WorldWideScience

Sample records for saline solution follow

  1. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  2. Thermodynamic modeling of iodine and selenium retention in solutions with high salinity

    International Nuclear Information System (INIS)

    Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe

    2012-04-01

    The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.

  3. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    Science.gov (United States)

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Plant extracts, metaldehyde and saline solutions on the population control of Bradybaena similaris

    Directory of Open Access Journals (Sweden)

    Junir Antonio Lutinski

    2016-08-01

    Full Text Available ABSTRACT: This study aimed to test the efficiency of plant extracts, metaldehyde and saline solutions, as alternatives to the population control of the snail Bradybaena similaris , and to investigate the effect of the plant extracts in reducing the damage of the snail on Brassica oleracea . The experiments were performed at the Entomology Laboratory of the Universidade Comunitária da Região de Chapecó (Unochapecó, using a random experimental design with nine treatments in triplicate. Five adult individuals of B. similaris were subjected to each trial, totaling 135 snails. The following treatments were tested: cinnamon ( Melia azedarach , timbó ( Ateleia glazioveana , rosemary ( Rosmarinus officinalis , mate herb ( Ilex paraguariensis , two concentrations of metaldehyde (3% and 5%, two concentrations of salt solution (5% and 10 %, and a control treatment (distilled water. To evaluate the survival of B. similaris it was checked the treatments every 24 hours, over four consecutive days. The results revealed that the two concentrations of metaldehyde were fully efficient, that the saline solution (10% had and intermediate efficiency, and that all other treatments were not effective. The treatment with the M. azedarach extract induced a higher consumption of B. oleracea , while the saline solution at 10% and the extracts of R. officinalis and I. paraguariensis inhibited leaf consumption.

  5. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  6. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  7. Variable Saline Concentrations for Initial Resuscitation Following Polytrauma

    Science.gov (United States)

    2017-02-22

    AFRL-SA-WP-TR-2017-0008 Variable Saline Concentrations for Initial Resuscitation Following Polytrauma Dr. Michael Goodman...Following Polytrauma 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER FA8650-14-2-6B29 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Michael...established. We investigated the utility of standard variable saline concentrations (0.9%, 3%, 23.4%) in a murine polytrauma model of traumatic brain injury

  8. Evaluating the effect of administrating hypertonic and isotonic saline solutions on clinical improvement, serum electrolyte concentrations and renal function of calves affected by diarrhea

    Directory of Open Access Journals (Sweden)

    A Hasanpour

    2009-11-01

    This study was conducted on 40 calves under the age of one mouth with 30 calves affected by diarrhea allocated to 3 treatment groups of 10 calves each and the control group consisting of 10 calves. The control group received neither treatment nor any injections. In the first treatment group, only antibiotics were administered without any fluid therapy. In the second treatment group, apart from antibiotic therapy of diarrhea, hypertonic saline solution (7.5% was administered at a dose of 5 ml/kg as slow intravenous infusion alongside oral ORS solution whereas in the third treatment group isotonic saline solution (0.9% was given intravenously according to the formula (Body weight × %Dehydration alongside oral ORS solution. In all groups, clinical examination and blood sampling was undertaken at times 0, 1, 2, 8 and 24 hours following treatment. At time 0, the diarrhea had resulted in clinical and laboratory signs such as a fever, the dehydration, tachycardia, oligopnea, increased packed sell volume, hypernatremia, hyperchloremia, hyperkalemia, hyperphosphatemia, hypercalcemia, increased serum creatinine and BUN values. Following treatment, fever subsided and the dehydration was corrected and this correction occurred faster in calves which had received hypertonic saline solution. Correction of sodium, potassium, chloride, phosphorus and calsium imbalance occurred faster in patients which were treated by hypertonic solution. Fluid therapy with saline solutions prevented the increase in serum creatinine and BUN values. In conclusion, the administration of hypertonic saline solutions leads to much faster and more reliable clinical improvement and electrolyte imbalance correction in calves affected by diarrhea.

  9. Rapid Resuscitation with Small Volume Hypertonic Saline Solution ...

    African Journals Online (AJOL)

    Rapid Resuscitation with Small Volume Hypertonic Saline Solution for Patients in Traumatic Haemorrhagic Shock. ... The data were entered into a computer data base and analysed. Results: Forty five patients were enrolled and resuscitated with 250 mls 7.5% HSS. Among the studied patients, 88.9% recovered from shock ...

  10. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  11. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  12. Determination of triazines in hemodialysis saline solutions by adsorptive stripping voltammetry after extraction in acetonitrile

    Directory of Open Access Journals (Sweden)

    Nascimento Paulo Cícero do

    2003-01-01

    Full Text Available A method for the voltammetric determination of 2-methylthio-4,6-dialkylamino-1,3,5-triazine (triazines herbicides in hemodialysis (HD saline solutions was developed. The herbicides were detected in the saline solutions at the hanging mercury drop electrode (HMDE with high sensitivities only after extraction of the analytes in acetonitrile (ACN. The salting out effect originated by the saline environment existing in the solutions enabled the extractions. The volume ratio between the saline and ACN phases was investigated in order to find the best sensitivity to detect the triazines. The speciation amongst them (ametryn, desmetryn, prometryn and terbutryn was not possible. Recoveries between 88 and 107% were calculated in spiked samples, and detection limits of 0.03 mumol L-1 were calculated for the triazines in the saline samples using this methodology.

  13. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  14. Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels

    Directory of Open Access Journals (Sweden)

    Daniela S. Coelho

    Full Text Available ABSTRACT Adaptation of plants to saline environments depends on the activation of mechanisms that minimize the effects of excess ions on vital processes, such as photosynthesis. The objective of this study was to evaluate the leaf gas exchange, chlorophyll, and organic solute in ten genotypes of forage sorghum irrigated with solutions of different salinity levels. The experiment was conducted in a randomized block design, in a 10 x 6 factorial arrangement, with three replications, using ten genotypes - F305, BRS-655, BRS-610, Volumax, 1.015.045, 1.016.005, 1.016.009, 1.016.013, 1.016.015 and 1.016.031 - and six saline solutions, with electrical conductivity (ECw of 0, 2.5, 5.0, 7.5, 10 and 12.5 dS m-1. The photosynthetic activity in forage sorghum plants reduces with increasing salinity, and this response was found in the ten genotypes evaluated. The chlorophyll and protein contents were not affected by salinity, whereas carbohydrates and amino acid contents increased with increasing ECw. Soluble sugars are essential for osmoregulation of forage sorghum due to its high content in leaves.

  15. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    Science.gov (United States)

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  16. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  17. Changes in microbial diversity in industrial wastewater evaporation ponds following artificial salination.

    Science.gov (United States)

    Ben-Dov, Eitan; Shapiro, Orr H; Gruber, Ronen; Brenner, Asher; Kushmaro, Ariel

    2008-11-01

    The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.

  18. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-09-21

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU.

  19. Comparison of Outcomes for Normal Saline and an Antiseptic Solution for Negative-Pressure Wound Therapy with Instillation.

    Science.gov (United States)

    Kim, Paul J; Attinger, Christopher E; Oliver, Noah; Garwood, Caitlin; Evans, Karen K; Steinberg, John S; Lavery, Larry A

    2015-11-01

    Negative-pressure wound therapy with instillation is an adjunctive treatment that uses periodic instillation of a solution and negative pressure for a wide diversity of wounds. A variety of solutions have been reported, with topical antiseptics as the most frequently chosen option. The objective of this study was to compare the outcomes of normal saline versus an antiseptic solution for negative-pressure wound therapy with instillation for the adjunctive treatment of infected wounds. This was a prospective, randomized, effectiveness study comparing 0.9% normal saline versus 0.1% polyhexanide plus 0.1% betaine for the adjunctive treatment of infected wounds that required hospital admission and operative débridement. One hundred twenty-three patients were eligible, with 100 patients randomized for the intention-to-treat analysis and 83 patients for the per-protocol analysis. The surrogate outcomes measured were number of operative visits, length of hospital stay, time to final surgical procedure, proportion of closed or covered wounds, and proportion of wounds that remained closed or covered at the 30-day follow-up. There were no statistically significant differences in the demographic profiles in the two cohorts except for a larger proportion of male patients (p = 0.004). There was no statistically significant difference in the surrogate outcomes with the exception of the time to final surgical procedure favoring normal saline (p = 0.038). The authors' results suggest that 0.9% normal saline may be as effective as an antiseptic (0.1% polyhexanide plus 0.1% betaine) for negative-pressure wound therapy with instillation for the adjunctive inpatient management of infected wounds. Therapeutic, II.

  20. Acid–base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution

    Directory of Open Access Journals (Sweden)

    Sayed Jalal Hashemi

    2016-01-01

    Conclusion: 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid–base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  1. Multislice CT of the liver. Effects of contrast material pushed with saline solution on hepatic enhancement

    International Nuclear Information System (INIS)

    Sekiguchi, Ryuzo; Hayashi, Takayuki; Tsukamoto, Tatsuaki; Kuroki, Yoshinori; Nasu, Katsuhiro; Murakami, Koji; Nawano, Shigeru

    2004-01-01

    The purpose of this study was to evaluate the usefulness of a method of power injection of contrast material pushed with saline solution for hepatic multislice CT using a dual-head power injector. One hundred twenty-one patients who underwent multislice CT to detect liver metastases were divided into two groups, depending on the protocol of contrast material administration: 100 mL of non-ionic contrast material (370 mgI/mL) or 100 mL of the same contrast material pushed with 30 mL of saline solution. Both contrast material and saline solution were administered at a rate of 2.5 mL/sec using a dual-head power injector. Attenuation values for the two protocols were obtained from the liver, portal vein, and descending aorta. Hepatic enhancement above 50 Hounsfield unit (HU), which is needed for the diagnosis of liver metastases, was achieved in 76.5% of patients given 100 mL of contrast material and 92.5% of those given 100 mL of contrast material pushed with a 30 mL saline solution. In contingency-table analysis, the CT attenuation value of liver categorized as less than 50 HU or more than 50 HU, showed a good relation between the categorized group and the protocol (p=0.0437). In patients with a body weight of 50 kg or more, 100 mL of contrast material pushed with saline solution provided significantly better CT attenuation values in the liver (p=0.0113), portal vein (p=0.0094), and descending aorta (p=0.0394) than those provided by the injection of 100 mL of contrast material alone. When contrast material pushed with saline solution was used, CT attenuation values in the liver were significantly increased, especially in patients with a body weight of 50 kg or more. This technique will provide a decrease in the volume of contrast material administered and a potential decrease in the side effects of contrast material. (author)

  2. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  3. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    Science.gov (United States)

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  4. Isotonic saline nasal irrigation in clinical practice: a literature review

    Directory of Open Access Journals (Sweden)

    Sabrina Costa Lima

    Full Text Available Abstract Introduction: Nasal instillation of saline solution has been used as part of the treatment of patients with upper respiratory tract diseases. Despite its use for a number of years, factors such as the amount of saline solution to be used, degree of salinity, method and frequency of application have yet to be fully explained. Objective: Review the reported outcomes of saline nasal irrigation in adults with allergic rhinitis, acute or chronic sinusitis and after functional endoscopic sinus surgery (FESS, and provide evidence to assist physiotherapists in decision making in clinical practice. Methods: A search was conducted of the Pubmed and Cochrane Library databases between 2007 and 2014. A combination of the following descriptors was used as a search strategy: nasal irrigation, nasal lavage, rhinitis, sinusitis, saline, saline solution. Results: Eight clinical trials were included, analyzed according to participant diagnosis. Conclusion: The evidence found was heterogeneous, but contributed to elucidating uncertainties regarding the use of nasal lavage in the clinical practice of physical therapy, such as the protocols used.

  5. Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy : a systematic review and meta-analysis.

    Science.gov (United States)

    Zapata-Chica, Carlos Andres; Bello Marquez, Diana; Serna-Higuita, Lina Maria; Nieto-Ríos, John Fredy; Casas-Arroyave, Fabian David; Donado-Gómez, Jorge Hernando

    2015-09-30

    Contrast-induced nephropathy is one of the main causes of acute kidney injury and increased hospital-acquired morbidity and mortality. The use of sodium bicarbonate for nephroprotection has emerged as a preventative strategy; however, its efficacy is controversial compared to other strategies, such as hydration using 0.9% saline solution. To compare the effectiveness of sodium bicarbonate vs. hydration using 0.9% saline solution to prevent contrast-induced acute kidney injury. A systematic review of studies registered in the COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO and EMBASE databases was conducted. Randomized controlled studies that evaluated the use of 0.9% saline solution vs. sodium bicarbonate to prevent contrast-induced nephropathy were included. A total of 22 studies (5,686 patients) were included. Sodium bicarbonate did not decrease the risk of contrast-induced nephropathy (RD= 0.00; 95% CI= -0.02 to 0.03; p= 0.83; I(2)= 0%). No significant differences were found in the demand for renal replacement therapy (RD= 0.00; 95% CI= -0.01 to 0-01; I(2)= 0%; p= 0.99) or in mortality (RD= -0.00; 95% CI= -0.001 to 0.001; I(2)= 0%; p= 0.51). Sodium bicarbonate administration is not superior to the use of 0.9% saline solution for preventing contrast-induced nephropathy in patients with risk factors, nor is it better at reducing mortality or the need for renal replacement therapy.

  6. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  7. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a

  8. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  9. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  10. Spatial and temporal variation of repetitive plasma discharges in saline solutions

    International Nuclear Information System (INIS)

    Stalder, K R; Nersisyan, G; Graham, W G

    2006-01-01

    Repetitive plasma discharges developed in saline solutions have been investigated using fast, intensified charge coupled detector imaging techniques. The images show that synchronously pulsed multielectrode configurations tend to develop intense, transient plasma regions somewhat randomly in both space and time on short (10 μs) time scales, even though they appear to be stationary on longer (tens of milliseconds) time scales. Evidence for the production of both strongly ionized and weakly ionized plasmas is also presented

  11. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  12. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  13. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  14. Efficacy of mesotherapy using drugs versus normal saline solution in chronic spinal pain: a retrospective study.

    Science.gov (United States)

    Ferrara, Paola E; Ronconi, Gianpaolo; Viscito, Rossella; Pascuzzo, Romina; Rosulescu, Eugenia; Ljoka, Concetta; Maggi, Loredana; Ferriero, Giorgio; Foti, Calogero

    2017-06-01

    Mesotherapy, or intradermal therapy, is a therapeutic approach that is gaining popularity, but there is still a significant lack of information on its mechanisms of action or the pharmacokinetics of the therapeutic regimens. This retrospective study on 220 records compared the short-term and long-term effects of mesotherapy using a mixture of drugs versus normal saline solution in the treatment of patients with chronic spinal pain (CSP). At the end of treatment, outcome measures showed a significant improvement (PMesotherapy was effective in patients affected by CSP, with high patient satisfaction reported irrespective of the agent used. Considering the risks and costs of drugs, normal saline solution appears to be the best agent in cost-benefit terms for treating localized pain by mesotherapy in CSP.

  15. Exploring Poly(ethylene glycol-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution

    Directory of Open Access Journals (Sweden)

    Noverra M. Nizardo

    2018-03-01

    Full Text Available Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol (PEG macroinitiator via atom transfer radical polymerization (ATRP of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and 1H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30–50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in “schizophrenic” thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model “cargos” failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.

  16. Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    KAUST Repository

    Nava Ocampo, Maria F.

    2017-05-01

    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment to prevent the symptoms of the disease is inhalation of hypertonic saline solution, NaCl at concentrations higher than in the human body (~150 mM). This procedure clears the mucus in the lungs, bringing relief to the patient. However, the biophysical mechanisms underlying this process are not entirely clear. We undertook a new experimental approach to understand the effects of sprayed saline solutions on model lung surfactants towards understanding the mechanisms of the treatment. The surface of lungs contains mainly 1,2-Dipalmitol-sn-glycero-3-phosphocoline (DPPC). As previously assumed by others, we considered that monolayer of DPPC at the air-water interface serves as model system for the lungs surface; we employed a Langmuir-Blodgett (LB) trough and PM-IRRAS to measure surface-specific infrared spectra of the surfactant monolayers and effects on the interfacial tensions. We investigated spraying hyper-saline solutions onto surfactant monolayers at the airwater interface in two parts: (i) validation of our methodology and techniques with stearic acid and (ii) experiments with DPPC monolayers at the air-water interface. Remarkably, when micro-droplets of NaCl were sprayed to the monolayer of stearic acid, we observed enhanced organization of the surfactant, interpreted from the intensities of the CH2 peaks in the surface-specific IR spectra. However, our results with DPPC monolayers didn’t show an effect with the salt added as aerosol, possibly indicating that the experimental methodology proposed is not adequate for the phenomena studied. In parallel, we mimicked respiratory mucous by preparing salt solutions containing 1% (wt%) agar and measured effects on their viscosities. Interestingly, we found that NaCl was much

  17. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  18. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  19. The time-dependent development of electric double-layers in saline solutions

    International Nuclear Information System (INIS)

    Morrow, R; McKenzie, D R; Bilek, M M M

    2006-01-01

    We have studied the time-dependent development of electric double-layers (ionic sheaths) in saline solutions by simultaneously solving the sodium and chlorine ion continuity equations coupled with Poisson's equation in one dimension. The study of the effects of time-varying electric fields in solution is relevant to the possible health effect of radio-frequency electric fields on cells in the human body and to assessing the potential of using external electric fields to orient proteins for attachment to surfaces for biosensing applications. Our calculations, for applied voltages of 10-175 mV between the electrode and the solution, predict time scales of ∼0.1-110 μs for the formation of double-layers in solutions of concentration between 0.001 and 1.0 M. We develop an empirical equation that can predict the double-layer formation time to within 10% over this wide parameter range. The method has been validated by comparing the solutions obtained, once the program has run to a steady state, with the standard non-linear Poisson-Boltzmann equations. Excellent agreement is found with the Gouy-Chapman solution of the non-linear Poisson-Boltzmann equation. Thus the method is not restricted in accuracy and applicability as is the case for the linear Poisson-Boltzmann equation. The method can also provide solutions for cases where there are orders of magnitude changes in the ion densities; this has not been the case for previous studies where small perturbation analysis has been employed. The method developed here can readily be extended to two and three dimensions using time-splitting methods

  20. Effects of Hypertonic Saline Solution on Clinical Parameters, Serum Electrolytes and Plasma Volume in the Treatment of Haemorrhagic Septicaemia in Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Arif Zafar*, G. Muhammad, Zafar Iqbal1 and M. Riaz2

    2010-04-01

    Full Text Available This study was conducted to determine the efficacy of hypertonic saline solution (HSS along with antibiotic (ceftiofur HCl and non-steroidal anti-inflammatory drug (ketoprofen in the treatment of haemorrhagic septicaemia in buffaloes. For this purpose, 50 buffaloes suffering from haemorrhagic septicaemia were randomly divided in two equal groups A and B. Group A served as control and was treated with ceftiofur HCl (IM and ketoprofen (IV @ 6 and 2 mg/Kg BW, respectively, for five days. Buffaloes of group B were administered with rapid intravenous infusion of hypertonic saline solution (7.5% NaCl @ 4 ml/Kg BW once in combination with ceftiofur HCl and ketoprofen. Animals were monitored for 24 hours after initiation of treatment. Clinical parameters, serum electrolytes, plasma volume and survival index were recorded at different intervals after treatment. Survival rate (80% in group B was significantly higher (P<0.05 than 48% in group A. The heart rate and respiration rate recovered more effectively in the buffaloes administered with treatment protocol B. Plasma volume was 98% which was almost normal within 24 hours after the infusion of hypertonic saline solution to the animals of group B. It was concluded from the study that hypertonic saline solution as an adjunct to antibiotic and a non-steroidal anti-inflammatory drug more efficiently improved respiration and heart rates and effectively restored plasma volume in resuscitating the buffaloes from haemorrhagic septicaemia than the conventional treatment.

  1. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  2. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  3. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  4. Usefulness of underwater endoscopic submucosal dissection in saline solution with a monopolar knife for colorectal tumors (with videos).

    Science.gov (United States)

    Nagata, Mitsuru

    2018-05-01

    Generally, colorectal endoscopic submucosal dissection (ESD) is performed with a monopolar knife with CO 2 supply from an endoscope. There are few case reports about underwater ESD (UESD) in saline solution with a bipolar knife. The usefulness and safety of UESD in saline solution with a monopolar knife are unclear. The present study aimed to investigate the usefulness and safety of UESD in saline solution with a monopolar knife for colorectal tumors. This retrospective, observational study on UESD for colorectal tumors included 26 colorectal tumors from 24 patients treated with UESD at our department between October 2015 and February 2017. The characteristics of patients, factors associated with ESD difficulty, treatment results, and variations in blood test data before and after UESD were analyzed. En bloc resection was successful in all lesions without any serious adverse events. The median major diameter of the resected specimens was 30 mm (interquartile range [IQR], 28-35) and of the tumor 22.5 mm (IQR, 17.8-25.3). The median procedure time was 60 minutes (IQR, 45-111) and median speed of dissection 10.4 mm 2 /min (IQR, 6.4-12.2). No cases of perforation occurred. Post-ESD bleeding occurred in only 1 case, and endoscopic hemostasis was achieved. There was no case of electrolyte imbalance requiring treatment after UESD. UESD in saline solution with a monopolar knife for colorectal tumors is useful and safe. UESD has potential advantages that should be further assessed. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  5. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang

    2015-12-09

    The concept of using a thermo-responsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility and UV-vis absorption spectra of the IL were also studied in detail.

  6. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  7. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  8. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  9. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  10. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  11. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  12. Intra-articular injection of hyaluronic acid is not superior to saline solution injection for ankle arthritis: a randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    DeGroot, Henry; Uzunishvili, Sofia; Weir, Robert; Al-omari, Ali; Gomes, Bruna

    2012-01-04

    Intra-articular injections of hyaluronic acid are potentially useful to treat ankle osteoarthritis, yet their effectiveness has not been proven. Both single and multiple-dose treatments for ankle arthritis with use of various hyaluronic acid products have been recommended, but few high-quality studies have been published. The aim of this study was to compare the effectiveness of a single intra-articular injection of hyaluronic acid with a single intra-articular injection of normal saline solution (placebo) for osteoarthritis of the ankle. Sixty-four patients with ankle osteoarthritis who met all study criteria were randomly assigned to a single intra-articular injection of 2.5 mL of low-molecular-weight, non-cross-linked hyaluronic acid or a single intra-articular injection of 2.5 mL of normal saline solution. The primary outcome measure was the change from baseline in the American Orthopaedic Foot & Ankle Society (AOFAS) clinical rating score at the six-week and twelve-week follow-up examination. Secondary outcome measures included the Ankle Osteoarthritis Scale score and patient-reported pain with use of a visual analog pain scale. Of the sixty-four patients randomized and treated, eight patients withdrew, leaving fifty-six patients who completed the entire study. There was one mild adverse event (1.6%) among the sixty-four patients. At six weeks and twelve weeks, the mean AOFAS scores in the hyaluronic acid group had improved from baseline by 4.9 and 4.9 points, respectively, whereas the mean AOFAS scores in the placebo group initially worsened by 0.4 point at six weeks and then improved by 5.4 points at twelve weeks. While the change at twelve weeks from baseline was substantial for both groups, the between-group differences were not significant. We found that a single intra-articular injection of low-molecular-weight, non-cross-linked hyaluronic acid is not demonstrably superior to a single intra-articular injection of saline solution for the treatment of

  13. Thermodynamic data for iron (II) in high-saline solutions at temperatures up to 90 C

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Andres G.; Scharge, Tina; Moog, Helge C.

    2013-12-15

    For natural aqueous systems in general and for the near field of underground nuclear waste repositories in particular thermodynamic properties of iron species and solid phases are of predominant importance. Regardless of the question of the host rock, nuclear waste containment in Germany will be based on massive steel canisters. The total mass of iron present in a repository can be, dependent on the applied variant, sum up to more than 100 000 tons. The overall geochemical milieu including pH and EH will be dominated by the overall abundance of metallic, ferrous, and ferric iron, their aqueous speciation and solid iron-phases. This milieu is imposed on all other equilibria of interest, including those which determine radionuclide solubility. In addition to this, iron bearing corrosion phases due to their shear mass may exhibit a significant sink for radionuclides in terms of incorporation or sorption. As to the evolution of EH it is important to note that application of the Nernst equation requires knowing the electrochemical activities of the involved reactants. Iron is present in aqueous solutions in two oxidation states: +II (ferrous iron) and +III (ferric iron). Ferric iron exhibits a much more complex speciation behavior than ferrous iron, where from a conceptual point of view many species may be neglected. Ferric iron, on the contrary, is subject to considerable complex formation with chloride, sulfate, and - most importantly - with hydroxide. For this reason, experimental and theoretical treatment of ''iron'' at GRS in high saline solutions proceeded along two strings, one for each oxidation state, with the ultimate goal to deliver a thermodynamic model for ''iron'' in high saline solutions.

  14. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  15. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  16. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  17. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  18. Intravenous hypertonic saline solution (7.5%) and oral electrolytes to treat of calves with noninfectious diarrhea and metabolic acidosis.

    Science.gov (United States)

    Leal, M L R; Fialho, S S; Cyrillo, F C; Bertagnon, H G; Ortolani, E L; Benesi, F J

    2012-01-01

    The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Eighteen male calves 8-30 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  19. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  20. Organic matter and salinity modify cadmium soil (phyto)availability.

    Science.gov (United States)

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Does amphotericin B nasal douching help prevent polyp recurrence following functional endoscopic sinus surgery?

    Directory of Open Access Journals (Sweden)

    Sayyed Mostafa Hashemi

    2011-01-01

    Conclusions: This study showed no benefits for topical amphotericin B solution over normal saline. It might be better to retreat to the traditional normal saline nasal douching following functional endoscopic sinus surgery in the treatment of polyposis.

  2. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    Science.gov (United States)

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  4. Determination of phthalate esters in physiological saline solution by monolithic silica spin column extraction method

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2011-05-01

    Full Text Available Monolithic silica spin column extraction (MonoSpin-SPE was developed as a simple, sensitive, and eco-friendly pretreatment method which combined with ultra-fast liquid chromatography-mass spectrometry (UFLC-MS to determine the levels of six phthalate esters, dimethyl-(DMP, diethyl-(DEP, dipropyl- [DPrP], butyl-benzyl-(BBP, dicyclohexyl(DcHP, and di- n-octyl-(DOP phthalate in physiological saline samples. Under optimized experimental conditions, the method was linear in the following ranges: 0.2- 50 μ/L for DMP, DEP, DPrP, DcHP and DOP; 5 – 100 μ/L for BBP. The correlation coefficients (R2 were in the range of O. 9951 – O. 9995 for all the analytes and the limits of detection (LODs and limits of quantification (LOQs were in the ranges of 0.02 – 0.9 μ/L and 0.08 – 2.7 μ/L, respectively. The pretreatment process showed good reproducibility with inter-day and intra-day relative standard deviations (RSDs below 8.5% and 11.2%, respectively. This method was used to determine the levels of six phthalate esters in physiological saline samples and the recoveries ranged from 71.2% to 107. 3%. DMP and DEP were found in actual physical saline samples (brand A and brand B. Keywords: Monolithic silica spin column, Phthalate esters, Physiological saline samples, Ultra fast liquid chromatographymass spectrometry (UFLC-MS

  5. The effects of salinity and temperature shock on Kappaphycus alvarezii seaweed spores release

    Science.gov (United States)

    Harwinda, F. K.; Satyantini, W. H.; Masithah, E. W.

    2018-04-01

    One of the reproductive aspects of development step that is considered as the solution of this issue is seaweed sporulation technique through which is induced through salinity and temperature shock. This study aims to determine the effect of combination and interaction of salinity and temperature shock on the release of K. alvarezii spores in order to produce superior seeds. This research was conducted using Complete Randomized Design Factorial which consists of nine combinations of treatments and three replications. The used treatment in this study is the combination of different environmental factors such as salinity shock and temperature shock. The data were analyzed using ANOVA (Analysis of Variance) followed by Duncan Multiple Range Test. The results showed that salinity (31 ppt, 33 ppt, and 35 ppt) and temperature (30°C, 32°C, and 34°C). shock affected the osmoregulation system and the release of K. alvarezii spores. The salinity shock and temperature shock had interaction with K. alvarezii spore release on the sixth and seventh day with the best treatment at 32°C temperature and 31 ppt salinity and released 5413 cells/ml spores on the seventh day.

