity of saturated extract (ECe, sodium, potassium and chloride concentrations was measured .To measure the sodium, potassium and chloride concentrations in the leaves and roots of vetiver plant, samples were dried in oven. The dried samples were powdered and passed through the sieve (No. 200 and they were reduced to ash in 250 ◦C. 5 ml HCl was added to one gram of the ash, and after passing through filter paper, the volume of sample was brought to 50 ml by boiled distilled water. After preparing plant samples, the sodium, potassium and chloride concentrations were measured by Flame Photometer. Reults and discussion: The results showed that the vetiver grass was able to decrease soil salinity at different salinity levels except highest water salinity (10 dS/m and prevented salt accumulation in the soil. However, in the

  5. Spatial gradient tuning in metamaterials

    Science.gov (United States)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  6. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kolsen-Petersen, J A; Bendtzen, K; Tonnesen, E

    2008-01-01

    Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery.......Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery....

  7. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  8. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  9. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  10. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  11. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  12. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  13. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  14. Gravity gradient preprocessing at the GOCE HPF

    Science.gov (United States)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  15. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  16. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  17. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  18. Effects of NaCl and seawater induced salinity on survival and reproduction of three soil invertebrate species.

    Science.gov (United States)

    Pereira, C S; Lopes, I; Sousa, J P; Chelinho, S

    2015-09-01

    The increase of global mean temperature is raising serious concerns worldwide due to its potential negative effects such as droughts and melting of glaciers and ice caps leading to sea level rise. Expected impacts on soil compartment include floodings, seawater intrusions and use of saltwater for irrigation, with unknown effects on soil ecosystems and their inhabitants. The present study aimed at evaluating the effects of salinisation on soil ecosystems due to sea level rise. The reproduction and mortality of three standard soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer) in standard artificial OECD soil spiked with serial dilutions of seawater/gradient of NaCl were evaluated according to standard guidelines. An increased sensitivity was observed in the following order: H. aculeifer≪E. crypticus≈F. candida consistent with the different exposure pathways: springtails and enchytraeids are exposed by ingestion and contact while mites are mainly exposed by ingestion due to a continuous and thick exoskeleton. Although small differences were observed in the calculated effect electrical conductivity values, seawater and NaCl induced the same overall effects (with a difference in the enchytraeid tests where a higher sensitivity was found in relation to NaCl). The adverse effects described in the present study are observed on soils not considered saline. Therefore, the actual limit to define saline soils (4000 μS cm(-1)) does not reflect the existing knowledge when considering soil fauna. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  20. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  1. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1988-01-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  2. Therapeutic effects of compound hypertonic saline on rats with sepsis

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2014-09-01

    Full Text Available Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.

  3. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.

    Science.gov (United States)

    Hu, Minjie; Ren, Hongchang; Ren, Peng; Li, Jiabing; Wilson, Benjamin J; Tong, Chuan

    2017-02-01

    Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide (CO 2 ), methane (CH 4 ) emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO 2 and CH 4 from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO 2 and CH 4 emissions from the two marshes showed pronounced seasonal variations. The CO 2 and CH 4 emissions from both marshes demonstrated significant positive correlations with the air/soil temperature (pemissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH 4 emissions between the two sites (pemissions from the estuarine freshwater marshes, these factors had little effect on the CO 2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients. Copyright © 2016. Published by Elsevier B.V.

  4. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  5. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    International Nuclear Information System (INIS)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de; Mattos, Jacó Joaquim; Lüchmann, Karim Hahn; Araújo de Miranda Gomes, Carlos Henrique; Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou; Dias Bainy, Afonso Celso

    2017-01-01

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L"−"1 PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at salinity

  6. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil); Mattos, Jacó Joaquim [Aquaculture Pathology Research Center – NEPAQ, Federal University of Santa Catarina, Florianópolis (Brazil); Lüchmann, Karim Hahn [Laboratory of Biochemistry and Molecular Biology – LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna (Brazil); Araújo de Miranda Gomes, Carlos Henrique [Laboratory of Marine Mollusks – LMM, Federal University of Santa Catarina, Florianópolis (Brazil); Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou [Laboratory of Marine Organic Chemistry – LABQOM, Oceanographic Institute, University of São Paulo, São Paulo (Brazil); Dias Bainy, Afonso Celso, E-mail: afonso.bainy@ufsc.br [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil)

    2017-02-15

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L{sup −1} PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at

  7. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  8. Germination responses of limonium insigne (coss.) kuntze to salinity and temperature

    International Nuclear Information System (INIS)

    Isabel, C.; Fernandez, D.; Luque, E.G.; Mercado, F.G.

