WorldWideScience

Sample records for saline surface water

  1. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  2. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  3. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  4. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  5. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  6. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  7. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  8. Seasonal distribution of temperature and salinity in the surface waters off South West Africa, 1972-1974

    National Research Council Canada - National Science Library

    O'Toole, M. J

    1980-01-01

    Monthly distribution charts of surface water temperature and salinity off the coast of South West Africa between Cape Frio and Hollams Bird Island are presented for the periods August 1972 to March...

  9. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  10. Salinity maxima associated with some sub-surface water masses in the upper layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Reddy, C.V.G.

    The distribution of some sub-surface water masses in the western bay of Bengal during the south-west monsoon period is presented. Based on the salinity maxima and sigma t values the existence of waters of Persian Gulf and Red Sea origin could...

  11. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    Science.gov (United States)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  12. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  13. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  14. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  15. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    water in every other row, respectively; T5 and T6= fixed and variable deficit irrigation with non-saline water in every other rows, respectively and T7= full irrigation with saline water. To create the desired water salinity (8 dS/m, non-saline well water (1.5 dS/m and drainage water (20–35 dS/m were blended in different proportions. A T-tape drip irrigation system (20 m in length was used in the field experiment. Results and Discussion: In general, corn yield in 2013 was about 1270 kg ha-1 higher than in 2012. From the weather records it can be seen that the second year was drier than the first year. Yield analysis showed that deficit irrigation treatments (T2, T5 & T6 and also alternate salinity treatments (T3 & T4 did not significantly difference. In other words, the deficit irrigation management had no effect on yield. Corn yield in T3 and T4 with 50% of saved fresh water was just reduced to 7 and 1 % of T1, respectively. As a result, comparing treatments T3 and T4 with full irrigation have shown that treatments T3 and T4 are the best option. Comparison of moisture distribution in deficit irrigation treatments showed the highest water content in surface and deep layers was related to the treatments T6 and T2, respectively. The distribution of salinity in the soil profile for treatments T3 and T4 showed that after two years of irrigation with saline water, there is the possibility of use saline water for corn production, but drainage and leaching of soil will need to maintain sustainability. Conclusion: Naturally, in water scarce areas that use some strategic management such as deficit irrigation or saline water use, there is available arable farmland to further develop the irrigated area, and thereby increase total production. According to the results of the two-years where there was a shortage of water to meet crop water requirement and saline water was not available, the use of deficit irrigation managements as described in this study can save fresh water

  16. Faunal and oxygen isotopic evidence for surface water salinity changes during sapropel formation in the eastern Mediterranean

    International Nuclear Information System (INIS)

    Williams, D.F.; Thunell, R.C.

    1979-01-01

    The discovery of the widespread anaerobic deposits (sapropels) in late Cenozoic sediments of the eastern Mediteranean has prompted many workers to propose the periodic occurrence of extremely low surface salinites in the Mediterranean. Oxygen isotopic determinations and total faunal analyses were made at 1000-year intervals across two equivalent sapropels in two piston cores from the Levantine Basin. The sapropel layers were deposited approximately 9000 y.B.P. (Sapropel A) and 80, 000 y. B.P. (Sapropel B). Significant isotopic anomalies were recorded by the foraminiferal species within Sapropels A and B in both cores. The surface dwelling species record a larger 18 O depletion than the mesopelagic species suggesting that surface salinities were reduced by 2-3per 1000 during sapropel formation. The faunal changes associated with the sapropels also indicate that the oceanographic conditions which lead to anoxic conditions in the eastern Mediteranean involve the formation of a low salinity surface layer. The source of the low salinity water might be meltwater produced by disintegration of the Fennoscandian Ice Sheet which drained into the Black Sea, into the Aegean Sea and finally into the eastern Mediterranean. (Auth.)

  17. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  18. Spatial and Temporal Distribution of Sea Surface Salinity in Coastal Waters of China Based on Aquarius

    International Nuclear Information System (INIS)

    Wang, Ying; Jiang, Hong; Zhang, Xiuying; Jin, Jiaxin

    2014-01-01

    Sea surface salinity (SSS) is a fundamental parameter for the study of global ocean dynamics, water cycle, and climate variability. Aquarius launched by NASA and the Space Agency of Argentina is a breakthrough which could achieve the remote sensing data of SSS. The present paper takes the coastal of China as study area, which is a representative area of ocean boundary and influenced by continental rivers (Yangtze River and Pearl River). After analyze the temporal and spatial variation of SSS in the coastal of China, the estuary area has obvious low salinity because the injected of freshwater from continent. Take the East China Sea (ECS) and South China Sea (SCS) as representative region to discuss the effect of freshwater to SSS. The salinity is almost equal in winter when the diluted water is inadequate in both rivers. However, an obvious decrease appeared in summer especial July in Yangtze River for abundance discharge inflow the ECS. This is a reasonable expression of Yangtze River discharge is remarkable influence the SSS in coastal area then Pearl River. Survey the distribution range of Yangtze River diluted water (SSS<31psu). The range is small in winter and expands to peak value in summer

  19. Hydrochemical measures and salinity studies in Inhanhuns' waters, Ceara State, Brazil

    International Nuclear Information System (INIS)

    Lima, Carlos Henrique; Santiago, Marlucia Freitas; Mendes Filho, Josue; Frischkorn, Horst

    1996-08-01

    The Inhamuns region is one of the most arid in Ceara Waters exhibit very high salinity. Here we evaluate measurements of chemical parameters (electrical conductivity, EC, and major ions) and δ 18 O for waters from wells, springs and surface reservoirs. Results show that springs, with EC of up to nearly 5000 μS/cm, are fed by pluvial water, exchange through dams can be excluded. Electrical conductivity is well correlated with Na + Mg ++ and Cl - for waters of various origins, whereas Ca ++ correlates reasonably only for wells. We conclude that aerosol deposition is a major source of salt, Enrichment through evaporation constitutes the most important process for surface water salination. Dissolution of chlorite-silicates is the cause for the magnesian character of underground water. (author)

  20. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  1. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  2. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  3. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  4. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Water logging and salinity control for environmentally sustainable crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Bhutta, M.N.

    2005-01-01

    Irrigation supplies at proper time and adequate quantities are imperative for potential agricultural production under arid and semi-arid climatic conditions. To achieve this goal one of the largest integrated irrigation network was established. Without adequate drainage it resulted in the problems of water logging and salinity. To control these problems a big programme of Salinity Control and Reclamation projects (SCARPs) was initiated during 1960 and 82 such SCARPs have been completed and 9 were in progress up to June, 2002 covering an area of 18.6 ma (7.5 mh) at a cost of Rs.93 billions. Under these projects 12746 tube wells in fresh, 3572 in saline groundwater and 13726 km surface and 12612 km tile pipes covering 6391.7 ha, 160 km interceptor drains have been constructed an area of 0.998 ma (GCA). In addition to this some other measures like on farm water management, canal command project, canal lining, construction of evaporation ponds, establishment of research Inst./Organizations were also taken. Many drainage plans like Master Plan (1963), Northern Regional Plan (1967), Water Sector Investment Plan Study (1990), Right Bank Master Plan (1992), Drainage Sector Environmental Assessment (1993) and National Drainage Programme (1995) were prepared and implemented. The cost of the, phase-I of the National Drainage Programme was 785 million US$. The main activities undertaken were remodeling/extension of existing surface and new drains; rehabilitation/replacement of saline ground water (SGW) tube wells; construction of interceptor drains, reclamation of waterlogged areas through biological drainage and transfer of fresh ground water tube wells to the farmers. The data indicate that all the measures taken have played a significant role in reducing the water logging, salinity/sodicity and have increased the crop production and consequently improved the socio-economic conditions of the peoples especially the farming community. The environment in these areas was also

  6. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  7. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  8. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  9. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  10. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  11. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  12. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  13. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  14. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  15. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    Science.gov (United States)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (NSS. Additional results and potential implications will be presented and discussed.

  16. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  17. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  18. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  19. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction

  20. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  1. Saline-water intrusion related to well construction in Lee County, Florida

    Science.gov (United States)

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  2. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    Science.gov (United States)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  3. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  4. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Patricia L., E-mail: patty.gillis@ec.gc.ca [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R-4A6 (Canada)

    2011-06-15

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L{sup -1} (reconstituted water, 100 mg CaCO{sub 3} L{sup -1}). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO{sub 3} L{sup -1}) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L{sup -1}) than in reconstituted water (EC50 285 mg L{sup -1}). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L{sup -1}). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: > Compared to other aquatic organisms glochidia are very sensitive to chloride. > Glochidia were less sensitive to salt in natural water than in reconstituted water. > Glochidia were less sensitive to salt in hard water than in soft water. > Road salt runoff may pose a threat to the reproduction of freshwater mussels. > Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  5. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    International Nuclear Information System (INIS)

    Gillis, Patricia L.

    2011-01-01

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L -1 (reconstituted water, 100 mg CaCO 3 L -1 ). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO 3 L -1 ) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L -1 ) than in reconstituted water (EC50 285 mg L -1 ). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L -1 ). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: → Compared to other aquatic organisms glochidia are very sensitive to chloride. → Glochidia were less sensitive to salt in natural water than in reconstituted water. → Glochidia were less sensitive to salt in hard water than in soft water. → Road salt runoff may pose a threat to the reproduction of freshwater mussels. → Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  6. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  7. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  8. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    Science.gov (United States)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  9. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  10. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  11. Salinity Remote Sensing and the Study of the Global Water Cycle

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic

  12. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  13. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  14. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  15. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  16. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  17. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  18. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    representation of coastal flows. This improvement most likely is due to a more stable numerical representation of the coastal creek outlets. Sensitivity analyses were performed by varying frictional resistance, leakage, barriers to flow, and topography. Changing frictional resistance values in inland areas was shown to improve water-level representation locally, but to have a negligible effect on area-wide values. These changes have only local effects and are not physically based (as are the unchanged values), and thus have limited validity. Sensitivity tests indicate that the overall accuracy of the simulation is diminished if leakage between surface water and ground water is not simulated. The inclusion of a major road as a complete barrier to surface-water flow influenced the local distribution and timing of flow; however, the changes in total flow and individual creekflows were negligible. The model land-surface altitude was lowered by 0.1 meter to determine the sensitivity to topographic variation. This topographic sensitivity test produced mixed results in matching field data. Overall, the representation of stage did not improve definitively. A final calibration utilized the results of the sensitivity analysis to refine the TIME application. To accomplish this calibration, the friction coefficient was reduced at the northern boundary inflow and increased in the southwestern corner of the model, the evapotranspiration function was varied, additional data were used for the ground-water head boundary along the southeast, and the frictional resistance of the primary coastal creek outlet was increased. The calibration improved the match between measured and simulated total flows to Florida Bay and coastal salinities. Agreement also was improved at most of the water-level sites throughout the model domain.

  19. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  20. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  1. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  2. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  3. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    Science.gov (United States)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  4. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  5. Salinity extrema in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shetye, S.R.; Gouveia, A.D.; Michael, G.S.

    are described. Two of the maxima arise from the influence of Red Sea and the Persian Gulf Water. The third, which lies at the bottom of the Equatorial Surface Water, forms due to freshening at the surface of high salinity Arabian Sea near-surface waters...

  6. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  7. Receding and advancing (CO_2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO_2) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO_2) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO_2 + quartz) contact angles. - Abstract: The wetting characteristics of CO_2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO_2/water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl_2, and MgCl_2) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  8. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  9. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  10. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  11. The dynamics of Orimulsion in water with varying energy, salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. Its unique composition causes it to behave differently from conventional fuel oils when spilled at sea. Earlier studies have shown that Orimulsion is driven by buoyancy to rise in salt water and sink in fresh water. This study conducted 11 experiments at lower temperature and salinity values to obtain new information on the behaviour of Orimulsion in salt, fresh and brackish water. The applied rotational field was adjusted to vary the energy. A time-series of samples of Orimulsion in a 300 litre tank of water were taken to determine depletion rates and characteristics. Oil on the surface was quantified and the concentration of bitumen and particle size distribution was determined. The study also measured changes in bitumen concentration and particle size distribution as a function of time. The data was used to develop simple equations that predict concentrations of bitumen resurfacing and remaining in the water column as a function of time. It was concluded that there is a complex interaction between salinity, time, energy and temperature. 9 refs., 5 tabs., 8 figs

  12. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water

    DEFF Research Database (Denmark)

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-01-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week...... at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast......, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas...

  13. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  14. The dynamics of Orimulsion in water with varying salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  15. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  16. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  17. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    -Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.

  18. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  19. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  20. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  1. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Soil and plant responses from land application of saline-sodic waters: Implications of management

    Energy Technology Data Exchange (ETDEWEB)

    Vance, G.F.; King, L.A.; Ganjegunte, G.K. [University of Wyoming, Laramie, WY (United States). Department for Renewable Resources

    2008-09-15

    Land application of co-produced waters from coalbed natural gas (CBNG) wells is one management option used in the Powder River Basin (PRB) of Wyoming and Montana. Unfortunately the co-produced CBNG waters may be saline and/or sodic. The objective of this study was to examine the effects of irrigation with CBNG waters on soils and plants in the PRB. Soil properties and vegetation responses resulting from 1 to 4 yr of saline sodic water (electrical conductivity (EC) 1.6-4.8 dS m{sup -1} sodium adsorption ratio (SAR), 17-57 mmol L- applications were studied during 2003 and 2004 field seasons on sites (Ustic Torriorthent Haplocambid, Haplargid and Paleargid) representing native range grasslands seeded grass hayfields and alfalfa hayfields. Parameters measured from each irrigated site were compared directly with representative non-irrigated sites. Soil chemical and physical parameters including pH, EC, SAR, exchangeable sodium percent, texture, bulk density, infiltration and Darcy flux rates, were measured at various depth intervals to 120 cm. Mulitple-year applications of saline sodic water produced consistent trends of increased soil EC AND SAR values to depths of 30 cm reduced surface infiltration rates and lowered Darcy flux rates to 120 cm. Significant differences (p {le} 0.05) were determined between irrigated and non-irrigated areas for EC, SAR infiltration rates and Darcy flux (p {le} 0.10) at most sites. Saline sodic CBNG water applications significantly increased native perennial grass biomass production and cover on irrigated as compared with non-irrigated sites; however overall species evenness decreased. Biological effects were variable and complex reflecting site-specific conditions and water and soil management strategies.

  3. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima; Chiron, Serge, E-mail: serge.chiron@msem.univ-montp2.fr

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20{alpha}-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br{center_dot}, Br{sub 2}{center_dot}{sup -}) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: Black-Right-Pointing-Pointer Brominated derivatives of salicylic acid were detected in a brackish lagoon. Black-Right-Pointing-Pointer A photochemical pathway was hypothesized to account for bromination of salicylic acid. Black

  4. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Chiron, Serge

    2012-01-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20α-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br·, Br 2 · − ) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: ► Brominated derivatives of salicylic acid were detected in a brackish lagoon. ► A photochemical pathway was hypothesized to account for bromination of salicylic acid. ► Radical bromine species are partly responsible for the bromination process. ► Hypobromous acid

  5. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  6. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  7. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  8. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  9. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  10. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  11. Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta

    International Nuclear Information System (INIS)

    Liu, Qiang; Li, Fadong; Zhang, Qiuying; Li, Jing; Zhang, Yan; Tu, Chun; Ouyang, Zhu

    2014-01-01

    Highlights: • We assess the response of different ecosystems to the water diversion. • We characterized the interaction between surface water and groundwater. • We use the Piper and HFE-D to illustrate the salinization process. - Abstract: The Yellow River Delta is undergoing severe ecosystem degradation through salinization caused mainly by seawater intrusion. The Yellow River diversion project, in operation since 2008, aims to mitigate a projected ecosystem disaster. We conducted field investigations across three ecosystems (Farmland, Wetland and Coast) in the delta to assess the effectiveness of the annual water pulse and determine the relationships between surface water and groundwater. The chemical characteristics of the groundwater in Farmland exclude the possibility of seawater intrusion. The Wetland is vulnerable to pollution by groundwater discharge from Farmland and to secondary salinization caused by rising water tables. The salinity values of groundwater at Coast sites likely reflect the presence of seawater trapped in the clay sediments, a premise corroborated through measurements of groundwater levels, stable isotopes and major ion signatures. Our δD–δ 18 O two-dimensional graphic plot demonstrated that groundwaters of Farmland and Wetland changed toward more depleted isotopic compositions following water diversion, but this was not the case in the Coast sites, where the water table varied little year-round. A hydrochemical facies evolution diagram (HFE-D) demonstrated that freshening is taking place in the largest portions of the aquifers and that, without sustained water diversion recharge, these underground water bodies may switch from freshening to salinization on a seasonal time scale. Thus, the qualities of waters in coastal aquifers in the Yellow River Delta are substantially influenced by the process of ecological water diversion, and also by land use practices and by the lithological properties of the drainage landscape

  12. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  13. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  14. Quality of jackfruit seedlings under saline water stress and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    Francisco Ítalo Fernandes de Oliveira

    2017-08-01

    Full Text Available The lack of good quality water for agriculture purposes regarding salts and quantity in relation to demand for the plants has, for more than 30 years, been forcing the use of restrictive water because of salinity issues in agricultural production systems worldwide. In Brazil, the situation is no different, in the semi-arid areas, there are reports of losses of seed germination, initial growth of seedlings and yield of crops of commercial importance due to the salinity of the water used in irrigation systems. Therefore, an experiment was carried out from June to September/2014 in a protected environment, with a plastic film on the upper base and a thin screen against insects on the sides, to evaluate the effects of salinity interaction between water irrigation and nitrogen fertilisation sources on soil salinity, initial plant growth and the quality of the jackfruit seedlings. The treatments were distributed in randomised blocks, in the factorial scheme 5 × 3, reference irrigation water of 0.3, 1.0, 2.0, 3.0 and 4.0 dS m-1, in soil with and without ammonium sulfate and urea. An increase in the salinity of the irrigation water to 1.32 and 1.70 dS m-1 on the substrate without nitrogen stimulated an increase in the number of leaves and leaf area of the jackfruit seedlings. The ammonium sulfate was the nitrogen source that mainly contributed to the increase of soil salinity and to the reduction of the quality index of the seedlings. Despite the reduction of the Dickson quality index due to the salinity of the irrigation water and the nitrogen sources, the seedlings were suitable for cultivation.

  15. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea.

    Science.gov (United States)

    Beier, Emilio; Bernal, Gladys; Ruiz-Ochoa, Mauricio; Barton, Eric Desmond

    2017-01-01

    Despite the heavy regional rainfall and considerable discharge of many rivers into the Colombian Basin, there have been few detailed studies about the dilution of Caribbean Surface Water and the variability of salinity in the southwestern Caribbean. An analysis of the precipitation, evaporation and runoff in relation to the climate variability demonstrates that although the salt balance in the Colombian Basin overall is in equilibrium, the area south of 12°N is an important dilution sub-basin. In the southwest of the basin, in the region of the Panama-Colombia Gyre, Caribbean Sea Water is diluted by precipitation and runoff year round, while in the northeast, off La Guajira, its salinity increases from December to May by upwelling. At the interannual scale, continental runoff is related to El Niño Southern Oscillation, and precipitation and evaporation south of 12°N are related to the Caribbean Low Level Jet. During El Niño years the maximum salinification occurs in the dry season (December-February) while in La Niña years the maximum dilution (or freshening), reaching La Guajira Coastal Zone, occurs in the wet season (September-November).