  6. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  7. [Effect of compound hypertonic saline solution on septic rats].

    Science.gov (United States)

    Dong, Fang; Xu, Liang; Xu, Gang; Wang, Huabing; Lu, Huizhi; Cai, Liping

    2015-01-01

    To study the effect of compound hypertonic saline solution ( HSD ) on sepsis. 133 male Wistar rats were divided into four groups, sham operation group ( n = 15 ), cecal ligation and puncture ( CLP ) group ( n = 45 ), CLP plus normal saline ( NS ) group ( n = 45 ), and CLP plus HSD group ( n = 28 ). A rat model of sepsis was reproduced by CLP, and the rats in sham operation group received celiotomy without ligation and puncture. All rats in four groups received subcutaneous injection of 30 mL/kg 0.9% sodium chloride after laparotomy. The rats in CLP plus NS group and CLP plus HSD group received infusion of 5 mL/kg 0.9% sodium chloride or 7.5% sodium chloride/6% dextran post CLP via jugular vein for 3 hours, with the infusion rate of 0.4 mL×kg(-1)×min(-1). The survival rate of each group was observed 9 hours and 18 hours after laparotomy. Mean arterial pressure ( MAP ) at 0, 9, 18 hours were monitored. Blood specimens were collected from all rats 0, 9 and 18 hours after laparotomy, respectively, for measurement of the plasma levels of tumor necrosis factor-α ( TNF-α), interleukin-1β ( IL-1β ), and procalcitonin ( PCT ). The rats were all sacrificed, and their lung tissues were harvested for the neutrophil count in bronchoalveolar lavage fluid ( BALF ), myeloperoxidase ( MPO ) activity in lung tissue, wet/dry weight ratio ( W/D ) of lung, and pathological changes in lung tissue. There was no death in the sham operation group. The survival rates at 9 hours and 18 hours were 62.2% and 31.1% in the CLP group, 57.8% and 35.6% in the CLP plus NS group, 85.7% and 64.3% in the CLP plus HSD group, and they were all significantly higher compared with those of the CLP group and the CLP plus NS group ( Pmicroscope, no pathobiological changes were found in sham operation group. The lung tissues in the CLP group and the CLP plus NS group showed congestion, edema, infiltrating inflammatory changes, while the inflammatory changes in the lung tissue in the CLP plus HSD group

  8. Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

    Directory of Open Access Journals (Sweden)

    M. Nematzadeh

    2015-01-01

    Full Text Available Forward osmosis (FO has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2 and potassium bicarbonate (KHCO3 as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments were carried at 25 °C and cross-flow rate of 3 L min−1.  At the same osmotic pressure, the water flux of CaCl2 draw solution tested against deionized feed water, showed 20% higher permeation than KHCO3, which it was attributed to the lower internal concentration polarization (ICP. The reverse diffusion of CaCl2 was found higher than KHCO3 solution which it would be related to the smaller ionic size and the higher permeation of this salt through the membrane. The water flux for both draw solutions against 0.33 M NaCl feed solution was about 2.8 times lower than deionized feed water because of ICP. Higher concentrations of draw solution is required for increasing the water permeation from saline water feed towards the draw side.

  9. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  10. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  11. Incomplete turgor adjustment in Cladophora rupestrisunder fluctuating salinity regimes

    Science.gov (United States)

    Wiencke, Christian; Gorham, John; Tomos, Deri; Davenport, John

    1992-04-01

    Turgor pressure fluctuates strongly in Cladophora rupestrissubjected to low salinities and shows only a small tendency to readjust to the normal value in full seawater (incomplete turgor adjustment). This was revealed by direct turgor pressure measurements and by chemical analyses of osmotic solutes after exposure of upper and lower shore Cladophorato the different salinity regimes occurring in the intertidal zone or representing steady state osmotic acclimation. The main internal osmotic solutes were K +, Cl -, amino acids, NO 3-and glycine betaine. Na +, SO 42-and PO 43-were of less importance. The sum of the charges on the cations was similar to that for the anions. K +, Cl -and, to a lesser extent, amino acids were responsible for limited turgor pressure adjustment which did occur. The concentrations of the major osmotic solutes were influenced not only by salinity but also by light: those of amino acids and NO 3-were increased while those of K +and Cl -were decreased under illumination. Cladophorapopulations from the upper and lower shore differed in their ability to restore internal K +and Cl -levels on transfer to full seawater after long term exposure to low salinity. This may indicate ecotypic variation.

  12. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    Science.gov (United States)

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and

  13. Postprocedural pain in shoulder arthrography: differences between using preservative-free normal saline and normal saline with benzyl alcohol as an intraarticular contrast diluent.

    Science.gov (United States)

    Storey, Troy F; Gilbride, George; Clifford, Kelly

    2014-11-01

    The purpose of this study was to prospectively evaluate the effect of benzyl alcohol, a common preservative in normal saline, on postprocedural pain after intraarticular injection for direct shoulder MR arthrography. From April 2011 through January 2013, 138 patients underwent direct shoulder MR arthrography. Using the Wong-Baker Faces Pain Scale, patients were asked to report their shoulder pain level immediately before and immediately after the procedure and then were contacted by telephone 6, 24, and 48 hours after the procedure. Fourteen patients did not receive the prescribed amount of contrast agent for diagnostic reasons or did not complete follow-up. Sixty-two patients received an intraarticular solution including preservative-free normal saline (control group) and 62 patients received an intraarticular solution including normal saline with 0.9% benzyl alcohol as a contrast diluent (test group). Patients were randomized as to which intraarticular diluent they received. Fluoroscopic and MR images were reviewed for extracapsular contrast agent administration or extravasation, full-thickness rotator cuff tears, and adhesive capsulitis. The effect of preservative versus control on pain level was estimated with multiple regression, which included time after procedure as the covariate and accounted for repeated measures over patients. Pain scale scores were significantly (p = 0.0382) higher (0.79 units; 95% CI, 0.034-1.154) with benzyl alcohol preservative compared with control (saline). In both study arms, the pain scale scores decreased slightly after the procedure, increased by roughly 1 unit over baseline for the test group and 0.3 unit over baseline for the control group by 6 hours after the procedure, were 0.50 unit over baseline for the test group and 0.12 unit over baseline for the control group at 24 hours, then fell to be slightly greater than baseline at 48 hours with benzyl alcohol and slightly less than baseline without benzyl alcohol. These trends

  14. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  15. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  16. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  17. Hematocrit and plasma osmolality values of young-of-year shortnose sturgeon following acute exposures to combinations of salinity and temperature

    Science.gov (United States)

    Ziegeweid, J.R.; Black, M.C.

    2010-01-01

    Little is known about the physiological capabilities of young-of-year (YOY) shortnose sturgeon. In this study, plasma osmolality and hematocrit values were measured for YOY shortnose sturgeon following 48-h exposures to 12 different combinations of salinity and temperature. Hematocrit levels varied significantly with temperature and age, and plasma osmolalities varied significantly with salinity and age. Plasma osmolality and hematocrit values were similar to previously published values for other sturgeons of similar age and size in similar treatment conditions. ?? 2010 Springer Science+Business Media B.V.

  18. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  19. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  20. Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl and Sodium Bicarbonate (NaHCO3

    Directory of Open Access Journals (Sweden)

    W. Patrick Burgess

    2014-01-01

    Full Text Available Nephropathy following contrast media (CM exposure is reduced by administration before, during, and after the contrast procedure of either isotonic sodium chloride solution (Saline or isotonic sodium bicarbonate solution (IsoBicarb. The reasons for this reduction are not well established for either sodium salt; probable mechanisms are discussed in this paper. For Saline, the mechanism for the decrease in CIN is likely related primarily to the increased tubular flow rates produced by volume expansion and therefore a decreased concentration of the filtered CM during transit through the kidney tubules. Furthermore, increased tubular flow rates produce a slight increase in tubular pH resulting from a fixed acid excretion in an increased tubular volume. The mechanism for the decreased CIN associated with sodium bicarbonate includes the same mechanisms listed for Saline in addition to a renal pH effect. Increased filtered bicarbonate anion raises both tubular pH and tubular bicarbonate anion levels toward blood physiologic levels, thus providing increased buffer for reactive oxygen species (ROS formed in the tubules as a result of exposure to CM in renal tubular fluid.

  1. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    Science.gov (United States)

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  2. Extracting renewable energy from a salinity difference using a capacitor.

    Science.gov (United States)

    Brogioli, Doriano

    2009-07-31

    Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

  3. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  4. Experimental alteration of R7T7 nuclear model glass in solutions with different salinities (90/sup 0/C, 1 bar): implications for the selection of geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Godon, N.; Thomassin, J.H.; Touray, J.C.; Vernaz, E.

    1988-01-01

    In order to simulate the leaching of nuclear wastes in repositories percolated by solutions of variable salinity, leaching tests of R7T7 glass in solutions with different NaCl contents have been performed at 90/sup 0/C and 1 bar using a static procedure. A comparison of the efficiency of the different leachants indicated that the alteration was maximum in pure water and in 23.7 g (NaCl) kg/sup -1/ solution. In deionized water, uranium- and rare-earth elements simulating the actinides were found quite immobile: they have not been detected in solution but are present in the alteration layer. On the other hand, in the 23.7 g (NaCl) kg/sup -1/ solution, high amounts of uranium, cerium and neodymium have been detected in solution and did not accumulate in the solid phases. In the highest salinity brines, the bulk reactivity of the glass decreased. In all leachants, the alteration layer was structured in two parts: hydrated glass and flakes. The flakes were mainly nickel-and zinc-bearing aluminosilicate phases. When crystallized, the flakes were identified as berthierine.

  5. Hypertonic saline solution and high-dose furosemide infusion in cardiorenal syndrome: our experience

    Directory of Open Access Journals (Sweden)

    Francesco Ventrella

    2013-03-01

    Full Text Available Introduction Heart failure is frequently complicated by renal failure, and this association is a negative prognostic factor. These patients sometimes present oligo-/anuria and resistance to high-dose furosemide, a condition referred to as the cardiorenal syndrome (CRS. Acute or chronic reductions in left ventricular function result in decreased blood flow, with reduction of renal perfusion and activation of several neurohormonal systems, which cause resistance to diuretic therapy. This condition often requires ultrafiltration, which is an effective, but invasive and expensive procedure. Infusions of hypertonic saline solution (HSS and high-dose furosemide can be an effective alternative. Materials and methods From November 2009 through May 2010, our team treated 20 patients with CRS and resistance to iv boluses of high-dose furosemide. These patients were treated with small-volume (150-250 mL infusions of HSS (NaCl 1.57 – 4.5%, depending on serum Na values and high-dose furosemide twice a day. The aim of this treatment is to modify renal hemodynamics and the water-saline balance in the kidney by counteracting the extracellular fluid accumulation and eliminating symptoms of congestion. Results In 18 patients (90%, urine output was restored and renal function improved during the first hours of treatment. Clinical improvement was evident from the first day of therapy, and there were no adverse events. Two patients (10% did not respond to the treatment: one (who had been in critical condition since admission died; the other required regular sessions of ultrafiltration. Conclusions HSS combined with high-dose furosemide is a safe, effective, low-cost approach to the treatment of CRS that is resistant to diuretic therapy.

  6. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    International Nuclear Information System (INIS)

    Wang, S.M.; Zheng, Z.; Wang, J.Y.

    2012-01-01

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  7. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  8. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  9. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  10. Reverse osmosis, the solution for producing steam from highly saline water; Osmosis inversa, la solucion para la produccion de vapor con aguas de alta salinidad

    Energy Technology Data Exchange (ETDEWEB)

    Pujadas, A.

    2003-07-01

    Based on an exhaustive description of a particular example, the costs of installing an implementing various water treatment solutions for feeding a steam boiler are examined. When the characteristics of the water available indicate that it has a high saline content, i is possible to demonstrate the enormous technical, economic and environmental advantages of reducing its saline level by a system of reverse osmosis compared to the classical ion exchange resins. A list is given of the features to be taken into account in defining the equipment involved in treating the water for feeding steam boilers. (Author)

  11. Short-term dissolution experiments on various cement formulations in standard Canadian shield saline solution in the presence of clay

    International Nuclear Information System (INIS)

    Heimann, R.B.; Stanchell, M.A.T.

    1986-12-01

    A commercially available sulphate-resisting portland cement (SRPC) and three cement formulations derived from it by adding 10 and 20 vol% silica fume or 35 vol% fly-ash have been leached in Standard Canadian Shield Saline Solution (SCSSS) with added calcium-montmorillonite or sodium-montmorillonite at 150 degrees C for 14 days. The leach solutions have been analyzed by atomic absorption spectroscopy for silicon, magensium, iron and potassium, and by inductively coupled plasma spectrometry for aluminum and phosphorous. The surfaces of the leached samples have been investigated by scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and by X-ray powder diffraction methods. Cumulative pore size distrubtion curves have been recorded for as-cured and leached cement samples. It has been shown that the presence of clay accelerates the rate of dissolution of the various cements, and that the pH of the leaching solutions plays a dominant role in the elemental release kinetics

  12. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    Science.gov (United States)

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  13. Study and application of new chelating resin to recovery uranium from in-situ leach solution with high content saline chloride ion

    International Nuclear Information System (INIS)

    Zhang Jianguo; Qiu Yueshuang; Feng Yu; Deng Huidong; Zhao Chaoya

    2014-01-01

    Research on the adsorption and elution property of D814 chelating resin was carried out aiming at the difficult separation of uranium from high content saline chloride ion in situ leach liquor and the adsorption mechanism is also discussed. Influence factors such as contact time, pH value, Ca"2"+, Mg"2"+ and Cl"- concentration etc. to the resin adsorption were studied. Experimental results show that adsorption rate is lowly which need 6h to arrive at the adsorption equilibrium. The resin adsorption uranium pH in the solution is from l.33 to 9. When total salinity is over 20 g/L, calcium ion, and magnesium ion is about 3 g/L, there are no big influence on resin adsorption capacity. The resin has good chloride ion resistance. When chloride ion is over 60 g/L, it is no influence on resin adsorption uranium. Column experiment results indicate that ratio of saturation volume to break-through point volume is l.82, resin saturation uranium capacity is 40.5 mg. U/_g_(_∓_)_R. When elution volume bed number is 23, the eluted solution uranium concentration is below 80 mg/L. The elution rate of the uranium is 96.2%. (authors)

  14. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage.

    Science.gov (United States)

    Singh, Jogendra; Sastry, E V Divakar; Singh, Vijayata

    2012-01-01

    A study was conducted using ten genetically diverse genotypes along with their 45F1 (generated by diallel mating) under normal and salt stress conditions. Although, tomato (Lycopersicon esculentum Mill.) is moderately sensitive to salinity but more attention to salinity is yet to be required in the production of tomato. In present study, germination rate, speed of germination, dry weight ratio and Na(+)/K(+) ratio in root and shoot, were the parameters assayed on three salinity levels; control, 1.0 % NaCl and 3.0 % NaCl with Hoagland's solution. Increasing salt stress negatively affected growth and development of tomato. When salt concentration increased, germination of tomato seed was reduced and the time needed to complete germination lengthened, root/shoot dry weight ratio was higher and Na(+) content increased but K(+) content decreased. Among the varieties, Sel-7 followed by Arka Vikas and crosses involving them as a parent were found to be the more tolerant genotypes in the present study on the basis of studied parameters.

  15. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  16. A Comparison Study of Growth Factor Expression following Treatment with Transcutaneous Electrical Nerve Stimulation, Saline Solution, Povidone-Iodine, and Lavender Oil in Wounds Healing

    Directory of Open Access Journals (Sweden)

    Adalet Koca Kutlu

    2013-01-01

    Full Text Available This study compared the effects of transcutaneous electrical nerve stimulation (TENS, saline solution (SS, povidone-iodine (PI, and lavender oil (Lavandula angustifolia through expression of growth factors in a rat model of wound healing. Six experimental groups were established, each containing 8 rats: a healthy group with no incision wounds, an incision-control group, an incision and TENS group, an incision and SS group, an incision and PI group, and an incision and lavender oil group. Experiments continued for 5 days, after which the skin in the excision area was removed. Tissue concentrations of epidermal growth factor (EGF and platelet-derived growth factor (PDGF-A were measured using enzyme-linked immunosorbent assay (ELISA. Tissue expressions of EGF, PDGF-A, and fibroblast growth factor (FGF-2 were determined using immunohistochemistry. Wound closure progressed more rapidly in the TENS and lavender oil groups than in the control and other study groups. In particular, PDGF-A expressions in the dermis and EGF expression in the epidermis were significantly intense in the TENS group (P<0.05. In addition, ELISA levels of growth factors such as PDGF-A and EGF were significantly higher in TENS group compared to the control group (P<0.05. These immunohistochemical and ELISA results suggest that TENS may improve wound healing through increasing growth factors in the dermis and epidermis more than other topical applications.

  17. A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i Dry, Wet and Subsurface Stores, (ii a saturated Groundwater Store and (iii a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a 'free mixing' between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%.

  18. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. Resposta de cultivares de alface à salinidade da solução nutritiva com rejeito salino em hidroponia Response of lettuce cultivars to nutrient solution salinity with saline rejects in hydropony

    Directory of Open Access Journals (Sweden)

    Nildo da S Dias

    2011-10-01

    Full Text Available No processo de dessalinização se gera, além da água potável, um rejeito altamente salino e de poder poluente elevado, o qual pode ser utilizado na produção agrícola rentável dependendo da adoção de práticas culturais adequadas e da tolerância das plantas às condições salinas. Nos últimos anos a tendência tem sido a substituição da agricultura convencional por sistemas hidropônicos de cultivos, considerados um dos mais eficientes no uso de água. O objetivo desta pesquisa foi analisar a resposta de duas cultivares de alface sob sistema hidropônico de cultivo (Lactuca sativa L., cvs. Verônica e Babá de verão em diferentes níveis de salinidade da solução nutritiva preparadas com água de abastecimento, água de rejeito coletada no dessalinizador e da sua diluição com água de abastecimento a 75, 50 e 25%, resultando em condutividades elétricas da solução nutritiva (CEs de 1,1; 2,4; 3,6; 4,7 e 5,7 dS m-1 após as diluições e adição de fertilizantes. Ocorreu variação genotípica sob as variáveis de crescimento e produção da alface, exceto para o número de folhas, sendo a cultivar Babá de verão a que produziu maior rendimento, independentemente do nível de salinidade e, portanto, a cultivar mais tolerante à salinidade da água com rejeito salino.In desalination process, besides the potable water, highly salty and polluted water (brine is generated, which can be used for producing profitable crops depending on the adequate cultural practices as well as on the plant ability of reacting to saline conditions. The trend in recent years has been towards conversion of conventional agriculture to soilless agriculture which is considered to be a more efficient use of water system. The aim of this research was to examine the response of two lettuce cultivars (Lactuca sativa L. cvs. Veronica, Babá de verão under hydroponic system to different levels of salinity of the nutrient solutions prepared with tap water

  20. The effect of salinity, light and temperature in a disposal environment on the recovery of E. coli following exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chan, Y.Y.; Killick, E.G.

    1995-01-01

    The rates of recovery of E.coli previously exposed to a sub-lethal dose of germicidal u.v. radiation have been investigated. The influence of salinity and temperature on both the rates of dark repair and photoreactivation were investigated in order to assess the relative recovery of disinfected effluent released into coastal waters. The photoreactivation rates followed an Arrhenius relationship for samples reactivated in an isotonic medium and reached a maximum of 52% recovery of the viable cell count present before u.v. treatment. For those cells in a saline environment reactivation was slower and a lower maximum recovery was obtained. Dark repair rates were extremely limited in those cells exposed to the saline environment which was produced from synthetic sea water. A maximum recovery of 8% over a nine hour period was achieved. It is concluded that less reactivation by E.coli is likely within u.v. treated effluent disposed of into coastal environments. The levels of reactivation are however dependent upon the temperature and salinity of those waters. (author)

  1. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... accumulation on the leaves and stem, and free amino acids in the roots, leaves and stems. Plants showed a ... with soil salinity, which has increased due to excessive fertilization ... The salts effects in plants has been studied, and its must be of ... To adapt and survive in these adverse conditions, the plants ...

  2. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  3. A novel submucosal injection solution for endoscopic resection of large colorectal lesions: a randomized, double-blind trial.

    Science.gov (United States)

    Repici, Alessandro; Wallace, Michael; Sharma, Prateek; Bhandari, Pradeep; Lollo, Gianluca; Maselli, Roberta; Hassan, Cesare; Rex, Douglas K

    2018-05-08

    SIC-8000 (Eleview) is a new FDA-approved solution for submucosal injection developed to provide long-lasting cushion to facilitate endoscopic resection maneuvers. Our aim was to compare the efficacy and safety of SIC-8000 with those of saline solution, when performing endoscopic mucosal resection (EMR) of large colorectal lesions. In a randomized double-blind trial, patients undergoing EMR for ≥20 mm colorectal non-pedunculated lesions were randomized in a 1:1 ratio between SIC-8000 and saline solution as control solution in 5 tertiary centers. Endoscopists and patients were blinded to the type of submucosal solution used. Total volume to complete EMR and per lesion size and time of resection were primary end-points, whereas the Sydney Resection Quotient (SRQ), as well as other EMR outcomes, and the rate of adverse events were secondary. A 30-day telephone follow up was performed. An alpha level <0.05 was considered as statistically significant (NCT 02654418). Of the 327 patients screened, 226 (mean age: 66±10; males: 56%) were enrolled in the study and randomized between the 2 submucosal agents. Of these, 211 patients (mean size of the lesions 33±13 mm; I-s: 36%; proximal colon: 74%) entered in the final analysis (SIC-8000: 102; saline solution: 109). EMR was complete in all cases. The total volume needed for EMR was significantly less in the SIC-8000 arm compared with saline solution (16.1±9.8 mL vs 31.6±32.0 mL; p<0.001). This corresponded to an average volume per lesion size of 0.5±0.3 mL/mm and 0.9±0.6 mL/mm with SIC-8000 and saline solution, respectively, (p<0.001). The mean time to completely resect the lesion tended to be lower with SIC-8000 as compared with saline solution (19.1±16.8 minutes vs 29.7±68.9 minutes; p=0.1). The SRQ was significantly higher with SIC-8000 as compared with saline solution (10.3±8.1 vs 8.0±5.7; p=0.04) with a trend for a lower number of resected pieces (5.7±6.0 vs 6.5±5.04; p=0.052) and a higher rate of en bloc

  4. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  5. Chemical behaviour of trivalent and pentavalent americium in saline NaCl-solutions. Studies of transferability of laboratory data to natural conditions. Interim report. Reported period: 1.2.1993-31.12.1993

    International Nuclear Information System (INIS)

    Runde, W.; Kim, J.I.

    1994-09-01

    In order to clarify the chemical behaviour of Americium in saline aqueous systems relevant for final storage this study deals with the chemical reactions of trivalent and pentavalent Americium in NaCl-solutions under the influence of radiolysis from its own alpha radiation. The focus of the study was on investigating the geologically relevant reactions, such as hydrolysis or carbonate- and chloride complexing in solid-liquid equilibriums. Comprehensive measurements on solubility and spectroscopic studies in NaCl-solutions were carried out in a CO 2 -free atmosphere and 10 -2 atm CO 2 partial pressure. Identification and characterisation of the AM (III) and AM(V) solid phases were supplemented by structural research with the chemically analogue EU (III) and Np(V) compounds. The alpha-radiation induced radiolysis in saline NaCl solutions and the redox behaviour of Americium which was influenced thereby were spectroscopically quantified. (orig.) [de

  6. Prehospital guidelines for use of hypertonic saline are not followed systematically

    DEFF Research Database (Denmark)

    Hejselbaek, Julie; Steinmetz, Jacob; Rasmussen, Lars Simon

    2012-01-01

    Hypertonic saline (HS) was introduced in our physician-based mobile emergency care unit (MECU) in September 2006 for patients with severe traumatic brain injury and hypotension. HS has, however, rarely been used and we sought to identify barriers to its implementation....

  7. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  8. Therapeutic effects of compound hypertonic saline on rats with sepsis

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2014-09-01

    Full Text Available Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.

  9. Corrosion of tinplate T54S and T61 in humid atmosphere and saline solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Sandenbergh, R.F. [Dept. of Materials Science and Metallurgical Engineering, Univ. of Pretoria (South Africa)

    2001-09-01

    The initial corrosion mechanism and corrosion behaviors of tinplate T54S and T61 were investigated by chemical stripping layer by layer, humid atmosphere exposure, SEM and potentiodynamic method in saline solutions with the addition of a small amount of components simulating foods and tomato sauce. The results show that T54S initially corroded in the form of pitting at the bottom of grease marks on the surface while T61 displayed the initial corrosion along the steel base on the interface of the tin coating and steel, and both were driven by galvanic corrosion between tin coating as a cathode and base steel as an anode. In the solution of 3.5% NaCl, the free corrosion potential from the outer layer to steel base shifted to negative with an addition of 100 ppm HNO{sub 3} but the potential order reversed as HNO{sub 2} replaced HNO{sub 3} at equivalent content. With an addition of 100 ppm NaHS, a high cathodic peak for either the middle or the inner layers was ascribed to the involvement of the reduction of extra hydrogen, i.e. HS{sup -}. T54S displayed a wider anodic passive zone and lower passive current density than T61, which resulted from the effect of the alloy layer. (orig.)

  10. Auditory function after application of ototopical vancomycin and mupirocin solutions in a murine model.

    Science.gov (United States)

    Rutherford, Kimberley D; Kavanagh, Katherine; Parham, Kourosh

    2011-03-01

    To determine whether mupirocin (440 µg/mL) and vancomycin otic drops (25 mg/mL) show evidence of ototoxicity in CBA/J mice immediately following a 7-day course of daily intratympanic (IT) injections and 1 month following treatment. Nonrandomized controlled trial. Academic hospital laboratory. Twenty CBA/J mice. Mean auditory brainstem response (ABR) thresholds increased in all drug- and saline-treated ears immediately after 7 days of IT injections but returned to baseline for most stimulus frequencies by 30 days later. This finding appeared to be correlated with the presence and subsequent resolution of tympanic membrane (TM) perforations and granulation tissue at the injection sites. Mupirocin-treated ears showed no significant difference in ABR thresholds compared to saline-treated ears. No significant differences were noted between vancomycin- and saline-treated ears, but there was a significant interaction between testing day and stimulus frequency (P injections (95% confidence interval, -13.5 to -5.5, P application of mupirocin solution (440 µg/mL) caused no significant change in the ABR thresholds in a murine model, vancomycin solution (25 mg/mL) resulted in high-frequency threshold elevations in both the ear directly injected and the contralateral ear. Mupirocin solution may be beneficial in managing otitis externa and media caused by resistant pathogens. Further studies of ototopical vancomycin are needed to define parameters governing its safe use.

  11. Analysis of the variation of the activity of a "9"9"mTc sample after dilution with saline solution

    International Nuclear Information System (INIS)

    Kuahara, L.T.; Correa, E.L.; Potiens, M.P.A.

    2016-01-01

    The activity meter is essential equipment in nuclear medicine services.To ensure its good operation and know the factors which may influence its readings is vital for the activity administered to the patient be correct. Many factors may influence the activity meter accuracy, such as the type of container, geometry, and radioactive material volume. The aim of this study was to analyze the measurements variations in 0.5 ml and 1.0 ml of "9"9"mTc pure and diluted in 2.5 ml of saline solution, in containers used in nuclear medicine. Variations of up to 4 % in measured values were found. (author)

  12. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  13. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  14. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  15. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  16. Infusion of hypertonic saline (7.5% NaCl) causes minor immunological changes in normovolaemic women

    DEFF Research Database (Denmark)

    Petersen, Jens Aage Kølsen; Nielsen, J O D; Bendtzen, K

    2004-01-01

    Haemorrhagic shock is treated effectively by infusion of hypertonic saline/colloid solutions. Furthermore, previous studies found hypertonicity to affect immune responses in animals and in human blood cell cultures. It is unknown, however, whether hypertonic saline infusion affects immune responses...