    2015-01-01

    Limonium insigne (Plumbaginaceae) is a perennial halophyte endemic to the SE of the Iberian Peninsula. Experiments were conducted to determine the effects of different salinities (0, 100, 200 and 400 mM NaCl) on the seed germination of L. insigne under different temperature regimes (20/10, 25/15, 30/20 and 35/25 degree C), both in a 14 h light and 10 h dark photoperiod. Seed germination of L. insigne was affected significantly by salinity levels, temperature and their interaction. Maximum germination was observed in the least saline media (100 mM NaCl) and distilled water (0 mM NaCl) at 20/10 degree C temperature. No seeds germinated at concentrations higher than 200 mM NaCl at the highest temperature (35/25 degree C). The increase in salinity delayed the beginning and ending of germination, reduced final germination percentage and increased mean time to germination. The rate of germination decreased with an increase in salinity and temperature. (author)

  9. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  10. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  11. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  12. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  13. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  14. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-01-01

    by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives

  15. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  16. Triple test cross analysis for salinity tolerance in wheat

    International Nuclear Information System (INIS)

    Zafar, M.; Khan, A.S.; Chowdhry, M.A.

    2008-01-01

    Triple test cross analysis applied to study additive, dominance and epistatic components of genetic variation for five seedling traits namely shoot length, fresh shoot weight, root length, fresh root weight and root shoot ratio at two salinity levels 0 (control) and 10 dSm/sup -1/ in wheat. The results revealed that the epistatic component is an important element for salinity tolerance at seedling stage in wheat. Both additive and dominance gene effects were involved in the inheritance of shoot length, fresh shoot weight, root length fresh root weight and root shoot ratio Complete dominance was indicated for shoot length, fresh root weight and root/shoot ratio and partial dominance was observed for other traits at control and over dominance was observed for shoot length, fresh shoot weight and root/shoot ratio, complete dominance for fresh root weight and partial dominance for root length at 10 dSm/sup -1/ salinity level. Significant epitasis was observed for all the traits except shoot length at both the salinity treatments. (author)

  17. The effect of salinity levels on the structure of zooplankton communities

    Directory of Open Access Journals (Sweden)

    Paturej Ewa

    2015-01-01

    Full Text Available The objective of this study was to determine the qualitative and quantitative structure of zooplankton communities in the Vistula Lagoon and to establish whether zooplankton abundance and biodiversity are affected by salinity levels. Samples for biological analyses were collected in the summer (June-September of 2007-2011 at eleven sampling sites. Statistical analysis revealed a significant correlation between salinity levels and the number of species (r= -0.2020, abundance (r= 0.1967 and biomass (r= 0.3139 of zooplankton. No significant correlations were found between salinity and the biodiversity of zooplankton. The results of the study suggest that salinity affects the abundance and structure, but not the diversity of zooplankton communities in the Vistula Lagoon.

  18. Variable Saline Concentrations for Initial Resuscitation Following Polytrauma

    Science.gov (United States)

    2017-02-22

    AFRL-SA-WP-TR-2017-0008 Variable Saline Concentrations for Initial Resuscitation Following Polytrauma Dr. Michael Goodman...Following Polytrauma 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER FA8650-14-2-6B29 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Michael...established. We investigated the utility of standard variable saline concentrations (0.9%, 3%, 23.4%) in a murine polytrauma model of traumatic brain injury

  19. Intracellular chemical gradients: morphing principle in bacteria

    Directory of Open Access Journals (Sweden)

    Endres Robert G

    2012-09-01

    Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

  20. Protein gradient films of fibroin and gelatine.

    Science.gov (United States)

    Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas

    2013-10-01

    Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of gradient control systems

    NARCIS (Netherlands)

    Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  2. Characterization of Gradient Control Systems

    NARCIS (Netherlands)

    Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  3. Quaternion Gradient and Hessian

    OpenAIRE

    Xu, Dongpo; Mandic, Danilo P.

    2014-01-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...

  4. Simulating the Response of Estuarine Salinity to Natural and Anthropogenic Controls

    Directory of Open Access Journals (Sweden)

    Vladimir A. Paramygin

    2016-11-01

    Full Text Available The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D, an oyster population model, and probability analysis. The model uses input from river inflow, ocean and atmospheric forcing and is verified with long-term water level and salinity data, including data from the 2004 hurricane season when four hurricanes impacted the system. Strong freshwater flow from the Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed; some based on observed data and others using altered freshwater inflow. For observed flow, simulated salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1% upstream of the Apalachicola River, the model results show slightly (less than 5% increased salinity inside the Bay. A worst-case sea-level rise (~1 m by 2100 could increase the bay salinity by up to 20%. A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested and appears to be substantiated.

  5. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  6. Cell orientation gradients on an inverse opal substrate.

    Science.gov (United States)

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  7. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    Science.gov (United States)

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Effects of salinity on the uptake of radionuclides by Fucus vesiculosus L

    International Nuclear Information System (INIS)

    Carlson, L.; Erlandsson, B.

    1991-01-01

    Laboratory experiments were performed to study the effects of salinity on the uptake of radionuclides in Fucus vesiculosus L.: one experiment with algae and seawater from three localities off the Swedish west and south coasts and one experiment with algae taken from one locality and then exposed to seawaters of different salinities. Both experiments showed the greatest difference for uptake of 137 Cs. For algae and seawater from the same localities, the authors found approximately 2.5 and 4 times higher activity concentrations at 8 per mille relative to 15 and 24 per mille, respectively. For 54 Mn and 65 Zn, no differences in uptake were observed between 13 and 24 per mill. In the algae from a single locality exposed to seawaters of different salinities, uptake was similar for the first few days, beyond which the algae in the medium salinity water showed the highest uptake for 54 Mn, 65 Zn and 60 Co. There are thus differences in radionuclide accumulation in F. vesiculosus from areas of different salinity regimes and in algae grown at different salinities. (author)

  9. Fifty shades of gradients: does the pressure gradient in venous sinus stenting for idiopathic intracranial hypertension matter? A systematic review.