  16. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  17. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  18. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    Science.gov (United States)

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  19. Spinach biomass yield and physiological response to interactive salinity and water stress

    Science.gov (United States)

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  20. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  1. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  2. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  3. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  4. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  5. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    Science.gov (United States)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  6. Monitoring soil coverage and yield of cowpea furrow irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Antonia Leila Rocha Neves

    Full Text Available Abstract Cowpea crop is of great importance for northeast Brazil. The objective of this work was to evaluate the application of saline water in different developing stages on plant growth and changes in soil characteristics, measured by soil coverage, and on yield of cowpea plants. The experiment was conducted under field conditions, during the dry season in a completely randomized block design with five treatments and five replications. Each experimental unit consisted of 4 lines of plants with 5.0 m long. The treatments evaluated were: 1. irrigation with groundwater with electrical conductivity (ECw of 0.8 dS m-1 during the whole crop cycle; 2. saline water (5.0 dS m-1 during the whole crop cycle; 3, 4 and 5. saline water (5.0 dS m-1 up to 22nd, during 23rd to 42nd and from the 43rd to 62nd days after sowing, respectively, and groundwater in the remaining period. Soil coverage was evaluated by digital images using the software ENVI for image processing and classification. It was found that the continuous use of saline water inhibits plant growth, while irrigation with saline water during germination and initial growth stages caused retardation in plant development, but in this last case a recovery was observed in the final part of the experimental period. For treatments 2 and 3, a reduction was verified in the number of pods and in seed production, as compared to other treatments. Irrigation with saline water during 23 to 42 and 43 to 62 days after sowing did not affect reproductive and vegetative growth, but the saline water application in the pre-flowering (treatment 4 caused anticipation of the reproductive cycle.

  7. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Farnoosh Mahjoor

    2016-06-01

    Full Text Available Eggplant (Solanum melongena L. is a plant native to tropical regions of Southeast Asia. The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand, led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality. The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency. The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity (electrical conductivity of 0.8 (control, 2.5, 5, and 7 dS m−1 and three growth media (cocopeat, perlite, and a 50–50 mixture of the two by volume. Total yield, yield components, evapotranspiration, and water-use efficiency were determined during two growing periods, one each in 2012 and 2013. All of these indices decreased significantly as water salinity increased. Water with of 0.8 dS m−1 produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013. The highest yield was observed in cocopeat. Water with 7 dS m−1 reduced yield to 906 g per plant in 2012 and to 960 g in 2013. Lowest yield was observed in perlite. The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years. Cocopeat and the cocopeat–perlite mixture were equally good substrates. The mixture significantly improved the quantitative and qualitative properties of eggplant yield.

  8. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  9. Effects of road salts on groundwater and surface water ...

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current baseflow salinity does not exceed water quality recommendations, but rapid “first flush” storm flow was approximately one-third that of seawater. Comparisons between the upstream and downstream study reaches suggest that a major interstate highway is the primary road salt source. A heavily used road parallels most of MBR and was an additional source to GW concentrations, especially the downstream right bank. A baseflow synoptic survey identified zones of increased salinity. Downstream piezometer wells exhibited increases in salt concentrations and there was evidence that Na+ is exchanging Ca2+ and Mg2+ on soils. SW salt concentrations were generally elevated above GW concentrations. Salinity levels persisted at MBR throughout the year and were above background levels at Bynum Run, a nearby reference stream not bisected by a major highway, suggesting that GW is a long-term reservoir for accumulating road salts. Chronic salinity levels may be high enough to damage vegetation and salinity peaks could impact other biota. Beneficial uses and green infrastructure investments may be at risk from salinity driven degradation. Therefore, road salt may represent an environmental risk that could af

  10. Elementary introduction into thermal desalination of saline waters

    International Nuclear Information System (INIS)

    Froehner, K.R.

    1979-01-01

    The principle of thermal conversion of saline waters into potable water are described from an elementary point of view in an easy understandable manner, covering distillation, submerged coil evaporation, flash evaporation, multiple effect distillation, vapour compression, and solar distillation in simple solar stills. (orig.)

  11. Multifactorial control of water and saline intake: role of a2-adrenoceptors

    Directory of Open Access Journals (Sweden)

    L.A. De-Luca Jr.

    1997-04-01

    Full Text Available Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, an a2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The a2-adrenoceptors constitute an inhibitory factor common to both summing points

  12. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ra-226 and Rn-222 in saline water compartments of the Aral Sea region

    International Nuclear Information System (INIS)

    Schettler, Georg; Oberhänsli, Hedi; Hahne, Knut

    2015-01-01

    Highlights: • 222 Rn and 226 Ra concentrations in different water compartments of the Aral Sea region. • 226 Ra-analysis based on 222 Rn-ingrowth versus MS-analysis after solid-phase extraction. • 226 Ra in different groundwater types of the Aral Sea Basin. • 222 Rn distribution in the Aral Sea, western basin. - Abstract: The Aral Sea has been shrinking since 1963 due to extensive irrigation and the corresponding decline in the river water inflow. Understanding of the current hydrological situation demands an improved understanding of the surface water/groundwater dynamics in the region. 222 Rn and 226 Ra measurements can be used to trace groundwater discharge into surface waters. Data of these radiometric parameters were not previously available for the study region. We determined 222 Rn activities after liquid phase extraction using Liquid Scintillation Counting (LSC) with peak-length discrimination and analyzed 226 Ra concentrations in different water compartments of the Amu Darya Delta (surface waters, unconfined groundwater, artesian water, and water profiles from the closed Large Aral Sea (western basin). The water samples comprise a salinity range between 1 and 263 g/l. The seasonal dynamics of solid/water interaction under an arid climate regime force the hydrochemical evolution of the unconfined groundwater in the Amu Darya Delta to high-salinity Na(Mg)Cl(SO 4 ) water types. The dissolved radium concentrations in the waters were mostly very low due to mineral over-saturation, extensive co-precipitation of radium and adsorption of radium on coexisting solid substrates. The analysis of very low 226 Ra concentrations (<10 ppq) at remote study sites is a challenge. We used the water samples to test and improve different analytical methods. In particular, we modified a procedure developed for the α-spectrometric determination of 226 Ra after solid phase extraction of radium using 3M Empore™ High Performance Extraction Disks (Purkl, 2002) for the

  14. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    Science.gov (United States)

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  15. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  16. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh

    International Nuclear Information System (INIS)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-01-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19–25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. - Highlights: • Freshwater salinization will affect more people and to a greater extent as climate projections are realised in low-lying regions of the world.

  17. Effect of volume loading with water, normal saline, palm wine and ...

    African Journals Online (AJOL)

    A comparative study of the diuretic effect of water, normal saline, palm wine and Lipton tea was carried out on forty (40) randomly selected, apparently normal undergraduate students of Medicine and Pharmacy at the University of Uyo, Nigeria. One and a half (1.5) litres of water, normal saline, palm wine and Lipton tea were ...

  18. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    Science.gov (United States)

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  19. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  20. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  1. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  2. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  3. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  4. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  5. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (righting. It has a small above-surface profile and low windage, resulting in near-Lagrangian drift characteristics. It is autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  6. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    Science.gov (United States)

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  7. Physiological changes of pepper accessions in response to salinity and water stress

    Energy Technology Data Exchange (ETDEWEB)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-07-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  8. Physiological changes of pepper accessions in response to salinity and water stress

    International Nuclear Information System (INIS)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-01-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  9. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  10. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  11. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  12. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  13. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  14. Urbanization accelerates long-term salinization and alkalinization of fresh water

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  15. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  16. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    -tionite treatments was different regarding the salinity, texture, organic matters, cultivation and the water table fluctuation. The total Fe content in the middle layers had permanently increased due to the groundwater fluctuation levels and this caused the creation of mottle in this layer. All saline soils had saline subsurface water. The salinity has caused that the effective microorganisms have not been actived on the reduction processes in some profiles and the Fe deposit more in the Fe3+forms. The Fe was found more in non-crystal form in saline regions, but it was in the crystal form in non-saline regions which indicated the suitable conditions for Fe’s nodule formation. For example, when soil salinity decreased from 14.9 to 8.1 dS/m, Fec increased from 460.1 to 497.8 mg/kg soil. With increasing the amount of clay, and cultivation periods, the Fed content has also been increased. The Feo/ Fec ratio in undevelopted soils was higher than developed soils. This ratio was low in non-saline soil and was high for saline soil. this indicates that non-saline soil had more development than saline soils. The maximum amount (1.6 was belonged to saline soil and minimum was for no saline soils. With increasing in soil age, tillage periods and clay content this ratio was decreased., statistical analysis Also showed that there was significant difference between Fec and Feo in saline and no saline soils. Also, with increasing in salinity, Fec content decreased and Feo increased. aggregate stability was also increased with increasing Fec content. Conclusions: The Feo content was more in surface of saline soil than subsurface when pedon was ponded and saturated from surface. Feo was very higher in saline soils than no saline soils. Fec had not significant difference between saline and nonsaline soils. Salinity decreased Fec and increased Feo content in soils. Feo/Fec ratio of saline soils was 4 to 5 times fold of non-saline soils. Increasing Feo/Fec ratio in saline soils and decreasing in this

  17. Radium Adsorption to Iron Bearing Minerals in Variable Salinity Waters

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2014-12-01

    Radium is a common, naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are a product of natural uranium and thorium decay, and are particularly abundant within groundwaters where minimal flux leads to accumulation within porewaters. Radium has been used as a natural tracer to estimate submarine groundwater discharge (SGD) [1], where the ratios of various radium isotopes are used to estimate total groundwater flux to and from the ocean [2]. Further, it represents a substantial hazard in waste water produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a primary pathway of radium retention within subsurface environments. For SGD studies, it is important to understand adsorption processes to correctly estimate GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids will mediate the activities of radium within produced water. While some studies of radium adsorption to various minerals have been performed [4], there is a limited understanding of the surface chemistry of radium adsorption, particularly to iron-bearing minerals such as pyrite, goethite and ferrihydrite. Accordingly, we present the results of sorption experiments of radium to a suite of iron-bearing minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through the use of artificial groundwater, seawater, and shale formation brine. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the retention of radium. This work lays the groundwork for further study of radium use as a tracer for SGD, as well as understanding mechanisms of radium retention and release from deep aquifer materials following hydraulic fracturing

  18. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  19. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    Science.gov (United States)

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

  20. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  1. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  2. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Saline water in southeastern New Mexico

    Science.gov (United States)

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  4. Effect of water salinity on wheat inoculated with N fixing bacteria using 15N tracer technique

    International Nuclear Information System (INIS)

    Al-Sayed, M. A.; Soliman, S. M.; Galal, Y. G. M.; El-Hadidi, E. M.

    2012-12-01

    A pot experiment was carried out under greenhouse controlled conditions to investigate the effect of water salinity and bacterial inoculation on growth parameters and nutrient uptake by wheat ( Triticum aestivum, L. seda 6). Dry matter yield of shoots was gradually increased with increasing water salinity levels under dual inoculation (Rh + Az). This phenomenon was more pronounced with 6 ds m -1 rather than 3 ds m -1 water salinity level. This holds true with all inoculation treatments. Similar trend was noticed with root dry matter yield. N uptake by shoots was positively affected by water salinity levels under bacterial inoculation especially the dual treatments where N uptake tended to increase with increasing water salinity levels. N uptake by roots was severely affected by increasing water salinity levels as compared to fresh water treatment. N uptake by shoots was enhanced by inoculation under different water salinity levels as compared to the un inoculated treatment. Nitrogen uptake roots was dramatically affected by inoculation. It was only increased by inoculation when plants were irrigated with fresh water. Portions of Ndff were frequently affected by both water salinity levels and microbial inoculation. wheat plant as representative of cereal crops was more dependent on the portion of nitrogen up taken from fertilizer rather than those fixed from the air. Therefore, the plant-bacteria association was not efficient enough. Inoculated treatments compensated considerable amounts of its N demand from air beside those derived from fertilizer, therefore the remained N from fertilizer in soil was higher than those of un inoculated control which is more dependable on Ndff as well as Ndf s. 1 5N recovery by wheat plants was enhanced by bacterial inoculation as well as water salinity levels did. (Author)

  5. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  6. An inductive conductivity meter for monitoring the salinity of dialysis water

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1970-01-01

    An inductive conductivity meter is described, especially adapted as a salinity monitor for dialysis water. Salinity are given. The principal problems of the inductive conductivity meter result from the low conductivity of electrolytes. The weak coupling due to the electrolyte means that stray...

  7. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2011-01-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  8. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-07-01

    Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water-rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L-1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are

  9. Measuring surface salinity in the N. Atlantic subtropical gyre. The SPURS-MIDAS cruise, spring 2013

    Science.gov (United States)

    Font, Jordi; Ward, Brian; Emelianov, Mikhail; Morisset, Simon; Salvador, Joaquin; Busecke, Julius

    2014-05-01

    SPURS-MIDAS (March-April 2013) on board the Spanish R/V Sarmiento de Gamboa was a contribution to SPURS (Salinity Processes in the Upper ocean Regional Study) focused on the processes responsible for the formation and maintenance of the salinity maximum associated to the North Atlantic subtropical gyre. Scientists from Spain, Ireland, France and US sampled the mesoscale and submesoscale structures in the surface layer (fixed points and towed undulating CTD, underway near surface TSG) and deployed operational and experimental drifters and vertical profilers, plus additional ocean and atmospheric data collection. Validation of salinity maps obtained from the SMOS satellite was one of the objectives of the cruise. The cruise included a joint workplan and coordinated sampling with the US R/V Endeavor, with contribution from SPURS teams on land in real time data and analysis exchange. We present here an overview of the different kinds of measurements made during the cruise, as well as a first comparison between SMOS-derived sea surface salinity products and salinity maps obtained from near-surface sampling in the SPURS-MIDAS area and from surface drifters released during the cruise.

  10. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  11. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0.98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity

  12. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  13. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  14. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik

    2014-01-01

    and soluble sugars as osmolytes produced by chickpea to mitigate the effect of salinity stress. The added value of these results is that the crop's responses to salinity are quantified. The obtained values can be used to determine 'threshold values'; should the salinity of the irrigation water go above...... these threshold values one may expect the crop yield parameters to be affected. The quantified responses also indicate the rate of change of yield parameters in response to the irrigation water salinity level. This could help in avoiding significant yield reduction when deciding on the irrigation water salinity...

  15. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  16. Age of ground water and the origin of its salinity in the Leba region

    International Nuclear Information System (INIS)

    Kwaterkiewicz, A.; Sadurski, A.; Zuber, A.

    1999-01-01

    Intensive exploitation of ground waters in the Leba region caused a strong increase of salinity, which on the basis of hydrochemistry, was supposed to result from the intrusion of the Baltic Sea water. Environmental isotope data revealed that water in the tertiary sediments is of glacial origin and its salinity is related to the admixture of ascending older waters. (author)

  17. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    G. Mongelli

    2013-07-01

    Full Text Available Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr, in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the

  18. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  19. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  20. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  1. Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada

    International Nuclear Information System (INIS)

    Gue, Anita E.; Mayer, Bernhard; Grasby, Stephen E.

    2015-01-01

    (phenanthrene and naphthalene), with more PAHs being detected in springs along the Athabasca River. This geochemical characterization of the saline groundwater discharging from the Devonian carbonates underlying oil sands deposits contributes to the knowledge of baseline groundwater chemistry in the AOSR, which is of importance in the delineation of natural versus anthropogenic effects on regional surface water and groundwater quality

  2. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Directory of Open Access Journals (Sweden)

    J. Boutin

    2013-02-01

    Full Text Available The sea surface salinity (SSS measured from space by the Soil Moisture and Ocean Salinity (SMOS mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days, 100 × 100 km2 in the open ocean and estimated by comparison to ARGO (Array for Real-Time Geostrophic Oceanography SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The averaged negative SSS bias (−0.1 observed in the tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS observations concomitant with rain events, as detected from SSM/Is (Special Sensor Microwave Imager rain rates, are removed from the SMOS–ARGO comparisons. The SMOS freshening is linearly correlated to SSM/Is rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with ARGO measurements concomitant with rain events collocated with SMOS measurements under no rain, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.

  3. Development of sub-surface drainage data base system for use in water logging and salinity managements issues

    International Nuclear Information System (INIS)

    Azhar, A.H.; Alam, M.M; Rafiq, M.

    2005-01-01

    A simple user-friendly menu-driven database management system pertinent to the Impact of Subsurface Drainage Systems on land and Water Conditions (ISLaW) has been developed for use in water logging and salinity management issues of drainage areas. This database has been developed by integrating four software viz; Microsoft Excel, MS Word, Acrobat and MS Access. The information in the form of tables and figures with respect to various drainage projects has been presented in MS Word files. The major data sets of various subsurface drainage projects included in the ISLaW database are: i) technical aspects, ii) groundwater and soil salinity aspects, iii) socio-technical aspects, iv) agro-economic aspects, and v) operation and maintenance aspects. The various ISLaW files can be accessed just by clicking at the Menu buttons of the database system. This database not only gives feedback on the functioning of different subsurface drainage projects with respect to above mentioned various aspects, but also serves as a resource document for these data for future studies at other drainage projects. The developed database system is useful for planners, designers and Farmers' Organizations for improved operation of existing as well as development of future drainage projects. (author)

  4. Dryland salinity: threatening water resources in the semi-arid Western Cape

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-11-01

    Full Text Available associated with the mobilisation of inorganic salts from the landscape and the consequent increase in salt concentrations in receiving water bodies. Dyland salinity is not new to this area. Wheat lands in the Swartland and Overberg regions are widely known... to contain ?brak kolle? (saline scalds) where the wheat will not germinate. CAPTION: The Berg River near Velddrif. The river drains an area of approximately 9 000 km? and is an important source of water to the Boland and Cape Peninsula (source: Vernon...

  5. Change in the intensity of low-salinity water inflow from the Bay of Bengal into the Eastern Arabian Sea from the Last Glacial Maximum to the Holocene: Implications for monsoon variations

    Digital Repository Service at National Institute of Oceanography (India)

    Mahesh, B.S.; Banakar, V.K.

    A 100–400 km wide region of the coastal Eastern Arabian Sea (EAS), off the west-coast of India, is characterized by a low-salinity tongue formed by the inflow of low-salinity surface water from the Bay of Bengal (BoB). This low-salinity tongue...

  6. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    Science.gov (United States)

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  7. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  8. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  9. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  10. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  11. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  12. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  13. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  14. Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    KAUST Repository

    Nava Ocampo, Maria F.

    2017-05-01

    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment to prevent the symptoms of the disease is inhalation of hypertonic saline solution, NaCl at concentrations higher than in the human body (~150 mM). This procedure clears the mucus in the lungs, bringing relief to the patient. However, the biophysical mechanisms underlying this process are not entirely clear. We undertook a new experimental approach to understand the effects of sprayed saline solutions on model lung surfactants towards understanding the mechanisms of the treatment. The surface of lungs contains mainly 1,2-Dipalmitol-sn-glycero-3-phosphocoline (DPPC). As previously assumed by others, we considered that monolayer of DPPC at the air-water interface serves as model system for the lungs surface; we employed a Langmuir-Blodgett (LB) trough and PM-IRRAS to measure surface-specific infrared spectra of the surfactant monolayers and effects on the interfacial tensions. We investigated spraying hyper-saline solutions onto surfactant monolayers at the airwater interface in two parts: (i) validation of our methodology and techniques with stearic acid and (ii) experiments with DPPC monolayers at the air-water interface. Remarkably, when micro-droplets of NaCl were sprayed to the monolayer of stearic acid, we observed enhanced organization of the surfactant, interpreted from the intensities of the CH2 peaks in the surface-specific IR spectra. However, our results with DPPC monolayers didn’t show an effect with the salt added as aerosol, possibly indicating that the experimental methodology proposed is not adequate for the phenomena studied. In parallel, we mimicked respiratory mucous by preparing salt solutions containing 1% (wt%) agar and measured effects on their viscosities. Interestingly, we found that NaCl was much

  15. Assessment of seasonal and year-to-year surface salinity signals retrieved from SMOS and Aquarius missions in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Akhil, V.P.; Lengaigne, M.; Durand, F.; Vialard, J.; Chaitanya, A.V.S.; Keerthi, M.G.; Gopalakrishna, V.V.; Boutin, J.; de Boyer, M.C.

    , Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, Paris, France; dNIO, Goa, India; eLOS, IFREMER, Plouzané, France ABSTRACT The Bay of Bengal (BoB) exhibits a wide range of sea surface salinity (SSS), with very fresh water induced by heavy monsoonal...

  16. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    Science.gov (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  17. Importance of ocean salinity for climate and habitability.

    Science.gov (United States)

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M

    2016-04-19

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  18. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.

    Science.gov (United States)

    Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse

    2018-05-01

    To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.

  19. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  20. The effect of process water salinity on flotation of copper ore from Lubin mining region (SW Poland

    Directory of Open Access Journals (Sweden)

    Bakalarz Alicja

    2017-01-01

    Full Text Available The process water used for the flotation of sedimentary copper ore in ore concentration plants in KGHM Polska Miedz S.A. were characterized. The process water used in the flotation circuits is heavily saline. It contains between 25 and 45 g/dm3 of soluble components, and the main constituent, in about 75%, is NaCl. Process water used for flotation consists of reclaimed water from the tailing dam and mine water. The effect of process water salinity on the processes of copper flotation from the Lubin mine area was described. The results of laboratory flotation experiments conducted in tap water and in water of different salinity levels were compared. The effect of the salinity of water within specified concentration limits was generally found to be beneficial for upgrading of the examined ore.

  1. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  2. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  3. Effect of Saline Water on Yield and Nitrogen Acquisition by Sugar Beet (Beta vulgaris L.) Using 15N Technique

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Abdel Aziz, A.; Hamdy, A.

    2007-01-01

    Sugar beet growth response to the interactive effects of salinity and N-fertilization was investigated using 15N tracer technique under greenhouse condition. Data showed that dry matter yield of sugar beet shoots and roots were frequently affected by N and water regime. Total N uptake by leaves was increased under almost water salinity treatments in spite of increasing salinity levels. It appears that in case of W I , N I I the N-uptake by roots was significantly decreased along with raising salinity levels from 4 to 8 dS/m. The portions of N derived from fertilizer (whole plant) showed that the trend was affected by salinity level of irrigation water, and fertilization treatments. The highest amount of N derived from fertilizer was obtained with the 4 dS/m level under N I I with the two water regimes. The efficient use of fertilizer-N was slightly but positively affected by raising salinity levels of irrigation water. Sugar percent was increased with increasing salinity levels of irrigation water under both N I and N I I treatments, but it was higher in case of N I than NII under different salinity levels. Generally, Irrigation with saline water in combination with water regime of 75-80% of field capacity and splitting nitrogen technique are better for enhancement of sugar beet production grown under such adverse conditions

  4. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    Science.gov (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  5. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  6. Alternative Options for Safe Drinking Water in Arsenic and Salinity Affected Bornal-Iliasabad Union of Kalia Upazila, Narail District, Bangladesh

    Science.gov (United States)

    Rahman, M. M.; Hasan, M. A.; Ahmed, K. M.; Nawrin, N.

    2016-12-01

    The study area, Bornal-Ilisabad union, Kalia, Narail is one of the most vulnerable areas of Bangladesh in terms of access to safe drinking water. Shallow groundwater of this area is highly arsenic contaminated (mostly >500 μg/L) and deep groundwater is saline (EC ranges 1 to 8 mS/cm). Local communities rely on rainwater for drinking and cooking purposes during the monsoon and rest of the year they use surface water from pond which are mostly polluted. In areas where surface water is not available people are compelled to use arsenic contaminated groundwater and thus exposing themselves to serious health hazard. Principal objective of the research is to evaluate the effectiveness of managed aquifer recharge (MAR) and subsurface arsenic removal (SAR) technology in mitigating groundwater salinity and arsenic, to provide alternative sources of safe water. Surface water (pond water) and rainwater collected from roof top are used as source water to be recharged into the target aquifer for the MAR system. Source water is filtered through a sand filtration unit to remove turbidity and microorganisms before recharging through infiltration wells. For SAR system, on the other hand, a certain volume (2000L) of groundwater is abstracted from the target aquifer and then aerated for about half an hour to saturate with oxygen. The oxygenated water is injected into the aquifer and kept there for 6-8 hours and then abstracted for use. The MAR system constructed in the study area is found very effective in reducing groundwater salinity. The electrical conductivity (EC) of the groundwater of MAR system has been reduced 72-81% from the initial EC value of 3.4 mS/cm. A significant improvement in groundwater arsenic and iron concentration is also observed. The system is yielding groundwater with arsenic within permissible limit of Bangladesh drinking water standard (50 μg/L) which was 100 μg/L before introduction of MAR system. The SAR system is also found effective in reducing

  7. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  8. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  9. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  10. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  11. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  12. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    OpenAIRE

    И. Собота

    2017-01-01

    In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for dif...

  13. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-01-01

    In the Mediterranean area the demand of good quality water is often threatened by salinization, especially in coastal areas. The salinization is the result of concomitant processes due to both marine water intrusion and rock-water interaction, which in some cases are hardly distinguishable. In northwestern Sardinia, in the Nurra area, salinization due to marine water intrusion has been recently evidenced as consequence of bore hole exploitation. However, the geology of the Nurra records a long history from Paleozoic to Quaternary, resulting in relative structural complexity and in a wide variety of lithologies, including Triassic evaporites. To elucidate the origin of the saline component in the Nurra aquifer, may furnish a useful and more general model for the salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activities and recent climatic changes, the Nurra has become vulnerable to desertification and, similarly to other Mediterranean islands, surface-water resources can periodically suffer from drastic shortage. With this in mind we report new data, regarding brackish waters of Na-Cl type of the Nurra, including major ions and selected trace elements (B, Br, I and Sr) and isotopic data, including δ18O, δD in water, and δ34S and δ18O in dissolved sulphate. To better depict the origin of the salinity we also analyzed a set of Nurra Triassic evaporites for mineralogical and isotopic composition. The brackish waters have Cl contents up to 2025 mg L-1 and the ratios between dissolved ions and chlorine, with the exception of the Br/Cl ratio, are not those expected on the basis of a simple mixing between rain water and seawater. The δ18O and δD data indicate that most of the waters are within the Regional Meteoric Water Line and the Global Meteoric Water Line supporting the idea that they are meteoric in origin. A relevant consequence of the

  14. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    Science.gov (United States)

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    Science.gov (United States)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  16. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  17. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  18. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  19. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  20. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    Science.gov (United States)

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  1. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  2. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  4. Response of balanites aegyptiaca (l.) del. var. aegyptiaca seedlings from three different sources to water and salinity stressess

    International Nuclear Information System (INIS)

    Elfeel, A.A.; Abohassan, R.A.

    2015-01-01

    Water and salinity are main co-occurring stresses affecting plant growth and development in arid lands. In this study interactive effects of water and salinity stresses on Balanites aegyptiaca seedlings from three different sources (SD5.1, SD6.2 and KSA) were assessed in potted experiment under greenhouse conditions. The effect was measured on stomatal conductance (Gs), specific leaf area (SLA), seedling quality (Shoot to Root ratio (S/R), Dickson Quality Index (DQI) and Sturdiness Quotient (SQ)), Nutrient uptake (N content, K/Na and Ca/Na ratios) and growth. The seedlings were either watered twice a week (well watered) or every two weeks (water stressed), in addition to four salt concentrations (fresh water as control, 5 dS m-1, 7 dS m-1 and 9 dS m-1 EC). Water and salinity stresses resulted in reduced Gs, SLA, DQ, SQ and S/R, associated with lower height and root collar diameter. However, irrespective of salt concentration, water stressed seedlings displayed substantial reduction in Gs, indicating that Gs is among the most important water conservation strategy for this species. S/R also, remarkably decreased in water stressed seedlings, but, within watering treatment it was increased with increasing salt concentration. SLA and DQI were more affected by salinity stress, due to the increased leaf weight with increasing salinity. N content was more sensitive to water stress than salinity. Both Ca/Na and K/Na ratios were decreased with increasing salt concentration. The three sources exhibited significant variation in their response to water and salinity stresses. SD5.1 displayed higher values in most of studied traits. Gs and S/R may be considered as fitness responses of this species to water stress, while DQI, SLA and K/Na can serve as good indicators to measure response to salt stress. (author)

  5. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  6. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    .98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity in the context of operational mapping and monitoring of the springtime evolution of LSW plume in the ECS. The results were very encouraging and showed interesting features in surface CDOM and salinity fields in the vicinity of the Yangtze River estuary and its offshore domains, when a regional atmospheric correction (SSMM was employed instead of the standard (global SeaWiFS algorithm (SAC which revealed large errors around the edges of clouds/aerosols while masking out the nearshore areas. Nevertheless, there was good consistency between these two atmospheric correction algorithms over the relatively clear regions with a mean difference of 0.009 in aCDOM (400 (m−1 and 0.096 in salinity (psu. This study suggests the possible utilization of satellite remote sensing to assess CDOM and salinity and thus provides great potential in advancing our knowledge of the shelf-slope evolution and migration of the LSW plume properties in the ECS.

  7. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  8. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  9. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  10. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  11. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  12. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  13. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  14. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  15. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  16. ENSO signals on sea-surface salinity in the eastern tropical pacific ocean

    Directory of Open Access Journals (Sweden)

    1998-01-01

    types collected in the tropical Pacific are analyzed to assess the regional impacts of past (1972-1996 El Niño Southern Oscillation (ENSO events. Focus is made on the regional changes in sea-surface temperature and salinity. Commercial vessels were recently equipped with automated thermosalinographs which allows to monitor the location of salinity front along the Panama-Tahiti line, separating the Panama Gulf from the South Pacific water masses. The latitudinal change of the salinity front is well correlated with the latitudinal change of the ITCZ. Salinity distribution gives additional information on El-Niño development. How future real time SSS data might provide interesting information on the development of ENSO phenomenon in the eastern tropical Pacific area will be discussed.

  17. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Directory of Open Access Journals (Sweden)

    Juan Herrero

    Full Text Available Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight extracts as the standard for expressing the electrical conductivity (EC of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1 to 183.0 dS m(-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  18. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Science.gov (United States)

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  19. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  20. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  1. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  2. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  3. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    of the clays which would lead to permanent reservoir damage but evidence of effectiveness at moderate salinity would offer the opportunity to dispose of produced water. The goal is to define boundary conditions so injection water salinity is high enough to prevent reservoir damage and low enough to induce...... the low salinity effect while keeping costs and operational requirements at a minimum. Traditional core plug testing for optimising conditions has some limitations. Each test requires a fresh sample, core testing requires sophisticated and expensive equipment, and reliable core test data requires several...... experiments can be done relatively quickly on very little material, it gives the possibility of testing salinity response on samples from throughout a reservoir and for gathering statistics. Our approach provides a range of data that can be used to screen core plug testing conditions and to provide extra data...

  4. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D.; Logan, Bruce E.; Cui, Yi

    2011-01-01

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery

  5. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  6. Evaluation of Serum for Pathophysiological Effects of Prolonged Low Salinity Water Exposure in Displaced Bottlenose Dolphins (Tursiops truncatus

    Directory of Open Access Journals (Sweden)

    Ruth Y. Ewing

    2017-06-01

    Full Text Available We conducted a retrospective study of serum biochemistry and hematologic findings from displaced, out-of-habitat bottlenose dolphins (Tursiops truncatus exposed to various low salinity environments in waters along the southern United States including southeastern Atlantic and northern Gulf of Mexico. Serum sodium, chloride, and calculated osmolality were significantly lower and below reference ranges in displaced animals compared to free-ranging case control animals. This suggests clinical hyponatremia, hypochloremia, and hypo-osmolality due to an uptake of low saline water from the environment. In addition, significant differences were found in other serum chemistry variables, although none were outside of normal reference ranges for non-controlled free-ranging animals. Multiple linear regressions demonstrated the degree of salinity had a greater pathophysiologic response than the duration of fresh water exposure. The Na/Cl ratio and bicarbonate were the only variables that were significantly modulated by exposure duration. These findings suggest that the degree of salinity is a critical factor when assessing and managing care for dolphins chronically exposed to low salinity water. Results from this study indicate that changes in various biochemical parameters can be used to determine fresh water exposure and aid in determining the treatment for animals recovered from low salinity waters.

  7. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    Science.gov (United States)

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Salinity effect on seedling growth, water, sodium and potassium ...

    African Journals Online (AJOL)

    Mature leaves exhibited good adaptative behavior toward salinity stress by increasing succulence due to absorption of large quantities of water and K+ in leaves. Potassium uptake in leaves was not found to be affected by NaCl concentration. As a consequence, monovalent cations adsorption resulted in an increase in the ...

  9. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  10. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1992-present, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  11. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. (cv Chemlali)) under saline water irrigated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  12. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. CV Chemlali)) under saline water irrigated field conditions

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  13. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  14. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  15. Energy and water exchange from a saline-sodic overburden restoration cover, Fort McMurray, Alberta

    International Nuclear Information System (INIS)

    Carey, S.

    2006-01-01

    The Canadian oil sand mining industry takes responsibility for restoring mining areas to an equivalent level that existed before mining occurred. During this process, the surface-vegetation-atmosphere continuum is dramatically altered, creating few similarities to the boreal forest that existed prior to mining. Using the eddy covariance method, a study of the integrated salt and water balance of a saline-sodic overburden pile at Syncrude Canada Ltd.'s Mildred Lake mine north of Fort McMurray, Alberta was undertaken in order to measure the surface energy balance for three summers (2003 - 2005) with different climatic and phenological conditions. The objective of this study was to document how evapotranspiration and energy partitioning varied inter-annually during the growing season atop the restoration cover and to relate the portioning of energy at the surface to environmental and physiological variables. The paper described the site and measurement specifics and also presented the results and discussion. Results were organized under the following topics: climate; soil moisture and suction; leaf area index and vegetation; surface energy balance; evapotranspiration; and controls on evapotranspiration. It was concluded that results from this study have important implications for recovery strategies, as the availability water for plant growth, the movement and migration of salts and percolating water for deep drainage all depend on accurate quantification of evapotranspiration. 9 refs., 1 tab

  16. The background influence of cadmium detection in saline water using PGNAA technique

    International Nuclear Information System (INIS)

    Daqian Hei; Zhou Jiang; Hongtao Wang; Jiatong Li

    2016-01-01

    In order to solve the background influence of cadmium detection in saline water using prompt gamma neutron activation analysis (PGNAA) technique, a series experiments have been designed and carried out. Furthermore, a method based on internal standard was used to correct the neutron self-shielding effect, and the background influence has been decreased sequentially. The results showed a good linear relationship between the characteristic peak counts and the concentrations of cadmium after the neutron self-shielding correction. And in the detection of saline water by PGNAA technique, the proposed methodology can be used to reduce the influence of background with the self-shielding effect correction. (author)

  17. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    ABOU-ELKHAIR, R.A.; EL-MOHTASEM, M.O.; SOLIMAN, S.M.; GALAL, Y.G.M.; ABD EL-LATIF, E.M.

    2009-01-01

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m -1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m -1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15 N atom excess was applied to sorghum at rate of 100 kg N fed -1 . Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios

  18. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  20. Assessment of Surface Water Quality in the Malaysian Coastal Waters by Using Multivariate Analyses

    International Nuclear Information System (INIS)

    Yap, C.K.; Chee, M.W.; Shamarina, S.; Edward, F.B.; Chew, W.; Tan, S.G.

    2011-01-01

    Coastal water samples were collected from 20 sampling sites in the southern part of Peninsular Malaysia. Seven physico-chemical parameters were measured directly in-situ while water samples were collected and analysed for 6 dissolved trace metal concentrations. The surface water (0-20 cm) physico-chemical parameters including temperature, salinity, dissolved oxygen (DO), pH, total dissolved solids (TDS), specific conductance (SpC) and turbidity while the dissolved trace metals were Cd, Cu, Fe, Ni, Pb and Zn. The ranges for the physico-chemical parameters were 28.07-35.6 degree Celsius for temperature, 0.18-32.42 ppt for salinity, 2.20-12.03 mg/ L for DO, 5.50-8.53 for pH, 0.24-31.65 mg/ L for TDS, 368-49452 μS/ cm for SpC and 0-262 NTU for turbidity while the dissolved metals (mg/ L) were 0.013-0.147 for Cd, 0.024-0.143 for Cu, 0.266-2.873 for Fe, 0.027-0.651 for Ni, 0.018-0.377 for Pb and 0.032-0.099 for Zn. Based on multivariate analysis (including correlation, cluster and principal component analyses), the polluted sites were found at Kg. Pasir Puteh and Tg. Kupang while Ni and Pb were identified as two major dissolved metals of high variation in the coastal waters. Therefore, water quality monitoring and control of release of untreated anthropogenic wastes into rivers and coastal waters are strongly needed. (author)

  1. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  2. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done

  3. Hydrography and water masses in the southeastern Arabian Sea

    Indian Academy of Sciences (India)

    The surface hydrography during March –April was dominated by the intrusion of low-salinity waters from the south;during May –June,the low-salinity waters were beginning to be replaced by the high- salinity waters from the north.There was considerable mixing at the bottom of the surface mixed layer,leading to interleaving ...

  4. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  5. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  6. Thermal evolutions of two kinds of melt pond with different salinity

    Science.gov (United States)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  7. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    Directory of Open Access Journals (Sweden)

    И. Собота

    2017-06-01

    Full Text Available In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for different fly ash – saline water proportions. Tested fly-ash from Siersza power plant has typical properties (grain size distribution curve, density for ashes used for backfilling mixtures preparation. Increase of fluid (water salinity modifies fluid viscosity. Brine in comparison with pure water retains as liquid with increased viscosity. Increased viscosity can influence on the mixture ash-brine properties for example causing flocculation effect. Also changeable salinity has an influence on proper determination of resistance (frictional coefficient λ during mixtures flow in pipelines because it depends on Reynolds number which depends on liquid viscosity. Increase of fly-ash concentrations in fly-ash – brine mixtures cause increase of energy losses.

  8. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    Science.gov (United States)

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  9. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    Science.gov (United States)

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  10. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009 is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops such as maize, sunflower and wheat (T. aestivum L. under diverse environments. In most of arid and semi-arid regions water shortage is associated with reduction in water quality (i.e. increasing salinity. Plants in these regions in terms of water quality and quantity may be affected by simultaneous salinity and water stress. Therefore, in this study, the AquaCrop model was evaluated under simultaneous salinity and water stress. In this study, AquaCrop Model (v4.0 was used. This version was developed in 2012 to quantify the effects of salinity. Therefore, the objectives of this study were: i evaluation of AquaCrop model (v4.0 to simulate wheat yield and water use efficiency under simultaneous salinity and water stress conditions in an arid region of Birjand, Iran and ii Using different treatments for nested calibration and validation of AquaCrop model. Materials and Methods: This study was carried out as split plot design (factorial form in Birjand, east of Iran, in order to evaluate the AquaCrop model.Treatments consisted of three levels of irrigation water salinity (S1, S2, S3 corresponding to 1.4, 4.5, 9.6 dS m-1 as main plot, two wheat varieties (Ghods and Roshan, and four levels of irrigation water amount (I1, I2, I3, I4 corresponding to 125, 100, 75, 50% water requirement as sub plot. First, AquaCrop model was run with the corresponding data of S1 treatments (for all I1, I2, I3, and I4 and the results (wheat grain yield, average of soil water content

  11. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  12. Contributions of groundwater conditions to soil and water salinization

    Science.gov (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  13. Mulching for sustainable use of saline water to grow tomato in sultanate of oman

    International Nuclear Information System (INIS)

    Wahaibi, N.S.A.; Hussain, N.; Rawah, A.A.