  17. Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts

    International Nuclear Information System (INIS)

    Marzun, Galina; Nakamura, Junji; Zhang, Xiaorui; Barcikowski, Stephan; Wagener, Philipp

    2015-01-01

    Graphical abstract: - Highlights: • We studied laser-generated, size-controlled palladium nanoparticles in saline solution. • Palladium nanoparticles were electrostatically stabilized by anions. • Photo- and electrocatalyst are prepared by supporting Pd nanoparticles to TiO 2 and graphene. • Particle size does not change during supporting process, while 18 wt% load has been achieved. • Palladium nanoparticles and graphene undergo a redox-reaction during adsorption. - Abstract: In the literature many investigations on colloidal stability and size control of gold nanoparticles are shown but less for ligand-free palladium nanoparticles, which can be promising materials in various applications. Palladium nanoparticles are perspective materials for a manifold of energy application like photo- and electrocatalysis or hydrogen storage. For this purpose, size-controlled nanoparticles with clean surfaces and facile immobilization on catalyst supports are wanted. Laser ablation in saline solution yields ligand-free, charged colloidal palladium nanoparticles that are supported by titania and graphene nanosheets as model systems for photo- and electrocatalysis, respectively. By adjusting the ionic strength during laser ablation in liquid, it is possible to control stability and particle size without compromising subsequent nanoparticle adsorption of supporting materials. A quantitative deposition of nearly 100% yield with up to 18 wt% nanoparticle load was achieved. The average size of the laser-generated nanoparticles remains the same after immobilization on a support material, in contrast to other preparation methods of catalysts. The characterization by X-ray photoelectron spectroscopy reveals a redox reaction between the immobilized nanoparticles and the graphene support

  18. Salinity induced metabolic changes in rice (oryza sativa l.) seeds during germination

    International Nuclear Information System (INIS)

    Shereen, A.; Ansari, R.; Raza, A.; Mumtaz, S.; Khan, M.A.; Khan, M.A.

    2011-01-01

    Six inbred lines of rice exhibiting differential tolerance to salinity were exposed to 0, 50, 75, 100 and 200 mM NaCl for 24, 48, 72 and 96 h. The salinity induced metabolic changes (solute leakage, K efflux and a-amylase activity) were studied during germination. Germination of rice seeds was not affected by NaCl concentration less than 100 mM. At higher salinity levels (100 and 200 mM NaCl), a delay of 3-6 days in germination was observed. In the present study, comparatively higher values of solute leakage were observed in those lines in which germination was comparatively affected more adversely (sensitive). Sodium chloride reduced alpha-amylase activity in germinating rice seeds to varying degree even at low NaCl concentrations (50 and 75 mM), where germination was not affected greatly. The tolerant lines exhibited higher enzymatic activity than the sensitive ones. (author)

  19. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  20. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  1. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    Directory of Open Access Journals (Sweden)

    Masoumeh Ravanipour

    2011-04-01

    Full Text Available Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from soils such as Phenanthrene. The main object of this study is the assessment of the effects of salinity on the efficacy of the process of bioremediation on polluted soils by Phenanthrene. Methods: The bare soil of any organic and microbial pollution was first polluted artificially to the phenanthrene then a nutrient solution with two minimum and maximum concentrations of salinity were added to it in order to have the proportion of 10% w:v (soil: water. After that a microbial mixture which was enable degradation the phenanthrene added to the slurry and aerated. After the extraction of phenanthrene by ultrasonic, the residual concentration in the soil was analyzed by GC. Results: In the conditions that salinity concentration was maximum, the microbial growth has a longer lag phase than the minimum salinity. The findings from extraction process by GC depict the removal percentage of maximum and minimum salinity in 56th %70.5 day and %71.8, respectively. Conclusion: In In spite of the longer log phase of maximum concentration of salinity and according to GC results, there was just a little difference between two solutions. Therefore it reveals that salinity can increase the lag phase but haven't any inhibitory effect on Phenanthrene removal.

  2. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  3. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  4. Use of radioactive sodium-22 to study the processes of soil salinization and desalinization

    International Nuclear Information System (INIS)

    Alzubaidi, A.H.

    1979-01-01

    This study deals with the salinization of four undisturbed soil columns of silt loam soil, collected with special plexiglass columns. The salinization was effected by adding a certain volume of salt solution consisting of a mixture of NaCl, CaCl 2 and MgCl 2 and containing 0.5 mCi of sodium-22. The salt solution was added to the surface of the first two columns and then the soil columns were leached with distilled water, while for the other two columns, the salt solution was added from the bottom of the columns using a syphon technique. The first two columns represent a model for the desalinization process of saline soils, while the latter two columns represent a model for the salinization process under the effect of high groundwater table. The downward and upward movements of sodium through the soil columns were recorded by measuring sodium radioactivity periodically, using a special scanner which continuously and automatically detected the radioactivity of sodium with the help of a gamma spectrometer. The final distribution curves for sodium movement throughout these soil columns versus time were obtained by computer. The data obtained indicate that radioactive sodium can be used with success to study the movement of salts in soil. The results also bring a new and better understanding of the nature of the salt movement during the processes of salinization and desalinization, the most important soil processes in the arid and semi-arid regions. (author)

  5. Smoke Priming, a Potent Protective Agent Against Salinity: Effect on Proline Accumulation, Elemental Uptake, Pigmental Attributes and Protein Banding Patterns of Rice (Oryza Sativa

    Directory of Open Access Journals (Sweden)

    Jamil, Muhammad

    2013-02-01

    Full Text Available The exogenous application of plant derived smoke solution through seed pre treatment is consider to create tolerance in the plant against salinity, for this purpose different dilution of plant derived smoke solution as 1:5000 Buhania, 1:1000 Buhania, 1:1000 Cymbopogon, 1:500 Cymbopogon were used against 0 mM, 50, 100 and 150mM NaCl solution in the medium. The effect was observed on total proline accumulation, heavy metals uptake, photosynthetic pigments and protein polypeptide bands intensity in two rice varieties as Basmati 385 (B-385 and Shaheen Basmati (S. Basmati. Proline concentration increases while chlorophyll “a” chlorophyll “b” and carotene level decreases with increasing salinity. On other hand zinc concentration increases while cadmium and lead concentration decrease in the crop under saline conditions. Intensity of protein polypeptides bands decreases gradually with increasing salinity level but plants from the seeds soaked with smoke solution alleviate the drastic affect of salinity, and intensity of bands is quite good by comparing with non primed seeds. It is concluded that seed priming with plant derived smoke solution show beneficial effect on crop to protect them from salinity.

  6. Drug-induced MR urography: the effects of furosemide and intravenous saline injection on MR urography of obstructed and non-obstructed urinary tract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Ha; Lee, Myung Jun; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    2001-10-01

    To determine the usefulness of MR urography technique for the evaluation of urinary systems in patients with obstructed urinary tract and normal volunteers with non-obstructed urinary tract after intravenous normal saline and diuretic injection. Three normal volunteers and 12 patients with urinary tract obstruction [ureteral calculi (n=8), extraurinary mass (n=1), ureteral tumor invasion (n=3)] underwent MR urography using a 1.0T scanner and a 2D non-breath-hold heavily T2-weighted fast spin-cho sequence. These acquisition were post-processed with a maximum intensity projection (MIP) algorithm. Two acquisitions were performed, the first prior to saline solution infusion following standard MR urography procedures, and the second, within 2-3 minutes of the infusion of 250 ml saline solution followed by 20 mg of Lasix administered intravenously. For this latter, drug-induced MR urography procedures were followed. In healthy volunteer (n=3) and those experiencing partial obstruction (n=4) by a urinary stone, drug-induced MR urography provided better images of the urinary tract than did standard MR urography. In those in whom a urinary stone or tumor had caused complete obstruction (n=8), standard MR urography provided good images, as did drug-induced MR urography. In patients with a partially or non-obstructed urinary tract, drug-induced MR urography provided better anatomic and functional details of the kidney and urinary tract than did standard MR urography. In those experiencing complete obstruction of the urinary tract, however, standard or drug-induced MR urography permitted very adequate evaluation of the tract, and drug-induced MR urography was unnecessary.

  7. Analytical Solution for Interface Flow to a Sink With an Upconed Saline Water Lens: Strack's Regimes Revisited

    Science.gov (United States)

    Kacimov, A. R.; Obnosov, Y. V.

    2018-01-01

    A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.

  8. Reexamining ultrafiltration and solute transport in groundwater

    Science.gov (United States)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  9. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  10. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    MOHAMED A. BAKHETA

    2014-05-01

    Full Text Available Bakheta MA, Hussein MM. 2014. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl. Nusantara Bioscience 6: 39-44. Pot experiments were carried out during two growth seasons 2010 / 2011 under greenhouse conditions of the National Research Centre, Dokki, Cairo, Egypt to investigate the response of barley plants (Hordium vulgare L grown under salinity stress (2500 or 5000 ppm to spraying with solutions of uniconazole at 150 or 200 ppm. The obtained results showed that irrigation with saline solutions caused increases in the amounts of abscisic acid (ABA, crude protein, total soluble-protein and proline contents. The results showed that spraying barley plants grown under saline solutions with uniconazole increased endogenous hormone contents of ABA, cytokinins, crude protein, total soluble protein and proline but caused decreases in the amounts of endogenous indole acetic acid (IAA and gibberellic acid (GA3. High protection of abscisic acid in treating plants with uniconazole and under salt stress (interaction effect increases proline, proteins and soluble protein which has been proposed to act as compatible solutes that adjust the osmotic potential in the cytoplasm. Thus, these biochemical characters can be used as a metabolic marker in relation to salinity stress.

  11. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our

  12. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  13. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  14. Five-Year Safety Data for More than 55,000 Subjects following Breast Implantation: Comparison of Rare Adverse Event Rates with Silicone Implants versus National Norms and Saline Implants.

    Science.gov (United States)

    Singh, Navin; Picha, George J; Hardas, Bhushan; Schumacher, Andrew; Murphy, Diane K

    2017-10-01

    The U.S. Food and Drug Administration has required postapproval studies of silicone breast implants to evaluate the incidence of rare adverse events over 10 years after implantation. The Breast Implant Follow-Up Study is a large 10-year study (>1000 U.S. sites) evaluating long-term safety following primary augmentation, revision-augmentation, primary reconstruction, or revision-reconstruction with Natrelle round silicone breast implants compared with national norms and outcomes with saline implants. Targeted adverse events in subjects followed for 5 to 8 years included connective tissue diseases, neurologic diseases, cancer, and suicide. The safety population comprised 55,279 women (primary augmentation, n = 42,873; revision-augmentation, n = 6837; primary reconstruction, n = 4828; and revision-reconstruction, n = 741). No targeted adverse events occurred at significantly greater rates in silicone implant groups versus national norms across all indications. The standardized incidence rate (observed/national norm) for all indications combined was 1.4 for cervical/vulvar cancer, 0.8 for brain cancer, 0.3 for multiple sclerosis, and 0.1 for lupus/lupus-like syndrome. Silicone implants did not significantly increase the risk for any targeted adverse events compared with saline implants. The risk of death was similar with silicone versus saline implants across all indications. The suicide rate (10.6 events per 100,000 person-years) was not significantly higher than the national norm. No implant-related deaths occurred. Results from 5 to 8 years of follow-up for a large number of subjects confirmed the safety of Natrelle round silicone implants, with no increased risk of systemic disease or suicide versus national norms or saline implants. Therapeutic, II.

  15. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  16. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    Science.gov (United States)

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  17. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  18. Combined radiofrequency ablation and acetic acid-hypertonic saline solution instillation: an in vivo study of rabbit liver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Min; Han, Joon-Koo; Kim, Se-Hyung; Choi, Byung-Ihn [Seoul National University, Seoul (Korea, Republic of); Kim, Young-Kon; Kim, Sang-Won [Chonbuk National University, Chonju (Korea, Republic of)

    2004-03-15

    We wanted to determine whether combined radiofrequency ablation (RFA) and acetic acid-hypertonic saline solution (AHS) instillation can increase the extent of thermally mediated coagulation in in vivo rabbit liver tissue. We also wished to determine the optimal concentration of the solution in order to maximize its effect on extent of the RFA-induced coagulation. Forty thermal ablation zones were produced in 40 rabbits by using a 17-gauge internally cooled electrode with a 1-cm active tip under ultrasound guidance. The rabbits were assigned to one of four groups: group A: RFA alone (n=10); group B: RFA with 50% AHS instillation (n=10); group C: RFA with 25% AHS instillation (n=10); group D: RFA with 15% AHS instillation (n=10). A range of acetic acid concentrations diluted in 36% NaCl to a total volume of 2 mL were instilled into the liver before RFA. The RF energy (30W) was applied for three minutes. After RFA, in each group, the maximum diameters to the thermal ablation zones in the gross specimens were compared. Technical success and the complication that arose were evaluated by CT and on the basis of autopsy findings. All procedures are technically successful. There were six procedure-related complications (6/40; 15%); two localized perihepatic hematomas and four chemical peritonitis. The incidence of chemical peritonitis was highest for group B with the 50% AHS solution instillation (30%). With instillation of 15% AHS solution, a marked decrease of tissue impedance (24.5 {+-} 15.6 {omega}) and an increase of current (250 mA) occurred as compared to RFA alone. With instillation of the solutions before RFA (group B, C and D). this produced a greater mean diameter of coagulation necrosis than the diameters for rabbits not instilled with the solution (group A) ({rho}<0.05). However, there was no significant difference between group B, C, and D. Combined AHS instillation and RFA can increase the dimension of coagulation necrosis in the liver with a single

  19. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  20. Effect of saline loading on uranium-induced acute renal failure in rats

    International Nuclear Information System (INIS)

    Hishida, A.; Yonemura, K.; Ohishi, K.; Yamada, M.; Honda, N.

    1988-01-01

    Studies were performed to examine the effect of saline loading on uranium-induced acute renal failure (ARF) in rats. Forty-eight hours after the i.v. injection of uranyl acetate (UA, 5 mg/kg), inulin clearance rate (Cin) decreased to approximately 43% of the control value in water drinking rats (P less than 0.005). Animals receiving continuous isotonic saline infusion following UA showed higher urine flow and Cin (60% of control, P less than 0.01), and lessened intratubular cast formation when compared with water-drinking ARF rats. A short-term saline infusion following UA did not attenuate the decline in Cin (43% of control). An inverse relationship was found between Cin and the number of casts (r = -0.75, P less than 0.01). Multiple regression analysis showed that standardized partial regression coefficient is statistically significant between Cin and cast formation (-0.69, P less than 0.05), but not between Cin and tubular necrosis (-0.07, P greater than 0.05). Renin depletion caused by DOCA plus saline drinking did not attenuate the decline in Cin in ARF (47% of control). No significant difference was found in urinary uranium excretion between water-drinking and saline-infused ARF rats. The findings suggest that continuous saline infusion following UA attenuates the decline in Cin in ARF rats; and that this beneficial effect of saline loading is associated with lessened cast formation rather than with suppressed renin-angiotensin activity or enhanced urinary-uranium excretion

  1. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  2. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  3. Reposição de volume na sepse com solução salina hipertônica Sepsis volume reposition with hypertonic saline solution

    Directory of Open Access Journals (Sweden)

    Gilberto Friedman

    2008-09-01

    Full Text Available Esta revisão discute os efeitos hemodinâmicos e imunomoduladores da solução hipertônica em choque experimental e em pacientes com sepse. Comentamos sobre os mecanismos de ação da solução hipertônica, recorrendo a dados sobre choque hemorrágico e séptico. Atuações específicas da solução salina hipertônica aplicáveis a sepse grave e choque séptico são enfatizadas. Os dados disponíveis corroboram os benefícios em potencial da infusão de solução salina hipertônica em vários aspetos da fisiopatologia da sepse, inclusive hipoperfusão dos tecidos, consumo reduzido de oxigênio, disfunção endotelial, depressão miocárdica e presença de um amplo elenco de citocinas próinflamatórias e várias espécies de oxidantes. Uma terapia que, ao mesmo tempo, bloqueie os componentes prejudiciais da sepse terá um impacto no seu tratamento. Estudos prospectivos adequadamente desenhados poderão no futuro comprovar o papel benéfico da solução salina hipertônica.The present review discusses the hemodynamic and immune-modulatory effects of hypertonic saline in experimental shock and in patients with sepsis. We comment on the mechanisms of action of hypertonic saline, calling upon data in hemorrhagic and septic shock. Specific actions of hypertonic saline applicable to severe sepsis and septic shock are highlighted. Data available support potential benefits of hypertonic saline infusion in various aspects of the pathophysiology of sepsis, including tissue hypoperfusion, decreased oxygen consumption, endothelial dysfunction, cardiac depression, and the presence of a broad array of pro-inflammatory cytokines and various oxidant species. A therapy that simultaneously blocks the damaging components of sepsis will have an impact on the management of sepsis. Proper designed prospective studies may prove a beneficial role for hypertonic saline solution in the future.

  4. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  5. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy.

    Science.gov (United States)

    Long, Blaine C; Knight, Kenneth L; Hopkins, Ty; Parcell, Allen C; Feland, J Brent

    2012-08-01

    It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. To investigate a pain model for the anterior knee and examine cryo in reducing the pain. Controlled laboratory study. Therapeutic modality laboratory. 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.

  6. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  7. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  8. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  9. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  10. Transport of fluid and solutes in the body II. Model validation and implications.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.

  11. Enzyme expression in indica and japonica rice cultivars under saline stress - doi: 10.4025/actascibiolsci.v34i4.8535

    Directory of Open Access Journals (Sweden)

    Luciano do Amarante

    2012-09-01

    Full Text Available The southern State of Rio Grande do Sul (RS is the main rice producer in Brazil with a 60% participation of the national production and 86% participation of the region. Rice culture irrigation system is done by flooding, which leads to soil salinization, a major environmental constraint to production since it alters the plants’ metabolism exposed to this type of stress. The indica cultivar, widely used in RS, has a higher sensitivity to salinity when compared to that of the japonica cultivar in other physiological aspects. Current research analyzes enzymes expression involved in salt-subjected indica and japonica rice cultivars’ respiration. Oryza sativa L. spp. japonica S.Kato (BRS Bojuru, IAS 12-9 Formosa and Goyakuman and Oryza sativa L. spp. indica S. Kato (BRS Taim-7, BRS Atalanta and BRS Querencia were the cultivars employed. Seedlings were transferred to 15 L basins containing 50% Hoagland nutrient solution increased by 0, 25, 50, 75 and 100 mM NaCl, and collected at 14, 28 and 42 days after transfer (DAT. Plant tissues were macerated and placed in eppendorf tubes with Scandálios extractor solution. Electrophoresis was performed in 7% of the polyacrylamide gels in vertical vats. Bands were revealed for the following enzymes systems: esterase, alcohol dehydrogenase, phosphoglucoisomerase, malate dehydrogenase, malic enzyme and alpha amylase. The enzymes expression was greater in subspecies japonica, with more intense bands in proportion to salinity increase. Results show that enzyme systems are involved in the salinity defense mechanisms in O. sativa spp. japonica cultivar.  

  12. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NARCIS (Netherlands)

    Smekens, Marret; Van Tienderen, P.H.

    2001-01-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions.

  13. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  14. A Unique Pool of Compatible Solutes on Rhodopirellula baltica, Member of the Deep-Branching Phylum Planctomycetes.

    Directory of Open Access Journals (Sweden)

    Ana Filipa d'Avó

    Full Text Available The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K(+ counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism.

  15. A Community Terrain-Following Ocean Modeling System (ROMS)

    Science.gov (United States)

    2015-09-30

    funded NOPP project titled: Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman filter and adjoint with a focus on the Indian Ocean and the...surface temperature and surface salinity daily averages for 31-Jan-2014. Similarly, Figure 3 shows the sea surface height averaged solution for 31-Jan... temperature (upper panel; Celsius) and surface salinity (lower panel) for 31-Jan-2014. The refined solution for the Hudson Canyon grid is overlaid on

  16. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    Science.gov (United States)

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  17. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  18. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    Science.gov (United States)

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  19. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives.

    Science.gov (United States)

    Grattieri, Matteo; Minteer, Shelley D

    2018-04-01

    This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  1. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  2. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  3. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    Science.gov (United States)

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah

    2017-06-01

    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  4. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  5. Growth and ionic content of quinoa under saline irrigation

    DEFF Research Database (Denmark)

    Riccardi, M.; Pulvento, C.; Lavini, A.

    2014-01-01

    Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants. An irriga......Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants...... incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected...... by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth....

  6. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes?

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume; Pedersen, Morten Foldager

    2012-01-01

    Subitaneous eggs from an euryhaline calanoid copepod Acartia tonsa were challenged by changes in salinity within the range from full strength salinity, down to zero and up to >70 psu. Egg volume changed immediately, increasing from 2.8 × 105 μm3 at full strength salinity (35 psu) to 3.8 × 105 μm3...... at 0 psu and back to its initial volume when gradually being returned to full strength salinity. Egg osmolality followed the molality of the surrounding water when challenged within a salinity range from 2 to 50 psu. Egg respiration was not affected when eggs kept at 35 psu was exposed to low salinity...... (2 psu). These results suggest that eggs are unable to regulate their volume or osmolality when challenged with changes in salinity. Gradual changes in salinity from 35 to 2 psu and back did not harm the eggs (embryos), since the hatching success remained unaffected by such changes in salinity...

  7. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  8. Manejo da fertirrigação e controle da salinidade do solo sob ambiente protegido, utilizando-se extratores de solução do solo Fertigation management and soil salinity control in a protected ambient using soil solution extractors

    Directory of Open Access Journals (Sweden)

    Nildo da S. Dias

    2005-12-01

    solution. The initial soil salinity value was obtained by applying saline solutions of fertilizer salts using an artificial soil salinization curve previously obtained in laboratory. Results showed that the solution extractors allow determination of the ionic concentration in soil solution with satisfactory accuracy. The soil salinity increased in time and higher salinity levels were observed near the soil surface and below the drippers. The differences in water consumption caused by soil salinity were more evident with fertigation management control, adjusting to a quadratic model.

  9. Sodium kinetics in hypertonic saline abortion

    International Nuclear Information System (INIS)

    Telfer, N.; Ballard, C.S.; McKee, D.R.

    1975-01-01

    The sodium kinetics of hypertonic saline abortions have been followed by measuring the radioactivity and the sodium concentrations in amniotic fluid, maternal plasma, urine, the foetus and placenta after intrauterine installation of 20% hypertonic saline labelled with 22 Na in order to determine the reason for abortion of a dead foetus in 24 to 48 hours, and reasons for sodium reactions. There is dilution of the 300 ml of amniotic fluid to a maximum of 1.5 to 2.0 litres in an exponential fashion, by the influx of mainly maternal water, slowing after 8 hours. There is an exponential type of increase in plasma radioactivity, also slowing after 8 hours. However, equilibration is never reached, the specific activity of the amniotic fluid remaining 10 times that of the plasma, and the sodium concentration 3 times that of the plasma. The urine equilibrates with the plasma, and about 3% of the administered dose is lost in 22 hours. The largest foetus and placenta picked up the least radioactivity. Thus, a more mature foetus may be protected to some degree against the hypertonic saline action; this has been observed clinically. Hyperkaliaemia was found in all four subjects, and hypoglycaemia occurred sporadically. These were not accompanied by any symptoms. Factors associated with expulsion of the dead foetus are dehydration and decreased circulation associated with fibrinoid necrosis of the placenta, which may also account for cessation of equilibration between maternal plasma and amniotic fluid. Although no saline reactions occurred, the role of extrauterine deposition of hypertonic saline, as shown in one subject, might be considered. (author)

  10. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  11. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  12. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    Science.gov (United States)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the

  13. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  14. Effect of salinity and temperature on treatment of concentrated wastewater from RO by FO-MD

    Science.gov (United States)

    Zhou, Yingru; Huang, Manhong; Deng, Qian

    2018-02-01

    In this study the appropriate temperature of the membrane distillation (MD) hot side (the permeation flux of MD was controlled by adjusting the hot side temperature) was selected according to the water flux of FO process so that the water transfer rate on both sides of FO and MD was consistent and the FO-MD process could be stable operation. When the salt concentration of feed solution was 30, 55, 80 and 100 g/L, the desalination rates changed little, which were 99.1%, 98.4%, 98.9% and 98.7%, respectively. The removal rate of COD was 93.8%, 94.2%, 91.6% and 92.7% which also changed little like the desalination rates. The removal rate of chromaticity increased with the increase of salinity, which attained 96.6%, 97.0%, 97.2% and 97.9%, respectively. This study proved that salinity of the feed solution affected little on the removal rate of contaminants but great on the water flux, with the increase of salinity from 30 to 100 g/L, the water flux was 6.05, 4.81, 4.33 and 3.87 LMH with the appropriate temperature (67.5±0.5, 64.5±0.5, 62.5±0.5 and 60.5±0.5 °C) of MD hot side. In a word, FO-MD was first used to treat the high salinity RO water with over 30 g/L total dissolved solids (TDS), FO-MD was a promising new process for high salinity wastewater treatment, and the hybrid system can solve the problem of lower draw solution concentration, and the high-quality production water will be obtained directly by this hybrid system with low membrane fouling tendency.

  15. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  16. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.).

    Science.gov (United States)

    Mostajeran, A; Gholaminejad, A; Asghari, G

    2014-01-01

    Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant(-1) mM(-1)NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed.

  17. Genotypic variation in the response of tomato to salinity | Turhan ...

    African Journals Online (AJOL)

    In order to determine the predictive screening parameters that can be applied at early development stages of tomato plants, 18 tomato cultivars were grown in nutrient solution with 12 dS m-1 NaCl. The research was conducted in a completely randomized design with tree replications. The relationships among the salinity ...

  18. Contrast-enhanced magnetic resonance angiography: first-pass arterial enhancement as a function of gadolinium-chelate concentration, and the saline chaser volume and injection rate.

    Science.gov (United States)

    Husarik, Daniela B; Bashir, Mustafa R; Weber, Paul W; Nichols, Eli B; Howle, Laurens E; Merkle, Elmar M; Nelson, Rendon C

    2012-02-01

    To evaluate the effect of the contrast medium (CM) concentration and the saline chaser volume and injection rate on first-pass aortic enhancement characteristics in contrast-enhanced magnetic resonance angiography using a physiologic flow phantom. Imaging was performed on a 3.0-T magnetic resonance system (MAGNETOM Trio, Siemens Healthcare Solutions, Inc, Erlangen, Germany) using a 2-dimensional fast low angle shot T1-weighted sequence (repetition time, 500 milliseconds; echo time, 1.23 milliseconds; flip angle, 8 degrees; 1 frame/s × 60 seconds). The following CM concentrations injected at 2 mL/s were used with 3 different contrast agents (gadolinium [Gd]-BOPTA, Gd-HP-DO3A, Gd-DTPA): 20 mL of undiluted CM (100%) and 80%, 40%, 20%, 10%, 5%, and 2.5% of the full amount, all diluted in saline to a volume of 20 mL to ensure equal bolus volume. The CM was followed by saline chasers of 20 to 60 mL injected at 2 mL/s and 6 mL/s. Aortic signal intensity (SI) was measured, and normalized SI versus time (SI/Tn) curves were generated. The maximal SI (SI(max)), bolus length, and areas under the SI/Tn curve were calculated. Decreasing the CM concentration from 100% to 40% resulted in a decrease of SI(max) to 86.1% (mean). Further decreasing the CM concentration to 2.5% decreased SI(max) to 5.1% (mean). Altering the saline chaser volume had no significant effect on SI(max). Increasing the saline chaser injection rate had little effect (mean increase, 2.2%) on SI(max) when using ≥40% of CM. There was a larger effect (mean increase, 19.6%) when ≤20% of CM were used. Bolus time length was significantly shorter (P < 0.001), and area under the SI/T(n) curve was significantly smaller (P < 0.01) for the CM protocols followed by a saline chaser injected at 6 mL/s compared with a saline chaser injected at 2 mL/s. With 40% of CM and a fast saline chaser, SImax close to that with undiluted CM can be achieved. An increased saline chaser injection rate has a more pronounced effect on

  19. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  1. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  2. Saline flushing fluids restricting contamination of the near-face zone

    Energy Technology Data Exchange (ETDEWEB)

    Weil, W

    1982-01-01

    Questions are covered which concern the characteristics and main properties of saline solutions without solid phase and their use as flushing fluids. Attention is drawn to the fact that these solutions are universally used in flushing and other operations of wells with high gradients of bed pressures, and also in those cases where the oil and gas levels are especially sensitive to negative influence of traditional clay solutions which cause irreversible decrease in permeability of the reservoirs through contamination and plugging of the pores in the near-face zone, and consequently, influence the decrease in bed productivity. The described methods and chemical reagents decrease the filtering of these solutions in the reservoirs, improve viscosity and stabilize the near-face zone.