    Science.gov (United States)

    McDougall, Cameron M; Ban, Vin Shen; Beecher, Jeffrey; Pride, Lee; Welch, Babu G

    2018-03-02

    OBJECTIVE The role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis. METHODS MEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS From 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022). CONCLUSIONS There appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.

  10. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  11. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    Yu, Yin; Ma, Yong; Li, Hao; Huang, Jun; Fang, Yu; Liang, Kun; Zhou, Bo

    2014-01-01

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  12. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters

    Directory of Open Access Journals (Sweden)

    Ramón Aragüés

    2014-05-01

    Full Text Available Soil mulching is a sensible strategy to reduce evaporation, accelerate crop development, reduce erosion and assist in weed control, but its efficiency for soil salinity control is not as well documented. The benefits of inorganic (plastic and organic (grapevine pruning residues mulching for soil salinity and sodicity control were quantified in a grapevine orchard (cultivars ‘Autumn’ Royal and ‘Crimson’ drip-irrigated with moderately saline waters. Soil samples were taken at the beginning and end of the 2008 and 2009 irrigation seasons in six vines of each cultivar and mulching treatment. Soil saturation extract electrical conductivity (ECe, chloride (Cle and sodium adsorption ratio (SARe values increased in all treatments of both grapevines along the irrigation seasons, but the increases were much lower in the mulched than in the bare soils due to reduced evaporation losses and concomitant decreases in salt evapo-concentration. The absolute salinity and sodicity daily increases in ‘Autumn’ and ‘Crimson’ 2008 and in ‘Crimson’ 2009 were on the average 44% lower in the plastic and 76% lower in the organic mulched soils than in the bare soil. The greater efficiency of the organic than the plastic mulch in ‘Crimson’ 2009 was attributed to the leaching of salts by a precipitation of 104 mm that infiltrated the organic mulch but was intercepted by the plastic mulch. Although further work is needed to substantiate these results, the conclusion is that the plastic mulch and, particularly, the organic mulch were more efficient than the bare soil for soil salinity and sodicity control.

  13. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  14. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  15. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  16. Gulf-Wide Information System, Environmental Sensitivity Index Salinity, Geographic NAD83, LDWF (2001) [esi_salinity_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) salinity data of coastal Louisiana. The ESI is a classification and ranking system, which characterizes...

  17. Genetically modified plants for salinity stress tolerance (abstract)

    International Nuclear Information System (INIS)

    Sopory, S.K.; Singia-Pareek, S.I.; Kumar, S.; Rajgopal, D.; Aggarwal, P.; Kumar, D.; Reddy, K.M.

    2005-01-01

    Several recent reports have indicated that the area under salinity is on the increase and currently very few genotypes of important crop plants are available for cultivation under these conditions. In this regard, identification of novel stress responsive genes and transgenic approach offers an important strategy to develop salt tolerant plants. Using an efficient PCR-based cDNA subtraction method a large number of genes upregulated under salinity and dehydration stress have been identified also in rice and Pennisetum. Functional analysis of some of these genes is being done using transgenic approach. Earlier, we reported on the role of one of the stress regulated genes, glyoxalse I in conferring salinity tolerance. We now show that by manipulating the expression of both the genes of the glyoxalse pathway, glyoxalse I and II together, the ability of the double transgenic plants to tolerate salinity stress is greatly enhanced as compared to the single transgenic plants harbouring either the glyoxalse I or glyoxalse II. The cDNA for glyoxalse II was cloned from rice and mobilized into pCAMBIA vector having hptII gene as the selection marker. The seedlings of the T1 generation transgenic plants survived better under high salinity compared to the wild type plants; the double transgenics had higher limits of tolerance as compared to the lines transformed with single gene. A similar trend was seen even when plants were grown in pots under glass house conditions and raised to maturity under the continued presence of NaCl. In this, the transgenic plants were able to grow, flower and set seeds. The overexpression of glyoxalse pathway was also found to confer stress tolerance in rice. We have also isolated a gene encoding vacuolar sodium/proton antiporter from Pennisetum and over expressed in Brassica juncea and rice. The transgenic plants were able to tolerate salinity stress. Our work along with many others' indicates the potential of transgenic technology in developing

  18. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  19. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  20. Irrigation and drainage in agriculture: a salinity and environmental perspective

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Stofberg, S.F.; Yang, X.; Liu, Y.; Islam, M.N.; Hu, Yin Fei

    2017-01-01

    Whereas irrigation and drainage are intended to address the shortage and surplus of soil water, respectively, an important aspect to address is also the management of salinity. Plants have a limited tolerance for soil water salinity, and despite significant gaps in our practical knowledge, an