    2007-01-01

    Tomato is grown in 991 hectares with production of 44477 tons in the sultanate of Oman. It is very important vegetable crop of Oman oat present being an integral part of daily diet of the people in various from like salad. Ketchup and kitchen cooking. Oman agriculture relies upon groundwater only, a major portion of which is saline that may concentrate further with the ever increasing pumping and probable seawater intrusions. Hence, the use of saline water is inevitable that can ultimately salinized the good productive soils. The production potential of these soils will gradually decrease and sustainability cannot be kept. This study was conducted to manage the saline water for avoiding bad effect on crop yields and soil health. A field experiment was conducted on tomato (Ginan variety) crop. Two mulching materials: organic matter (from date palm residues) and black plastic sheet, were tested in comparison to control (without any mulch). Two saline waters (EC=3 and 6 dSm/sup -1/) were used for irrigation. Uniform dose of fertilizers was applied. Four pickings of tomato were obtained and yield data were recorded EC moisture % age and temperature of soils were recorded after harvesting of crops. It was observed that data palm mulch proved as the most superior in terms of tomato fruit yield and control of increase in soil EC and temperature. It was followed by black plastic mulch. Both types of mulches indicated significant differences over control as well as among each other. (author)

  14. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  15. Shrimp aquaculture in low salinity water feeded with worm flavor

    Directory of Open Access Journals (Sweden)

    Wenceslao Valenzuela Quiñónez

    2012-09-01

    Full Text Available Shrimp aquaculture in Sinaloa is one of the top economic enterprises, generating many jobs and earns significant incomes every year. Shrimp feed is an essential part of maintaining healthy production. In this initial approach of shrimp growth in low salinity water, were tested two formulas of animal protein composed of 40% (APL1 and 20% (APL2 worm protein, a commercial diet, and no supplementary feed. Physicochemical parameters did not have a direct influence in shrimpbehavior. After six weeks of experimentation, shrimp fed with commercial diet had a weight gain 20% higher than those feed with worm protein. There were no significantly differences between sizes with respect to 40% animal protein and 20% animal protein with the commercial diet (P  0.05. However, shrimp fed worm protein had lower mortality. The use of worm protein could be an option to maintain a high quantity of shrimp reared in low salinity waters.

  16. Relation between Enterococcus concentrations and turbidity in fresh and saline recreational waters, coastal Horry County, South Carolina, 2003–04

    Science.gov (United States)

    Landmeyer, James E.; Garigen, Thomas J.

    2016-06-24

    Bacteria related to the intestinal tract of humans and other warm-blooded animals have been detected in fresh and saline surface waters used for recreational purposes in coastal areas of Horry County, South Carolina, since the early 2000s. Specifically, concentrations of the facultative anaerobic organism, Enterococcus, have been observed to exceed the single-sample regulatory limit of 104 colony forming units per 100 milliliters of water. Water bodies characterized by these concentrations are identified on the 303(d) list for impaired water in South Carolina; moreover, because current analytical methods used to monitor Enterococcus concentrations take up to 1 day for results to become available, water-quality advisories are not reflective of the actual health risk.

  17. Feasibility of saline infusion on the liver surface during radiofrequency ablation of subcapsuIar hepatic tumor: an experimentaI study

    International Nuclear Information System (INIS)

    Lee, Young Rang; Kim, Young Sun; Rhim, Hyun Chul; Seo, Heung Suk; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Kim, Sung Kyu; Paik, Seung Sam

    2004-01-01

    The purpose of the study was to evaluate the feasibility of infusion of normal saline onto the surface of the liver capsule for minimizing thermal injury of the adjacent organs during radiofrequency ablation of subcapsular hepatic tumor in an ex-vivo porcine model. We used porcine small bowel with it's serosal surface spread onto the porcine liver as an experiment model. The puncturing electrode was inserted into a 6 Fr introducer sheath, and the introducer sheath was connected to the infusion pump for creating a saline flow over the liver surface. A total of 15 ablations were divided into the control group (n=5), intermittent saline infusion group (n=5) and continuous saline infusion (n=5) group. The ablations were done during 3 minutes, and the infusion was set at 2 ml/min and stopped every 30 seconds in the intermittent saline infusion group. After the ablation, we measured the size of the ablated lesion on the surface of bowel and liver, and we also measured the depth of hepatic lesion. Ablated areas of bowel and liver surface in the control group, intermittent saline infusion group and continuous infusion group were 210.7±89.1 mm 2 , 74.6±27.2 mm 2 and 35.8±43.4 mm 2 , respectively, and 312.6±73.6 mm 2 , 228.4±110.5 mm 2 , and 80.9±55.1 mm 2 , respectively. In contrast to the broad base of the ablated area on the surface of the liver in the control group, the shapes of the lesions became narrower approaching to the liver surface in all cases of the continuous saline infusion group, and the shapes of the lesions were broad based in 3 cases and narrow based in 2 cases of the intermittent saline infusion group. Continuous infusion of normaI saline onto the surface of the liver during radiofrequency ablation of subcapsular hepatic tumor is a feasible method for minimizing thermal injury of the adjacent organs. Further exploration of the optimal parameters or techniques to maximize the hepatic ablation and simultaneously to minimize the thermal injury of

  18. Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Ianne G. S. Vieira

    2016-01-01

    Full Text Available ABSTRACT The study was carried out from August 2013 to January 2014 to evaluate growth and production of cherry tomato cultivated under irrigation with water of different salinity levels and fertilized with different nitrogen (N doses, in experiment conducted in drainage lysimeters under greenhouse conditions, at the Center for Agrifood Science and Technology of the Federal University of Campina Grande. The statistical design was randomized blocks in a 5 x 4 factorial scheme, with three replicates, and the treatments consisted of five levels of electrical conductivity of water (0.3, 1.5, 2.5, 3.5 and 4.5 dS m-1 and four N doses (60, 100, 140 and 180 mg kg-1. Growth and production variables of cherry tomato decrease linearly from the irrigation water salinity of 0.3 dS m-1 on. The longer exposure of plants to salt stress caused the highest reductions, and the root dry matter, leaf area and the number of clusters are the most sensitive variables. The highest value of plant height at 125 days after transplantation was obtained with the N dose of 139 mg kg-1 of soil. Increasing N doses reduced the effect of salinity on cherry tomato growth at 125 days after transplantation.

  19. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale

    Directory of Open Access Journals (Sweden)

    Elia Scudiero

    2016-10-01

    Full Text Available Soil salinity undermines global agriculture by reducing crop yield and impairing soil quality. Irrigation management can help control salinity levels within the soil root-zone. To best manage water and soil resources, accurate regional-scale inventories of soil salinity are needed. The past decade has seen several successful applications of soil salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment based on analysis of surface soil reflectance (the most popular approach, and indirect assessment of root-zone (e.g., 0-1 m soil salinity based on analysis of crop canopy reflectance. In this perspective paper, we call on researchers and funding agencies to pay greater attention to the indirect approach because it is better suited for surveying agriculturally important lands. A joint effort between agricultural producers, irrigation specialists, environmental scientists, and policy makers is needed to better manage saline agricultural soils, especially because of projected future water scarcity in arid and semi-arid irrigated areas. The remote sensing community should focus on providing the best tools for mapping and monitoring salinity in such areas, which are of vital relevance to global food production.

  20. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    Background, aim and scope: Urban systems are hot spots of environmental pollution caused by manifold anthropogenic activities generating traffic-related, industrial and domestic emissions. Besides air, soil and groundwater pollution, pollution of surface water systems is of major concern because they are often (ab)used to export waste of various consistence out of urban areas and become contaminated on varying scales. The Gironde Estuary (southwest France) is affected by various anthropogenic contaminations derived from historic polymetallic pollution mainly due to former mining and ore-treatment and, additionally, from agriculture and urban areas. Although detailed knowledge is available on the impact of mining and anthropogenic activities on the water quality of the Gironde Estuary, almost nothing is known on the urban impact, even though the Garonne Branch which is one tributary of the Gironde system crosses the large urban agglomeration of Bordeaux. The present work links urban geochemistry and estuary research and aims at evaluating the mobility of potentially toxic trace elements (Cd, Cu, Zn, V, Co, Mo, Pb) associated with urban particles under estuarine conditions owing to the particles' role as potential vectors transporting urban pollutants into the estuary. For this, environmentally available fractions of trace elements in representative urban particles (urban dust, road sediment, riverbank sediment, construction materials) from the city of Bordeaux were extracted by natural estuarine waters of varying salinities and compared to commonly applied HNO{sub 3} extractions. Materials and methods: For the assessment of the urban particles' contribution to the pollution of the Gironde/Garonne system, various particle types were sampled in Bordeaux: road sediments, urban bulk deposition, construction materials (concrete, asphalt, tile and gravel) and flood sediments. Potentially environmental available fractions of Cd, Cu, Zn, V, Co, Mo and Pb were

  1. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  2. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  3. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substantial...... additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...

  4. Water withdrawals in Florida, 2012

    Science.gov (United States)

    Marella, Richard L.

    2015-09-01

    In 2012, the total amount of water withdrawn in Florida was estimated to be 14,237 million gallons per day (Mgal/d). Saline water accounted for 7,855 Mgal/d (55 percent), and freshwater accounted for 6,383 Mgal/d (45 percent). Groundwater accounted for 4,167 Mgal/d (65 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,216 Mgal/d (35 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. Freshwater withdrawals were greatest in Palm Beach County (682 Mgal/d), and saline-water withdrawals were greatest in Pasco County (1,822 Mgal/d). Fresh groundwater provided drinking water (through either public supply or private domestic wells) for 17.699 million residents (93 percent of Florida’s population), and fresh surface water provided drinking water for 1.375 million residents (7 percent). The statewide public-supply gross per capita water use for 2012 was estimated at 136 gallons per day.

  5. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    Science.gov (United States)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  6. Influence of temperature, exchangeable cation composition, salinity and density in the adsorption of water by a bentonite: implications to the pore water composition

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.M.

    2010-01-01

    temperature. The amount of free water in compacted material is a key parameter for modelling the pore water composition. As results, the behaviour in the adsorption of water at 20 deg. C and 30 deg. C is not different, but there are differences in the adsorption of water at 60 deg. C. The amount of external water, as well as the amount of water in the one-layer hydrate and in the two-layer hydrate are more of less the same at temperatures between 20 and 60 deg. C. However, the amount of water at the three-layer hydrate, as well as the total amount of water adsorbed is lower at 60 deg. C than at lower temperatures. It seems that the volume occupied by water at high temperatures is higher than at lower ones, and less amount of water is needed to fill the interlayer spaces. The changes in free energy, enthalpy and entropy of water in FEBEX bentonite as a function of the degree of adsorption were calculated from water adsorption isotherms measured at the same temperature T and enthalpies of immersion obtained for different degrees of pre-adsorption. The hydration of inter-lamellar space proceeds in steps corresponding to the adsorption in external surfaces, and the intercalation of one, two and three water monolayers. The amount of water adsorbed depends on the type of interlayer cation and its hydration energy. The clay-water system is sensitive to electrolyte concentration changes. It was confirmed that hydration of the cations and of the exposed clay surfaces occurs at low water contents, whereas the osmotic phenomenon is more effective at high water contents. Higher amounts of water are adsorbed at high relative pressures when salinity increases. Water vapours isotherms with compacted material at 1.75, 1.65, and 1.50 g/cm 3 were performed at two temperatures (20 deg. C and 60 deg. C). The temperature affects the amount of water adsorbed not only in powdered material, free for swelling, but also for compacted bentonite, being lower when temperature increases. The effect of

  7. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  8. Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    B. Kahlaoui

    2018-01-01

    Full Text Available In scope of crop salinity tolerance, an experiment was carried out in a field using saline water (6.57 dS m−1 and subsurface drip irrigation (SDI on two tomato cultivars (Solanum lycopersicum, cv. Rio Grande and Heinz-2274 in a salty clay soil. Exogenous application of proline was done by foliar spray at two concentrations: 10 and 20 mg L−1, with a control (saline water without proline, during the flowering stage. Significant higher increases in proline and total soluble protein contents, glutamine synthetase (GS, EC6.3.1.2 activities and decreases in proline oxidase (l-proline: O2 Oxidoreductase, EC1.4.3.1 activities were detected in both tomato cultivars when irrigated with saline water (6.57 dS m−1 and exogenously applied by the lower concentration of proline. Taking in consideration the obtained results, it was concluded that the foliar spray of low concentration of proline can increase the tolerance of both cultivars of tomato to salinity under field conditions.

  9. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  10. Morphophysiology of guava under saline water irrigation and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Idelfonso L. Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1 and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop. The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil did not mitigate the deleterious effects caused by salt stress on plant growth.

  11. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    Science.gov (United States)

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  12. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  13. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    Directory of Open Access Journals (Sweden)

    mohamad ahmadi

    2009-06-01

    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  14. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  15. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  16. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  17. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  18. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Inst. de Ciencias do Mar; Bourles, B. [Inst. de Recherche pour le Developpement, Cotonou (Benin); Araujo, M. [UFPE, Recife, PE (Brazil). Lab. de Oceanografia Fisica Estuarina e Costeira

    2009-07-01

    High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2 S and 6 N. Observations are presented from four cruises carried out in different periods of the year (March-May 1995, May-June 1999, July-August 2001 and October-November 1997). Numerical model outputs complement the results of the shipboard measurements, and are used to complete the descriptions of mesoscale circulation. The Salinity Maximum Waters are here analyzed, principally in order to describe the penetration of waters originating in the Southern Hemisphere toward the Northern Hemisphere through the North Brazil Current (NBC)/North Brazil Undercurrent (NBUC). Our results show that, if the Equatorial Undercurrent (EUC) is fed by Northern Atlantic Waters, this contribution may only occur in the ocean interior, east of the western boundary around 100 m depth. Modeling results indicate a southward penetration of the Western Boundary Undercurrent (WBUC) below the thermocline, along the North Brazilian coast into the EUC or the North Equatorial Undercurrent (NEUC) (around 48 W-3 N). The WBUC in the region does not flow more south than 3 N. The northern waters are diverted eastward either by the NBC retroflection or by the northern edge of the associated clockwise rings. The existence of subsurface mesoscale rings associated to the NBC retroflection is evidenced, without any signature in the surface layer, so confirming earlier numerical model outputs. These subsurface anticyclones, linked to the NBC/NBUC retroflection into the North Equatorial Undercurrent and the EUC, contribute to the transport of South Atlantic high salinity water into the Northern Hemisphere. (orig.)

  19. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  20. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  1. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  2. Analyzing the factors affecting optimal management of saline water by application of Sustainable Livelihoods Framework

    Directory of Open Access Journals (Sweden)

    Masoumeh Forouzani

    2016-11-01

    Full Text Available In recent years, fresh water has been increasingly reduced and saline water has been one of the options to help the continuity and stability of agricultural activities. Hence, long-term sustainability of saline water irrigation depends on how to manage it at the fields. Optimal management requires identifying the factors affecting it. In this regard, this study used the descriptive–survey method to analyze the factors affecting the optimal management of saline water based on the Sustainable Livelihoods Framework. The statistical population of the study consisted of all the farmers of the Karun County (N=19720. By using the table of Krejcie and Morgan, the sample size was determined (n= 120. The sample was chosen through the simple random sampling method. Data were collected using a questionnaire. The questionnaire's face and content validity were approved by a panel of the agricultural extension and education experts and its reliability was confirmed by calculating the Cranach’s alpha coefficient (0.65-0.83. The data was analyzed by using the SPSS software. At the first stage the variables was converted to standard scores in order to construct livelihood assets indices. Then, principal component analysis was ran to assign the weights of the indicators. The results showed that farmers' management behavior in using saline water was dominated by technical management manners. Social capital and physical capital were known as the most and least livelihood assets of farmers, respectively. Also, there were statistically significant differences in farmers' management behavior based on their livelihood assets.

  3. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  4. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    National Research Council Canada - National Science Library

    Le Vine, David M; Abraham, Saji; Wentz, F; Lagerloef, G. S

    2005-01-01

    ... to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes...

  5. Do cold, low salinity waters pass through the Indo-Sri Lanka Channel during winter?

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, R.R.; Girishkumar, M.S.; Ravichandran, M.; Gopalakrishna, V.V.; Pankajakshan, T.

    -navigable shallow ISLC, the observed high resolution, advanced very high resolution radiometer (AVHRR) sea surface temperature (SST), and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll-a and historic sea surface salinity (SSS) data are utilized...

  6. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  7. Nitrogen Nutrition of Sugar Beet as Affected by Water Salinity, Proline Acid and Nitrogen Forms Using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Abdel Aziz, H.A.

    2014-01-01

    A pot experiment was conducted under green house condition using sugar beet as a test crop. Saline water (sea water) was applied at different levels. i.e. fresh water, 4 and 8 dSm -1 . Labelled urea and ammonium sulphate (5% a.e.) were applied at rate of 120 kg N fed -1 . Also; proline amino acid was sprayed at rate of 25, and 50 ppm. Basal recommended doses of P and K were applied. Crop leaves and tuber yield were severely affected by sea water salinity. These parameters were improved by adding proline acid. Effect of proline acid was significantly varied according to rate of addition, water salinity levels and N forms. In this respect, the improvement of leaves and tuber was more pronounced at rate of 50 ppm proline under 8 dSm -1 salinity when plants fertilized with ammonium sulfate. Another picture was drawn with urea, where the improvement was detected at rate of 25 ppm proline, under 4dSm -1 water salinity level. Nitrogen, phosphorus, potassium and sodium uptake by leaves and tuber of sugar beet plants were significantly improved by addition of 50 ppm proline under 4 and /or 8 dSm -1 salinity levels. Nitrogen uptake was higher in tuber and fertilization with urea than those of leaves and ammonium sulfate, respectively. Other nutrients were varied according to N forms and proline levels. Nitrogen use efficiency was enhanced by spraying proline, despite of addition rates, and negatively affected by increasing salinity levels. In this regard, no big significant difference was detected between urea and ammonium sulfat

  8. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  9. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    Science.gov (United States)

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-03-14

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4557 ppm TDS); and the high saline water (HSW) group (8934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (Pinfiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  10. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    Science.gov (United States)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent

  11. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  12. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  13. Water activity and the challenge for life on early Mars.

    Science.gov (United States)

    Tosca, Nicholas J; Knoll, Andrew H; McLennan, Scott M

    2008-05-30

    In situ and orbital exploration of the martian surface has shown that acidic, saline liquid water was intermittently available on ancient Mars. The habitability of these waters depends critically on water activity (aH2O), a thermodynamic measure of salinity, which, for terrestrial organisms, has sharply defined limits. Using constraints on fluid chemistry and saline mineralogy based on martian data, we calculated the maximum aH2O for Meridiani Planum and other environments where salts precipitated from martian brines. Our calculations indicate that the salinity of well-documented surface waters often exceeded levels tolerated by known terrestrial organisms.