  3. Effect of Saline Pushing after Contrast Material Injection in Abdominal Multidetector Computed Tomography with the Use of Different Iodine Concentrations

    International Nuclear Information System (INIS)

    Tatsugami, F.; Matsuki, M.; Kani, H.; Tanikake, M.; Miyao, M.; Yoshikawa, S.; Narabayashi, I.

    2006-01-01

    Purpose: To investigate whether saline pushing after contrast material improves hepatic vascular and parenchymal enhancement, and to determine whether this technique permits decreased contrast material concentration. Material and Methods: 120 patients who underwent hepatic multidetector computed tomography were divided randomly into four groups (Groups A-D): receiving 100 ml of contrast material (300 mgI/ml) only (A) or with 50 ml of saline solution (B); or 100 ml of contrast material (350 mgI/ml) only (C) or with 50 ml of saline solution (D). Computed tomography (CT) values of the aorta in the arterial phase, the portal vein in the portal venous inflow phase, and the liver in the hepatic phase were measured. Visualization of the hepatic artery and the portal vein by 3D CT angiography was evaluated as well. Results: Although the enhancement values of the aorta were not improved significantly with saline pushing, they continued at a high level to the latter slices with saline pushing. The enhancement value of the portal vein increased significantly and CT portography was improved with saline pushing. The enhancement value of the liver was not improved significantly using saline pushing. In a comparison between groups B and C, the enhancement values of the aorta and portal vein and the visualization of CT arteriography and portography were not statistically different. Conclusion: The saline pushing technique can contribute to a decrease in contrast material concentration for 3D CT arteriography and portography

  4. Comparative results of gastric submucosal injection with hydroxypropyl methylcellulose, carboxymethylcellulose and normal saline solution in a porcine model Resultados comparativos de injeção submucosa gástrica com hidroximetil celulose, carboximetilcelulose e soro fisiológico em modelo suíno

    Directory of Open Access Journals (Sweden)

    Luciano Lenz

    2010-06-01

    Full Text Available CONTEXT: Endoscopic mucosal resection is an established modality for excision of sessile lesions in the gastrointestinal tract. Submucosal fluid injection creates a cushion and may prevent thermal injury and perforation. OBJECTIVES: This blind study investigated the performance of three different solutions to create submucosal fluid cushions in porcine stomach. METHODS: Three solutions were injected in the stomach of nine pigs BR1: normal saline solution, carboxymethylcellulose 0.5% and hydroxypropyl methylcellulose 0.25%. In each pig, submucosal injections with 6 mL per test-solution were performed. One drop of methylene blue was added to all injections for better visualization. The time for the bleb to disappear was recorded. RESULTS: The overall median time of visible submucosal cushion was 37 minutes (range 12-60 min for hydroxypropyl methylcellulose, 31 minutes for carboxymethylcellulose (range 10-43 min and 19 minutes for normal saline solution (range 8-37 min. There was no statistically significant difference neither between normal saline solution and carboxymethylcellulose (P = 0.146 nor carboxymethylcellulose and hydroxypropyl methylcellulose (P = 0.119 but the median duration of hydroxypropyl methylcellulose was significantly longer than normal saline solution (P = 0.039. CONCLUSIONS: The length of hydroxypropyl methylcellulose submucosal fluid cushion is longer in comparison with normal saline solution. The median time for carboxymethylcellulose was not longer than normal saline solution. Hydroxypropyl methylcellulose, in the concentration of 0.25%, may be a durable alternative for submucosal injection.CONTEXTO: A ressecção endoscópica mucosa é uma modalidade estabelecida para a excisão de lesões sésseis no trato gastrointestinal. A injeção de fluídos na submucosa cria uma coxim que pode prevenir lesão térmica e perfuração. OBJETIVO: Este estudo cego investiga o desempenho de três diferentes soluções para criar um

  5. Metabolic and hemodynamic effects of saline infusion to maintain volemia on temporary abdominal aortic occlusion

    Directory of Open Access Journals (Sweden)

    Fábio Ferreira Amorim

    2002-10-01

    Full Text Available OBJECTIVE: To analyze hemodynamic and metabolic effects of saline solution infusion in the maintenance of blood volume in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. METHODS: We studied 20 dogs divided into 2 groups: the ischemia-reperfusion group (IRG, n=10 and the ischemia-reperfusion group with saline solution infusion aiming at maintaining mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, n=10. All animals were anesthetized with sodium thiopental and maintained on spontaneous ventilation. Occlusion of the supraceliac aorta was obtained with inflation of a Fogarty catheter inserted through the femoral artery. After 60 minutes of ischemia, the balloon was deflated, and the animals were observed for another 60 minutes of reperfusion. RESULTS: IRG-SS dogs did not have hemodynamic instability after aortic unclamping, and the mean systemic blood pressure and heart rate were maintained. However, acidosis worsened, which was documented by a greater reduction of arterial pH that occurred especially due to the absence of a respiratory response to metabolic acidosis that was greater with the adoption of this procedure. CONCLUSION: Saline solution infusion to maintain blood volume avoided hemodynamic instability after aortic unclamping. This procedure, however, caused worsening in metabolic acidosis in this experimental model.

  6. Effects of irrigation with different solution on Incidence of Wound Infection

    Directory of Open Access Journals (Sweden)

    Majid Zamani

    2015-05-01

    Full Text Available Introduction: Management of acute and chronic wounds has significantly altered in the last decade but little attention has been paid to the solution used for cleansing the wounds. Therefore, the present study aimed to compare the effects of tap water, distilled water, and normal saline for wound cleansing in emergency department. Methods: This is a double-blind randomized clinical trial with a 10-day follow up. Patients who had superficial wounds were randomly divided into 3 treatment groups: normal saline, distilled water, and tap water. The wounds were cleansed using a 20 - 60 milliliter syringe with an 18 gauge needle. All the patients were discharged with the same antibiotic and were followed 48 hours and 10-day to determine the presence or absence of infection symptoms. The evaluated outcomes were infection incidence in the first 48 hours and 10 days after being discharged. Results: 1200 patients were included in the present study (57% male, average age 25.5 ± 11.0 years. 43 (3.5% patients showed infection symptoms in the first 48 hours. Ten (2.5% patients were in normal saline treated group, 15 (3.7% patients were in distilled water group, and 18 (4.4% patients were in tap water treated group (p=0.32. 13 (3.2% patients in normal saline group, 20 (4.9% patients in distilled water group and 23 (5.6% in the tap water group did not take their antibiotics. Prevalence of infection were higher in patients who did not take antibiotics (p < 0.001. The 10-day follow-up revealed that all the patients were recovered and showed no infection symptoms. Conclusion: The results of the present study showed that the prevalence of infection in using the 3 agents (normal saline, distilled water and tap water for cleansing wounds was similar. Therefore, drinking water could be considered as an alternative for cleansing wounds.

  7. Effect of multi-component ions exchange on low salinity EOR: Coupled geochemical simulation study

    Directory of Open Access Journals (Sweden)

    Ehsan Pouryousefy

    2016-09-01

    Upon combining the simulation and experimental results, we concluded that the multi-component ion exchange is not the sole mechanism behind low salinity effect for two reasons. First, almost 10% additional oil recovery was observed from the experiments by injecting the 2000 ppm CaCl2 compared with 50,000 ppm CaCl2 solutions. Even though in both cases the surface is expected to be fully saturated with Ca2+ according to the geochemical modelling. Second, 6% incremental oil recovery was achieved from the experiments by injecting 2000 ppm NaCl solution compared with that of 50,000 ppm NaCl. Although 25% incremental adsorption of divalent cations (Ca2+ were presented during the flooding of the 2000 ppm NaCl solution. Therefore, it is worth noting that the electrical double layer expansion due to the ion exchange needs to be taken into account to pinpoint the mechanism(s of low-salinity water effect.

  8. Assessment of the effect of salinity on the early growth stage of the ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... The results showed that plant growth decreased proportionally with increasing ... Therefore, agriculturalists can assess growth rate changes caused by salinity using remote .... pH of all solutions was adjusted to 6. De-ionized ...

  9. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  11. Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior

    International Nuclear Information System (INIS)

    Chang, Hung-wen; Hsu, Cheng-che

    2011-01-01

    The effect of frequency on the characteristics of plasmas in saline solution driven by 50-1000 Hz ac power is studied. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, a millimeter-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in frequency, it shows the jetting mode, in which bubbles, hundreds of micometers in diameter, are continuously formed and jetted away from the electrode surface. Such a significant change in the bubble behavior influences the power input at a given applied voltage and significantly affects the plasma behavior. In spite of the fact that no significant difference is seen in the optical emission spectra, the broadening of the H β peak shows that the bubble mode has a lower electron density than that of the jetting mode. The temporally resolved optical emission intensities show light emission in the negative half of the power period regardless of the modes. This shows clearly that the driving frequency significantly influences the bubble dynamics, which in turn alters the plasma behavior.

  12. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  13. Prevention of contrast-induced nephropathy by use of bicarbonate solution: preliminary results and literature review.

    Science.gov (United States)

    Silva, Ricardo Gonçalves da; Silva, Nelson Gonçalves da; Lucchesi, Fabiano; Burdmann, Emmanuel A

    2010-01-01

    The incidence of contrast-induced nephropathy has increased simultaneously with the increase in contrast medium use in diagnostic and interventional procedures. The incidence of contrast-induced nephropathy in the general population is low, but increases exponentially in patients with risk factors, such as diabetes and chronic kidney disease. Several strategies have been used in order to prevent contrast-induced nephropathy. The most efficient strategies are saline hydration (0.9% or 0.45%), use of low-or iso-osmolality contrast medium, and sodium bicarbonate infusion. The aim of this study was to review the pertinent literature and to assess the efficacy of hydration with 1.3% sodium bicarbonate compared with hydration with 0.9% saline solution in preventing contrast-induced nephropathy in high-risk patients. A systematic search of the literature was conducted in PubMed by using the following keywords: bicarbonate, nephropathy, contrast medium, and acute kidney failure. In addition, 27 patients with diabetes and/or chronic kidney disease, diagnosed with some kind of cancer were randomized for study. None of the patients developed contrast-induced nephropathy characterized as a 0.5 mg/ dL-increase and/or a relative 25%-increase in baseline creatinine. The literature review strongly suggested that sodium bicarbonate is effective in preventing contrast-induced nephropathy. Regarding the randomized study, saline solution and bicarbonate solution had similar efficacy in preventing contrast-induced nephropathy. However, the small number of patients does not allow definite conclusions.

  14. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    Science.gov (United States)

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  16. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    Science.gov (United States)

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Intra-articular sodium hyaluronate 2 mL versus physiological saline 20 mL versus physiological saline 2 mL for painful knee osteoarthritis: a randomized clinical trial

    DEFF Research Database (Denmark)

    Lundsgaard, C.; Dufour, N.; Fallentin, E.

    2008-01-01

    , Knee Injury and Osteoarthritis Outcome Score (KOOS), Osteoarthritis Research Society International (OARSI) criteria, and global assessment of the patient's condition. Results: The mean age of the patients was 69.4 years; 55% were women. The effects of hyaluronate 2 mL, physiological saline 20 m......Objective: Methodological constraints weaken previous evidence on intra-articular viscosupplementation and physiological saline distention for osteoarthritis. We conducted a randomized, patient- and observer-blind trial to evaluate these interventions in patients with painful knee osteoarthritis....... Methods: We centrally randomized 251 patients with knee ostcoarthritis to four weekly intra-articular injections of sodium hyaluronate 2 mL (Hyalgan(R) 10.3 mg/mL) versus physiological saline 20 mL (distention) versus physiological saline 2 mL (placebo) and followed patients for 26 weeks. Inclusion...

  18. Influence of Ophthalmic Solutions on Tear Components.

    Science.gov (United States)

    Shigeyasu, Chika; Yamada, Masakazu; Akune, Yoko

    2016-11-01

    Tear fluids are a mixture of secretions derived from lacrimal glands, accessory lacrimal glands, conjunctiva, and meibomian glands. Compositional changes to tears occur in the normal state and during ocular surface disease, such as dry eye conditions. We have investigated compositional changes to tears after topical application of ophthalmic solutions, with regard to tear-specific proteins (secretory immunoglobulin A, lactoferrin, lipocalin-1, and lysozyme) and ocular surface mucin in normal and dry eye conditions using high-performance liquid chromatography. After application of saline solution (0.9% sodium chloride) in normal subjects, transient but significant decreases in all tear components were observed. The recovery of protein concentrations took up to 30 minutes and lasted longer when the saline solution was applied more frequently. When applying ophthalmic solutions, a balance between washout and dilutional effects should be considered in addition to the therapeutic effect. Investigation of the effect of diquafosol solution (3%) in normal subjects revealed a significant increase in sialic acid concentration, a marker of ocular mucin, at 5 minutes after application, whereas a significant decrease was observed with saline. This result indicates the accelerated secretion of mucin from ocular tissues induced by diquafosol. A clinical study to determine the efficacy of diquafosol in patients with dry eye revealed improvements in tear breakup time, keratoconjunctival staining scores, and Schirmer test score, accompanied by an increase in sialic acid concentration in tears. Investigating normal and dry eye conditions through tear analysis may clarify the pathophysiology of dry eye conditions and support the efficacy of treatments.

  19. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  20. Evaluation of saline, RPMI and DMEM/F12 for storage of split-thickness skin grafts.

    Science.gov (United States)

    Boekema, B K H L; Boekestijn, B; Breederveld, R S

    2015-06-01

    Skin grafting is standard of care for severe burn and trauma patients. Graft sites are often accompanied with more pain than the burn sites. To minimize graft site areas, excess skin remaining after harvesting, is stored in saline at 4°C to be used for transplantation up to 1 week later. However, the optimal storage solution and maximum storage time are not known. We set out to determine the storage time after which stored skin is still viable. In addition, different storage solutions were tested. Split-thickness skin from 15 donors with a thickness of 0.3 mm was stored in normal saline, in medium, RPMI or DMEM/F12, allowing pairwise comparison. Biopsies were taken up to 3 weeks for histology and for skin viability assessment using an MTT based activity assay. Activity of the saline stored control decreased to 62% at day 7 and to 27% at day 14. Activity was retained at a higher level in RPMI and was 78% at day 7 and 70% at day 14. Results with DMEM/F12 showed a similar trend as the saline control. Based on activity, RPMI was found to be superior to DMEM/F12 (on days 3 and 10) and both saline and DMEM/F12 (on days 14 and 21). Capability to proliferate (BrdU incorporation) did not differ between media, up to 7 days. Histologically, the number of apoptotic cells increased in time but differences between media were not noted. Based on these results, RPMI would be an improvement over saline in retaining viability of skin grafts during storage, and possibly in improved take rate. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity

    International Nuclear Information System (INIS)

    Tachi, Y.; Yotsuji, K.; Suyama, T.; Seida, Y.; Yui, M.; Nakazawa, T.; Yamada, N.; Ochs, M.

    2010-01-01

    Diffusion and sorption of radionuclides in compacted bentonite/montmorillonite are key processes in the safe geological disposal of radioactive waste. In this study, the effects of carbonate and salinity on neptunium(V) diffusion and sorption in compacted sodium montmorillonite were investigated by experimental and modeling approaches. Effective diffusion coefficients (D e ) and distribution coefficients (K d ) of 237 Np(V) in sodium montmorillonite compacted to a dry density of 800 kg m -3 were measured under four chemical conditions with different salinities (0.05/0.5 M NaCl) and carbonate concentrations (0.0.01 M NaHCO 3 ). D e values for carbonate-free conditions were of the order of 10 -10 -10 -11 m 2 s -1 and decreased as salinity increased, and those for carbonate conditions were of the order of 10 -11 -10 -12 m 2 s -1 and showed the opposite dependence. Diffusion-derived K d values for carbonate-free conditions were higher by one order of magnitude than those for carbonate conditions. Diffusion and sorption behaviors were interpreted based on mechanistic models by coupling thermodynamic aqueous speciation, thermodynamic sorption model (TSM) based on ion exchange, and surface complexation reactions, and a diffusion model based on electrical double layer (EDL) theory in homogeneous narrow pores. The model predicted the experimentally observed tendency of D e and K d qualitatively, as a result of the following mechanisms; 1) the dominant aqueous species are NpO 2 + and NpO 2 CO 3 - for carbonate-free and carbonate conditions, respectively, 2) the effects of cation excess and anion exclusion result in opposite tendencies of D e for salinity, 3) higher carbonate in solution inhibits sorption due to the formation of carbonate complexes. (orig.)

  2. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  3. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods

    Science.gov (United States)

    Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo

    2012-01-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.

  4. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  5. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage

    NARCIS (Netherlands)

    Tufa, Ramato Ashu; Pawlowski, Sylwin; Veerman, Joost; Bouzek, Karel; Fontananova, Enrica; di Profio, Gianluca; Velizarov, Svetlozar; Goulão Crespo, João; Nijmeijer, Kitty; Curcio, Efrem

    2018-01-01

    Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of

  6. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2011-01-01

    sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near

  7. Immune-Inflammatory and Metabolic Effects of High Dose Furosemide plus Hypertonic Saline Solution (HSS Treatment in Cirrhotic Subjects with Refractory Ascites.

    Directory of Open Access Journals (Sweden)

    Antonino Tuttolomondo

    Full Text Available Patients with chronic liver diseases are usually thin as a result of hypermetabolism and malnutrition expressed by reduced levels of leptin and impairment of other adyponectins such as visfatin.We evaluated the metabolic and inflammatory effects of intravenous high-dose furosemide plus hypertonic saline solutions (HSS compared with repeated paracentesis and a standard oral diuretic schedule, in patients with cirrhosis and refractory ascites.59 consecutive cirrhotic patients with refractory ascites unresponsive to outpatient treatment. Enrolled subjects were randomized to treatment with intravenous infusion of furosemide (125-250mg⁄bid plus small volumes of HSS from the first day after admission until 3 days before discharge (Group A, n:38, or repeated paracentesis from the first day after admission until 3 days before discharge (Group B, n: 21. Plasma levels of ANP, BNP, Leptin, visfatin, IL-1β, TNF-a, IL-6 were measured before and after the two type of treatment.Subjects in group A were observed to have a significant reduction of serum levels of TNF-α, IL-1β, IL-6, ANP, BNP, and visfatin, thus regarding primary efficacy endpoints, in Group A vs. Group B we observed higher Δ-TNF-α, Δ-IL-1β, Δ-IL-6, Δ-ANP, Δ-BNP, Δ-visfatin, Δ-Leptin at discharge.Our findings underline the possible inflammatory and metabolic effect of saline overload correction in treatment of cirrhosis complications such as refractory ascites, suggesting a possible role of inflammatory and metabolic-nutritional variables as severity markers in these patients.

  8. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  9. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

    Science.gov (United States)

    Simmons, Craig; Narayan, Kumar; Woods, Juliette; Herczeg, Andrew

    2002-03-01

    Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Résumé. Les eaux souterraines salées et les effluents de drainage de l'irrigation sont stockés dans environ 200 bassins naturels ou artificiels destinés à retenir les eaux salines dans tout le bassin de Murray-Darling, en Australie. Leur impact sur les aquifères sous-jacents et sur la rivière Murray, l'une des principales ressources en eau d'Australie, constitue un problème grave. Dans une telle situation, les eaux souterraines salines sont pompées dans le lac Mourquong, complexe dans lequel les nappes se d

  10. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  11. Sweet pepper production in substrate in response to salinity, nutrient solution management and training system Produção de pimentão cultivado em substrato em resposta à salinidade, manejo da solução nutritiva e sistema de condução

    Directory of Open Access Journals (Sweden)

    José S Rubio

    2011-09-01

    Full Text Available The objective of the present study was to evaluate the marketable fruit yield of sweet pepper plants (Capsicum annuum cv. Orlando in function of the management of nutrient solution with training system. Plants were grown on coconut coir dust under greenhouse conditions in the southeast of Spain. A randomized block design in split-split plot with four blocks was used to test the effect of the nutrient solution strength (full or half-strength Hoagland nutrient solution, training system (two and three stems per plant and water salinity (saline and non-saline on total and marketable yield, fruit quality, and fruit mineral concentration. Salt treatment decreased fruit yield by decreasing the fruit fresh weight but not the number of fruits per plant. Under saline and non-saline conditions, the higher yield of fruits was obtained in plants watered with half-strength Hoagland solution, and grown with three stems per plant. Blossom end rot incidence increased under saline conditions or using full-strength Hoagland solution, but decreased with the combination of half-strength Hoagland solution and three-stem training system. Salt treatment also decreased fruit quality in all the treatments due to a decrease in PO2-, SO4(2-, Fe2+;3+, Cu1+;2+ and Mn2+ concentrations, and fruit shape index. Likewise, plants exposed to salinity and watered with half-strength Hoagland solution and trained with three stems showed a reduction in juice glucose and fructose concentration. Based on these results, an increase of the marketable fruit yield could be obtained under non or moderate saline conditions with the implementation of suitable culture practices.Este experimento teve como objetivo avaliar a produção comercial de pimentão doce (Capsicum annuum cv. Orlando em função do manejo da solução nutritiva, da salinidade e do sistema de condução. As plantas de pimentão doce foram cultivadas em substrato de fibra de coco em casa de vegetação no sudeste da Espanha

  12. Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L. Under Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Souguir, Maher

    2013-04-01

    Full Text Available Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L. under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control and five salinity solution (4,6,8,10 and 12 gl-1. Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions.

  13. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available Cultivars �Okapi�, �SLM046�, �Elite�, �Fornax� and �Licord� Brassica napus were tested for yield and component characters under different levels of salinity. The variations due to salinity levels, cultivars and cultivarxsalinity (interaction were significant for different characters. The variable degrees of increase and decrease of regression coefficient estimate mates (curve estimation showed the performance as influenced by different salinity levels. The performance of Brassica napus variety in plant height and days to first flowering was the best for �SLM046�, �Okapi� �SLM046� and �Okapi� cultivars. �SLM046� showed the best performance in days to maturity, followed by �Licord� and �Elite�. �Okapi� performed better than others regarding the increased number of seeds per plant and seed yield per plant, followed by �Fornax�. Considering all characters, the most tolerance ability was found in �SLM046� and �Okapi�, against different levels of salinity.

  14. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  15. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  16. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    Science.gov (United States)

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  17. RESPONSE OF SPECKLED SPUR-FLOWER TO SALINITY STRESS AND SALICYLIC ACID TREATMENT

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2015-11-01

    Full Text Available One of the limitations to using ornamental plants in green areas is too high salinity and alkalization of the soil. The adverse effect of salinity on plant growth and development may be effectively reduced by application of salicylic acid. Plectranthus ciliatus is an attractive bed plant with ornamental leaves, recommended for growing in containers, hanging baskets, or sunny borders. The aim of this study was to investigate the response of P. ciliatus to salicylic acid and calcium chloride. The plants were grown in pots in a glasshouse and were sprayed with solution of 0.5 mM salicylic acid and watered with 200 mM calcium chloride. The application of salicylic acid resulted in an increased weight of the aboveground parts, higher stomatal conductance and leaf greenness index and enhanced leaf content of nitrogen, potassium, iron and zinc. Salinity-exposed plants were characterized by reduced weight, stomatal conductance and leaf greenness index. Salt stress caused also a drop in leaf content of nitrogen, potassium and iron, and an increase in calcium, sodium, chlorine, copper and manganese concentration. Salicylic acid seemed to relieve salinity-mediated plant stress.

  18. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    Science.gov (United States)

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  19. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  1. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  2. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  3. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  4. Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells

    KAUST Repository

    Cusick, R. D.

    2012-03-01

    Reverse electrodialysis allows for the capture of energy from salinity gradients between salt and fresh waters, but potential applications are currently limited to coastal areas and the need for a large number of membrane pairs. Using salt solutions that could be continuously regenerated with waste heat (≥40°C) and conventional technologies would allow much wider applications of salinity-gradient power production. We used reverse electrodialysis ion-exchange membrane stacks in microbial reverse- electrodialysis cells to efficiently capture salinity-gradient energy from ammonium bicarbonate salt solutions. The maximum power density using acetate reached 5.6 watts per square meter of cathode surface area, which was five times that produced without the dialysis stack, and 3.0 ± 0.05 watts per square meter with domestic wastewater. Maximum energy recovery with acetate reached 30 ± 0.5%.

  5. Valuation of using saline flush technique of contrast medium on abdominal multidetector row CT scanning

    International Nuclear Information System (INIS)

    Zhao Hong; Wang Ying; He Yanli; Liu Xiaobing; Bao Shiliang; Han Mingjun

    2006-01-01

    Objective: The purpose of this study was to compare the enhancement degree of abdomen organs and vessels after different amount of contrast medium using saline flush in abdomen MDCT scanning, which aimed to not affect contrast enhancement, decreased the amount of contrast medium, and reduced the side-effect. Methods: This study group consisted of 75 patients who were referred for contrast enhanced abdominal MDCT for various reasons. Patients were allocated into three groups: injection of 100ml of contrast medium only (A group), injection of 80ml pushed with 20ml of saline solution (B group), and injection of 70ml pushed with 30ml of saline solution (C group). Attenuation values were measured from the liver, spleen, pancreas, kidney, aorta, portal vein, and inferior vena cava in 33 second and 80 second of imaging after injection contrast medium. Results: The portal venous phases of the spleen, pancreas, kidney, aorta, portal vein had statistically significant difference among groups A, B and C. Post hoc test showed statistically significant difference between A group and C group, But no statistically significant difference during the portal venous phases of the pancreas and the kidney between A group and B group. Conclusion: Using a saline flush technique after the injection contrast medium in abdominal MDCT reduced waste of contrast medium and decrease in nephrotoxicity, at the same time, it would not lose important diagnostic information and saved patients cost for the contrast medium. (authors)

  6. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  7. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  8. Selection of an approach for the density determination of high-saline solutions. Report on working package 2. Development of the international status of science and technology concerning methods and tools for operational and long-term safety cases; Auswahl eines Ansatzes zur Bestimmung der Dichte in hochsalinaren Loesungen. Bericht zum Arbeitspaket 2. Weiterentwicklung des internationalen Stands von Wissenschaft und Technik zu Methoden und Werkzeugen fuer Betriebs- und Langzeitsicherheitsnachweise

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kim-Marisa; Moog, Helge C.; Seher, Holger

    2016-09-15

    The report describes the approaches for density determination of low- and high saline solutions using the chemical composition. As an example for a simplified calculation method the procedure implemented in the TOUGH2 code is discussed. The GRS approach and the saline solutions relevant for a final repository are specified. The results of different calculation approaches are compae4d with experimental results.

  9. Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-01-01

    Full Text Available The demand for salinity-tolerant turfgrasses is increasing due to augmented use of effluent or low-quality water (sea water for turf irrigation and the growing turfgrass industry in coastal areas. Experimental plants, grown in plastic pots filled with a mixture of river sand and KOSASR peat (9 : 1, were irrigated with sea water at different dilutions imparting salinity levels of 0, 8, 16, 24, 32, 40, or 48 dS m-1. Salinity tolerance was evaluated on the basis of leaf firing, shoot and root growth reduction, proline content, and relative water content. Paspalum vaginatum was found to be most salt tolerant followed by Zoysia japonica and Zoysia matrella, while Digitaria didactyla, Cynodon dactylon “Tifdwarf,” and Cynodon dactylon “Satiri” were moderately tolerant. The results indicate the importance of turfgrass varietal selection for saline environments.

  10. The Mechanisms of Salinity Tolerance in the Xero-halophyte Blue Panicgrass (Panicum antidotale Retz

    Directory of Open Access Journals (Sweden)

    Hamid R. ESHGHIZADEH

    2012-05-01

    Full Text Available Identifying the physiological traits associated with salt tolerance is important in optimal management of biosaline systems and optimum utilization of saline water resources in dry and saline areas. Therefore, some indices of photosynthetic activity, dry matter production and accumulation of sodium and potassium ions in Blue panicgrass (Panicum antidotale Retz were evaluated in five levels of salinity treatment (0, 70, 140, 210 and 280 mM NaCl solution under greenhouse conditions. The results showed that at 28 and 35 days after salt stress, plant leaf area reduced in the highest salinity treatment, 93 and 96% respectively, compared with control. Leaf stomatal conductance, CO2 fixation and quantum efficiency of photosystem II were decreased by increasing salinity. It caused also a reduction in chlorophyll content (Chl a, Chl b in leaves of Blue panicgrass. Content of carotenoids showed binary patterns to different salinity levels, slightly increased in 70-140 mM NaCl and decreased again in 210-280 mM, respectively. Increasing levels of salinity, increased sodium content in both roots and shoots but the shoots potassium content decreased. Decline in photosynthesis indices caused the reduction of root and shoot dry weight. This decrease resulted from lower leaf area (r=0.91**, lower stomatal conductance (r=0.78**, lower CO2 fixed in photosynthesis (r=0.63**, lower quantum efficiency of photosystem II (r=0.54** and lower Chl a (r=0.45**, respectively. Data analysis base on using stepwise regression introduced leaf area (?=0.560, chlorophyll a content (?=0.245 and shoot potassium content (?= 0.264 as main effective components of salinity tolerance in Blue panicgrass.

  11. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    Science.gov (United States)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  12. Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

    OpenAIRE

    Etienne, Brauns

    2013-01-01

    Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a c...

  13. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  14. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9 allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v as well as other EMI instruments (e.g. DUALEM-421 can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  15. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  16. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  17. Effect of EM Bokashi application on control of secondary soil salinization

    Directory of Open Access Journals (Sweden)

    Shao Xiaohou

    2008-12-01

    Full Text Available In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.

  18. Preoperative Saline Implant Deflation in Revisional Aesthetic Breast Surgery.

    Science.gov (United States)

    Wu, Cindy; Grotting, James C

    2015-09-01

    Preoperative saline deflation is a clinically useful intervention in revisional breast surgery. It allows suspensory ligament recovery, reveals true glandular volume, and simplifies mastopexy markings. Presently unknown are the volumetric changes that occur after deflation. The authors report the three-dimensional (3D) changes that occur with preoperative deflation prior to revisional breast surgery. We reviewed available charts of revisional breast surgery patients who underwent preliminary saline implant deflation. Our protocol is deflation 4 weeks prior to revision. Three weeks following deflation, the patient is evaluated to finalize the operative plan, including the need for implants, mastopexy, and adjunctive procedures. A subset underwent 3D imaging to quantify the volumetric changes over the 3-week deflation period. Between 2002 and 2014, 55 patients underwent saline implant deflation prior to 57 revisional surgeries. Seventeen were revised without implants and 40 with implants. The 3D subset of 10 patients showed a mean 15.2% volume increase and 0.18 cm notch-to-nipple distance decrease over the 3 weeks following deflation and prior to definitive surgical correction. Breast volume increases and the notch-to-nipple distance decreases during the 3-week interval prior to reoperation. This "elastic breast recoil" occurs after the mass effect of the implant is removed, resulting in recovery of stretched suspensory ligaments and gland reexpansion. We believe 4 weeks is optimal for gland normalization. Ideal candidates include patients requiring secondary mastopexy without implants, implant downsizing in the same pocket, and secondary augmentation mastopexy. Preoperative saline deflation and 3D analyses are useful for preoperative planning in reoperative breast surgery. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  19. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  20. High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina

    DEFF Research Database (Denmark)

    Villazán, Beatriz; Salo, Tiina Elina; Brun, Fernando G.

    2015-01-01

    Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect...... of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N...... enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality...

  1. Seed Germination and Physiological Response of Sunflower (Helianthus annuus L. Cultivars under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Carmen BEINSAN

    2018-05-01

    Full Text Available The purpose of the experiment was to highlight the germination of sunflower seeds affected by the presence of saline stress and the identification of tolerant genotypes. The biological material was represented by sunflower cvs. (Helianthus annuus L.: Coril, Select, Santiago and Fundulea-206. To simulate the saline conditions, germination solutions of sodium chloride (NaCl were used with concentrations corresponding to the osmotic pressures -6 and -10 atm and the control seed hydration was performed with distilled water. Determination of seed germination, growth of seedling, percentage of plumules dry matter, chlorophyll content and free proline were performed. The experimental data obtained suppose the existence in the assimilation apparatus of sunflowers seedling subjected to stress a competitive chlorophyll/free proline biosynthesis processes. The experimental results regarding the effect of salinity on seed germination and seedling growth revealed important differences between genotypes. The radicle growth in the germination process were strongly affected by saline excess, with significant differences between cultivars. Saline stress results in significant reductions in the amount of chlorophyll, and high levels of free proline. It can be observed that with the increase of the stress level the percentage of the dry matter increases, indicating an accentuated water deficit.

  2. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  3. Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Mervat Sh. Sadak

    2014-03-01

    Full Text Available Salinity is one of the environmental challenges in the world affecting on several physiological processes and the most limiting factor of plant productivity and quality. Two pot experiments were conducted at the wire house of National Research Centre, Cairo, Egypt during two successive seasons of 2010/2011 and 2011/2012 to assess the efficiency of two antioxidant vitamins (ascorbic acid at 1.13 and 2.27 mM or α tocopherol at 0.46 and 0.93 mM and/or salinity stress at (0.0, 3.08, 6.16, 9.23 ds/m on photosynthetic pigments, protein, carbohydrate, minerals, oil contents and yield as well as fatty acids composition of the yielded oils of three flax cultivars (Sakha 3, Giza 8 and Ariane. The data revealed that salinity stress caused significant and gradual decreases in total photosynthetic pigments, polysaccharides, total carbohydrates, total proteins and the uptake of Mg, K, Ca and P in the leaves of three flax cultivars with increasing salinity levels (3.08, 6.16, 9.23 ds/m. Otherwise, significant and gradual increase appeared in both Na and Cl. Ascorbic acid and α tocopherol at different concentrations caused significant increases in photosynthetic pigments, total carbohydrates and protein contents in the leaves of flax plants irrigated either with tap water or saline solution as compared with their corresponding controls. Exogenous application of ascorbic and α tocopherol at different concentrations exhibited decreases in Na and Cl whereas increases appeared in Mg, K, Ca and P relative to their corresponding control. Ascorbic acid (1.13 and 2.27 mM and α tocopherol (0.46 and 0.93 mM caused marked increases in yield and yield attributes of three flax cultivars either in plants irrigated with tap water or saline solution as compared to corresponding control. Ascorbic acid effects were more pronounced than α tocopherol effects. In addition, the higher level of two vitamins was more pronounced than the lower level. Regarding plants irrigated

  4. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity.

    Science.gov (United States)

    Ramos-Carreño, Santiago; Valencia-Yáñez, Ricardo; Correa-Sandoval, Francisco; Ruíz-García, Noé; Díaz-Herrera, Fernando; Giffard-Mena, Ivone

    2014-09-01

    White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

  5. Smear layer removal capacity of disinfectant solutions used with and without EDTA for the irrigation of canals: a SEM study

    Directory of Open Access Journals (Sweden)

    Menezes Ana Carolina Silveira Cardoso de

    2003-01-01

    Full Text Available The purpose of this study was to carry out a scanning electron microscopic (SEM analysis of the cleaning qualities and smear layer removal from root canal walls, instrumented and irrigated with 2.5% NaOCl, 2.0% chlorhexidine and saline solutions. Fifty extracted teeth were used in this study. All teeth were radiographed to determine the existence of a single canal. The crowns were cut at the cervical limit and the root canals were instrumented with K-type files up to size 45. During root canal preparation, irrigations were made with the different solutions being evaluated: Group 1: 2.5% NaOCl (10 roots; Group 2: 2.5% NaOCl and 17% EDTA for 2 minute (10 roots; Group 3: 2.0% chlorhexidine (10 roots; Group 4: 2.0% chlorhexidine and 17% EDTA for 2 minutes (10 roots; Group 5: saline solution (5 roots; Group 6: saline solution and 17% EDTA for 2 minutes (5 roots. After instrumentation, the canals were irrigated with each one of the solutions and the roots were cut in the buccolingual direction for SEM analysis, at the cervical, middle and apical thirds, to ascertain the presence or absence of smear layer and debris. SEM analysis was performed by three calibrated examiners and scores were submitted to Kruskal-Wallis test at the significance level of p = 5%. Results showed that the use of 17% EDTA decreased the smear layer significantly (p < 0.05 for all evaluated solutions in all thirds. When EDTA was not used, a significantly higher quantity of smear layer on the apical third was observed only in the NaOCl groups. The use of 17% EDTA was significant for debris removal except for the chlorhexidine groups. The following conclusion could be drawn: the use of 17% EDTA was necessary to enhance cleanness of the root canals.

  6. Effect of Organic Matter and Gypsum Powder Some Traits of Maize in a Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    M Khotabaee

    2015-04-01

    Full Text Available Saline-sodic soils have improper physical, chemical and biological condition and the crop productivity is low in these conditions. Application of conditioners often can be a proper solution for reclamation and improving the productivity of saline-sodic soils. In order to study the effect of some conditioners on soil chemical characteristics and yield of maize (SC260 cultivar in a saline-sodic soil, an experiment was carried out as a completely randomized design with 3 replications in a research greenhouse of Ferdowsi university of Mashhad. The studied treatments included control and 10 ton/ha of compost (MC, vermi-compost (VC, poultry manure (PM, and gypsum powder (G. The results showed that poultry manure and vemi-compost treatments increased significantly (p

  7. On the Balancing of the SMOS Ocean Salinity Retrieval Cost Function

    Science.gov (United States)

    Sabia, R.; Camps, A.; Portabella, M.; Talone, M.; Ballabrera, J.; Gourrion, J.; Gabarró, C.; Aretxabaleta, A. L.; Font, J.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission will be launched in mid 2009 to provide synoptic sea surface salinity (SSS) measurements with good temporal resolution [1]. To obtain a proper estimation of the SSS fields derived from the multi-angular brightness temperatures (TB) measured by the Microwave Interferometric Radiometer by Aperture Synthesis (MIRAS) sensor, a comprehensive inversion procedure has been defined [2]. Nevertheless, several salinity retrieval issues remain critical, namely: 1) Scene-dependent bias in the simulated TBs, 2) L-band forward geophysical model function definition, 3) Auxiliary data uncertainties, 4) Constraints in the cost function (inversion), especially in salinity term, and 5) Adequate spatio-temporal averaging. These issues will have to be properly addressed in order to meet the proposed accuracy requirement of the mission: a demanding 0.1 psu (practical salinity units) after averaging in a 30-day and 2°x2° spatio-temporal boxes. The salinity retrieval cost function minimizes the difference between the multi-angular measured SMOS TBs (yet simulated, so far) and the modeled TBs, weighted by the corresponding radiometric noise of the measurements. Furthermore, due to the fact that the minimization problem is both non-linear and ill-posed, background reference terms are needed to nudge the solution and ensuring convergence at the same time [3]. Constraining terms in SSS, sea surface temperature (SST) and wind speed are considered with their respective uncertainties. Moreover, whether SSS constraints have to be included or not as part of the retrieval procedure is still a matter of debate. On one hand, neglecting background reference information on SSS might prevent from retrieving salinity with the prescribed accuracy or at least within reasonable error. Conversely, including constraints in SSS, relying for instance on the climatology, may force the retrieved value to be too close to the reference prior values, thus

  8. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity.

    Science.gov (United States)

    Lau, Clive L F; Jacobs, David K

    2017-01-01

    We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi , the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences) show genotypic (RAG1, microsatellites) evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi . Bayesian group assignment (STRUCTURE) on six microsatellite loci and multivariate analyses (DAPC) on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be altered, impacting

  9. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity

    Directory of Open Access Journals (Sweden)

    Clive L.F. Lau

    2017-12-01

    Full Text Available We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi, the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences show genotypic (RAG1, microsatellites evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi. Bayesian group assignment (STRUCTURE on six microsatellite loci and multivariate analyses (DAPC on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be

  10. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  11. Physiological responses of PEA (Pisum sativum cv. meteor) to irrigation salinity

    International Nuclear Information System (INIS)

    Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Azhar, N.; Shahzad, J.; Ubaidullah

    2008-01-01

    The effects of irrigation water or soil salinity on physiological aspects of pea (Pisum sativum cv.Meteor) were contrived. Ten weeks old pea plants were treated with NaCl at 0, 40, 90 and 140 mM in nutrient solution Plants were grown in controlled environment and harvested at each 3 days interval for decisiveness 0 physiological parameters. Photosynthetic rate, relative water content, stomatal conductance and chlorophyll contents reduced by increasing the NaCI concentration while CO/sub 2/ concentration and free proline content intensified. By experiment it was adumbrated that high salinity level along with prolonged accentuate duration is more drastic to pea plants physiology. Results also exhibited that pea plants could indulge 40 and 90 mM NaCl but are sensitive to 140 mM. (author)

  12. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  13. Plasma membrane and salinity tolerance of barley plants

    International Nuclear Information System (INIS)

    Al-Rahmani, F. H.; Al-Mashhadani, M. S.; Al-Delemee, N. H.

    1997-01-01

    Barley cultivar, California Mario ut, was grown in a nutrient solution containing increasing Nacl concentrations up to 250 mm. The effect of Nacl on growth, mineral compost ion ant integrity of the plasma membrane was studied. Growth of the shoot'and root was stimulated or little affected by 10 and 20 ml Nacl. Further increase in Nacl concentrations depressed the growth. The depression was conspicuous between 100 and 250 mm Nacl. Increasing Nacl concentration decreased potassium content in the shoots and roots and led to steep increase in sodium accumulation. The integrity of the plasma membrane was measured in term of potassium leakage from the root tips. Rapid leakage of potassium was obtained at Nacl concentrations ranging from 100 to 250 mm. At the same concentrations of Nacl, adenosine triphosphatase activity in the root tips was increased. Results indicate that the plasma membrane of root cells was damaged by the increased levels of salinity. It was concluded that the plasma membrane of root cells is the primary site of salinity toxicity. (authors). 40 refs., 5 tabs. 3 figs

  14. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  15. MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF GROWTH AND DEVELOPMENT OF PLANTS IN HIGH SALINITY

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-10-01

    Full Text Available The effect of increasing salinity to the morpho-metric parameters of Salix alba L., which dominated in the coastal areas on rivers of Steppe Dnieper, is investigated. We added Mg as salt MgSO4 * 3H2O in the range of concentration: 0.5, 1.0, 1.5, 2.0 and 2.5 g/l in a solution of willow cuttings. In the solution was added and plant growth regulator "Kornevin" the synthetic origin. The negative effect of salt at a concentration from 1.0 g/l to 2.5 g/l in the dynamics of growth and development was found. The correlation between the size and salinity in dynamics of growth and development of plant were demonstrated: in the growth of shoots (R = 0.83, 0.91 and 0.95, in the growth of roots (R = 0.92, 0.68 and 0.84 respectively depended from salt concentration. The length of the leaf blade was from 4% to 8%, from 7% to 43%, from 333% to 11% (R = 0,68, 0,93, 0,61, depending on the concentration of salt and during observing compared with control (distilled water. "Kornevin" and combined effect of salt increased the length of the leaf blade growth by 4-5, 2-4, 3-5 times, the roots by7 and 3-14 times, the shoots by 3-4, 6-7 and 5-7 times in the dynamics of growth compared with control (MgSO4, 2,5 g/l. The recommendations regarding for the advisability of using the plant growth regulator "Kornevin", as very effective plant growth preparation that promoted rooting and activated physiological processes of plant organism, expressed protective effect in conditions of excessive salinity, were provided. Key words: the morpho-metric index, the plant growth regulators, abiotic factors, salinity factor, the adaptation.

  16. Tea (Camellia sinensis (L.) Kuntze) leaf compost ameliorates the adverse effects of salinity on growth of cluster beans (Cyamopsis tetragonoloba L.)

    International Nuclear Information System (INIS)

    Saeed, R.; Shah, P.; Jahan, B.

    2016-01-01

    The pot experiment was carried out to evaluate the effect of tea compost on plant growth under salinity. Plants were grown in clay pots filled with sandy loam soil and irrigated by saline water (0, 50 and 100mM NaCl) with and without tea compost amendments. Soil evapotranspiration (ET), vegetative and reproductive growth and biochemical parameters were studied in this experiment. ET rate was increased with increasing salinity, whereas, it decreased with application of tea compost under all salinity. Vegetative (shoot height, number of leaves, fresh and dry biomass) and reproductive (number of seeds per plant) growth significantly decline under increasing salinity levels. Tea compost treatment helped in improving all these parameters. Total photosynthetic pigments (chlorophyll a, b, carotenoids and total chlorophyll content) showed reduction under raising salinity levels, while betterment was recorded with application of tea compost. Organic solutes (soluble sugars, proteins, free amino acids and phenolic content) increased with increasing salinity (50-100mM NaCl). Increased soluble sugars were found with tea compost treatment under non-saline control and decreased in salinity. Soluble proteins, amino acids and phenolic content increased with application of tea compost under both control and salinity. It is concluded that tea compost treatment is found to cope with salinity stress and improve plant growth and biochemical parameters by diluting the hazardous effects of salinity. (author)

  17. Investigating groundwater salinity in the Machile-Zambezi Basin (Zambia) with hydrogeophysical methods

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; A. Nyambe, Imasiku; Larsen, Flemming

    resources worldwide. This thesis presents the application of geo-electrical and electromagnetic methods for the investigation of groundwater salinity in the Machile-Zambezi Basin in south western Zambia, southern central Africa. Aerial and ground based transient electromagnetic measurenments were used...... use of direct current and transient electromagnetic data in one optimization. The result from the regional mapping with transient electromagnetic measurenments showed a spatial distribution of electrical resistivity that indicated block faulting in the Machile-Zambezi Basin. Saline groundwater...... parameters. This was for a coupled flow and solute transport model setup for the Kasaya transect under the forcing of evapotranspiration. Performance of the coupled hydrogeophysical inversion was better with the inclusion of direct current data in comparison to the use of transient electromagnetic data alone...

  18. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    Science.gov (United States)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  19. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  20. Reinforcement of spinal anesthesia by epidural injection of saline: a comparison of hyperbaric and isobaric tetracaine.

    Science.gov (United States)

    Yamazaki, Y; Mimura, M; Hazama, K; Namiki, A

    2000-04-25

    An epidural injection of saline was reported to extend spinal anesthesia because of a volume effect. The aim of this study was to evaluate the influence of the baricity of spinal local anesthetics upon the extension of spinal anesthesia by epidural injection of saline. Forty patients undergoing elective lower-limb surgery were randomly allocated to four groups of 10 patients each. Group A received no epidural injection after the spinal administration of hyperbaric tetracaine (dissolved in 10% glucose). Group B received an epidural injection of 8 ml of physiological saline 20 min after spinal hyperbaric tetracaine. Group C received no epidural injection after spinal isobaric tetracaine (dissolved in physiological saline). Group D received an epidural injection of 8 ml of saline 20 min after spinal isobaric tetracaine. The level of analgesia was examined by the pinprick method at 5-min intervals. The levels of analgesia 20 min after spinal anesthesia were significantly higher in hyperbaric groups than in isobaric groups [T5 (T2-L2) vs. T7 (T3-12)]. After epidural injection of saline, the levels of analgesia in groups B and D were significantly higher than in groups A and C. The segmental increases after epidural saline injection were 2 (0-3) in group B and 2 (1-7) in group D. Sensation in the sacral area remained 20 min after spinal block in one patient in group D; however, it disappeared after epidural saline injection. In this study, 8 ml of epidural saline extended spinal analgesia. However, there was no difference between the augmenting effect in isobaric and hyperbaric spinal anesthesia. We conclude that the reinforcement of spinal anesthesia by epidural injection of saline is not affected by the baricity of the spinal anesthetic solution used.

  1. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  2. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  3. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  4. Numerical modeling of persian gulf salinity variations due to tidal effects

    International Nuclear Information System (INIS)

    Sabbagh Yazdi, S.R.

    2004-01-01

    Numerical modeling of salinity changes in marine environment of Persian Gulf is investigated in this paper. Computer simulation of the problem is performed by the solution of a convection-diffusion equation for salinity concentration coupled with the hydrodynamic equations. The hydrodynamic equations consist of shallow water equations of continuity and motion in horizontal plane. The effects of rain and evaporations are considered in the continuity equation and the effects of bed slope and friction, as well as Coriolis effects are considered in two equations of motion. The cell vertex finite volume method is applied for solving the governing equations on triangular unstructured meshes. Using unstructured meshes provides great flexibility for modeling the flow problems in arbitrary and complex geo metrics, such as Persia Gulf domain. The results of evaporation and Coriolis effects, as well as imposing river and tidal boundary conditions to the hydrodynamic model of Persian Gulf (considering variable topology rough bed) are compared with predictions of Admiralty Tide Table, Which are obtained from the harmonic analysis. The performance of the developed computer model is demonstrated by simulation of salinity changes due to inflow effects and diffusion effects as well as computed currents

  5. Physiological responses to salinity in solanum lycopersicum l. varieties

    International Nuclear Information System (INIS)

    Amador, B.M.; Montiel, L.G.H.; Perez, J.J.R.; Puente, E.O.R.

    2017-01-01

    Worldwide over 30% of irrigated and 7% of rainfed agriculture has been limited by salinity stress. Tolerance of crops to salinity varies and negatively affects agricultural productivity. Despite the plethora of information on NaCl tolerance mechanisms, it is still not completely elucidated. The purpose of this research was to determine NaCl tolerance of eight tomato varieties (Tropic, Feroz, Ace, Super Rio Grande, Yaqui, Missouri, Vita and Floradade) by evaluating their physiological traits. These varieties were exposed to salinity stress by the addition of NaCl (0, 50, 100, 150 and 200 mM). The physiological variables measured were stomatal conductance, water potential, chlorophyll a, b, total, indirect chlorophyll content, leaf temperature, transpiration and relative water content. The results showed differences in tolerance between varieties in terms of NaCl concentrations and there was interaction between varieties * NaCl in the majority of physiological variables. Symptoms of NaCl stress in the tomato plants were leaf wilting, desiccation, necrosis, and death. All measured variables decreased as salinity increased, except for relative water content and leaf temperature, values of both these variables increased with higher concentrations of NaCl. Physiological traits may be used as an effective means for screening for salinity tolerance in tomato varieties. Amongst the tomato varieties evaluated were Missouri the most tolerant, and Rio Grande the least tolerant. The results indicate that the varieties best tolerant to NaCl conditions from most to least tolerant in successive orderare: Missouri, followed by Ace, Yaqui, Tropic, Floradade, Feroz, Vita and Rio Grande. (author)

  6. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  7. In Vitro impairment of whole blood coagulation and platelet function by hypertonic saline hydroxyethyl starch

    Directory of Open Access Journals (Sweden)

    Görlinger Klaus

    2011-02-01

    Full Text Available Abstract Background Hypertonic saline hydroxyethyl starch (HH has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH, and 0.9% saline solution (as control were tested in comparable dilutions to estimate specific component effects of HH on coagulation. Methods The study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes®, Fresenius Kabi, Germany, hypertonic saline (HT, 7.2% NaCl, hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany or NaCl 0.9% (ISO in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM after thromboplastin activation without (ExTEM and with inhibition of thrombocyte function by cytochalasin D (FibTEM, the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm] and clotting time (CT, [s]. Platelet aggregation was determined by impedance aggregrometry (Multiplate after activation with thrombin receptor-activating peptide 6 (TRAP and quantified by the area under the aggregation curve (AUC [aggregation units (AU/min]. Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes. Statistics: 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p Results Dilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native to 1.7 ± 2.2 mm (HH 40

  8. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Science.gov (United States)

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Physiological Response to Salinity Stress by Primed Seedsof Three Species of Lawn

    Directory of Open Access Journals (Sweden)

    SH. Sedaghathoor

    2015-03-01

    Full Text Available Salinity is one of the most important ecological stresses which have undesirable effects on seed germination. This study was carried out to evaluate the germination of three species of lawn (Poa pratensis, Lolium perenne, Cynodon dactylon seeds under salinity stress. The effect of different treatments (Gibberellins 50 mgl-1, 2% CaCl2 and hydroprimig in 24 hours was evaluated on total germination, mean daily germination, maximum and mean germination percent in three species of lawn, under four levels of salinity (0, 3, 6, 9 dS/m. Priming factor (Gibberellins and water was more effective than salinity on the seed germination. Among lawn types, Lolium perenne and Cynodon dactylon indicated greater seed germination percentage and germination rate. The least rate and percentage of germination belonged to Poa pratensis. Among priming treatments, gibberellins had the greatest effect on germination, followed by hydropriming. However, interaction effects of "Lolium × CaCl2" were greater than other treatments on the mean daily germination and germination value. Based on the results, seed priming specially Gibberellins could be an appropriate substrate to improve seed germination in lawns, when grown under salinity.

  10. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    Science.gov (United States)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  11. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  12. Salinity modeling by remote sensing in central and southern Iraq

    Science.gov (United States)

    Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.

    2012-12-01

    Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence

  13. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  14. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  15. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  16. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  17. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  18. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    solutions do not suppress NOX2-independent NETosis. Although hypertonic saline partially suppresses ionomycin-induced NETosis, it enhances A23187-induced NETosis, and it does not alter S. aureus-induced NETosis. Overall, this study determined that hypertonic saline suppresses NOX2-dependent NETosis induced by several agonists; in contrast, it has variable effects on neutrophil death induced by NOX2-independent NETosis agonists. These findings are important in understanding the regulation of NETosis and apoptosis in neutrophils.

  19. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  20. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  1. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  2. Osmotic relations of the coelomic fluid and body wall tissues in Arenicola marina subjected to salinity change

    DEFF Research Database (Denmark)

    Weber, Roy E.; Spaargaren, D.H.

    1979-01-01

    nitrogenous organic molecules (ninhydrin-positive substances, NPS) in the body wall tissues and in the coelomic fluid of specimens of Arenicola in response to sudden changes in salinity. The coelomic solutes consist almost entirely of electrolytes and the osmotic contribution of NPS is essentially negligible....... In the body wall extracts, however, NPS accounts for at least one third of the osmotic concentration and for most of the substantial non-electrolyte fraction. There is no evidence from coelomic NPS measurements for extrusion of cellular amino acids during adaptation to lowered salinity. In diluted sea water...

  3. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  4. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    Science.gov (United States)

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya

    2017-08-05

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  6. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  7. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  8. A model of fluid and solute exchange in the human: validation and implications.

    Science.gov (United States)

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  9. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.

    Science.gov (United States)

    Liang, Yinxiu; Zhu, Hui; Bañuelos, Gary; Xu, Yingying; Yan, Baixing; Cheng, Xianwei

    2018-06-07

    This study aims to evaluate the practical potential of using constructed wetlands (CWs) for treating saline wastewater containing various heavy metals. The results demonstrated that CWs growing Canna indica with porous slag as substrate could efficiently remove heavy metals (Cu, Zn, Cd, and Pb) from saline wastewater at an electrical conductivity (EC) of 7 mS/cm, especially under low influent load. Salts with salinity level (characterized as EC) of 30 mS/cm suppressed the removal of some heavy metals, dependent on heavy metal species and their influent concentrations. The presence of salts in CWs can improve the accumulation of Cu, Zn, and Pb in plant tissues as compared to control treatment, irrespective of metal concentrations in solution. The influence of salts on Cd accumulation depended on both salinity levels and Cd concentrations in solution. Although more heavy metals were accumulated in roots than in shoots, the harvesting of aboveground plant materials is still efficient addition for heavy metal removal due to the greater biomass and growth rate of aboveground plant material. Furthermore, replacing all plants instead of preserving roots from harvested plants in CWs over a period of time is essential for heavy metal removal, because the continued accumulation by roots can be inhibited by the increasing accumulated heavy metals from saline wastewater.

  10. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Science.gov (United States)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  11. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    salts from the root zone. Highest carrot yields for the three years were obtained with SWB scheduling technique FI-100, (29.5, 28.7 and 26.8 t/ha although we didn’t find significant differences with the regulated deficit irrigation regime (FI-DI60. Compared to FI-100, significant reductions in carrot yields were observed under DI-80 and DI-60 deficit irrigation treatments resulting from a reduction in roots number/m2 and average root weight. The farmer’s method not only caused significant reductions in yield but also resulted in using 43–57% more water and increased soil salinity. For all irrigation treatments, carrot yields were higher in the first year compared to the two following years. Water productivity (WP values reflected this difference and varied between 3.2 and 9.7 kg/m3. The lowest WP values were observed for the farmer’s method, while the highest values were obtained under DI-60 deficit irrigation treatment. The scheduling technique using SWB with variable doses is more efficient than the traditional technique used by farmers in carrot production. The FI-100 irrigation scheduling seems to optimize the use of saline water in carrot production and to control soil salinity. Under situations of water shortage, adopting deficit irrigation strategies (FI-DI60 and DI-80 could be an alternative for irrigation scheduling of carrot crop under the conditions of Mediterranean arid in southern Tunisia.