  14. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  15. Organic and inorganic species in produced water: Implications for water reuse

    Science.gov (United States)

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  16. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  17. STUDY ON IMPACT OF SALINE WATER INUNDATION ON FRESHWATER AQUACULTURE IN SUNDARBAN USING RISK ANALYSIS TOOLS

    Directory of Open Access Journals (Sweden)

    B.K Chand

    2012-11-01

    Full Text Available The impact of saline water inundation on freshwater aquaculture was evaluated through risk assessment tools. Fishponds in low-lying areas of Sagar and Basanti block are prone to saline water flooding. Respondents of Sagar block considered events like cyclone and coastal flooding as extreme risk; erratic monsoon, storm surge and land erosion as high risk; temperature rise, sea level rise, hot & extended summer and precipitation as medium risk. Likewise, in Basanti block the respondents rated cyclone as extreme risk; erratic monsoon, storm surge as high risk; temperature rise, hot & extended summer, land erosion, and precipitation as medium risk; coastal flooding and sea level rise as low risk. Fish farmers of Sagar block classified the consequences of saline water flooding like breach of pond embankment and mass mortality of fishes as extreme risk; escape of existing fish stock and diseases as high risk; entry of unwanted species, retardation of growth and deterioration of water quality as medium risk; and damage of pond environment as low risk. Farmers of Basanti block categorised breach of pond dyke, mass mortality of fishes and entry of unwanted species as extreme risk; escape of fish and diseases as high risk; retardation of growth as medium risk; deterioration of water quality and damage of pond environment as low risk. To reduce the threats against saline water ingression, farmers are taking some coping measures like increase in pond dyke height; repair and strengthening of dyke; plantation on dyke; dewatering and addition of fresh water; application of chemicals/ lime/ dung; addition of tree branches in pond for hide outs etc.

  18. Seasonal salinity, temperature and density data for the Canadian Beaufort Sea shelf, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during 1987. A major objective of such data collection is to identify and characterize estuarine and marine habitats of significance to the biological communities, primarily fish, with a view to provide background data for assessing the implications of hydrocarbon development and production on those habitats. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface in March and May, and from a ship during July to September. Ice thickness and secchi depth were measured during periods of ice cover and open water, respectively. Salinity values for samples collected from bottle casts were measured with an Autosal Model 8400 salinometer. Density was calculated using salinity and temperature values. During the ice cover periods of March and May, CTD profiles were measured at five and nine stations, respectively. For the open water July to September period, CTD profiles were measured at 41 stations. One additional station was sampled using bottle casts. Replicate CTD profiling was conducted at a number of stations, on a seasonal basis. The maximum depths of profiles measured from the ice surface ranged from 3.1 to 23.5 dbar. Salinity and temperature measurements ranged from 0.00 to 31.70, and -1.74 to 0.02/sup 0/C, respectively. Maximum depths of profiles measured during the open water period ranged from 2.9 to 196.4 dbar. During this same period, profile measurements of salinity and temperature ranged from 0.08 to 33.94, and -1.62 to 16.51/sup 0/C, respectively. 4 refs., 60 figs., 57 tabs.

  19. Arsenic, Fluoride and Vanadium in surface water (Chasicó Lake, Argentina

    Directory of Open Access Journals (Sweden)

    Maria laura ePuntoriero

    2014-06-01

    Full Text Available Chasicó Lake is the main water body in the southwest of the Chaco-Pampean plain. It shows some differences from the typical Pampean shallow lakes, such as high salinity and high arsenic and fluoride levels. The aim of this paper is to analyze the trace elements [arsenic (As, fluoride (F- and vanadium (V] present in Chasicó Lake. Surface and groundwater were sampled in dry and wet periods, during 2010 and 2011. Fluoride was determined with a selective electrode. As and V were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES. Significant correlation in surface water was only found for As and F- (r=0.978, p<0.01. The As, F- and V concentration values were higher and more widely dispersed in surface water than in groundwater, as a consequence of evaporation. The fact that these elements do not correlate in surface water may also indicates that groundwater would not be the main source of origin of As, F- and V in surface water. The origin of these trace elements is from volcanic glass from Pampean loess. As, F- and V concentration were higher than in national and international guideline levels for the protection of aquatic biota. Hence, this issue is relevant since the silverside (Odontesthes bonariensis is the most important commercial species in Chasicó Lake. This fish is both consumed locally and exported to other South-American countries through commercial and sport fishing.

  20. Infections may select for filial cannibalism by impacting egg survival in interactions with water salinity and egg density.

    Science.gov (United States)

    Lehtonen, Topi K; Kvarnemo, Charlotta

    2015-07-01

    In aquatic environments, externally developing eggs are in constant contact with the surrounding water, highlighting the significance of water parameters and pathogens for egg survival. In this study we tested the impact of water salinity, egg density and infection potential of the environment on egg viability in the sand goby (Pomatoschistus minutus), a small fish that exhibits paternal egg care and has a marine origin, but which in the Baltic Sea lives in brackish water. To manipulate the infection potential of the environment, we added either a Saprolegnia infection vector into UV-filtered water or a fungicide into natural Baltic Sea water. Saprolegnia are widely spread water moulds that are a key cause of egg mortality in aquatic organisms in fresh- and brackish water. We found that increased water salinity indeed decreased the egg infection rate and had a positive effect on egg viability, while high egg density tended to have the opposite effect. However, the different factors influenced egg viability interactively, with a higher egg density having negative effects at low, but not in high, salinity. Thus, the challenges facing marine organisms adapting to lower salinity levels can be amplified by Saprolegnia infections that reduce egg survival in interaction with other environmental factors. Our results support the hypothesis that suppressing egg infections is an important aspect of parental care that can select for filial cannibalism, a common but poorly understood behaviour, especially in fish with parental care.

  1. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  2. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  3. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  4. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  5. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  6. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  7. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  8. Effect of different levels of nitrogen fertilizer on yield and quality of sugar beet Beta vulgaris irrigated with saline groundwater (fertigation and surface irrigation) and grown under saline conditions

    International Nuclear Information System (INIS)

    Janat, M.

    2009-07-01

    In a field experiment Sugar beet Beta vulgaris was grown as a spring crop during the growing seasons of 2004 and 2006, in salt affected soil, previously planted with sesbania and barley (2005 and 2003) to evaluate the response of sugar beet to two irrigation methods, (drip fertigation and surface irrigation), different levels of nitrogen fertilizer and its effect on yield and quality. Different rates of nitrogen fertilizers (0, 50, 100, 150 and 200 kg N/ ha) as urea (46% N) were injected for drip irrigation or broadcasted for the surface-irrigated treatments in four equally split applications. The 15 N labelled urea was applied to sub-plots of 1.0 m 2 in each experimental unit in a manner similar to that of unlabeled urea. Irrigation scheduling was carried out using the direct method of neutron scattering technique. Sugar beet was irrigated when soil moisture in the upper 25 cm was 80% of the field capacity (FC) and such practice continued until the six leaf stage. From the latter stage until harvest, sugar beet was irrigated when soil moisture in the upper 50 cm reached 80% of the FC. The amount of irrigation water applied, electrical conductivity of the soil paste, dry matter and fresh roots yield, total nitrogen uptake and N derived from fertilizer were also determined. Furthermore, Nitrogen use as well as water use-efficiencies for dry matter and roots yield were also calculated. Results revealed that sugar beets and dry matter yield increased with increasing N input up to 100-150 kg N/ha which was indicated by the higher dry matter yield, and sugar beet yield. Sugar percentage was also increased relative to the average percentage recorded in Syria. Crop water use efficiencies, for both the drip-fertigated and surface-irrigated treatments were increased in most cases with increasing rate of nitrogen fertilizer. During the course of this study, small increases in soil salinity under both irrigation methods were observed. Higher increases in soil salinity was

  9. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  10. Salinity, temperature and density data for the Canadian Beaufort Sea shelf, March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during March 1988. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface. Ice thickness was also measured. Density was calculated using salinity and temperature values. CTD profiles were measured at five stations. The maximum depths of profiles measured from the ice surface ranged from 31.2 to 16.8 dbar. Salinity and temperature measurements ranged from 0.35 to 34.83, and -1.87 to 1.08/sup 0/C, respectively. The data presented in this report will assist in the identification and delineation of potential habitat types, as part of the Critical Arctic Estuarine and Marine Habitat Project of the Northern Oil and Gas Program. 5 refs., 7 figs., 6 tabs.

  11. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    Science.gov (United States)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  12. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    Science.gov (United States)

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  13. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  14. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO 2 solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO 2 is stable between the deep regions where supercritical CO 2 is stable and the shallow regions where gaseous CO 2 is stable. The transition from liquid to gaseous CO 2 is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO 2 is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO 2 migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO 2 potentially preventing ebullition, depending on the CO 2 leakage flux. However, as CO 2 continues to move upward through shallower depths, CO 2 solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO 2 and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO 2 leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO 2 migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models

  15. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    Science.gov (United States)

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  16. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    Science.gov (United States)

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  17. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  18. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  19. Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments

    NARCIS (Netherlands)

    Mollema, P.N.; Antonelli, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuijfzand, P.J.

    2013-01-01

    Ground- and surface water chemistry and stable isotope data from the coastal zone near Ravenna (Italy) have been examined to determine the geochemical conditions and processes that occur and their implications for fresh water availability in the various brackish/saline coastal environments. Fresh

  20. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  1. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  2. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    Science.gov (United States)

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  3. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  4. Ratio of 210Po and 210Pb in fresh, brackish and saline water in Kuala Selangor river

    International Nuclear Information System (INIS)

    Tan Chin Siang; Che Abdul Rahim Mohamed; Zaharuddin Ahmad

    2007-01-01

    Sediment cores were carried out from Kuala Selangor river to amine sea water via coastal and brackish water ambient. Sample size fraction with size less than 125 μm was spiked with tracer 209 Po and leached with mix concentrated nitric acid, perchloric acid, hydrogen peroxide, hydrochloric acid and mineralized with 50 ml of 0.5M HCl. The sample solution was used for spontaneously deposit polonium on a silver disk at 80-85 degree Celsius and measured with the Alpha Spectrometry. The distribution of two radionuclides especially 210 Po, 210 Pb and 210 po/ 210 Pb were useful in identifying the origin of 210 Po. Ratio values of 210 Po/ 210 Pb in the freshwater, brackish water and saline water were 3.3459, 5.8385 and 2.9831, respectively. From the high ratio of 210 Po/ 210 Pb, the widespread occurrence of excess 210 Po in Kuala Selangor river water may came from the atmosphere sources such as stratospheric aerosols, sea spray of the surface micro layer and bio-volatile 210 Po organism from productive species. (author)

  5. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    Science.gov (United States)

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  6. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    Science.gov (United States)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  7. Airborne EM, Lithology and in-situ Data Used for Quantizing Groundwater Salinity in Zeeland (NL)

    Science.gov (United States)

    Meyer, U.; Siemon, B.; van Baaren, E.; Dabekaussen, W.; Delsman, J. R.; Karaoulis, M.; Gunnink, J.; Pauw, P.; Vermaas, T.

    2017-12-01

    In a setting of predominantly saline surface waters in Zeeland, the Netherlands, the only available shallow fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh water is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing the usable water properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labor-intensive, airborne electromagnetics, which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO conducted FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in 2014-17. An area of more than 2000 square km was surveyed using BGR's helicopter-borne geophysical system totaling to about 9,600 line-km. The HEM data, after inversion to 2.5 Million resistivity-depth models for each of the three 1D inversion procedures applied (Marquardt single site, smooth and sharp laterally constrained inversion), served as base-line information for further interpretation. A probabilistic Monte Carlo approach combines HEM resistivities, 3D lithology model data (GeoTOP), laboratory results (formation factor and surface conductivity) and local in-situ groundwater measurements for the translation of resistivity to Chloride concentration. The resulting 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  8. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    Science.gov (United States)

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  9. Effects of water salinity on hatching of egg, growth and survival of larvae and fingerlings of snake head fish, Channa striatus

    Directory of Open Access Journals (Sweden)

    Thumronk Amornsakun

    2017-04-01

    Full Text Available A study on the effect of water salinity ranging from 0-30 ppt on hatching success of snake head fish, Channa striatus was conducted in a 15-liter glass aquarium (water volume 10 liters containing 500 eggs for various levels of water salinity. Fertilization rates at 0, 5, 10, 11, 12, 13 and 14 ppt were 69.33, 72.67, 71.33, 72.67, 82.00, 73.33 and 10.67%, respectively. The fertilization rate at 12-13 ppt salinity was significantly (P0.05 among 0, 5 and 10 ppt.

  10. Balanço hídrico e da salinidade do solo na bananeira irrigada com água de diferentes salinidades = Soil water and salinity balance on banana irrigated with water of varied salinity

    Directory of Open Access Journals (Sweden)

    Ancélio Ricardo de Oliveira Gondim

    2009-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de diferentes níveis de salinidade de água de irrigação no uso consultivo na fase reprodutiva da bananeira e evolução da salinidade do solo. Adotou-se o delineamento inteiramente casualizado em parcelas subdivididas, totalizando oito tratamentos com quatro repetições por tratamento. Os níveis de salinidade foram obtidos a partir de águas naturais de poços dos aquíferos arenito e calcário e foram misturadas em tanques de alvenaria para a obtenção das concentrações de salinidade desejada. Verificou-se que a área do bulbo com umidade superior a 8% representa aproximadamente 50% do volume do solo. A evapotranspiração da cultura diminuiu com o aumento da salinidade entre os tratamentos, o kc médio no período variou de 1,01 a 1,09 em águas de salinidade extremas. Comparando os perfis da salinidade do solo, verificou-se quea concentração de sais foi superior na camada superficial aos 440 dias após plantio.The objective this work was to evaluate the advisory use of two cultivars banana and the salinity of the soil in different water salinity levels (0.55; 1.70; 2.85; and 4.00 dS m-1 during the reproductive phase. The experimental design chosen was randomizedcomplete blocks in subdivided plots, totaling eight treatments with four repetitions per treatment. The salinity levels were obtained from natural waters of wells from sandstone and calcareous aquifers and were mixed in masonry tanks in order to obtain the desiredsalinity concentrations. It was verified that the area of the bulb with moisture greater than 8% represents approximately 50% of the volume of the soil. The evapotranspiration of the culture decreased with the increase in the salinity among the treatments; the average kc in the period varied from 1.01 to 1.09 in waters of extreme salinity. Comparing the salinity profiles of the soil, it was verified that the concentration of salts was highest on the surfacelayer at 440

  11. Batteries for efficient energy extraction from a water salinity difference.

    Science.gov (United States)

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  12. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  13. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    Science.gov (United States)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  14. In situ prompt gamma-ray measurement of river water salinity in northern Taiwan using HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    A portable HPGe- 252 Cf probe dedicated to in situ survey of river water salinity was placed on board a fishing boat to survey the Tamsui River in northern Taiwan. The variation of water salinity is surveyed by measuring the 6111 keV chlorine prompt photopeak along the river. Results indicate that the probe can be used as a salinometer for rapid, in situ measurement in polluted rivers or sea. (author)

  15. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    Science.gov (United States)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  16. Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana, USA

    Science.gov (United States)

    Hsueh, Yu-Hsin; Chambers, Jim L.; Krauss, Ken W.; Allen, Scott T.; Keim, Richard F.

    2016-01-01

    Coastal forested hummocks support clusters of trees in the saltwater–freshwater transition zone. To examine how hummocks support trees in mesohaline sites that are beyond physiological limits of the trees, we used salinity and stable isotopes (2H and 18O) of water as tracers to understand water fluxes in hummocks and uptake by baldcypress (Taxodium distichum (L.) Rich.), which is the most abundant tree species in coastal freshwater forests of the southeastern U.S. Hummocks were always partially submerged and were completely submerged 1 to 8% of the time during the two studied growing seasons, in association with high water in the estuary. Salinity, δ18O, and δ2H varied more in the shallow open water than in groundwater. Surface water and shallow groundwater were similar to throughfall in isotopic composition, which suggested dominance by rainfall. Salinity of groundwater in hummocks increased with depth, was higher than in swales, and fluctuated little over time. Isotopic composition of xylem water in baldcypress was similar to the vadose zone and unlike other measured sources, indicating that trees preferentially use unsaturated hummock tops as refugia from higher salinity and saturated soil in swales and the lower portions of hummocks. Sustained upward gradients of salinity from groundwater to surface water and vadose water, and low variation in groundwater salinity and isotopic composition, suggested long residence time, limited exchange with surface water, and that the shallow subsurface of hummocks is characterized by episodic salinization and slow dilution.

  17. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  18. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  19. Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Garrett, C.M. Jr.; Posey, J.S.; Han, J.H.; Jirik, L.A.

    1981-11-01

    Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.

  20. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  1. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  2. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Science.gov (United States)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  3. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  4. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

    Science.gov (United States)

    Anderson, Thomas A.; Bestland, Erick A.; Soloninka, Lesja; Wallis, Ilka; Banks, Edward W.; Pichler, Markus

    2017-12-01

    High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (˜800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity `hotspot'. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

  5. Water masses and property distribution in the EEZ of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Singbal, S.Y.S.; George, M.D.

    Water masses and their properties have been studied in the Mauritian during September-October, 1987. Surface water is characterizEd. by two water masses: 1) a warm (temp. 27 degrees C) and relatively saline water (salinity 35.3 x 10 sup(-3)) which...

  6. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  7. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    Science.gov (United States)

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  8. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    International Nuclear Information System (INIS)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu; Wen-DA, J.

    1997-01-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water

  9. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu [China National Petroleum Corp. (China). Jianghan Well Logging Institute; Wen-DA, J. [China National Petroleum Corp. (China). Development Bureau

    1997-10-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water 4 refs., 2 tabs., 7 figs.

  10. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na2-xMn 5O10 nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future. © 2011 American Chemical Society.

  11. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle

    2011-01-01

    water potential (Wl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m)1...

  12. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  13. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  14. Yield and Nitrogen Assimilation of Potato Varieties (Solanum tuberosum L.) as Affected by Saline Water Irrigation and Organic Manure

    International Nuclear Information System (INIS)

    Hamdy, A.; Gadalla, A.M.; El-Kholi, A.F.; Galal, Y.G.M.; Ismail, M.M.

    2008-01-01

    The experiment was carried out in lysimeter under controlled greenhouse conditions. Saline water was applied in different levels, i.e. fresh water, 3 and 6 dS/m. Organic manure were applied to soil at rates of 0, 2.6 and 5.2 kg/m2. Basal recommended doses of P and K were applied. Labelled urea (10% a.e.) was applied at rate of 200 kg N/ha. 15 N technique was used to evaluate N-uptake and fertilizer efficiency. Comparison held between the two potato varieties indicated that higher reduction in shoot dry weight was recorded with Nicola variety than Spunta one which irrigated with 6 dS/m water salinity level. Addition of 2.6 kg/m 2 organic rate induced an increase in N uptake with fresh water and 3 dS/m salinity then tended to decrease with 6 dS/m level as compared to the untreated control. Concerning the nitrogen fertilization, data of 15 N analysis showed that, water salinity levels combined with organic addition rates were frequently affected the nitrogen derived from fertilizer and consequently the fertilizer use efficiency. Most of nitrogen was derived from the applied nitrogen fertilizer with maximum accumulation in tuber rather than shoots or roots of both potato varieties. Gradual increase of tuber starch with increasing salinity levels was noticed with addition of 2.6 kg/m 2 of organic matter. In general, Spunta variety showed some superiority in tuber starch over those of Nicola variety tuber

  15. Effects of salinity and water temperature on the ecological performance of Zostera marina

    DEFF Research Database (Denmark)

    Nejrup, Lars Brammer; Pedersen, Morten Foldager

    2008-01-01

    We tested the effects of salinity and water temperature on the ecological performance of eelgrass (Zostera marina L.) in culture-experiments to identify levels that could potentially limit survival and growth and, thus, the spatial distribution of eelgrass in temperate estuaries. The experiments ...