  12. Trial of an experimental castor oil solution for cleaning dentures.

    Science.gov (United States)

    Andrade, Ingrid Machado de; Andrade, Kelly Machado de; Pisani, Marina Xavier; Silva-Lovato, Cláudia Helena; de Souza, Raphael Freitas; Paranhos, Helena de Freitas Oliveira

    2014-01-01

    Denture hygiene is essential because denture biofilm is involved in oral infections and systemic diseases. Although there are chemical agents available on the market, none of them have ideal properties and research on such products is still necessary. The aim of this study was to evaluate the efficacy of a castor bean (Ricinus communis)-based solution for removing denture biofilm, compared to two traditional products (sodium hypochlorite and alkaline peroxide). Fifty maxillary complete denture wearers were instructed to brush their dentures after meals and to immerse their dentures once a day in the following solutions: Saline (20 min; control), Polident alkaline peroxide (3 min), NaOCl (20 min) and 2% castor oil solution (20 min). Participants used each solution for a period of 7 consecutive days, according to a random sequence. After each period, the internal surfaces of maxillary complete dentures were stained with a disclosing solution (1% neutral red), photographed and the disclosed biofilm was quantified with the aid of specific software. The influence of treatments on results was verified by the Friedman test (α=0.05). Tested solutions presented significant difference (Fr=51.67; pcastor oil presented intermediate results (median: 1.0% and 1.5%, respectively). It can be concluded that the castor oil solution tested in this study was comparable to alkaline peroxide in terms of efficiency in denture biofilm removal.

  13. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  14. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  15. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  16. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium

    Directory of Open Access Journals (Sweden)

    Ali Ebadi

    2017-11-01

    Full Text Available Bacteria able to produce biosurfactants can use petroleum-based hydrocarbons as a carbon source. Herein, four biosurfactant-producing Pseudomonas aeruginosa strains, isolated from oil-contaminated saline soil, were combined to form a bacterial consortium. The inoculation of the consortium to contaminated soil alleviated the adverse effects of salinity on biodegradation and increased the rate of degradation of petroleum hydrocarbon approximately 30% compared to the rate achieved in non-treated soil. In saline condition, treatment of polluted soil with the consortium led to a significant boost in the activity of dehydrogenase (approximately 2-fold. A lettuce seedling bioassay showed that, following the treatment, the soil's level of phytotoxicity was reduced up to 30% compared to non-treated soil. Treatment with an appropriate bacterial consortium can represent an effective means of reducing the adverse effects of salinity on the microbial degradation of petroleum and thus provides enhancement in the efficiency of microbial remediation of oil-contaminated saline soils.

  17. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  18. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  19. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    Science.gov (United States)

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  20. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  1. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  2. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    Science.gov (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0

  3. Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom

    International Nuclear Information System (INIS)

    Behrendt, Florian F.; Bruners, Philipp; Keil, Sebastian; Plumhans, Cedric; Mahnken, Andreas H.; Das, Marco; Ackermann, Diana; Guenther, Rolf W.; Muehlenbruch, Georg

    2010-01-01

    Purpose: To evaluate the influence of different saline chaser volumes and different saline chaser flow rates on the intravascular contrast enhancement in MDCT. Materials and methods: In a physiological flow phantom contrast medium (120 ml, 300 mgI/ml, Ultravist 300) was administered at a flow rate of 6 ml/s followed by different saline chaser volumes (0, 30, 60 and 90 ml) at the same injection rate or followed by a 30-ml saline chaser at different injection rates (2, 4, 6 and 8 ml/s). Serial CT-scans at a level covering the pulmonary artery, the ascending and the descending aorta replica were obtained. Time-enhancement curves were computed and both pulmonary and aortic peak enhancement and peak time were determined. Results: Compared to contrast medium injection without a saline chaser the pushing with a saline chaser (30, 60, and 90 ml) resulted in a statistically significant increased pulmonary peak enhancement (all p = 0.008) and prolonged peak time (p = 0.032, p = 0.024 and p = 0.008, respectively). Highest aortic peak enhancement values were detected for a saline chaser volume of 30 ml. A saline chaser flow rate of 8 ml/s resulted in the highest pulmonary peak enhancement values compared to flow rates of 2, 4 and 6 ml/s (all p = 0.008). Aortic peak enhancement showed the highest values for a flow rate of 6 ml/s. Conclusion: A saline chaser volume of 30 ml and an injection rate of 6 ml/s are sufficient to best improve vascular contrast enhancement in the pulmonary artery and the aorta in MDCT.

  4. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-González, M. J.; Sánchez-Guerrero, M.C.; Medrano, E.; Porras, M.E.; Baeza, E.J.; Lorenzo, P.

    2016-11-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI), the specific leaf area (SLA), the water use efficiency (WUE), the radiation use efficiency (RUE) and dry weight (DW) accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m) increased fruit firmness (N), total soluble solids content (SSC) and titratable acidity (TA), whereas pH was reduced in the three ripening stages: mature green/breaker (G), turning (T), and pink/light red (P). Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality. (Author)

  5. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil; Myat, Aung; Chun, Won Gee; Ng, Kim Choon

    2013-01-01

    film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film

  6. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient

    International Nuclear Information System (INIS)

    Swarzenski, P.W.; McKee, B.A.; Booth, J.G.

    1995-01-01

    The size distribution of U was examined in surface waters of the Amazon shelf. Water samples were collected during a low discharge river stage across a broad salinity gradient (0.3-35.4%) and fractionated by planar filtration and tangential-flow ultrafiltration into (1) solution (U s , c , 10,000 MW-0.4 μm), (3) dissolved (U d p >0.4 μm) phases. Concentrations of colloidal U comprise up to 92% of the dissolved U fraction at the river mouth and attain highest values (∼0.45 μg/L) in the productive, biogenic region of the Amazon shelf (salinities above ∼20%). U d and U c distributions are highly nonconservative relative to ideal dilution of river water and seawater, indicating extensive removal at salinities below ∼10%. The distribution of U s also shows some nonconservative behavior, yet removal, if any, is minimal. Saltwater-induced precipitation and aggregation of riverine colloidal material is most likely the dominant mechanism of U removal in the low salinity, terrigenous region of the Amazon shelf. There is evident of a substantial colloidal U input (∼245% of the riverine U c flux) into surface waters above 5%. Such U c enrichment most likely is the result of colloidal U-rich porewater diffusion/advection from the seabed and fluid muds or shelf-wide particle-colloid disaggregation. Removal of solution and dissolved phase U via a colloidal intermediate and U c aggregation in terms of coagulation phase U via a colloidal intermediate and U c aggregation was examined in terms of coagulation theory. The high reactive nature of all U phases on the Amazon shelf suggests that remobilization and fractionation of U may also occur in other river-influenced coastal environments

  7. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  8. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  9. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  11. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  12. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  13. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  14. SANS contrast in iota-carrageenan gels and solutions in D2O

    DEFF Research Database (Denmark)

    Mischenko, N.; Denef, B.; Mortensen, K.

    1997-01-01

    SANS of Na+-iota-carrageenan in D2O/saline solutions was measured as a function of concentration, temperature and type of counterions (K+ or Na+). High and low scattering-contrasted gels and solutions were detected. High contrast is caused by aggregation of low-hydrated chains at high concentration...

  15. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  16. Salinity reduces carbon assimilation and the harvest index of cassava plants (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Jailson Lopes Cruz

    2017-08-01

    Full Text Available This study was developed to evaluate the effects of salinity on the growth and gas exchange of cassava plants, cultivar Verdinha. The four concentrations of NaCl (mM were as follows: 0, 20, 40, and 60. Under salinity, the lowest concentration of Na+ ions was observed in the tuberous roots; however, the dry matter of tuberous roots was reduced with an application of just 20 mM NaCl. The harvest index was reduced 50% with the highest salt concentration. Salinity reduced carbon assimilation (A, stomatal conductance (gs, transpiration, and the instantaneous water use efficiency. The correlation between gs and A was high and positive, showing that stomatal movement was one of the responsible for the lower A. Under salt stress, there was an increase in intercellular CO2 concentration, indicating the impairment of carbon metabolism. Based on the reduction of dry matter of the tuberous roots (reduction of 81% under 60 mM NaCl, it was concluded that cassava is sensitive to salinity. The growth of shoots and the absorbing roots were minimally affected by salinity, even in the situation where A was reduced; therefore, the sensitivity of cassava was related to the high sensitivity of the tuberous roots to the ionic and/or osmotic effects of salinity. Thus, tuberous roots can be the target organ in studies that aim to improve the tolerance of cassava to salinity.

  17. Acute Respiratory Distress following Intravenous Injection of an Oil-Steroid Solution

    Directory of Open Access Journals (Sweden)

    Michael Russell

    2011-01-01

    Full Text Available A case of acute respiratory distress and hypoxemia following accidental intravenous injection of an oil-steroid solution in a body builder is presented. Chest roentography at the time of presentation showed diffuse bilateral opacities, and computed tomography revealed predominantly peripheral ground-glass opacifications. The patient’s symptoms gradually improved over 48 h and imaging of the chest was unremarkable one week later. The pathophysiology, diagnosis and treatment of this rare but potentially life-threatening complication of intravenous oil injection are discussed.

  18. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  19. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  20. A randomized controlled trial comparing parenteral normal saline with and without 5% dextrose on the course of labor in nulliparous women.

    Science.gov (United States)

    Sharma, Chanderdeep; Kalra, Jasvinder; Bagga, Rashmi; Kumar, Praveen

    2012-12-01

    The objective of this study was to compare intravenous normal saline with and without 5% dextrose on the course of labor in nulliparous women in active phase of spontaneous labor. In a randomized controlled trial, term, nulliparous women with singleton pregnancy in active labor were randomized into one of two groups receiving either normal saline or normal saline alternating with 5% dextrose at rate of 175 ml/h. The primary outcome was total length of labor from onset of study fluid in vaginally delivered women. Maternal and neonatal outcomes were also analyzed. Of 250 women enrolled, in vaginally delivered subjects, there was significant difference in the duration of labor (p=0.0) and prolonged labor (p=0.01), with favorable results for women in 5% dextrose alternating with normal saline. No statistically significant differences were observed in the cesarean section rates between the groups. The cord pH was significantly higher in neonates born to women in 5% dextrose alternating with normal saline infusion as compared to normal saline alone (p=0.01), however, no neonate in the study had acidemia. Administration of a 5% dextrose solution alternating with normal saline is a better parenteral fluid for significantly decreasing duration of labor in term vaginally delivered nulliparous women in spontaneous active labor as compared to normal saline alone.

  1. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  2. Entanglement dynamics following a sudden quench: An exact solution

    Science.gov (United States)

    Ghosh, Supriyo; Gupta, Kumar S.; Srivastava, Shashi C. L.

    2017-12-01

    We present an exact and fully analytical treatment of the entanglement dynamics for an isolated system of N coupled oscillators following a sudden quench of the system parameters. The system is analyzed using the solutions of the time-dependent Schrodinger's equation, which are obtained by solving the corresponding nonlinear Ermakov equations. The entanglement entropies exhibit a multi-oscillatory behaviour, where the number of dynamically generated time scales increases with N. The harmonic chains exhibit entanglement revival and for larger values of N (> 10), we find near-critical logarithmic scaling for the entanglement entropy, which is modulated by a time-dependent factor. The N = 2 case is equivalent to the two-site Bose-Hubbard model in the tunneling regime, which is amenable to empirical realization in cold-atom systems.

  3. The effect of salinity on seed germination and growth parameters of field pea (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Jovičić Dušica

    2010-01-01

    Full Text Available Field pea (Pisum sativum L. seed contains a large amount of proteins, amino acids, sugars, carbohydrates, vitamins A and C, calcium and phosphorous, and hence it is widely used for many purposes. Although field pea has moderate requirements for its growth, it is sensitive to increased salt content in soil. This research included eight varieties (Javor, Jantar, Partner, Kristal, Pionir, Junior, Trezor, Dukat developed at Institute of Field and Vegetable Crops in Novi Sad. Sodium chloride solutions of various concentrations (0, 50, 100 and 150 mM were added in growing media to simulate saline conditions. The following were subsequently determined: seed germination, seedling length, fresh and dry weight of seedlings and 1000-seed weight. Among the analyzed varieties, variety Jantar expressed a high level of tolerance to increased salt content in growing media under laboratory conditions.

  4. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  5. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    Science.gov (United States)

    Giménez, Luis

    2003-01-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  6. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The effect of chlorpyrifos on salinity acclimation of juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Amiri, Bagher Mojazi; Xu, Elvis Genbo; Kupsco, Allison; Giroux, Marissa; Hoseinzadeh, Mahbubeh; Schlenk, Daniel

    2018-02-01

    As a part of their unique life cycle, most salmonids undergo a transition from fresh water to salt water requiring various adjustments in metabolism, osmoregulation and ion regulation. Exposure to pesticides may affect the acclimation of juvenile salmonids to salt water during downstream migration to estuaries. Using the Caspian Sea as a model waterbody, the present study aimed to determine how the toxicity of the organophosphate pesticide chlorpyrifos (CPF) impacts saline acclimation of rainbow trout (Oncorhynchus mykiss). We pre-exposed 4-month-old fish to nominal concentrations of 0, 20, 40, 80, 160 μg/L of CPF for seven days, and then gradually to salinity (12 ppt) for another seven days. Mortality, levels of cortisol, T3 and T4 in serum, and expression of genes involved in gill ion transport (Na + /K + ATPase α1a and α1b) and liver xenobiotic detoxification (Glutathione-S-Transferase pi, GST) were measured at day fourteen. Cortisol concentrations in serum were not changed by CPF exposure in freshwater, but serum T3 increased up to three fold relative to controls in freshwater. Following salinity acclimation, T3 and T4 concentrations in the serum were both increased up to 2.5 and 8.8 fold in animals treated with CPF followed by saltwater. Na+/K + ATPase α1a and α1b mRNA in gill were unchanged by CPF treatment in freshwater but trended higher in CPF-treated animals after salinity acclimation. Hepatic mRNA of GST was significantly increased following exposure to CPF but was unchanged after saltwater exposure. Although saltwater treatment reduced the acute lethality of CPF, changes in T3/T4 suggest sublethal impacts may occur in CPF-treated fish after they acclimate to Caspian seawater. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of peritoneal cavity lavage with 0.9% and 3.0% saline solution in the lung and spleen of gerbils with induced peritonitis.

    Science.gov (United States)

    Nunes, Vinícius Rodrigues Taranto; Barbuto, Rafael Calvão; Vidigal, Paula Vieira Teixeira; Pena, Guilherme Nogueira; Rocha, Silvia Lunardi; de Siqueira, Lucas Tourinho; Caliari, Marcelo Vidigal; de Araujo, Ivana Duval

    2014-04-01

    Peritoneal cavity lavage is used widely in the treatment of peritonitis. Nonetheless, some studies question its rationale and prove it to be deleterious to the mesothelium. The present study aims to determine whether 0.9% and 3.0% saline lavage of the peritoneal cavity have an effect on the early systemic inflammatory response, namely, in the lung injury and splenic cellularity of gerbils with induced peritonitis. Thirty-four male gerbils were divided into four groups: Control (n=9), submitted to laparotomy at time zero, re-laparotomy after 2 h, and sacrificed after a total of 6 h from start; untreated (n=8), submitted to peritonitis induction through cecal ligation and puncture (CLP) at time zero, re-laparotomy intended for drying of abdominal cavity and resection of the ischemic cecum after 2 h, and sacrifice after a total of 6 h from start; saline (n=8), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm 0.9% saline lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start; and hypertonic (n=9), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm hypertonic saline (3.0%) lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start. After sacrifice, we collected the left lung and the spleen for morphometric analysis. In the both the saline and hypertonic groups, there was significant decrease in the mean nuclei count in the lungs, compared with the untreated group (p0.05). The present study demonstrated that the peritoneal lavage with large volumes of warm 0.9% and 3.0% saline has a beneficial effect on the early systemic inflammatory response in infected animals, modulating and reducing the lung injury but having no effect on splenic cell count.

  9. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  10. Intracuff buffered lidocaine versus saline or air – A comparative ...

    African Journals Online (AJOL)

    ... smoking or recently treated upper respiratory tract infections were randomly assigned into three groups (n = 25), based on the type of endotracheal tube cuff inflation, as follows: Group A (air), Group B (6 ml normal saline) and Group C (6 ml 2% lidocaine + 0.5 ml 7.5% sodium bicarbonate). A second, blinded anaesthetist, ...

  11. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Science.gov (United States)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  12. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Directory of Open Access Journals (Sweden)

    K. Z. Jadoon

    2017-10-01

    Full Text Available A substantial interpretation of electromagnetic induction (EMI measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  13. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    KAUST Repository

    Jadoon, Khan Zaib

    2017-10-26

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes\\' rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  14. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    Science.gov (United States)

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  15. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    International Nuclear Information System (INIS)

    You Chun; Jia Chengxia; Pan Gang

    2010-01-01

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl 2 concentration increased from 0.005 to 0.5 mol L -1 at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl 2 . Maximum irreversibility was found in the sorption systems with CaCl 2 in the concentration of 0.5 mol L -1 . The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  16. Operating room use of hypertonic solutions: a clinical review

    Directory of Open Access Journals (Sweden)

    Gustavo Azoubel

    2008-01-01

    Full Text Available Hyperosmotic-hyperoncotic solutions have been widely used during prehospital care of trauma patients and have shown positive hemodynamic effects. Recently, there has been a growing interest in intra-operative use of hypertonic solutions. We reviewed 30 clinical studies on the use of hypertonic saline solutions during surgeries, with the majority being cardiac surgeries. Reduced positive fluid balance, increased cardiac index, and decreased systemic vascular resistance were the main beneficial effects of using hypertonic solutions in this population. Well-designed clinical trials are highly needed, particularly in aortic aneurysm repair surgeries, where hypertonic solutions have shown many beneficial effects. Examining the immunomodulatory effects of hypertonic solutions should also be a priority in future studies.

  17. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    International Nuclear Information System (INIS)

    Salari Joo, Hamid; Kalbassi, Mohammad Reza; Yu, Il Je; Lee, Ji Hyun; Johari, Seyed Ali

    2013-01-01

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ max of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ max quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following order

  18. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  19. Interactions between globular proteins and F-actin in isotonic saline solution.

    Science.gov (United States)

    Lakatos, S; Minton, A P

    1991-10-05

    Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.

  20. "FOLEY CATHETER CERVICAL RIPENING WITH EXTRAAMNIOTIC INFUSION OF SALINE OR CORTICOSTEROIDS: A DOUBLE-BLIND, RANDOMIZED CONTROLLED STUDY"

    Directory of Open Access Journals (Sweden)

    A.Sh. Zafarghandi

    2004-10-01

    Full Text Available Induction of labor is one of the most common procedures during pregnancy. Various methods for cervical ripening and labor induction have been described in the obstetrics literature; but the role of corticosteroids in the process of labor is not entirely understood. This study challenged the possible role of corticosteroids in induction of labor by extra-amniotic injection through an inflated intracervical Foley balloon catheter. This randomized trial was conducted on 44 women with a single pregnancy, intact membranes, and an unfavorable cervix. They were randomly assigned to receive either 20 mg of dexamethasone in saline solution (study group, n=22 or saline solution only (control group, n=22 administered extra-amniotically through an intracervical inflated Foley balloon catheter. Eighteen (81.8% patients in the study group and 20 (90.9% in the control group entered the active phase of labor and were delivered vaginally. The mean time intervals between induction of labor to the active phase and between induction of labor to delivery were significantly shorter in the study group compared with those of the control group (3.3±2.1 hours vs. 9±4.7 hours, P<0.01, 5.7±3.4 hours vs. 6.9±4.7 hours, P<0.01, respectively. There was no maternal or fetal complication in study or control group. The intracervical Foley balloon catheter with extra-amniotic corticosteroids was more efficient in reducing the induction-to-delivery interval for termination of midtrimester pregnancies than the same Foley catheter with saline solution only. Cervical ripening with extra-amniotic corticosteroids possesses the advantages of simplicity, low cost, and lack of systemic or serious side effects.

  1. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  2. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  3. Cholangitis following percutaneous biliary drainage

    International Nuclear Information System (INIS)

    Audisio, R.A.; Bozzetti, F.; Cozzi, G.; Severini, A.; Belloni, M.; Friggerio, L.F.

    1989-01-01

    The binomial PTBD-cholangitis often stands under different and sometimes even opposite relations. Among its indications the procedure lists, the treatment of cholangitis which, on the other hand, may be itself a complication of biliary drainage. The present work proposes a critical review of cholangitis-PTBD correlations, from an ordinary clinical-radiological point of view. Different pathogenetic hypothesis of cholangitis (inflammation, cholestasis, surgical manipulation) are discussed together with risk factors (impaired macrophagic-phagocytic system, immunosuppresion, wide neoplastic liver involvement, multiple intrahepatic ductal obstructions, chronic liver diseases, aged patients, etc.). The authors also report about prevention and treatment of septic complications which must be carried out following technical and therapeutic strategies, such as chemoprophylaxis and focused antibiotic therapy according to coltural samples, slow injection of small amounts of contrast medium, peripheral branches approach, gentle handling of catheters and guidewires, flushing with saline solutions and brushing of the catheter itself, and finally use of large gauge catheters in the presence of bile sludge

  4. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  5. Clinical application of sodium hyaluronate,levarterenol and indicarmine solution in endoscopic submucosal dissection

    Directory of Open Access Journals (Sweden)

    Fei GAO

    2011-07-01

    Full Text Available Objective To assess the clinical value of sodium hyaluronate,levarterenol and indicarmine solution used in endoscopic submucosal dissection(ESD.Methods Sixteen patients were involved in present study who were diagnosed as precancerous lesion or submucosal tumor in digestive tract by chromoendoscopy and endoscopic ultrasonography from Nov,2010 to Feb,2011 at General Hospital of Shenyang Command.The injected solution was mixed with 0.2% indicarmine 10ml,levarterenol 10mg,sodium hyaluronate 20mg,and 0.9% normal saline 200ml.The liquid pad was formed under the submucosal layer by the injection of the mixture.Hybrid knife was employed to perform the injection,cutting and coagulation with no interruption during the procedure of ESD.Satisfactory degree was assessed,and the total solution volume,success rate,bleeding rate,perforation rate,operation duration,and length of stay in hospital were recorded.The recurrence and healing condition were observed at following-up.Results The length of lesion was 0.8~4.5cm with mean of 2.2cm.The operation duration was 45~240 min with an mean time of 95.4 min.The mean dosage of the mixed solution for submucosal injection was 102.4ml.Success rate of endoscopic submucosal dissection was 87.5%.The satisfactory degree was high.Intractable bleeding occurred in 2 cases with lateral spreading tumor(LST during the procedure,but it was controlled after high temperature coagulation without producing perforation.The dissection surface was covered by aluminum phosphate gel in all cases,and metal clips were applied in some cases for closure.The mean length of stay in hospital after ESD was 3.8 days.Conclusions The mixture of sodium hyaluronate,levarterenol,indicarmine and normal saline,when used for submucosal injection in ESD,is safe and satisfactory.

  6. Soil salinization processes in rice irrigation schemes in the Senegal River Delta

    International Nuclear Information System (INIS)

    Ceuppens, J.; Wopereis, M.C.S.; Miezan, K.M.

    1997-01-01

    Soil salinization constitutes a major threat to irrigated agriculture (mainly rice, Oryza sativa L.) in the Senegal River Delta. It is generally hypothesized that salinization is caused by (i) capillary rise from a saline water table and (ii) concentration of salts in the field due to lack of adequate drainage facilities. The impact of field water management and rice cropping intensity on salinization in the Delta was determined using an electromagnetic conductivity meter (Geonics EM38). More than 4000 measurements were made in 40 rice fields on a typical heavy clay soil (Vertic Xerofluvent). Thirty EM38 measurements per field (0.25 ha) estimated average field soil salinity with a relative error of 20%. A multiple linear regression model based on EM38 readings explained 60 to 75% of the variability in conductivity of 1:5 saturation extracts at 0- to 5-, 10- to 15-, and 30- to 35-cm depths. Higher cropping intensity limited upward salt transport from the water table. Average horizontal and vertical EM38 measurements increased in the following order two rice crops per year with drainage: 0.73 and 0.98 dS m -1 ; one rice crop per year with drainage: 1.26 and 1.76 dS m -1 ; one rice crop per year without drainage: 2.23 and 2.98 dS m -1 ; and abandoned fields: 4.77 and 4.29 dS m -1 . Results indicate a beneficial effect of flooded rice on salinity for this type of heavy clay soil. Irrigation development in the area needs to be accompanied by monitoring of water table depth. (author)

  7. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  8. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  9. Comparative salinity responses among tomato genotypes and rootstocks

    International Nuclear Information System (INIS)

    Oztekin, G.B.; Tuzel, Y.

    2011-01-01

    Salinity is a major constraint limiting agricultural crop productivity in the world. However, plant species and cultivars differ greatly in their response to salinity. This study was conducted in a greenhouse to determine the response of 4 commercial tomato rootstocks, 21 cultivars and 8 candidate varieties to salinity stress. Seeds were germinated in peat and when the plants were at the fifth-true leaf stage, salt treatment was initiated except control treatment. NaCl was added to nutrient solution daily with 25 mM concentration and had been reached to 200 mM final concentration. On harvest day, genotypes were classified based on the severity of leaf symptoms caused by NaCl treatment. After symptom scoring, the plants were harvested and leaf number, root length, stem length and diameter per plant were measured. The plants were separated into shoots and roots for dry matter production. Our results showed that, on average, NaCl stress decreased all parameters and the rootstocks gave the highest performance than genotypes. Among all rootstocks, three varieties (2211 and 2275) and ten genotypes (Astona, Astona RN, Caracas, Deniz, Durinta, Export, Gokce, Target, Yeni Talya and 144 HY) were selected as tolerant with slight chlorosis whereas the genotype Malike was selected as sensitive with severe chlorosis. Candidate varieties 2316 and 1482 were the most sensitive ones. Plant growth and dry matter production differed among the tested genotypes. However no correlation was found between plant growth and dry matter production. Rootstock Beaufort gave the highest shoot dry matter although Heman had highest root dry matter. Newton showed more shoot and root dry matter than other genotypes. It is concluded that screening of genotypes based on severity of symptoms at early stage of development and their dry matter production could be used as a tool to indicate genotypic variation to salt stress. (author)

  10. Can povidone-iodine solution be used safely in a spinal surgery?

    Science.gov (United States)

    Chang, Fang-Yeng; Chang, Ming-Chau; Wang, Shih-Tien; Yu, Wing-Kwang; Liu, Chien-Lin; Chen, Tain-Hsiung

    2006-06-01

    Intra-operative incidental contamination of surgical wounds is not rare. Povidone-iodine solution can be used to disinfect surgical wounds. Although povidone-iodine is a good broad-spectrum disinfecting agent, it has occasionally been reported to have a negative effect on wound healing and bone union. Therefore, its safety in a spinal surgery is unclear. A prospective, single-blinded, randomized study was accordingly conducted to evaluate the safety of povidone-iodine solution in spinal surgeries. Ascertained herein was the effect of wound irrigation with diluted povidone-iodine solution on wound healing, infection rate, fusion status and clinical outcome of spinal surgeries. From January 2002 to August 2003, 244 consecutive cases undergoing primary instrumented lumbosacral posterolateral fusion due to degenerative spinal disorder with segmental instability had been collected and randomly divided into two groups: the study group (120 cases, 212 fusion levels) and the control group (124 cases, 223 fusion levels). Excluded were those patients with a prior spinal surgery, spinal trauma, malignant tumor, infectious spondylitis, rheumatoid arthritis, ankylosing spondylitis, metabolic bone disease, skeletal immaturity or with an immunosuppressive treatment. In the former group, wounds were irrigated with 0.35% povidone-iodine solution followed by normal saline solution just before the bone-grafting and instrumentation procedure. However, only with normal saline solution in the latter. All the operations were done by the same surgeon with a standard technique. All the patients were treated in the same postoperative fashion as well. Later on, wound healing, infection rate, spinal bone fusion and clinical outcome were evaluated in both groups. A significant improvement of back and leg pain scores, modified Japanese Orthopedic Association function scores (JOA) and ambulatory capacity have been observed in both groups. One hundred and seven patients in the study group and one

  11. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    Science.gov (United States)

    LaBaugh, James W.; Rosenberry, Donald O.; Mushet, David M.; Neff, Brian; Nelson, Richard D.; Euliss, Ned H.