  16. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  17. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  18. Water quality - Measurement of gross alpha activity in non-saline water - Thick source method. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies a method for the determination of gross alpha activity in non-saline waters for alpha-emitting radionuclides which are not volatile at 350 degree Centigrade. It is possible to determine supported volatile radionuclides measured to an extent determined by half-life, matrix retention (of the volatile species) and the duration of measurement (counting time). The method is applicable to raw and potable waters. The range of application depends on the amount of suspended matter in the water and on the performance characteristics (background count rate and counting efficiency) of the counter. Gross alpha radioactivity is determined by using proportional counting or solid scintillation counting on water residue deposited on a planchet. Due to the strong absorption of the residue deposit, it is considered that the alpha emission from the surface is proportional to the alpha activity of the deposit. Gross alpha determination is not an absolute determination of the sample alpha radioactive content, but a relative determination referring to a specific alpha emitter which constitutes the standard calibration source. This type of determination is also known as alpha index. The sample is acidified to stabilize it, evaporated almost to dryness, converted to the sulfate form and then ignited at 350 degree Centigrade. A portion of the residue is transferred to a planchet and the alpha activity measured by counting in an alpha-particle detector or counting system previously calibrated against an alpha-emitting standard and the alpha activity concentration calculated. The paper provides information about scope, normative references, symbols, definitions and units, principle, reagents and equipment, procedure, contamination check, expression of results and test report

  19. Salinity and water temperature data from the Coastal Waters of Washington/Oregon from 01 March 2001 to 31 December 2001 (NODC Accession 0001142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and water temperature data were collected using conductivity sensor and temperature probe in the Coastal Waters of Washington/Orgen from March 1, 2001 to...

  20. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    Science.gov (United States)

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  1. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  2. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  3. Metals content in surface waters of an upwelling system of the northern Humboldt Current (Mejillones Bay, Chile)

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Alvarez, Gabriel; Ortlieb, Luc; Guiñez, Marcos

    Physical-chemical parameters (temperature, salinity, dissolved oxygen, nutrients, and chlorophyll concentration) of surface waters were used to evaluate the influence of biological and physical processes over the metal concentrations (Cd, Ni, V, Mo, Mn, and Fe) in different periods of a normal annual cycle (June 2002 and April 2003), in Mejillones Bay (23° S), one of northern Chile's strongest upwelling cells. Two points were sampled every 2 months, but statistical analysis of these parameters did not show any spatial differences in surface water composition (annual average) in this bay. The order of total and dissolved metals by abundance (annual mean) in the Mejillones Bay surface waters during the sampling period was Cd Oxygen Minimum Zone which characterizes the Mejillones bay should have an important influence on surface distribution of trace metals and can explain the high temporal variability observed in most of the metals analyzed in this work. A two-box conceptual model is proposed to suggest possible influences on metals in surface waters of this coastal ecosystem.

  4. Crescimento inicial do cafeeiro irrigado com água salina e salinização do solo Initial growth of coffee plants irrigated with saline water and soil salinization

    Directory of Open Access Journals (Sweden)

    Vladimir B. Figueirêdo

    2006-03-01

    Full Text Available A cultura do cafeeiro (Coffea arabica L. vem-se expandindo para regiões ainda pouco exploradas, em que o uso da irrigação com água salina possa ser fator limitante. Nesse contexto, avaliou-se o crescimento inicial do cafeeiro, conduzido em casa de vegetação do Departamento de Engenharia da Universidade Federal de Lavras (UFLA, submetendo-o a níveis crescentes de salinidade da água de irrigação. O delineamento utilizado foi inteiramente casualizado com 6 tratamentos (S0 = 0,0 dS m-1, S1 = 0,6 dS m-1, S2 = 1,2 dS m-1, S3 = 1,8 dS m-1, S4 = 2,4 dS m-1 e S5 = 3,0 dS m-1 e 4 repetições. A reposição de água foi realizada com base na curva característica do solo, pela leitura da tensão de água por blocos de resistência, retornando o conteúdo de água à capacidade de campo. Verificou-se que os tratamentos influenciaram significativamente as características da planta e que a salinidade da água a partir de 1,2 dS m-1 prejudicou o crescimento e, em alguns casos, provocou a morte das plantas. A área foliar foi a variável mais prejudicada. Ao final do experimento o solo foi classificado como salino-sódico.The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA, under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m-1, S1 = 0.6 dS m-1, S2 = 1.2 dS m-1, S3 = 1.8 dS m-1, S4 = 2.4 dS m-1 and S5 = 3.0 dS m-1 and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m-1 caused damage to plant development resulting, in some cases, in death of

  5. Communication: Salt-induced water orientation at a surface of non-ionic surfactant in relation to a mechanism of Hofmeister effect

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi; Kaneko, Yohei; Okuno, Masanari; Yamamura, Yasuhisa; Ishibashi, Taka-aki; Saito, Kazuya, E-mail: kazuya@chem.tsukuba.ac.jp [Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2015-05-07

    The behavior of water molecules at the surface of nonionic surfactant (monomyristolein) and effects of monovalent ions on the behavior are investigated using the heterodyne-detected vibrational sum frequency generation spectroscopy. It is found that water molecules at the surface are oriented with their hydrogen atoms pointing to the bulk, and that the degree of orientation depends on the anion strongly but weakly on the cation. With measured surface potentials in those saline solutions, it is concluded that the heterogeneous distribution of anions and cations in combination with the nonionic surfactant causes the water orientation. This heterogeneous distribution well explains the contrasting order of anions and cations with respect to the ion size in the Hofmeister series.

  6. Communication: Salt-induced water orientation at a surface of non-ionic surfactant in relation to a mechanism of Hofmeister effect

    International Nuclear Information System (INIS)

    Hishida, Mafumi; Kaneko, Yohei; Okuno, Masanari; Yamamura, Yasuhisa; Ishibashi, Taka-aki; Saito, Kazuya

    2015-01-01

    The behavior of water molecules at the surface of nonionic surfactant (monomyristolein) and effects of monovalent ions on the behavior are investigated using the heterodyne-detected vibrational sum frequency generation spectroscopy. It is found that water molecules at the surface are oriented with their hydrogen atoms pointing to the bulk, and that the degree of orientation depends on the anion strongly but weakly on the cation. With measured surface potentials in those saline solutions, it is concluded that the heterogeneous distribution of anions and cations in combination with the nonionic surfactant causes the water orientation. This heterogeneous distribution well explains the contrasting order of anions and cations with respect to the ion size in the Hofmeister series

  7. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele; Hirt, Heribert; Berg, Gabriele

    2014-01-01

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  8. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele

    2014-12-05

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  9. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth

    OpenAIRE

    Escobar, Hugo; Lara, Nelson; Zapata, Yubinza; Urbina, Camilo; Rodriguez, Manuel; Figueroa, Leonardo

    2013-01-01

    H. Escobar, N. Lara, Y. Zapata, C. Urbina, M. Rodriguez, and L. Figueroa. 2013. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth. Cien. Inv. Agr. 40(3): 597-607. The objective of this study was to analyze the effect of saline-boron stress on the vegetative growth, dry leaf weight, water potential (Ψw), relative water content, and leaf and root B and Cl- contents in 8 accessions of olive. Rooted one-year-old plants were culti...

  10. Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal

    Science.gov (United States)

    Jain, Vineet; Shankar, D.; Vinayachandran, P. N.; Kankonkar, A.; Chatterjee, Abhisek; Amol, P.; Almeida, A. M.; Michael, G. S.; Mukherjee, A.; Chatterjee, Meenakshi; Fernandes, R.; Luis, R.; Kamble, Amol; Hegde, A. K.; Chatterjee, Siddhartha; Das, Umasankar; Neema, C. P.

    2017-05-01

    The high-salinity water masses that originate in the North Indian Ocean are Arabian Sea High-Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW). Among them, only ASHSW has been shown to exist in the Bay of Bengal. We use CTD data from recent cruises to show that PGW and RSW also exist in the bay. The presence of RSW is marked by a deviation of the salinity vertical profile from a fitted curve at depths ranging from 500 to 1000 m; this deviation, though small (of the order of 0.005 psu and therefore comparable to the CTD accuracy of 0.003 psu), is an order of magnitude larger than the 0.0003 psu fluctuations associated with the background turbulence or instrument noise in this depth regime, allowing us to infer the existence of RSW throughout the bay. PGW is marked by the presence of a salinity maximum at 200-450 m; in the southwestern bay, PGW can be distinguished from the salinity maximum due to ASHSW because of the intervening Arabian Sea Salinity Minimum. This salinity minimum and the maximum associated with ASHSW disappear east and north of the south-central bay (85°E, 8°N) owing to mixing between the fresher surface waters that are native to the bay (Bay of Bengal Water or BBW) with the high-salinity ASHSW. Hence, ASHSW is not seen as a distinct water mass in the northern and eastern bay and the maximum salinity over most of the bay is associated with PGW. The surface water over most of the bay is therefore a mixture of ASHSW and the low-salinity BBW. As a corollary, we can also infer that the weak oxygen peak seen within the oxygen-minimum zone in the bay at a depth of 250-400 m is associated with PGW. The hydrographic data also show that these three high-salinity water masses are advected into the bay by the Summer Monsoon Current, which is seen to be a deep current extending to 1000 m. These deep currents extend into the northern bay as well, providing a mechanism for spreading ASHSW, PGW, and RSW throughout the bay.

  11. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  12. Five Year Mean Sea-surface Salinity in the Northern Gulf of Mexico for 2005 through 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These images were created by combining the mean sea-surface salinity values to produce seasonal representations for winter, spring, summer and fall. Winter includes...

  13. Benthic communities in inland salinized waters with different salinities and nutrient concentrations and the ecology of Chironomus aprilinus (Diptera: Chironomidae) in the Czech Republic.

    Czech Academy of Sciences Publication Activity Database

    Matěna, Josef; Šímová, I.; Brom, J.; Novotná, K.

    2016-01-01

    Roč. 113, January (2016), s. 122-129 E-ISSN 1802-8829 Institutional support: RVO:60077344 Keywords : Diptera * Chironomidae * Chironomus aprilinus * coal mining * hydric restoration * saline inland waters * fertilization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.167, year: 2016

  14. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  15. Evaluation Of The Hydraulic Connection Between The Surface Water And The Groundwater Along El-Salam Canal, North Eastern Coast, Egypt

    International Nuclear Information System (INIS)

    Ismail, Y.L.; Ismail, N.A.; Abdel Mogheeth, S.M.; Salem, W.M.

    2012-01-01

    In the present study, the interconnection between the surface water of El-Salam Canal and the shallow groundwater in the adjacent aquifer has been discussed using both the environmental isotopes and the chemical analyses of the different water bodies along the canal trajectory from Faraskour in the west to Balousa in the east. The isotopic techniques were applied to investigate this relationship and to estimate the possible contribution from various sources such as groundwater, sea water and/or irrigation water, and finally to determine the extent of mixing between El-Salam Canal and the adjacent aquifers. Since the groundwater in the area is saline (more than 10000 ppm) while the mixed canal water is mainly fresh (less than 1000 ppm), the interconnection between the canal water and surrounding shallow groundwater leads to one of the following two hydrologic processes; seepage from the canal water to the shallow groundwater which means fresh water losses or leakage from the groundwater into the surface water which means water quality deterioration The present study aims to detect the hydraulic interconnection between the two water bodies by using environmental isotope techniques as well as detailed chemical analysis. For this purpose, 31 water samples from both surface water and groundwater were collected and analyzed for 18 O and 2 H contents as well as 44 representative water samples were collected and analyzed for the chemical components (anions and cations) as a major ions and minor constituents. The distribution of the analyzed samples on the 18 O vs. D diagram indicated that the samples could be classified into three genetic groups representing different sources of water. The first group reflects a contribution from evaporated rain water prior to infiltration to the groundwater, the second group represents a mixing trend between both of El-Farma drain water and El-Manzala lake water with the groundwater which have enriched isotopic values as well as high

  16. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  17. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    Science.gov (United States)

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  18. Effects of water salinity and nitrogen fertilization on the growth and yield of ‘BRS Gabriela’ castor beans

    Directory of Open Access Journals (Sweden)

    João Batista dos Santos

    2016-10-01

    Full Text Available The castor bean has attracted the attention of many farmers as an alternative crop for the National Program of Biofuel and its extensive use in the ricinochemical industry. The crop requires large planting areas to meet the demands of the fuel market. The aim of the present study was to evaluate the effects of irrigation water salinity and nitrogen fertilization on the growth and production of castor beans, ‘BRS Gabriela’, in a protected environment. The present study was conducted at the Center of Technology and Natural Resources of the Federal University of Campina Grande. The experimental design was completely randomized in a 5 × 4 factorial with three replications and one plant per plot. The treatments consisted of irrigation water with five electrical conductivity (ECw levels of 0.7, 1.7, 2.7, 3.7, and 4.7 dS m-1 associated with four nitrogen levels of 60, 80, 100, and 120 mg of N kg-1 of soil. The interaction between water salinity and nitrogen rates did not exert significant effects on the variables studied. Increased salinity of irrigation water affected the growth in height and stem diameter of castor beans in all periods, and leaf area from 90 days after sowing. Increased nitrogen levels had a positive effect on leaf area at 60, 90, 120, and 150 days after sowing. The total mass of seeds, one hundred seed mass, yield, and number of fruits per plant decreased with the increase in water salinity, and the total mass of seeds was the most affected variable.

  19. Origin of water salinity in the coastal Sarafand aquifer (South-Lebanon)

    International Nuclear Information System (INIS)

    Hashash, Adnan; Aranyossy, J.F.

    1996-01-01

    Author.The geochemical and isotopic study, based on the analysis of twenty water samples from well in the coastal plain of Sarafand (South-Lebanon), permit to eliminate the hypothesis of marine intrusion in this aquifer. The increase of salinity observed in certain wells is due to the contamination of cretaceous aquifer water by the quaternary formations. The two poles of mixing are respectively characterized: by weak tritium contents (between 2 and 3 UT) and a value of stable isotopes (-5,9<0,18<-5,5) corresponding to the appearance of cretaceous formation area; by the high tritium contents and enrichment relative to heavy isotope in the mineralized water of superficial formations. On the other hand, the isotope contents permit the set a rapid renewal of the cretaceous aquifer water due to quick circulation in the Karstic system

  20. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    Science.gov (United States)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  1. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14

    Science.gov (United States)

    Booth, Amanda C.; Soderqvist, Lars E.

    2016-12-12

    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  2. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Science.gov (United States)

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  3. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    Science.gov (United States)

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  4. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  5. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  6. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    OpenAIRE

    M. Mohammadi; B. Ghahraman; K. Davary; H. Ansari; A. Shahidi

    2016-01-01

    Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009) is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops ...

  7. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a

  8. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  9. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters

    Directory of Open Access Journals (Sweden)

    Ramón Aragüés

    2014-05-01

    Full Text Available Soil mulching is a sensible strategy to reduce evaporation, accelerate crop development, reduce erosion and assist in weed control, but its efficiency for soil salinity control is not as well documented. The benefits of inorganic (plastic and organic (grapevine pruning residues mulching for soil salinity and sodicity control were quantified in a grapevine orchard (cultivars ‘Autumn’ Royal and ‘Crimson’ drip-irrigated with moderately saline waters. Soil samples were taken at the beginning and end of the 2008 and 2009 irrigation seasons in six vines of each cultivar and mulching treatment. Soil saturation extract electrical conductivity (ECe, chloride (Cle and sodium adsorption ratio (SARe values increased in all treatments of both grapevines along the irrigation seasons, but the increases were much lower in the mulched than in the bare soils due to reduced evaporation losses and concomitant decreases in salt evapo-concentration. The absolute salinity and sodicity daily increases in ‘Autumn’ and ‘Crimson’ 2008 and in ‘Crimson’ 2009 were on the average 44% lower in the plastic and 76% lower in the organic mulched soils than in the bare soil. The greater efficiency of the organic than the plastic mulch in ‘Crimson’ 2009 was attributed to the leaching of salts by a precipitation of 104 mm that infiltrated the organic mulch but was intercepted by the plastic mulch. Although further work is needed to substantiate these results, the conclusion is that the plastic mulch and, particularly, the organic mulch were more efficient than the bare soil for soil salinity and sodicity control.

  10. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain.

    Science.gov (United States)

    Navarro-Martinez, Francisco; Salas Garcia, Alejandro; Sánchez-Martos, Francisco; Baeza Espasa, Antonio; Molina Sánchez, Luis; Rodríguez Perulero, Antonio

    2017-12-01

    The identification of specific aquifers that supply water to river systems is fundamental to understanding the dynamics of the rivers' hydrochemistry, particularly in arid and semiarid environments where river flow may be discontinuous. There are multiple methods to identify the source of river water. In this study of the River Andarax, in the Southeast of Spain, an analysis of natural tracers (physico-chemical parameters, uranium, radium and radon) in surface water and groundwater indicates that chemical parameters and uranium clearly identify the areas where there is groundwater-surface water interaction. The concentration of uranium found in the river defines two areas: the headwaters with U concentrations of 2 μg L -1 and the lower reaches, with U of 6 μg L -1 . Furthermore, variation in the 234 U/ 238 U isotopic ratio allowed us to detect the influence that groundwater from the carbonate aquifer has on surface water in the headwaters of the river, where the saline content is lower and the water has a calcium bicarbonate facies. The concentration of 226 Ra and 222 Rn are low in the surface waters: aquifer on the surface waters. The results of this study indicate the utility in the use of physico-chemical and radiological data conjointly as tracers of groundwater-surface water interaction in semiarid areas where the lithology of aquifers is diverse (carbonate and detritic) and where evaporitic rocks are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quality-controlled sea surface temperature, salinity and other measurements from the NCEI Global Thermosalinographs Database (NCEI-TSG)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains global in-situ sea surface temperature (SST), salinity (SSS) and other measurements from the NOAA NCEI Global Thermosalinographs Database...

  12. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  13. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  14. Effect of saline water on growth, yield and N2 fixation by faba bean and lentil plants using nitrogen-15

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Elakel, E.A.; Ismail, H.; Hamdy, A.

    2003-01-01

    This work had been carried out under greenhouse conditions through joint research project between international agronomic mediterranean (IAM, Bari), italy and soils and water dept., Egyptian atomic energy authority. The aim of this dy was to assess the effect of saline water irrigation on growth, yield and nitrogen fixation (% Ndfa) by faba bean and lentil plants inoculated with selected rhizobium strains. Four saline irrigation water levels (fresh water, 3.6 and ds/m) were used. 20 kg N/ha as ammonium sulfate contained 10% N-15 atom excess was applied for quantification of biological N-fixation N-portions derived from fertilizer (Ndff). Results showed that high levels of salinity negatively affected seed yield and N accumulated in tissue of faba bean. Similar trend was noticed with dry matter of lentil while shoot-N was increased at 6 and 9 ds/m. Both leguminous crops were mainly dependent on N 2 fixation as an important source of nitrogen nutrition. Under adverse conditions salinity, the plants gained some of their N requirements from the other two N sources (Ndff and Ndfs). Application of the suitable Rhizobium bacteria strains could be beneficial for both the plant growth and soil fertility via N 2 fixation

  15. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    Science.gov (United States)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  16. 22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica

    Science.gov (United States)

    Morrow, Rosemary; Kestenare, Elodie

    2017-11-01

    Seasonal and interannual variations in sea surface salinity (SSS) are analyzed in the Sea Ice Zone south of 60°S, from a 22-year time series of observations near 140°E. In the northern sea-ice zone during the warming, melting cycle from October to March, waters warm by an average of 3.5 °C and become fresher by 0.1 to 0.25. In the southern sea-ice zone, the surface temperatures vary from - 1 to 1 °C over summer, and the maximal SSS range occurs in December, with a minimum SSS of 33.65 near the Southern Boundary of the ACC, reaching 34.4 in the shelf waters close to the coast. The main fronts, normally defined at subsurface, are shown to have more distinct seasonal characteristics in SSS than in SST. The interannual variations in SSS are more closely linked to variations in upstream sea-ice cover than surface forcing. SSS and sea-ice variations show distinct phases, with large biannual variations in the early 1990s, weaker variations in the 2000s and larger variations again from 2009 onwards. The calving of the Mertz Glacier Tongue in February 2010 leads to increased sea-ice cover and widespread freshening of the surface layers from 2011 onwards. Summer freshening in the northern sea-ice zone is 0.05-0.07 per decade, increasing to 0.08 per decade in the southern sea-ice zone, largely influenced by the Mertz Glacier calving event at the end of our time series. The summer time series of SSS on the shelf at 140°E is in phase but less variable than the SSS observed upstream in the Adélie Depression, and thus represents a spatially integrated index of the wider SSS variations.

  17. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    Science.gov (United States)

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  18. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis

    International Nuclear Information System (INIS)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-01-01

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54 psu) compared with seawater controls (37 psu) over 6 weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2–4 weeks at 54 psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. - Highlights: • We separated salt effects of desalination brine from other deleterious components. • Sublethal salinity stress depended on both salinity increase and exposure time. • Very effective osmoregulation led to tolerance of short intervals of high salinity.

  19. About the issue of monitoring method of Ararat valley soils salinization

    Directory of Open Access Journals (Sweden)

    A.G. Yeghiazaryan

    2017-12-01

    Full Text Available The short description of the agro-ameliorative situation of the Republic of Armenia, particularly, that of Ararat valley shows that the unpredictable and unmanageable process of regime procedures at this area can cause serious consequences, pushing out the agricultural golden fund of the republic from the agricultural turnover, namely the land of Ararat valley. Numerous investigations on the soil reclaimed state in Ararat valley at the Republic of Armenia reveal that they are currently in an extremely threatening condition. The result analyses show that more than 35% of Ararat valley lands of agricultural importance are in insufficiently reclaimed state, moreover the 54% of them are weakly salinized, 11,8% are averagely and strongly salinized and 34.2% are strongly salinized. The analyses of the conducted theoretical and experimental research results show that the above mentioned negative processes are promoted by the depth of the ground water allocation, which in Ararat valley fluctuates within the depth of 1 m, 1-3 m and more than 3 m. According to the distribution area the ground waters on 6,6% land areas of Ararat valley irrigated soils are allocated at the depth of 1 m, in 27,8% land areas the ground waters are allocated at the depth of 1–3 m, and in the rest of 65,6% land area waters are allocated at the depth of more than 3 m. For the prevention of the soils salinization process at Ararat valley and for the development of measures for struggling against it, the impact of ground waters installation depth, their mineralization, calculated evapo-transpiration from the soil and plants, irrigation norm, watering regime and technique, pressure nutrition caused from underground water basin and the impact of evaporation raising from the ground water surfaces on the ground waters level change in the vegetation period is evaluated in the current work. For the evaluation of the above mentioned individual factors the integral

  20. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  1. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    Science.gov (United States)

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  2. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal.

    Digital Repository Service at National Institute of Oceanography (India)

    Akhil, V.P.; Durand, F.; Lengaigne, M.; Vialard, J.; Keerthi, M.G.; Gopalakrishna, V.V.; Deltel, C.; Papa, F.; Montegut, C.deB.

    of Science, Bangalore, India, 5LOS, IFREMER, Plouzan�e, France Abstract In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges...

  3. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  4. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  5. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    Science.gov (United States)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Do cold, low salinity waters pass through the Indo-Sri Lanka Channel during winter?

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, R.R.; Girishkumar, M.S.; Ravichandran, M.; Gopalakrishna, V.V.; Pankajakshan, T.

    cooler, low-salinity waters from the head Bay of Bengal (BoB) into the south-eastern AS. But due to a lack of any direct in situ measurements, it is not clear whether any part of this current that flows through the Indo-Sri Lanka Channel (ISLC...

  7. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1931 to 1955

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1931 to 1955 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  8. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1912 to 1930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1912 to 1930 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  9. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1956 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1956 to 1980 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  10. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1981 to 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1981 to 2005 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  11. Studies of marine macroalgae: saline desert water cultivation and effects of environmental stress on proximate composition. Final subcontract report. [Gracilaria tikvahiae; Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; DeBusk, T.A.; Peterson, J.E.

    1985-11-01

    The results presented in this report address the growth potential of marine macroalgae cultivated in desert saline waters, and the effects of certain environmental stresses (e.g., nitrogen, salinity, and temperature) on the proximate composition of several marine macroalgae. Two major desert saline water types were assayed for their ability to support the growth of Gracilaria, Ulva, and Caulerpa. Both water types supported short term growth, but long term growth was not supported. Carbohydrate levels in Gracilaria were increased by cultivation under conditions of high salinity, low temperature, and low nitrogen and phosphorous availability. Data suggests that it may be possible to maximize production of useful proximate constituents by cultivating the algae under optimum conditions for growth, and then holding the resulting biomass under the environmental conditions which favor tissue accumulation of the desired storage products. 16 refs., 21 figs., 19 tabs.

  12. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  13. Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel

    International Nuclear Information System (INIS)

    Bergelson, G.; Nativ, R.; Bein, A.

    1999-01-01

    The mechanism governing salinization of ground water discharging into the Sea of Galilee in Israel has been the subject of debate for several decades. Because the lake provides 25% of the water consumed annually in Israel, correct identification of the salt sources is essential for the establishment of suitable water-management strategies for the lake and the ground water in the surrounding aquifers. Existing salinization models were evaluated in light of available and newly acquired data including general chemistry, and O, H, C and Cl isotopes. Based on the chemical and isotopic observations, the proposed salt source is an ancient, intensively evaporated brine (21- to 33-fold seawater) which percolated through the valley formations from a lake which had formed in the Rift Valley following seawater intrusion during the late Miocene. Low Na:Cl and high Br:Cl values support the extensive evaporation, whereas high Ca:Cl and low Mg:Cl values indicate the impact of dolomitization of the carbonate host rock on the residual solution. Based on radiocarbon and other isotope data, the dilution of the original brine occurred in two stages: the first took place similar30andpuncsp; omitted000 a ago by slightly evaporated fresh-to-brackish lake water to form the Sea of Galilee Brine. The second dilution phase is associated with the current hydrological regime as the Sea of Galilee Brine migrates upward along the Rift faults and mixes with the actively circulating fresh ground water to form the saline springs. The spatially variable chemical and isotopic features of the saline springs suggest not only differential dilution by fresh meteoric water, but also differential percolation timing of the original brine into the tectonically disconnected blocks, registering different evaporation stages in the original brine. Consequently, various operations to reduce the brine contribution to the lake may be differentially effective in the various areas. (Copyright (c) 1999 Elsevier Science

  14. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  15. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  16. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  17. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    Science.gov (United States)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  18. Understanding the Impact of Intensive Horticulture Land-Use Practices on Surface Water Quality in Central Kenya

    Directory of Open Access Journals (Sweden)

    Faith K. Muriithi

    2015-11-01

    Full Text Available Rapid expansion of commercial horticulture production and related activities contribute to declining surface water quality. The study sought to understand the impacts on select rivers in Laikipia and Meru, production hotspots. The specific aims were (1 to identify prevailing surface water quality by examining variations of 14 physico-chemical parameters, and (2 to categorize measured surface water quality parameters into land use types highlighting potential pollutant source processes. Water samples were collected in July and August 2013 along 14 rivers in the study area. The data were analyzed using principal component analysis (PCA and discriminant analysis (DA. Principal components (PCs explained 70% of the observed total variability of water quality, indicating a prevalence of heavy metal traces (cadmium, phosphate, and zinc. These were linked to the rigorous use of phosphate fertilizers and copper-based agrochemicals in intensive farming. DA provided four significant (p < 0.05 discriminant functions, with 89.5% correct assignment enabling the association of land use with observed water quality. Concentrations of dissolved solids, electro-conductivity, and salinity spiked at locations with intensive small-scale and large-scale horticulture. Understanding the impacts of intensive commercial horticulture and land use practices on water quality is critical to formulating ecologically sound watershed management and pollution abatement plans.

  19. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  20. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  1. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  2. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  3. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    Science.gov (United States)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  4. Distributions of dissolved monosaccharides and polysaccharides in the surface microlayer and surface water of the Jiaozhou Bay and its adjacent area

    Science.gov (United States)

    Zhang, Yan-Ping; Yang, Gui-Peng; Lu, Xiao-Lan; Ding, Hai-Bing; Zhang, Hong-Hai

    2013-07-01

    Sea surface microlayer (SML) samples and corresponding bulk surface water (SW) samples were collected in the Jiaozhou Bay and its adjacent area in July and November 2008. The average concentrations of dissolved monosaccharides (MCHO) and polysaccharides (PCHO) revealed similar temporal variability, with higher concentrations during the green-tide period (in July) than during the non-green-tide period (in November). Average enrichment factors (EF) of MCHO and PCHO, defined as the ratio of the concentration in the SML to that in the SW, were 1.3 and 1.4 in July, respectively, while those values in November were 1.9 and 1.6. Our data also showed that the concentrations of MCHO and PCHO in the SML were strongly correlated with those in the SW, indicating that most of the organic materials in the SML came from the SW. The total dissolved carbohydrate concentrations (TDCHO) in the bulk surface water were closely correlated with salinity during the cruises (July: r=-0.580, n=18, P=0.01; November: r=-0.679, n=26, P<0.001), suggesting that riverine input had an important effect on the distribution of TDCHO in surface seawater of the study area.

  5. Vegetative changes in boreal peatlands along salinity gradients resulting from produced water spills : implications for the environmental assessment and remediation of upstream oil and gas sites

    Energy Technology Data Exchange (ETDEWEB)

    Bright, D.; Harris, C.; Meier, M. [AECOM Canada Ltd., Ottawa, ON (Canada)

    2010-07-01

    In the province of Alberta, there are approximately 8,000 registered oil effluent and produced pipelines that have significant potential for ruptures and spills due to the highly corrosive nature of the emulsions and produced water they transport. Most releases occur in or adjacent to northern boreal wetlands. The first objective in spill response involves assessment and remediation for residuals, which involves handling and disposal of large volumes of salinized water. This presentation reported on a study that addressed the issues regarding the ecological features of semi-terrestrial and semi-aquatic components of boreal wetland environments as a basis for environmental protection at salt release sites. The fate of salt ions in such environments was examined along with the implications for secondary succession and ecological restoration. The study also examined the reasonable threshold concentration of salt ions in soils or water beyond which there is an inhibition to wetlands plants and bryophyte secondary succession; the reasonable threshold concentration of salt ions in water beyond which there may be adverse effects on invertebrates, vertebrates and other non-plant taxa; and species sensitivity distributions for floral and faunal assemblages found in boreal wetland habitats. The presentation summarized the 3 phases of a project that examined pipeline ruptures at 9 sites. Field methods and site sampling summaries were presented. It was difficult to locate study sites with residual salt contamination in surface media at concentrations above effects threshold for many species. It was concluded that the departures between surface and subsurface salinity indicates a smaller potential for effects on site vegetation. tabs., figs.

  6. Vegetative changes in boreal peatlands along salinity gradients resulting from produced water spills : implications for the environmental assessment and remediation of upstream oil and gas sites

    International Nuclear Information System (INIS)

    Bright, D.; Harris, C.; Meier, M.

    2010-01-01

    In the province of Alberta, there are approximately 8,000 registered oil effluent and produced pipelines that have significant potential for ruptures and spills due to the highly corrosive nature of the emulsions and produced water they transport. Most releases occur in or adjacent to northern boreal wetlands. The first objective in spill response involves assessment and remediation for residuals, which involves handling and disposal of large volumes of salinized water. This presentation reported on a study that addressed the issues regarding the ecological features of semi-terrestrial and semi-aquatic components of boreal wetland environments as a basis for environmental protection at salt release sites. The fate of salt ions in such environments was examined along with the implications for secondary succession and ecological restoration. The study also examined the reasonable threshold concentration of salt ions in soils or water beyond which there is an inhibition to wetlands plants and bryophyte secondary succession; the reasonable threshold concentration of salt ions in water beyond which there may be adverse effects on invertebrates, vertebrates and other non-plant taxa; and species sensitivity distributions for floral and faunal assemblages found in boreal wetland habitats. The presentation summarized the 3 phases of a project that examined pipeline ruptures at 9 sites. Field methods and site sampling summaries were presented. It was difficult to locate study sites with residual salt contamination in surface media at concentrations above effects threshold for many species. It was concluded that the departures between surface and subsurface salinity indicates a smaller potential for effects on site vegetation. tabs., figs.

  7. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  8. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  9. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  10. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  11. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  12. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    Science.gov (United States)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  13. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  14. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  15. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  16. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  17. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  18. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  19. Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)

    Science.gov (United States)

    Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.

    2016-12-01

    Saline sediment (saline healing mud or "fango") from the Sečovlje Salina (northern Adriatic, Slovenia) is traditionally used in the coastal health resorts as a virgin material for medical treatment, wellness and relax purposes. Therapeutic qualities of the healing mud depend on its mineralogical composition and physical, mineralogical, geochemical and biological properties. Their microbial and potentially toxic elements contamination are the most important features affecting user safety. However, the degree of metal toxicity (and its regulation) for natural healing mud is still under discussion. Therefore, the influence of the overlying water salinity on the mobility of heavy metals (and some other geochemical characteristic) was studied for saline sediments of the Sečovlje Salina. Experiments takes place in tanks under defined conditions i.e. at day (21 °C): night (16 °C) cycle for three months. Sediment was covered with water of different salinities (36, 155, 323 g NaCl L-1 and distillate water) and mixed/stirred every week during the experimental period. At the same time, the evaporated water was replaced with distilled water. The mud samples were analyzed, at the beginning and at the end of experiment, for mineral (XRD), elemental composition (ICP-MS) and organic content (% TOC, % TN). Geochemical analysis of the aqueous phase (content of cations and anions) have also been carried out in an accredited Canadian laboratory Actlabs (Activation Laboratories, Canada). Salinity and maturation of sediment does not significantly affect its mineral composition. The samples taken at the end of the experiment have higher percent of water but lower organic carbon concentration. Concentrations of investigated elements are comparable to that in surface sediments from Central Adriatic Sea. In the water phase, concentrations of most elements (As, Ba, Cu, Mo, Mn, Ni, Sr, Sb) rise from the beginning to the end of the experiment, whereas the metal (potentially toxic elements

  20. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  1. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  2. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river......Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West...... Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...

  3. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  4. Groundwater salinity at Olkiluoto and its effects on a spent fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T. [VTT Energy, Espoo (Finland)

    2000-06-01

    The Olkiluoto island rose from the Baltic Sea 2500 to 3000 years ago. The layered sequence of groundwaters can be related to climatic and shoreline changes from modern tune through former Baltic stages to the deglaciation phase about 10 000 years ago and even to preglacial times. Fresh groundwater is found to the depth of about 150 metres, brackish between 100 and 400 metres, deeper groundwaters are saline. At the depth of 500 meters, the content of Total Dissolved Solids (TDS) varies between 10 and 25 g/l. The most saline waters at depths greater than 800 metres have TDS values between 30 and 75 g/l. These deep saline waters seem to have been undisturbed during the most recent glaciation and even much longer in the past. Today fresh water infiltrating at the surface gradually displaces brackish and saline groundwater in the bedrock. Due to the still ongoing postglacial land uplift, Olkiluoto is likely to become an inland site with brackish or fresh groundwater at the depth of 500 metres within the next 10 000 years. During the construction and operation phases groundwater will be drawn into the repository from the surrounding bedrock. As a consequence, more saline groundwaters, presently laying 100 to 200 metres below the repository level, may rise to the disposal level. After the closing of the repository the salinity distribution will gradually return towards the natural state. During the glacial cycle groundwater salinity may increase, for example, during freezing of groundwater into permafrost, when dissolved solids concentrate in the remaining water phase, and in a situation where deep saline groundwaters from under the centre of the glacier are pushed to the upper parts of the bedrock at the periphery of the glacier. The most significant open issue related to saline groundwater is the performance of the tunnel backfill which in the BS-3 concept has been planned to consist of a mixture of crushed rock and 10-30% of bentonite. Saline groundwater may

  5. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK

    International Nuclear Information System (INIS)

    Worden, R.H.; Manning, D.A.C.; Bottrell, S.H.

    2006-01-01

    The origin and heterogeneity of oilfield formation water in the Lower Triassic Sherwood Sandstone at Wytch Farm in the Wessex Basin, UK, have been investigated using production data, detailed water geochemistry and O, S and H stable isotope data. The formation waters are highly saline, NaCl-type brines with TDS values of up to 230,000mg/L. There is a general decrease in salinity from the flanks of the field to the crest with Cl - decreasing from about 136,000 to 109,000mg/L. The Cl/Br ratio of the water shows that salinity was largely derived from the dissolution of Upper Triassic continental evaporites found off-structure to the west and north of the field. The water in the field had a meteoric source although variation in δ 2 H values suggests that there may be meteoric waters of different ages in the oilfield, reflecting recharge under different palaeoclimatic conditions. At the crest of the field, aqueous SO 4 2- resulted from dissolution of anhydrite in the reservoir. In contrast, in other parts of the field there is an indication that some of the dissolved SO 4 2- was derived from oxidation of pyrite at some point on the recharge path of meteoric water to the field. There were two meteoric influx events bringing different Cl - concentrations and different δ 2 H values. The first was probably before the Eocene oil influx and could have occurred in the Lower Cretaceous or early Tertiary. The second meteoric influx event probably occurred after or during oil migration into the Wytch Farm structure since the second meteoric water is found at the flanks of the field adjacent to the regions where salt is found in the stratigraphy. The preservation of heterogeneities in oilfield formation water compositions suggests that there has been little aqueous fluid movement or diffusive flux for over 40 million years. Mass flux has been restricted by density stratification within the aquifer and the very low effective permeability for the aqueous phase in the oil

  6. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  7. A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats

    Science.gov (United States)

    Park, JongJin; Lim, Byunghwan

    2018-01-01

    The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.

  8. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  9. Sea-ice transport driving Southern Ocean salinity and its recent trends.

    Science.gov (United States)

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan

    2016-09-01

    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  10. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  11. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  12. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    Science.gov (United States)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  13. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient

    International Nuclear Information System (INIS)

    Swarzenski, P.W.; McKee, B.A.; Booth, J.G.