    2018-01-01

    Study RegionCottonwood Lake area wetlands, North Dakota, U.S.A.Study FocusFluctuations in pond permanence, size, and salinity are key features of prairie-pothole wetlands that provide a variety of wetland habitats for waterfowl in the northern prairie of North America. Observation of water-level and salinity fluctuations in a semi-permanent wetland pond over a 20-year period, included periods when the wetland occasionally was dry, as well as wetter years when the pond depth and surface extent doubled while volume increased 10 times.New hydrological insights for the study regionCompared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent) but the largest amount (>90 percent) of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  12. The optimal analgesic method in saline infusion sonogram: A comparison of two effective techniques with placebo

    Directory of Open Access Journals (Sweden)

    Sadullah Özkan

    2016-09-01

    Full Text Available Objective: Operations performed with local anesthesia can sometimes be extremely painful and uncomfortable for patients. Our aim was to investigate the optimal analgesic method in saline infusion sonograms.\tMaterials and Methods: This study was performed in our Clinic of Obstetrics and Gynecology between March and August 2011. Ninety-six patients were included. Patients were randomly divided into groups that received saline (controls, group 1, paracervical block (group 2, or paracervical block + intrauterine lidocaine (group 3. In all groups, a visual analogue scale score was performed during the tenaculum placement, while saline was administered, and 30 minutes after the procedure.\tResults: When all the patients were evaluated, the difference in the visual analogue scale scores in premenopausal patients during tenaculum placement, during the saline infusion into the cavity, and 30 minutes following the saline infusion sonography were statistically different between the saline and paracervical block groups, and between the saline and paracervical block + intrauterine lidocaine group. However, there was no statistically significant difference between paracervical block and paracervical block + intrauterine lidocaine groups.\tConclusion: As a result of our study, paracervical block is a safe method to use in premenopausal patients to prevent pain during saline infusion sonography. The addition of intrauterine lidocaine to the paracervical block does not increase the analgesic effect; moreover, it increases the cost and time that the patient stays in the dorsolithotomy position by 3 minutes.

  13. Influence of intramuscular granisetron on experimentally induced muscle pain by acidic saline.

    Science.gov (United States)

    Louca, S; Ernberg, M; Christidis, N

    2013-06-01

    The aim of this study was to investigate whether intramuscular administration of the 5-HT(3) receptor antagonist granisetron reduces experimental muscle pain induced by repeated intramuscular injections of acidic saline into the masseter muscles. Twenty-eight healthy and pain-free volunteers, fourteen women and fourteen men participated in this randomized, double-blind and placebo-controlled study. After a screening examination and registration of the baseline pressure-pain threshold (PPT), the first simultaneous bilateral injections of 0·5 mL acidic saline (9 mg mL(-1) , pH 3·3) into the masseter muscles were performed. Two days later, PPT and pain (VAS) were re-assessed. The masseter muscle was then pre-treated with 0·5 mL granisetron (Kytril(®) 1 mg mL(-1) pH 5·3) on one side and control substance (isotonic saline, 9 mg mL(-1) pH 6) on the contralateral side. Two minutes thereafter a bilateral simultaneous injection of 0·5 mL acidic saline followed. The evoked pain intensity, pain duration, pain area and PPT were assessed. The volunteers returned 1 week later to re-assess VAS and PPT. On the side pre-treated with granisetron, the induced pain had significantly lower intensity and shorter duration (P granisetron on pain duration was significant only in women (P granisetron has a pain-reducing effect on experimentally induced muscle pain by repeated acidic saline injection. © 2013 John Wiley & Sons Ltd.

  14. Stability of uranium(VI) doped CSH phases in high saline water

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Jan-Martin; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    To evaluate the long-term stability of U(VI) doped calcium silicate hydrate (CSH) phases at high saline conditions, leaching experiments with NaCl, NaCl/Na{sub 2}SO{sub 4} and NaCl/NaHCO{sub 3} containing solutions were performed. Time-resolved laser-induced fluorescence spectroscopy (TRLFS), infrared spectroscopy (IR) and X-ray powder diffraction (XRD) were applied to study the U(VI) binding onto the CSH phases and to get a deeper understanding of structural changes due to leaching. Results indicate that neither NaCl nor Na{sub 2}SO{sub 4} affect the structural stability of CSH phases and their retention potential for U(VI). However, carbonate containing solutions lead to a decomposition of CSH phases and thus, to a release of incorporated uranium.

  15. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  16. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  17. Resuscitation from severe hemorrhagic shock after traumatic brain injury using saline, shed blood, or a blood substitute.

    Science.gov (United States)

    Gibson, Jeffrey B; Maxwell, Robert A; Schweitzer, John B; Fabian, Timothy C; Proctor, Kenneth G

    2002-03-01

    The original purpose of this study was to compare initial resuscitation of hemorrhagic hypotension after traumatic brain injury (TBI) with saline and shed blood. Based on those results, the protocol was modified and saline was compared to a blood substitute, diaspirin cross-linked hemoglobin (DCLHb). Two series of experiments were performed in anesthetized and mechanically ventilated (FiO2 = 0.4) pigs (35-45 kg). In Series 1, fluid percussion TBI (6-8 ATM) was followed by a 30% hemorrhage. At 120 min post-TBI, initial resuscitation consisted of either shed blood (n = 7) or a bolus of 3x shed blood volume as saline (n = 13). Saline supplements were then administered to all pigs to maintain a systolic arterial blood pressure (SAP) of >100 mmHg and a heart rate (HR) of 100 mmHg and a HR of CO2 reactivity was preserved with blood vs. saline (all P CO2 reactivity were improved, and ScvO2 was lower with DCLHb vs. saline (P effective than saline for resuscitation of TBI, whereas DCLHb was no more, and according to many variables, less effective than saline resuscitation. These experimental results are comparable to those in a recent multicenter trial using DCLHb for the treatment of severe traumatic shock. Further investigations in similar experimental models might provide some plausible explanations why DCLHb unexpectedly increased mortality in patients.

  18. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  19. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  20. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  1. A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy Fractured Aquifer

    Directory of Open Access Journals (Sweden)

    Costantino Masciopinto

    2016-02-01

    Full Text Available A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50% sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer.

  2. ORAL REHYDRATION THERAPY INTESTINAL INFECTIONS IN CHILDREN, WHICH SOLUTION TO CHOOSE?

    Directory of Open Access Journals (Sweden)

    A. A. Novokshonov

    2015-01-01

    Full Text Available The article presents the data of the literature about the history of the development and introduction into clinical practice the method of oral rehydration, the clinical efficacy of standard hyperosmolar glucose-saline solutions, recommended by WHO and new solutions hyperosmolar ESPGHAN for relief exsicosis (dehydration syndrome in intestinal infections of various etiologies and types of diarrhea in children. 

  3. Bacillus cereus: a competent plant growth promoting bacterium of saline sodic field

    International Nuclear Information System (INIS)

    Hassan, T.; Naz, I.; Hussain, M.

    2018-01-01

    The effects of Bacillus cereus were investigated on wheat in the presence or absence of L-tryptophan, in a saline sodic field. An aqueous solution of L-tryptophan was added to the rhizosphere soil at 1 µg/L, after 8d of seeds germination with irrigated water. The survival efficiency measured as colony forming unit revealed that B. cereus was salt tolerant to rhizosphere soil filtrate and in NaCl. Bio-inoculation of B. cereus significantly decreased Electrical conductivity (EC), Na and Cl contents by 35%, and increased K, NO3-N, P, and organic matter by (25%) over control. Tryptophan addition assisted B. cereus to further decrease Na, Cl, sodium absorption ratio (SAR) and Na/K by 80%. Inoculation of B. cereus alone and with tryptophan significantly increased proline, antioxidant enzymes, phytohormones and yield attributes. The results revealed that tryptophan addition augmented the potential of B. cereus in improving crop growth and productivity which was mediated by the salinity alleviation. (author)

  4. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages.

    Science.gov (United States)

    Scherner, Fernando; Ventura, Robson; Barufi, José Bonomi; Horta, Paulo Antunes

    2013-10-01

    Climate change has increased precipitation in several South American regions leading to higher freshwater inputs into marine systems with potential to cause salinity declines along the coast. The current salinity profile on the southern coast of Brazil was surveyed during four years providing a baseline of the current salinity pattern in the region. Additionally, the effects of salinity decreases on the photosynthesis of the seaweeds Ulva lactuca and Sargassum stenophyllum were investigated in laboratory. Seaweeds were cultured at salinities 5, 15 and 34 and at the mean winter and summer temperatures. Photosynthetic performance was measured following 24 and 96 h from the beginning of experiment. U. lactuca remained practically unaltered by low salinities while S. stenophyllum presented declines of important photosynthetic parameters. This is due to the different regulation abilities of energy distribution at the PSII of the two species. These differences have potential to lead to seaweed community shifts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Morpho-physiological response of Acacia auriculiformis as influenced by seawater induced salinity stress

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.; Rahman, M.; Nihad, S.A.I.; Howlader, R.A.; Akand, M.H.

    2016-07-01

    Aim of the study: To evaluate the morpho-physiological changes of Acacia auriculiformis in response to seawater induced salinity stress along with its tolerance limit. Area of study: Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. Material and methods: Three saline treatments (4, 8, 12 dS m-1) were applied to six-month aged Acacia auriculiformis seedlings from January 2014 to June 2014 and the tap water was used as control treatment. To observe salinity effects, the following parameters were measured by using various established techniques: plant height and leaf number, plant biomass, shoot and root distribution as well as shoot and root density, water uptake capacity (WUC), water saturation deficit (WSD) and water retention capacity (WRC), exudation rate, and cell membrane stability. Main results: Diluted seawater caused a notable reduction in shoot and root distribution in addition to shoot and root density, though plant height, leaf number and plant biomass were found to be decreased to some extent compared to control plants. Water status of the plant also altered when plants were subjected to salinity stress. Nevertheless, membrane stability revealed good findings towards salinity tolerance. Research highlights: Considering the above facts, despite salinity exerts some negative effects on overall plant performance, interestingly the percent reduction value doesn’t exceed 50% as compared to control plants, and the plants were successful to tolerate salinity stress till the end of the experiment (150 days) through adopting some tolerance mechanisms. Abbreviations used: BSMRAU (Bangabandhu Sheikh Mujibur Rahman Agricultural University); RCBD (randomized complete block design); DATI (days after treatment imposition); RWC (relative water content); WUC (water uptake capacity); WSD (water saturation deficit); WRC (water retention capacity); FW (fresh weight); DW (dry weight); TW (turgid weight); ROS (reactive oxygen species). (Author)

  6. Effects of salinity on the physiology of the red macroalga, Acanthophora spicifera (Rhodophyta, Ceramiales

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Pereira

    2017-09-01

    Full Text Available ABSTRACT Salinity is an important abiotic factor since it is responsible for the local and/or regional distribution of algae. In coastal regions, salinity changes with prevailing winds, precipitation and tide, and particularly in extreme intertidal conditions. Acanthophora spicifera is a red seaweed that occurs in the supratidal region in which changes in abiotic conditions occur frequently. This study evaluated the effects of salinity on the metabolism and morphology of A. spicifera. Algae were acclimatized under culture conditions with sterilized seawater for seven days. Experiments used different salinities (15 to 50 psu for seven days, followed by metabolic analyses. This study demonstrates that extreme salinities affect physiological parameters of A. spicifera, such as decrease in growth rate, as well as morphological parameters and concentrations of secondary metabolites. Acanthophora spicifera exhibited high tolerance to 25 to 40 psu, with little change in physiology, which favors the occurrence of this species in diverse environments. However, 15, 20, 45 and 50 psu were the most damaging and led to loss of biomass, depigmentation of apices, and the highest concentrations of antioxidant metabolites. The 50 psu treatment caused the greatest changes in general, greatly reducing a biomass and chlorophyll content, and facilitating the presence of endophytes.

  7. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  8. Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel

    International Nuclear Information System (INIS)

    Bergelson, G.; Nativ, R.; Bein, A.

    1999-01-01

    The mechanism governing salinization of ground water discharging into the Sea of Galilee in Israel has been the subject of debate for several decades. Because the lake provides 25% of the water consumed annually in Israel, correct identification of the salt sources is essential for the establishment of suitable water-management strategies for the lake and the ground water in the surrounding aquifers. Existing salinization models were evaluated in light of available and newly acquired data including general chemistry, and O, H, C and Cl isotopes. Based on the chemical and isotopic observations, the proposed salt source is an ancient, intensively evaporated brine (21- to 33-fold seawater) which percolated through the valley formations from a lake which had formed in the Rift Valley following seawater intrusion during the late Miocene. Low Na:Cl and high Br:Cl values support the extensive evaporation, whereas high Ca:Cl and low Mg:Cl values indicate the impact of dolomitization of the carbonate host rock on the residual solution. Based on radiocarbon and other isotope data, the dilution of the original brine occurred in two stages: the first took place similar30andpuncsp; omitted000 a ago by slightly evaporated fresh-to-brackish lake water to form the Sea of Galilee Brine. The second dilution phase is associated with the current hydrological regime as the Sea of Galilee Brine migrates upward along the Rift faults and mixes with the actively circulating fresh ground water to form the saline springs. The spatially variable chemical and isotopic features of the saline springs suggest not only differential dilution by fresh meteoric water, but also differential percolation timing of the original brine into the tectonically disconnected blocks, registering different evaporation stages in the original brine. Consequently, various operations to reduce the brine contribution to the lake may be differentially effective in the various areas. (Copyright (c) 1999 Elsevier Science

  9. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity.

    Directory of Open Access Journals (Sweden)

    Ulrika Lind

    Full Text Available Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854 (= Amphibalanus improvisus can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2, the aquaglyceroporins (Glp1, Glp2, the unorthodox aquaporin (Aqp12 and the arthropod-specific big brain aquaporin (Bib. Interestingly, we also found two big brain-like proteins (BibL1 and BibL2 constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold decrease in the mantle tissue in low salinity (3

  10. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  11. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  12. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  13. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  14. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  15. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  16. Evaluation of some soil amendments plant productivity under saline conditions using nuclear techniques

    International Nuclear Information System (INIS)

    Aly, E.A.K.

    2004-01-01

    this study was carried out in Wadi Ras Sudr (south Saini government). this location was characterized as poor soil with high salinity (wasteland). in the same time it suffers from shortage of water resources. therefore, we aimed to utilize this soil as well as the saline ground water for introducing it into production systems. the reclamation of virgin poor soil need large efforts and much research, especially plant exposure to salinity which is rapidly followed by a decrease in growth rate. the use of natural organic sources as organic fertilizers improve the growth and yields of plants, and safe the environment from pollution . organic fertilizers (Of) such as green manure (G M) or poultry manure (P M) can be used as nutrient sources for good plant growth, where the soil amendments improve the physical, chemical and biological properties of the soil. economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. also , phosphorus and/or potassium supplementation separately or in combination with O F (G M and/or P M) improved the growth of both barley and wheat plants under such adverse condition of salinity using 15 N isotope dilution technique

  17. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    International Nuclear Information System (INIS)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A.

    1996-01-01

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs

  18. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs.

  19. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  20. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  1. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.

    Science.gov (United States)

    Lysandrou, M; Pashalidis, I

    2008-02-01

    The effect of the matrix composition (main constituents) on the concentration and chemical behavior of uranium in phosphogypsum stack solutions and leachates has been investigated. Solid and aqueous samples were taken from three different sub-areas of a phosphogypsum stack at a coastal area in Vasilikos (Cyprus). The sub-areas are characterized whether by their acidity (e.g. "aged" and "non-aged" phosphogypsum) or by their salt content, originating from pulping water during wet stacking or (after deposition) from the adjacent sea. Measurements in stack solutions and leachates showed that phosphogypsum characteristics affect both, the concentration and the chemical behavior of uranium in solution. Uranium concentration in solutions of increased salinity is up to three orders of magnitude higher than in solutions of low salinity and this is attributed to the effect of ionic strength on the solubility of phosphogypsum. Modelling showed that uranium in stack solutions is predominantly present in the form of uranium(VI) phosphate complexes (e.g. UO(2)(H(2)PO(4))(2), UO(2)HPO(4)), whereas in leachates uranium(VI) fluoro complexes (e.g. UO(2)F(2), UO(2)F(3)(-)) are predominant in solution. The latter indicates that elution of uranium from phosphogypsum takes places most probably in the form of fluoro complexes. Both, effective elution by saline water and direct migration of uranium to the sea, where it forms very stable uranium(VI) carbonato complexes, indicate that the adjacent sea will be the final receptor of uranium released from Vasilikos phosphogypsum.

  2. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  3. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  4. High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica).

    Science.gov (United States)

    Audemard, Corinne; Kator, Howard I; Reece, Kimberly S

    2018-08-20

    High salinity relay of Eastern oysters (Crassostrea virginica) was evaluated as a post-harvest processing (PHP) method for reducing Vibrio vulnificus. This approach relies on the exposure of oysters to natural high salinity waters and preserves a live product compared to previously approved PHPs. Although results of prior studies evaluating high salinity relay as a means to decrease V. vulnificus levels were promising, validation of this method as a PHP following approved guidelines is required. This study was designed to provide data for validation of this method following Food and Drug Administration (FDA) PHP validation guidelines. During each of 3 relay experiments, oysters cultured from 3 different Chesapeake Bay sites of contrasting salinities (10-21 psu) were relayed without acclimation to high salinity waters (31-33 psu) for up to 28 days. Densities of V. vulnificus and densities of total and pathogenic Vibrio parahaemolyticus (as tdh positive strains) were measured using an MPN-quantitative PCR approach. Overall, 9 lots of oysters were relayed with 6 exhibiting initial V. vulnificus >10,000/g. As recommended by the FDA PHP validation guidelines, these lots reached both the 3.52 log reduction and the levels ranged from 2 to 61% after 28 days of relay. Although the identification of the factors implicated in oyster mortality will require further examination, this study strongly supports the validation of high salinity relay as an effective PHP method to reduce levels of V. vulnificus in oysters to endpoint levels approved for human consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Comparison of the antibacterial effect of sodium hypochlorite and aloe vera solutions as root canal irrigants in human extracted teeth contaminated with enterococcus faecalis.

    Science.gov (United States)

    Sahebi, S; Khosravifar, N; Sedighshamsi, M; Motamedifar, M

    2014-03-01

    The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties, but also some negative features. The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Sixty human extracted single rooted teeth were selected for this in vitro study. The teeth recruited in this study had no cracks, internal resorption, external resorption and calcification. Enterococcus faecalis was injected in the root canals of all teeth. The teeth were then divided into three groups randomly. Each group consisted of 20 teeth that were all rinsed with one of the following solutions: sodium hypochlorite 2.5%, Aloe vera and normal saline. Subsequent to rinsing, root canals of all teeth were sampled. The samples were cultured and growth of the bacteria was assessed after 48 hours. The number of colonies of the bacteria was then counted. The difference between the inhibitory effect of Aloe vera and normal saline on E.faecalis was not significant according to independent t-test (p= 0.966). The inhibitory effect of sodium hypochlorite on E.faecalis was much greater than that of Aloe vera and normal saline (pvera solution is not recommended as a root canal irrigator, but future studies are suggested to investigate the antibacterial effect of Aloe vera with longer duration of exposure and as an intra canal medicament.

  6. The distribution and origins of extremely acidic saline groundwaters in the south of Western Australia - Groundwater and digital mapping datasets provide new insights

    Science.gov (United States)

    Lillicrap, Adam M.; Biermann, Vera; George, Richard J.; Gray, David J.; Oldham, Carolyn E.

    2018-01-01

    Some of the largest extents of naturally occurring acidic waters are found across southern Australia. The origins of these systems remain poorly understood with many hypotheses for their genesis. Australian government agency groundwater datasets and mapping data (vegetation, geology, regolith and soils) for south-western Australia, unavailable to previous researchers, were statistically analysed to better understand the origins of acidic groundwater and guide additional fieldwork to study the origins of acidic saline groundwater. The groundwater data showed a distinct bimodal distribution in pH; the 'acid' population had a median pH of 3.5 and the larger 'non-acid' population had a median pH of 6.6. Acidic groundwater became progressively more common further from the coast towards the drier internally drained regions. Acidic groundwater was mostly confined to the lower slopes and valley floors with localised controls on distribution. Paradoxically, subsoil alkalinity within the internally drained inland regions had the strongest correlation with acidic groundwater (r2 = 0.85). Vegetation was also a strong predictor of acidic groundwater. Acidic groundwater had the highest occurrence under Eucalyptus woodlands and shrublands that grew on alkaline calcareous soils. Pre-clearing soil data in areas with acidic saline groundwater showed that the upper 1 m of the unsaturated zone had a pH around 8 while the pH at depths greater than 5 m decreased to calcium is sourced from the deeper profile where the root biota exchanges calcium for hydrogen ions to maintain charge balance. Iron is mobilised from the upper soil profile and concentrates lower in the profile at depths >1.5 m. There, the iron is reduced around roots and the alkalinity generated by microbial iron reduction is removed by biogenic calcification processes. The iron moves in solution further down the profile following roots where it comes in contact with the oxygenated unsaturated zone matrix and is oxidised

  7. Effect of Seed Priming on Growth and Some Physiological Characteristics of Sesame (Sesamum indicum L. under salinity Stress Condition caused by Alkali Salts

    Directory of Open Access Journals (Sweden)

    H. Bekhrad

    2016-02-01

    Full Text Available Introduction Sesame (Sesamun indicum L. is an important oil seed crop. Its seed has excellent nutritional value with a high and unique protein composition, making it a perfect food. Salinity is a serious problem in many regions of the world including Iran. Salinity stress is one of the widespread environmental constraints affecting crop productivity. Salinity generally induces osmotic stress and causes direct ion injury by disrupting ion homeostasis and the ion balance within plant cells (25. Seed priming is one of the ways to reduce negative effects of salt which is used for increasing germination percentage and seed resistance in salty zones. Seed priming is a pre-germination treatment that provides a moisture level sufficient to start pre-germination metabolic processes. It entails the partial germination of seeds by soaking them in water (or in a solution of salts for specified period of time, and then re-dry them just before radicle emerges (24. Priming stimulates many of the metabolic processes involved with the early phases of germination. Given that part of the germination processes have been initiated, seedlings from primed seed grow faster, grow more vigorously, and perform better in adverse conditions (24. The objective of this study was to investigate the effects of salinity stress caused by alkali salts on growth and some physiologic characteristics of sesame. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in randomized complete block design with three replications. Experimental factors included priming (control (unprimed, hydropriming, halopriming with NaCl and NaHCO3 and level of salinity with sodium bicarbonate salt (Zero, 15, 30 and 45 mM. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution (with half strength Hoagland's solution. After the fourth true leaves appeared, salinty stress in

  8. The PHREEQC modeling of CO{sub 2} transport in highly saline solutions of a final radioactive waste repository; PHREEQC. Modellierung des Transportes von CO{sub 2} in hochsalinaren Loesungen eines Endlagers

    Energy Technology Data Exchange (ETDEWEB)

    Weyand, Torben [Bonn Univ. (Germany); Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Bracke, Guido [Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Reichert, Barbara [Bonn Univ. (Germany)

    2014-03-15

    The safe confinement of radioactive materials in the containment providing zone of the host rock (CPRZ) over a period of one million years is required for a final repository for highly radioactive heat-generating waste (BMU 2010). In order to assess the safe containment of radionuclides in the CPRZ a sound understanding of the ongoing processes in a repository is necessary. These processes include the transport and chemical interactions of the radionuclide {sup 14}C in the gas phase and in highly saline solutions in a final repository for radioactive waste. The geochemical code PHREEQC /PAR 13/ was used to study the chemical interactions of CO{sub 2} and {sup 14}C as {sup 14}CO{sub 2} during transport in the gas phase and highly saline solutions. The model and scenario was based on the concept for a repository in Gorleben /BOL 11/. A gas generation of CO{sub 2} containing {sup 14}C was assumed since the disposed containers with the radioactive waste corrode /LAR 13/. The advective transport is triggered by gas generation. The physical dissolution of CO{sub 2}, chemical equilibria with aquatic carbon-containing species (e. g. HCO{sub 3}{sup -}(aq), CO{sub 3}{sup 2-}(aq)) and solid phases (e. g. magnesite, MgCO{sub 3}) coupled with transport were modelled. Due to the addition of dissolved MgCl{sub 2} in the crushed salt backfill of the main drift the aquatic species MgCO{sub 3}(aq) and the mineral MgCO{sub 3}(s) is formed. The influence of CO{sub 2} partial pressure and the chemical interactions in the presence of dissolved Fe{sup 2+}, Ca{sup 2+}, Mg{sup 2+} and K{sup +} were studied. Due to the physical solution, the CO{sub 2} partial pressure has a major influence on the transport of {sup 14}C. In the presence of calcium CaCO{sub 3}(aq), the minerals calcite (CaCO{sub 3}(s)) and dolomite (MgCa(CO{sub 3}){sub 2}(s)) were formed in the highly saline solutions. No siderite (FeCO{sub 3}) in the presence of Fe{sup 2+} was formed. The transport of {sup 14}C was delayed

  9. Effect of NaCl induced salinity on some physiological and agronomic traits of wheat

    International Nuclear Information System (INIS)

    Bilkis, A.; Islam, M.H.R.; Hasan, M.A.

    2016-01-01

    Wheat genotypes were evaluated for salt stress at early seedling stage (solution culture) and maturity (pot culture) at Crop Physiology and Ecology Laboratory, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh. Shoot length, root length, root to shoot length ratio and seedling dry weight of 15 days old seedlings were found to be reduced at 12 dS m-1 salinity level compared to control condition. Based on seedling dry weight Shatabdi, BARI Gom 25, BARI Gom 26, BAW 1111, BAW 1146, BAW 1154 and BAW 1156 were identified as salt tolerant (STI = >0.70); BAW 1130, BAW 1135 and BAW 1142 were salt sensitive (STI = <0.60) and other ten were screened as moderately salt tolerant (STI = 0.60 to 0.70) wheat genotypes. Out of twenty genotypes, two salt tolerant (Shatabdi and BARI Gom 25) and two salt sensitive (BAW 1130 and BAW 1142) wheat genotypes were grown in pot irrigated with three levels of saline water (control, 6 dS m/sup -1/ and 12 dS m/sup -1/). Salt tolerant wheat genotypes maintained lower level of leaf Na, higher level of leaf K, greater K to Na ratio, increased level of flag leaf proline and greater flag leaf SPAD value in saline condition than the sensitive ones. Salt sensitive genotypes affected more in spikes plant-1, grains spike/sup -1/, grain dry weight spike-1, 100 grain weight and grain yield plant-1 under saline condition than salt tolerant genotypes. (author)

  10. The origin of groundwater salinity in granitic rocks: identification and characterisation of chloride sources

    International Nuclear Information System (INIS)

    Savoye, Sebastien

    1998-01-01

    This research thesis aims at clearly identifying the possible origins of chlorine in solution in underground waters in a granitic environment, and is thus a first step in the prediction of concentration of dissolved compounds in waters in crystalline environment, with respect to the geological context. In a first part, the author proposes a synthetic and critical overview of knowledge and previous studies: definition of the term 'salinity', presentation of geochemical tracers, presentation of available data on potential chlorine sources in granitic rocks. The author then describes the experimental protocols and studied sites, reports results of the characterisation of different chlorine tanks performed on samples from each studied site. Based on mass assessment calculations and on the use of tracers, the author finally discusses the contribution of each of the chlorine tanks to the salinity of underground waters [fr

  11. Intraoperative utilization of dexamethasone/bupivacaine/gentamicin solution in laparoscopic assisted vaginal hysterectomy and pain management.