    1995-01-01

    The size distribution of U was examined in surface waters of the Amazon shelf. Water samples were collected during a low discharge river stage across a broad salinity gradient (0.3-35.4%) and fractionated by planar filtration and tangential-flow ultrafiltration into (1) solution (U s , c , 10,000 MW-0.4 μm), (3) dissolved (U d p >0.4 μm) phases. Concentrations of colloidal U comprise up to 92% of the dissolved U fraction at the river mouth and attain highest values (∼0.45 μg/L) in the productive, biogenic region of the Amazon shelf (salinities above ∼20%). U d and U c distributions are highly nonconservative relative to ideal dilution of river water and seawater, indicating extensive removal at salinities below ∼10%. The distribution of U s also shows some nonconservative behavior, yet removal, if any, is minimal. Saltwater-induced precipitation and aggregation of riverine colloidal material is most likely the dominant mechanism of U removal in the low salinity, terrigenous region of the Amazon shelf. There is evident of a substantial colloidal U input (∼245% of the riverine U c flux) into surface waters above 5%. Such U c enrichment most likely is the result of colloidal U-rich porewater diffusion/advection from the seabed and fluid muds or shelf-wide particle-colloid disaggregation. Removal of solution and dissolved phase U via a colloidal intermediate and U c aggregation in terms of coagulation phase U via a colloidal intermediate and U c aggregation was examined in terms of coagulation theory. The high reactive nature of all U phases on the Amazon shelf suggests that remobilization and fractionation of U may also occur in other river-influenced coastal environments

  14. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  15. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    Science.gov (United States)

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  16. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  17. Mineralization sources of surface and subsurface waters at the southeastern edges of dead sea basin in Jordan

    International Nuclear Information System (INIS)

    AbdEl-Samie, S.G.; EL-Shahat, M.F.; Al-Nawayseh, K.M.

    2004-01-01

    Surface and ground waters within the shallow-Alluvial and deep- Kurnub aquifers in four areas (Issal, Mazraa, Safi and Haditha) in the southeastern edge of the Dead Sea basin were evaluated according to Salinity changes and water quality degradation. Chemical and isotopic parameters were integrated to follow the chemical evolutionary trend and sources of mineralization in these waters. The isotopic results indicated that the main recharge sources Issal. Mazraa and Safi groundwaters are the flash flood and base flow water from the eastern highland through wadies. In Safi area, the groundwater that mixed with other depleted source could be paleowater seeped from older formation. The depletion in stable isotopic values with low d-parametewr (less than 10%) for Haditha groundwater confirms that the replenishment to the aquifer (Kurnub sandstone) had been formed during the pluvial time. The chemical data showed that the base flow water from the eastern highland is denoted by the least salinity values, whereas drainage water acquired the highest values as aa result of receiving a considerable amount of the remaining water from salt extraction processes. The groundwater in Safi wells has low salt content with respect to the other areas taping the same aquifer. The elevation in Ca and Mg ions reflects the dissolution of Ca-Mg rich minerals that actively reached saturation with respect to calcite and dolomite in all samples except Haditha deep aquifer due to its low ph values. In spite of the meteoric origin of the recharge source, the presence of MgCl 2 and CaCl 2 salts in almost all samples changed the water character to be old or recent marine genesis. This points to the effect of Dead Sea in both surface and ground waters. The obvious depletion in O-18 and isotopes for all ground waters samples with respect to the positive values of Dead Sea sample is good indicative for non mixing trend with Dead Sea water in the Alluvial and Kurnub aquifers

  18. Effects of salinity, P H and temperature on CMC polymer and X C polymer performance

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Nickdel Teymoori, Reza

    2007-01-01

    The rheological and filtration properties of drilling mud under down-hole conditions may be very different from those measured at ambient pressures and temperatures at the surface. This paper presents the results of an experimental investigation into the temperature and salinity and p H effects on drilling mud rheological and filtration properties. Results are given from tests on water base mud containing CMC polymer and X C polymer. Drilling fluid was investigated at three different temperatures (21.1 d eg C , 48.9 d eg C , 80 d eg C ) containing 8.165 kg/b bl bentonite. The drilling mud salinities in this study were fresh water (Ahwaz water: ppm: 400, Hardness: 120). 2000 ppm, 4000 ppm, 8000 ppm and 40000 ppm. It was found that p H of drilling mud should be kept at range of 8-10, because increasing p H of drilling mud will increase its rheological properties. The salinity and temperature effects show that as the salinity and temperature of drilling mud are increased the effectiveness of polymers in drilling mud will decreased. Moreover, they have a negative effect on filtration properties of drilling mud. In suspensions of sodium montmorillonite that are well dispersed and have low gel strength, both plastic viscosity and yield point decrease with increasing temperature

  19. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    Science.gov (United States)

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than

  20. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    Science.gov (United States)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  1. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  2. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    Science.gov (United States)

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  3. Salinity measurement in water environment with a long period grating based interferometer

    International Nuclear Information System (INIS)

    Possetti, G R C; Kamikawachi, R C; Muller, M; Fabris, J L; Prevedello, C L

    2009-01-01

    In this work, a comparative study of the behaviour of an in-fibre Mach–Zehnder interferometer for salinity measurement in a water solution is presented. The fibre transducer is composed of two nearly identical long period gratings forming an in-series 7.38 cm long device written in the same fibre optic. Two inorganic and one organic salts (NaCl, KCl, NaCOOH) were characterized within the concentration range from 0 to 150 g L −1 . For the long period grating interferometer, the average obtained sensitivities were −6.61, −5.58 and −3.83 pm/(g L −1 ) for the above salts, respectively, or equivalently −40.8, −46.5 and −39.1 nm RIU −1 . Salinity measured by means of fibre refractometry is compared with measurements obtained using an Abbe refractometer as well as via electrical conductivity. For the long period grating refractometer, the best resolutions attained were 1.30, 1.54 and 2.03 g of salt per litre for NaCl, KCl and NaCOOH, respectively, about two times better than the resolutions obtained by the Abbe refractometer. An average thermal sensitivity of 53 pm °C −1 was measured for the grating transducer immersed in water, indicating the need for the thermal correction of the sensor. Resolutions for the same ionic constituent in different salts are also analysed

  4. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  5. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    Science.gov (United States)

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  6. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  7. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    Directory of Open Access Journals (Sweden)

    Mª Auxiliadora Casterad

    2018-02-01

    Full Text Available A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index and ECe (electrical conductivity of the soil saturation extracts mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  8. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  9. Degree of mucosal coating on double contrast barium enema : comparison of distilled water and normal saline as a suspension

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won; Han, Tae Il; Kim, Hyoung Jung

    1997-01-01

    To evaluate the degree of mucosal coating on double contrast barium enema (DCBE), using barium suspension made with distilled water or normal saline Between June 1 and July 30, 1996, fifty-four patients prospectively underwent DCBE using 83% w/v(weight-to-volume) of barium suspension (room temperature, 24 deg C), which was made with 1,200mL of distilled water (Group 1;29cases) and normal saline (Group 2;25cases) per 1Kg of Solotop (Taejoon Pharmacy, Seoul, Korea). Bowel preparation and examination methods were the same in both groups, and four projections(erect view, supine view, both decubitus views) were taken. The mucosal coating was graded as excellent, good, ordinary, or poor by three radiologists working independently, and scored from 3 to 0. Significance was analyzed by t-test. Mean grading scores were 2.33±0.70 in group 1 and 1.56±0.99 in group 2 (P<0.003). When barium suspension made with distilled water was used, the degree of mucosal coating on DCBE was better than when the suspension was made with normal saline

  10. Escherichia coli in the surface waters and in oysters of two cultivations of Guaratuba Bay - Paraná - Brazil

    Directory of Open Access Journals (Sweden)

    Helenita Catharina Dalla-Lana Forcelini

    2013-04-01

    Full Text Available The present work aimed to evaluate the contamination of Escherichia coli in the surface waters and oysters from two cultivations of Guaratuba Bay and to analyze the correlation patterns among the concentrations of E. coli in the waters and in the oysters with the local physical-chemical parameters. Samples were collected in the spring of 2007 and summer, autumn and winter of 2008 from two points of the bay (internal point and external point. From each cultivation and sampling period, 18 oysters were collected. The samples of surface water were collected for the measurement of physical-chemical parameters (pH, salinity, temperature, dissolved oxygen, seston, particulate organic matter and quantification of E. coli. The surface water analyzed in the summer presented the largest most probable number of E. coli, (1,659.22 MPN.100 ml-1 and 958,55 MPN.100 ml-1 at external and internal points, respectively. The oysters from the internal point presented more E. coli, except in the winter sampling. The largest contamination was observed in the spring, at the internal point (979,78 MPN.g-1. The Principal Components Analysis showed direct correlation among the amount of E. coli in the oysters and in the surface water.

  11. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  12. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses

    Science.gov (United States)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.

    2016-12-01

    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often 1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  13. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  14. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  15. Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas

    Science.gov (United States)

    Hakkinen, Sirpa M.; Rhines, P. B.

    2010-01-01

    Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.

  16. Analytical Solution for Interface Flow to a Sink With an Upconed Saline Water Lens: Strack's Regimes Revisited

    Science.gov (United States)

    Kacimov, A. R.; Obnosov, Y. V.

    2018-01-01

    A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.

  17. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  18. Towards improved water management in Haryana State; final report of the Indo-Dutch Operational Research Project on Hydrological Studies

    NARCIS (Netherlands)

    Agarwal, M.C.; Roest, C.J.W.

    1996-01-01

    Surface water and groundwater flow to the central inland depression, which causes rising water-tables, waterlogging and salinity problems. Technologies were developed for efficient on-farm water management, conjunctive use of saline and fresh water. Criteria were developed for drainage with a

  19. Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Ramli, Mohammad Firuz; Juahir, Hafizan

    2012-01-01

    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.

  20. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  1. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia.

    Science.gov (United States)

    Huang, Jingyi; Prochazka, Melissa J; Triantafilis, John

    2016-05-01

    In the Murray-Darling Basin of Australia, secondary soil salinization occurs due to excessive deep drainage and the presence of shallow saline water tables. In order to understand the cause and best management, soil and vadose zone information is necessary. This type of information has been generated in the Toobeah district but owing to the state border an inconsistent methodology was used. This has led to much confusion from stakeholders who are unable to understand the ambiguity of the results in terms of final overall risk of salinization. In this research, a digital soil mapping method that employs various ancillary data is presented. Firstly, an electromagnetic induction survey using a Geonics EM34 and EM38 was used to characterise soil and vadose zone stratigraphy. From the apparent electrical conductivity (ECa) collected, soil sampling locations were selected and with laboratory analysis carried out to determine average (2-12m) clay and EC of a saturated soil-paste extract (ECe). EM34 ECa, land surface parameters derived from a digital elevation model and measured soil data were used to establish multiple linear regression models, which allowed for mapping of various hazard factors, including clay and ECe. EM38 ECa data were calibrated to deep drainage obtained from Salt and Leaching Fraction (SaLF) modelling of soil data. Expert knowledge and indicator kriging were used to determine critical values where the salinity hazard factors were likely to contribute to a shallow saline water table (i.e., clay ≤35%; ECe>2.5dS/m, and deep drainage >100mm/year). This information was combined to produce an overall salinity risk map for the Toobeah district using indicator kriging. The risk map shows potential salinization areas and where detailed information is required and where targeted research can be conducted to monitor soil conditions and water table heights and determine best management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Liu, Hongyu; Tan, Beiping; Yang, Jinfang; Lin, Yingbo; Chi, Shuyan; Dong, Xiaohui; Yang, Qihui

    2014-09-01

    To investigate the influence of sodium to potassium (Na/K) ratios on the growth performance and physiological response of the Pacific white shrimp ( Litopenaeus vananmei), various concentrations of KCl were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with Na/K ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02±0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) of L. vananmei were affected significantly by Na/K ratios ( Pshrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75±7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K + remediation strategies for L. vananmei culture in low-salinity well water.

  3. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  4. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  5. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  6. Improved method for measuring transparent exopolymer particles (TEP) and their precursors infresh and saline water

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    Transparent exopolymer particles (TEP) and their precursors produced by phyto-/bacterio-planktons in fresh and marine aquatic environments are increasingly considered as a major contributor to organic/particulate and biological fouling in micro-/ultra-filtration and reverse osmosis membrane (RO) systems. However, currently established methods which are based on Alcian blue (AB) staining and spectrophotometric techniques do not measure TEP-precursors and have the tendency to overestimate concentration in brackish/saline water samples due to interference of salinity on AB staining. Here we propose a new semi-quantitative method which allows measurement of both TEP and their colloidal precursors without the interference of salinity. TEP and their precursors are first retained on 10kDa membrane, rinsed with ultra-pure water, and re-suspended in ultra-pure water by sonication and stained with AB, followed by exclusion of TEP-AB precipitates by filtration and absorbance measurement of residual AB. The concentration is then determined based on the reduction of AB absorbance due to reaction with acidic polysaccharides, blank correction and calibration with Xanthan gum standard. The extraction procedure allows concentration of TEP and their pre-cursors which makes it possible to analyse samples with a wide range of concentrations (down to <0.1mg Xeq/L). This was demonstrated through application of the method for monitoring these compounds in algal cultures and a full-scale RO plant. The monitoring also revealed that concentrations of the colloidal precursors were substantially higher than the concentration of TEP themselves. In the RO plant, complete TEP removal was observed over the pre-treatment processes (coagulation-sedimentation-filtration and ultrafiltration) but the TEP precursors were not completely removed, emphasising the importance of measuring this colloidal component to better understand the role of TEP and acidic polysaccharides in RO membrane fouling.

  7. Multi-saline sample distillation apparatus for hydrogen isotope analyses: design and accuracy. Water-resources investigations

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1981-04-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 degrees C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated

  8. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  9. Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels

    Directory of Open Access Journals (Sweden)

    José Helder Andrade de Moura

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the effect of four water salinity levels on the ingestive behavior of non-castrated crossbred Santa Inês sheep. Thirty-two non-castrated crossbred Santa Inês sheep in feedlot, at seven months of age and initial average weight of 21.76±1.25 kg, were used in the experiment. The experimental design was completely randomized, with four treatments and eight replicates. Four concentrations of salts in the water fed to the animals were evaluated: low (640 mg/l; medium (3,188 mg/l; high (5,740 mg/l and very high (8,326 mg/l levels of total dissolved solids (TDS. For the ingestive behaviors, the animals were observed every ten minutes, for 24 hours, to determine the time spent feeding, ruminating and idle. Also, cud chewing and the average number of defecations and urinations and the frequency of water ingestion were determined. The time spent feeding, ruminating and idle were not changed by the salinity levels in the water. Dry matter intake, neutral detergent fiber intake, total chewing time, total cud chews per day, number of daily meals, average duration of each meal and number of defecations per day did not change either. However, feeding and rumination efficiency in grams of DM/h, water intake and number of urinations were linearly affected, whereas the variables rumination efficiency in grams of NDF/h, grams of dry matter per cud, grams of neutral detergent fiber per cud, number of cuds, number of chews per cud and chewing time per cud presented quadratic effect. The different levels of total dissolved solids (640; 3,188; 5,740; and 8.326 mg/l in the water fed to the sheep did not cause alterations in their ingestive behavior. In conclusion, water with up to 8,326 mg TDS/l can be an alternative strategic and seasonal method to water crossbred Santa Ines sheep.

  10. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  11. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam.

    Science.gov (United States)

    Wilbers, Gert-Jan; Becker, Mathias; Nga, La Thi; Sebesvari, Zita; Renaud, Fabrice G

    2014-07-01

    Surface water pollution in the Vietnamese Mekong Delta (MD) could threaten human, animal and ecosystem health given the fact that this water source is intensively used for drinking, irrigation and domestic services. We therefore determined the levels of pollution by organic pollutants, salts, metals and microbial indicators by (bi)monthly monitoring of canals between November 2011 and July 2012 at 32 sampling locations, representing fresh and saline/brackish environments. The results were compared with national water quality guidelines, between the studied regions and with water quality data from main waterways. Key factors explaining the observed levels of pollution in surface water were identified through principal component analysis (PCA). Temporal variations due to tidal regime and seasonality were also assessed. Based on regression models, the spatial variability of five water quality parameters was visualized using GIS based maps. Results indicate that pH (max. 8.6), turbidity (max. 461 FTU), maximum concentrations of ammonium (14.7 mg L(-1)), arsenic (44.1 μg L(-1)), barium (157.5 μg L(-1)), chromium (84.7 μg L(-1)), mercury (45.5 μg L(-1)), manganese (1659.7 μg L(-1)), aluminum (14.5 mg L(-1)), iron (17.0 mg L(-1)) and the number of Escherichia coli (87,000 CFU 100 mL(-1)) and total coliforms (2,500,000 CFU 100 mL(-1)) in canals exceed the thresholds set by Vietnamese quality guidelines for drinking and domestic purposes. The PCA showed that i) urbanization; ii) metal leaching from soils; iii) aquaculture; and iv) tidal regime explain 85% of the variance of surface water quality attributes. Significant differences in water quality were found due to daily tidal regime and as a result of seasonality. Surface water quality maps for dissolved oxygen, ammonium, ortho-phosphate, manganese and total coliforms were developed to highlight hot-spot areas of pollution. The results of this study can assist policy makers in developing water management strategies

  12. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  13. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  14. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  15. Features of Red Sea Water Masses

    Science.gov (United States)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  16. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  17. A comparative study of byssogenesis on zebra and quagga mussels: the effects of water temperature, salinity and light-dark cycle.

    Science.gov (United States)

    Grutters, Bart M C; Verhofstad, Michiel J J M; van der Velde, Gerard; Rajagopal, Sanjeevi; Leuven, Rob S E W

    2012-01-01

    The quagga mussel (Dreissena rostriformis bugensis) and zebra mussel (Dreissena polymorpha) are invasive freshwater bivalves in Europe and North America. The distribution range of both Dreissena species is still expanding and both species cause major biofouling and ecological effects, in particular when they invade new areas. In order to assess the effect of temperature, salinity and light on the initial byssogenesis of both species, 24 h re-attachment experiments in standing water were conducted. At a water temperature of 25°C and a salinity of 0.2 psu, the rate of byssogenesis of D. polymorpha was significantly higher than that of D. rostriformis bugensis. In addition, byssal thread production by the latter levelled out between 15°C and 25°C. The rate of byssogenesis at temperatures<25°C was similar for both species. Neither species produced any byssal threads at salinities of 4 psu or higher. At a salinity of 1 psu and a water temperature of 15°C, D. polymorpha produced significantly more byssal threads than D. rostriformis bugensis. There was no significant effect of the length of illumination on the byssogenesis of either species. Overall, D. polymorpha produced slightly more byssal threads than D. rostriformis bugensis at almost all experimental conditions in 24 h re-attachment experiments, but both species had essentially similar initial re-attachment abilities. The data imply that D. rostriformis bugensis causes biofouling problems identical to those of D. polymorpha.

  18. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  19. Water Withdrawals, Use, and Trends in Florida, 2005

    Science.gov (United States)

    Marella, Richard L.

    2009-01-01

    In 2005, the total amount of water withdrawals in Florida was estimated at 18,359 million gallons per day (Mgal/d). Saline water accounted for 11,486 Mgal/d (63 percent), and freshwater accounted for 6,873 Mgal/d (37 percent). Groundwater accounted for 4,247 Mgal/d (62 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,626 Mgal/d (38 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 660 Mgal/d of reclaimed wastewater was used in Florida during 2005. The largest amount of freshwater was withdrawn from Palm Beach County, and the largest amount of saline water was withdrawn from Pasco County. Fresh groundwater provided drinking water (public supplied and self-supplied) for 16.19 million people (90 percent of Florida's population), and fresh surface water provided drinking water for 1.73 million people (10 percent). The majority of groundwater withdrawals (nearly 60 percent) in 2005 was obtained from the Floridan aquifer system which is present throughout the entire State. The majority of fresh surface-water withdrawals (59 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 37 percent. Public supply accounted for 52 percent of groundwater withdrawals, followed by agricultural self-supplied (31 percent), ommercial-industrial-mining self-supplied (8.5 percent), recreational irrigation and domestic self-supplied (4 percent each), and power generation (0.5 percent). Agricultural self-supplied accounted for 56 percent of fresh surface-water withdrawals, followed by power

  20. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    Science.gov (United States)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.