    Science.gov (United States)

    Fulcher, Paul H; Granese, Marsha; Chun, Yoon; Welch, Christine A; Seybold, Dara J; Randall, Gary; DePond, R Todd

    2014-01-01

    Adequately controlling pain is a key component of postoperative care after a hysterectomy. The purpose of this study was to evaluate the effects of two intraperitoneal (IP) administered solutions during Laparoscopic Assisted Vaginal Hysterectomy (LAVH), on the amount of postoperative self-administered morphine. In this prospective, randomized, double blinded study, twenty women undergoing LAVH randomly distributed to two treatment groups: (1) 100 ml dexamethasone/ bupivacaine/ gentamicin (DMG) solution: 60 cc injected vaginally at cuff and 40 cc placed topically via laparoscopy over intra-peritoneal postoperative surfaces (IP) and 5 ml bupivacaine or 5 ml saline injected at the laparoscopic incision sites, (2) 100 ml saline solution: 60 cc injected vaginally at cuff and 40 cc placed topically via laparoscopy over intra-peritoneal postoperative surfaces (IP) and 5 ml bupivacaine or 5 ml saline injected at the laparoscopic incision sites. The amount of morphine utilized by the patients was documented from their patient controlled anesthesia (PCA) pump. Patient parameters recorded included perceived pain score, height, weight, age, race, reason for surgery, pre-surgery medications, American Society of Anesthesiologist (ASA) classification, length of the surgery and estimated blood loss (EBL). Age, EBL, length of surgery, and ASA classification were not significantly different between the groups. The postoperative amount of morphine utilized was higher at 4 (p=.02) and 16 hours (p = .04) and tended to be higher at 8, 12 hours (p=.06), and 24 hours (p=.09) in the saline IP group. Overall the saline IP group (n=10) used (median; range) 21.5; 8-82 mg of morphine while the DMG IP group (n=10) used 10.5; 1-23 mg. No participants reported a postoperative infection. This study demonstrates that intraoperative utilization of DMG solution during LAVH enables patients clinically to have less perceived pain and subsequently tend to utilize about half the amount of morphine

  12. The Making of Salty Soy Sauce From Koro Benguk (Mucuna Pruriens (Study of Saline Concentration of Salt Solution and Duration of Moromi's Fermentation

    Directory of Open Access Journals (Sweden)

    Arie Febrianto Mulyadi

    2016-02-01

    Full Text Available The objectives of this study were to determine the saline concentration and moromi’s fermentation duration of Koro Benguk salty soy sauce at best organolepticly and determine consumers’ preferences towards Koro Benguk salty soy sauce from the best treatment results. The study was conducted using a randomized design method using two factors: the saline concentration (17%; 20%; and 23% and duration of moromi’s fermentation (2; 3; and 4 weeks. The best treatment results based on the Friedman test was on the saline concentration of 17% and moromi’s fermentation duration was 4 weeks, with the NP value of 1,000; had a preference color level of 5:40 (liked; aroma of 4.30 (rather liked; flavor of 4.55 (rather liked; and viscosity of 5.05 (liked. The obtained protein was 7.14%; and dissolved solids of 27obrix. Consumers’ preferences towards the best treatment showed that product of Koro Benguk salty soy sauce was acceptable to consumers.

  13. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  14. Volumetric and viscometric studies of cefepime hydrochloride in water and normal saline from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Li, Yu; Li, Yan-hong; Wang, Fu-an; Ren, Bao-zeng

    2013-01-01

    Graphical abstract: The limiting partial molar volume V ϕ 0 of cefepime hydrochloride in water are positive and increase with increasing temperature. The positive values of V ϕ 0 indicate that the solute–solvent interaction decreases as temperature increases. Highlights: • Density and viscosity of cefepime hydrochloride in water and normal saline has been obtained. • The results show that the model agrees well with the experimental data. • The nature of solute–solute and solute–solvent interactions has been probed. -- Abstract: Density (ρ) and viscosity (η) measurements were carried out for cefepime hydrochloride in water and 0.9 mass % normal saline from (278.15 to 313.15) K. The dependence of density and viscosity on temperature and concentration has been correlated. Apparent molar volumes, standard partial molar volumes, and the viscosity B-coefficient of cefepime hydrochloride were calculated from the experimental measurements. The results are used to establish the nature of solute–solute. Solute–solvent interactions and structure breaking effect of cefepime hydrochloride have been discussed using the Helper equation and the Jones–Dole equation. The relationship between relative changes in viscosity and solute-mixed solvent interaction has been probed

  15. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient; Migration de particules et de solutes en milieu poreux. Modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.

  16. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  17. Temperature and Salinity Effects on Quantitative Raman Spectroscopic Analysis of Dissolved Volatiles Concentration in Geofluids

    Science.gov (United States)

    Wu, X.; Lu, W.

    2017-12-01

    following equation can be used to calculate the relative QF at different temperatures and salinity referencing to the 0 m Cl- aqueous solution at 20 oC: QF(T, salinity)/QF(20 oC, 0 m Cl-)=k(T-20 oC)+b, where a=-0.0035× mCl-1/2+0.00168, b=-0.03× mCl-+1;

  18. A case report on a systemic toxicity following ingestion of 20% chlorhexidine gluconate solution

    Directory of Open Access Journals (Sweden)

    Koiahi-e-Kazerani J

    2003-07-01

    Full Text Available Chlorhexidine is bonded well to the oral mucosa and dental pellicle and is poorly absorbed from the astrointestinal tract, but in high concentration it is absorbed enough to produce liver necrosis. In this case a dentistry student accidentally ingested a shot of 20% chlorhexidine gluconate solution. Treatments included washing the oral cavity with lots of tooth paste, drinking of 5% alginate syrup and ingestion of 5g small pieces of cork .The following adverse effects were experienced: headache, giddiness, mild mist, euphoria, stomachache, diarrhea and complete loss of taste sensation for 8h, which recurred gradually during the last 48 hours. According to the poor absorption, low toxicity and low concentration of conventional mouthwashes, systemic toxicity following drinking of some shots of this solution is rare. Ultimately if may cause gastritis. Other treatments which are helpful in the same cases are: drinking of hard water, kaolin and tragacant syrup, bicarbonates such as baking soda, carbonates such as beverage , citrates such as lemon-juice and chlorides such as brine and so on.

  19. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    Energy Technology Data Exchange (ETDEWEB)

    You Chun; Jia Chengxia [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Pan Gang, E-mail: gpan@rcees.ac.c [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2010-05-15

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl{sub 2} concentration increased from 0.005 to 0.5 mol L{sup -1} at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl{sub 2}. Maximum irreversibility was found in the sorption systems with CaCl{sub 2} in the concentration of 0.5 mol L{sup -1}. The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  20. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system

    Directory of Open Access Journals (Sweden)

    Mohammad Zahirul Islam

    2018-04-01

    Full Text Available ABSTRACT This study was conducted to investigate the effects of nutrient and salinity concentrations on the quality of deepflow technique hydroponic system cultivated cherry tomatoes (Lycopersicon esculentum Mill ‘Unicorn’. The conditions were: (1 control (NS-1 × nutrient Solution, Electrical Conductivity – EC: 2.5 mS∙cm–1; (2 2 × NS (2 × NS-Double NS, EC: 5 mS∙cm–1; (3 NS + 4.23 mM NaCl (NaCl-Sodium Chloride, EC: 5 mS∙cm–1; and (4 NS + 13.70 mM Sea Water – SW (EC: 7.5 mS∙cm–1. NS + 13.70 mM SW treatment showed the lowest fresh weight loss. Visual quality as well as shelf life was the longest in NS (1 × nutrient solution treated tomato fruits. The longest shelf life at 5 °C, 11 °C, and 24 °C were 21, 16, and 8 days, respectively, in NS (1 × nutrient solution treated tomato fruits. The highest firmness was recorded in NS (1 × nutrient solution treated tomato fruits, which was retained after storage. Moreover, NS + 13.70 mM SW treatment increased the cherry tomato fruit’s quality, especially soluble solids and sugar contents. These results indicate that salinity concentration has effect the soluble solids and sugar of cherry tomato fruits. In addition, nutrient concentration influenced the shelf life and firmness of cherry tomato fruits.

  1. Acanthamoeba encystment: multifactorial effects of buffers, biocides, and demulcents present in contact lens care solutions

    Directory of Open Access Journals (Sweden)

    Kovacs CJ

    2015-10-01

    Full Text Available Christopher J Kovacs, Shawn C Lynch, Marjorie J Rah, Kimberly A Millard, Timothy W Morris Bausch & Lomb Incorporated, Rochester, NY, USA Purpose: To determine whether agents which are purportedly capable of inducing encystment of Acanthamoeba can recapitulate the signal when tested in differing formulations. Methods: In accordance with the International Standard ISO 19045, Acanthamoeba castellanii ATCC 50370 trophozoites were cultured in antibiotic-free axenic medium, treated with test solutions, and encystment rates plus viability were measured via bright field and fluorescent microscopy. Test solutions included phosphate-buffered saline (PBS, borate-buffered saline, biguanide- and hydrogen peroxide (H2O2-based biocides, propylene glycol (PG and povidone (POV ophthalmic demulcents, and one-step H2O2-based contact lens disinfection systems. Results: Only PBS solutions with 0.25 ppm polyaminopropyl biguanide (PAPB and increasing concentrations of PG and POV stimulated A. castellanii encystment in a dose-dependent manner, whereas PBS solutions containing 3% H2O2 and increasing concentrations of PG and POV did not stimulate encystment. Borate-buffered saline and PBS/citrate solutions containing PG also did not stimulate encystment. In addition, no encystment was observed after 24 hours, 7 days, or 14 days of exposures of trophozoites to one-step H2O2 contact lens disinfection products or related solutions. Conclusion: The lack of any encystment observed when trophozoites were treated with existing or new one-step H2O2 contact lens care products, as well as when trophozoites were exposed to various related test solutions, confirms that Acanthamoeba encystment is a complex process which depends upon simultaneous contributions of multiple factors including buffers, biocides, and demulcents. Keywords: propylene glycol, contact lens care system, hydrogen peroxide disinfecting solution

  2. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Ding, Lanping; Ma, Yuanyuan; Huang, Bingxin; Chen, Shanwen

    2013-01-01

    This study simulated outdoor environmental living conditions and observed the growth rates and changes of several photosynthetic pigments (Chl a, Car, PE, and PC) in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) by setting up different ranges of salinity (25, 30, 35, 40, 45, and 50) and temperature (15, 20, 25, and 30°C). At conditions of culture, the results are as follows. (1) Changes in salinity and temperature have significant effects on the growth of H. cervicornis. The growth rates first increase then decrease as the temperature increases, while growth tends to decline as salinity increases. The optimum salinity and temperature conditions for growth are 25 and 25°C, respectively. (2) Salinity and temperature have significant or extremely significant effects on photosynthetic pigments (Chl a, Car, PE, and PC) in H. cervicornis. The results of this study are advantageous to ensure propagation and economic development of this species in the southern sea area of China.

  3. Critical osmotic, ionic and physiological indicators of salinity tolerance in cotton (gossypium hirsutum l.) for cultivar selection

    International Nuclear Information System (INIS)

    Munis, M.F.H.; Tu, L.; Ziaf, K; Tan, J.; Deng, F.; Zhang, X.

    2010-01-01

    Salinity affects the germination, growth and ultimately the yield of cotton (Gossypium hirsutum L.) which demands reliable traits for the evaluation and selection of salt tolerant cultivars. Here, ten major osmotic, ionic and physiological parameters have been studied to distinguish the effect of salinity in two different cultivars of cotton. Plants were grown in hydroponic system and exposed to different salinity levels of NaCl followed by its recovery under non saline conditions. Data was recorded at three different stages i.e., before stress, after stress and after recovery for comparative study. Recovery assay proved to be very helpful in extracting reliable results. Both cultivars showed significantly different response to Na+ and K+ accumulation and phenotypically salt tolerant cultivar (Coker 312) accumulated less Na+ and more K+ in comparison with susceptible (Simian 3). Decrease in leaf area, seed germination and seedling growth were also conclusive to differentiate these cultivars. We also found other physiological parameters like relative leaf water content (RLWC), plant fresh-weight (PFW), plant dry-weight (PDW), relative growth rate (RGR) and stomatal behavior as good indicators of salinity but could not find their significant role to differentiate two closely relevant cultivars regarding salinity tolerance. Our studies revealed that proline accumulation and chlorophyll concentration are not significant to be used as accurate indicators to characterize the sensitivity of cotton cultivars to salinity. We found post-recovery analysis to be very useful in understanding the role and behavior of different indicators of salinity. (author)

  4. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  5. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  6. The effect of saline lock on phlebitis rates of patients in cardiac care units.

    Science.gov (United States)

    Eghbali-Babadi, Maryam; Ghadiriyan, Raziyeh; Hosseini, Sayed Mohsen

    2015-01-01

    Despite advances in the field of intravenous therapy, phlebitis is still a common complication of peripheral venous catheter and finding an appropriate solution to prevent and reduce the incidence of this complication remains challenging. One of the methods used in reducing the incidence of phlebitis is the use of saline lock, which is forgotten in most hospitals. Therefore, this study aimed to evaluate its impact on the incidence and severity of phlebitis. In a single-blind (the researcher) clinical trial, 88 patients with peripheral venous catheter admitted in cardiac care units in selected hospitals of Isfahan University of Medical Sciences, Iran, were selected through convenient sampling method. They were randomly divided into two groups of intervention and control groups using random number table. The intervention group received 3 ml of 0.9% normal saline sterilized before and after each intravenous drug or every 12 h. However, in the control group, the intravenous drugs were given as routine and saline lock was not used. The evaluation of intravenous catheter regarding the incidence of phlebitis and its degrees using Jackson's Visual Infusion Phlebitis Scale was performed 6 times within 72 h (every 12 h). Results were evaluated by SPSS software using descriptive statistics, Chi-square test, t-test, and Mann-Whitney test. Results showed that there was a statistically significant difference between the two groups regarding the degree of phlebitis (P = 0.003). The percentage of phlebitis incidence in the control group was 88.6% and in the intervention group was 43.2%. There was a statistically significant difference between the two groups (P phlebitis in the group without saline lock (control), compared to the intervention group, was 10.3 times greater (CI = 95%). The incidence of phlebitis in both groups increased with increase in the duration of catheter placement. The results of this study showed that the use of saline lock in the intervention group compared

  7. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... to become negative below 4.5 psu. We suggest that reduced ability to produce shell material at extremely low salinity may explain dwarfism of mussels in the Baltic Sea. Reduced bio-calcification at low salinity, however, may impede shell growth, but not somatic growth, and this may at first result...

  8. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.

    Science.gov (United States)

    Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris

    2017-07-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.

  9. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy

  10. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    2011-04-01

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  11. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  12. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    Science.gov (United States)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  13. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  14. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  15. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    Science.gov (United States)

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  16. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  17. Germination behavior of Albizia Lebbeck (L. Benth in weakly saline soils in Río Cauto

    Directory of Open Access Journals (Sweden)

    Giosvany Yuriet Oliva Arias

    2013-06-01

    Full Text Available The present study aimed to evaluate the behavior of nursery germination of Albizia lebbeck (L Benth weakly saline soils in the municipality of Río Cauto, Granma Province. The research was conducted in the period from March to June 2012 in the forest nursery Cauto Embarcadero belonging to Río Cauto silvicultural UEB. To determine the germination of the seeds, the germination test performed which consisted in putting to germinate 25 seeds per treatment at 5 for plates with filter paper petris as Treatment 1: added 10 mL of chloride solution sodium (NaCl, adjusted to an electric conductivity of 2 dS m-1 and as treatment 2: a sample pattern with deionized water having an electrical conductivity of 0, 02 dS.m-1 counts were performed daily until the 30 days. The electrical conductivity was measured with the brand portable conductivity meter HANNA HI 9033 multi-range model. Four treatments were studied: a standard with no saline growing medium and three growing media evaluated as weakly saline in a range of 1 to 2 dS m-1. Statistical analysis showed that there were no significant differences between treatments.

  18. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  19. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    Science.gov (United States)

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  20. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of Faba bean plant

    International Nuclear Information System (INIS)

    Abdelhamid, Magdi T; Sadak, Mervat Sh; Schmidhalter, Urs; El Saady, Abdel Kareem M.

    2013-01-01

    solutes concentrations in seeds of salinity treated plants. Nicotinamide not only neutralized the effect of salinity stress but resulted in a significant improvement in physiological and biochemical parameters as well as the concentrations of soluble sugars, proline, amino acids, and total N and other mineral contents.

  1. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  2. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    Science.gov (United States)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths

  3. Intralesional saline injection for effective ultrasound-guided aspiration of benign viscous cystic thyroid nodules

    International Nuclear Information System (INIS)

    Ko, Eun Sook; Shin, Jung Hee; Sung, Jin Yong

    2014-01-01

    We aimed to evaluate the efficacy and safety of vigorous saline injection for viscous cystic thyroid nodules. Eighteen patients who underwent ultrasound-guided aspiration for viscous cystic thyroid nodules using a saline injection were included in our study. After failing to aspirate the cyst by the usual method, we vigorously injected saline into the cyst in multiple directions to break up and liquefy the viscous cystic contents to enable aspiration. The initial and the residual volume of the nodule were calculated, and the volume reduction rate and the time taken to perform the aspiration were recorded. The mean volume of the cystic nodules before aspiration was 11.0 mL (range, 1.2 to 26.0 mL), while the postaspiration volume was 4.2 mL (range, 0.2 to 14.5 mL). The mean aspirated volume was 63.7% of the initial volume. The mean procedure time was 12.4 minutes (range, 5 to 26 minutes). There were no significant complications related to the procedure. A vigorous saline injection followed by aspiration can be a useful method to aspirate viscous cystic thyroid nodules as a prestep for further intervention or simple management.

  4. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  5. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    Science.gov (United States)

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  6. Furfural and its biochar improve the general properties of a saline soil

    Science.gov (United States)

    Wu, Y.; Xu, G.; Shao, H. B.

    2014-07-01

    Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  7. Population specific salinity tolerance in eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Pedersen, Morten Foldager; Boström, Christoffer

    2014-01-01

    and that the lowsaline population is better adapted to hyposaline conditions. Despite the long-term adaptation of the low saline population to stable, low salinity, these plants were still able to function normally in high salinities, indicating remarkable plasticity. The results further suggest that altered salinity...

  8. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  9. Salinity-induced stratification and the onset of hypoxia during the Holocene Thermal Maximum and the Medieval Climate Anomaly

    Science.gov (United States)

    Papadomanolaki, Nina; Dijkstra, Nikki; van Helmond, Niels; Sangiorgi, Francesca; Hagens, Mathilde; Kotthoff, Ulrich; Slomp, Caroline

    2016-04-01

    During the past ~8000 years the Baltic Sea has experienced three distinct intervals of hypoxia, of which the last one is still ongoing. These intervals are characterized by enhanced sedimentary organic matter burial and enrichment of redox-sensitive metals, such as molybdenum and iron. The first two of these intervals occurred during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA), two phases with high temperatures and changed precipitation patterns. Studies focussing on the Holocene sedimentary record of the Baltic Sea aim at clarifying the causes of the initiation, evolution and termination of these hypoxic intervals, as well as their consequences. This information could help to potentially aid in finding solutions for the mitigation of present-day hypoxia in the Baltic Sea. The factors contributing to hypoxia development during the HTM and MCA are still debated. Here we present data from a core retrieved during Integrated Ocean Drilling Program (IODP) Expedition 347 in the Landsort Deep basin, the deepest basin of the Baltic Sea at 463m water depth. Sediments were analysed at a high resolution using inorganic geochemical and (mainly marine) palynological proxies. Dinoflagellate cyst (dinocyst) assemblages and total elemental compositions provide clues on the role of salinity in enhancing stratification, ultimately causing hypoxia. During the onset of the HTM changes in salinity, as indicated by the palynology, closely follow changes in sedimentary organic carbon burial and trace metal concentrations. This suggests that stratification was an important cause of hypoxia during the HTM. In contrast, the palynology suggests that reduced stratification did not contribute to re-oxygenation during the termination of the HTM. We did not observe major changes in the palynology throughout the hypoxic interval of the MCA. Our results thus suggest that changes in salinity did not cause the onset and termination of hypoxia during the MCA.

  10. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  11. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  12. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  13. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  14. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  15. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  16. Comparative Study of Antibacterial and Antifungal Effects of Rigid Gas Permeable Contact Lens Disinfecting Solutions

    OpenAIRE

    Kuzman, Tomislav; Barišić Kutija, Marija; Kordić, Rajko; Popović Suić, Smiljka; Jandroković, Sonja; Škegro, Ivan; Pokupec, Rajko

    2013-01-01

    The aim of this study was to compare antimicrobial efficacy of rigid contact lens disinfecting solutions. We tested five commercially available solutions: Unique pH (Alcon Laboratories), Boston Advance (Polymer Technology Corp.), Nitilens Conditioner GP (Avizor), Total Care (AMO), Boston Simplus (Bausch&Lomb). Their efficacy to disinfect saline solution experimentally contaminated with American Type Culture Collection (ATCC): Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922...

  17. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water

    DEFF Research Database (Denmark)

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-01-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week...... at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast......, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas...

  18. Potential application of metabolic engineering to tune the production of compatible solutes for enhancing tolerance of crop plants to salinity/drought (abstract)

    International Nuclear Information System (INIS)

    Sharmila, P.; Saradhi, P.P.

    2005-01-01

    Essential need to develop genotypes of crop plants that can substantially withstand salinity and drought with little yield losses is being increasingly felt, as the cultivable agricultural lands is increasingly being exposed to these stresses. In-spite of gains in productivity, conventional plant breeding methods have their limitations either due to limited gene pool or due to species barrier for gene transfer. Modern molecular tools have paved ways for identification of genes imparting abiotic stress tolerance in unrelated species/organisms and to transfer the selected genes into desirable crop plant species by conquering the incompatibility barriers. In fact, now genetic engineering has been widely realized to be in important tool for developing abiotic stress tolerant crop plants. Abiotic stress tolerance is a complex phenomenon involving simultaneous expression of a number of genes coupled with an interaction of varying weather variables and crop phonology. However, in order to tackle the issue, successful attempts have been made in identifying genes enhancing abiotic stress tolerance. The genes for biosynthesis of various compatible solutes (viz., mtlD for mannitol: P5CS or P5CSF129A for proline; coda/cox or belA/beIB for glycinebetaine' lpsl for trehalose; PINOI for inositol) have been demonstrated to enhance abiotic stress tolerance of plants. We have isolated the codA gene (Accession number AY589052) for choline oxidase from an Indian strain of Arthrobacter sp. from IMTECH (Chandigarh) and the mtlD genes from local strains of E. coli (accession number A Y523630) and halobacterium sp. (Accession number A Y52363 1). We have enhanced the tolerance of Brassica juncea to salt, drought and low temperature stresses by introducing the codA gene from Arthrobacter globiformis using Agrobacterium tumefaciens mediated transformation. Presenting our research team is busy developing genotypes of chickpea black gram, peanut and sorghum besides mustard with enhanced

  19. Response of Blood Perfusion at ST 36 Acupoint after Drinking Cold Glucose or Saline Injection

    Directory of Open Access Journals (Sweden)

    Guangjun Wang

    2017-01-01

    Full Text Available Skin blood flux (SkBF changes caused by drinking cold water are generally associated with vagal tone and osmotic factors in digestive system. According to acupuncture theory, change of SkBF at ST 36 might reflect the functional changes of digestive system. The aim of this study is to analyze the changes of SkBF after drinking 3°C 0.9% saline or 5% glucose injection by monitor blood flux at bilateral ST 36. The results indicated that, after drinking different cold water, the change ratio of SkBF at right side ST 36 has been different. Because all solutions have the same temperature (3°C and both saline and glucose solution have the same osmolality, suggesting that the SkBF changes resulting from drinking cold water are not regulated just by the vagal tone and osmolality, there must have been other factors. These results have not been consistent with the frequency domain results of heart rate variability (HRV analysis. Coherence analysis of blood flux signals at bilateral ST 36 indicated that there have been different coherence-frequency curves among different groups in special frequency bands, which suggested that coherence analysis might provide a potential tool to evaluate different status.

  20. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    processes (diffusion, gravity current formation, impact of tidal asymmetries, etc.) is balanced by salinity-egress induced by runoff. Here we point out that the salinity field of the estuaries that are located on the coasts of the Indian subcontinent...

  1. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  2. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  3. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  4. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  5. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  6. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  7. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  8. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event

    International Nuclear Information System (INIS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2016-01-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL"−"1, 10ngL"−"1, 2μgL"−"1, 20μgL"−"1) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. - Highlights:

  9. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  10. Synthesis of studies in the fall low-salinity zone of the San Francisco Estuary, September-December 2011

    Science.gov (United States)

    Brown, Larry R.; Baxter, Randall; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven; Erickson, Gregg; Feyrer, Frederick; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce; Kirsch, Joseph; Mueller-Solger, Anke; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Van Nieuwenhuyse, Erwin

    2014-01-01

    In fall 2011, a large-scale investigation (fall low-salinity habitat investigation) was implemented by the Bureau of Reclamation in cooperation with the Interagency Ecological Program to explore hypotheses about the ecological role of low-salinity habitat in the San Francisco Estuary—specifically, hypotheses about the importance of fall low-salinity habitat to the biology of delta smelt Hypomesus transpacificus, a species endemic to the San Francisco Estuary and listed as threatened or endangered under federal and state endangered species legislation. The Interagency Ecological Program is a consortium of 10 agencies that work together to develop a better understanding of the ecology of the Estuary and the effects of the State Water Project and Federal Central Valley Project operations on the physical, chemical, and biological conditions of the San Francisco Estuary. The fall low-salinity habitat investigation constitutes one of the actions stipulated in the Reasonable and Prudent Alternative issued with the 2008 Biological Opinion of the U.S. Fish and Wildlife Service, which called for adaptive management of fall Sacramento-San Joaquin Delta outflow following “wet” and “above normal” water years to alleviate jeopardy to delta smelt and adverse modification of delta smelt critical habitat. The basic hypothesis of the adaptive management of fall low-salinity habitat is that greater outflows move the low-salinity zone (salinity 1–6), an important component of delta smelt habitat, westward and that moving the low-salinity zone westward of its position in the fall of recent years will benefit delta smelt, although the specific mechanisms providing such benefit are uncertain. An adaptive management plan was prepared to guide implementation of the adaptive management of fall low-salinity habitat and to reduce uncertainty. This report has three major objectives:

  11. Immediate Effects of 3% Diquafosol and 0.1% Hyaluronic Acid Ophthalmic Solution on Tear Break-Up Time in Normal Human Eyes.

    Science.gov (United States)

    Nam, Ki Tae; Ahn, So Min; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2015-12-01

    The purpose of this study was to evaluate the immediate effect of 3% diquafosol ophthalmic solution on tear break-up time (TBUT) in normal human eyes, and to compare it with that of saline and 0.1% hyaluronate ophthalmic solution. Cross sectional comparative study in the first study, 10 healthy volunteers underwent topical application of 2 different ophthalmic solutions in each eye. Saline was randomly applied to one eye and 3% diquafosol ophthalmic solution was added to the fellow eye. TBUT was measured and video recorded before application and at 5, 10, 15, and 20 min after. The TBUT in each eye was compared at each time point with regard to the 2 different ophthalmic solutions. In the second study, another 10 healthy volunteers were included. The same methods were used to compare the immediate effects of 0.1% hyaluronate and 3% diquafosol ophthalmic solution application on TBUT. In the first study, topical instillation of saline did not increase TBUT. However, 3% diquafosol significantly increased TBUT for up to 15 min after application. At every time point, the TBUT increased more significantly from baseline in the diquafosol group than it did in the saline group. In the second study, 0.1% hyaluronate increased TBUT for up to 5 min after application, while 3% diquafosol increased TBUT for up to 15 min. Although the TBUT changes after 5 min were not significantly different between the 2 groups, the TBUT changes at 10, 15, and 20 min were significantly greater in the 3% diquafosol group than they were in the 0.1% hyaluronic acid group (+1.58 ± 0.82 vs. +0.53 ± 1.36 at 10 min, +0.67 ± 0.91 vs. -0.04 ± 1.29 at 15 min, and -0.06 ± 0.96 vs. -0.59 ± 0.90, diquafosol group vs. hyaluronic acid group). One drop of 3% diquafosol increased TBUT for up to 15 min after application. The immediate effect of 3% diquafosol on TBUT was greater than that of saline and even that of 1% hyaluronate ophthalmic solution.

  12. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  13. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  14. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  15. Mulching for sustainable use of saline water to grow tomato in sultanate of oman

    International Nuclear Information System (INIS)

    Wahaibi, N.S.A.; Hussain, N.; Rawah, A.A.

    2007-01-01

    Tomato is grown in 991 hectares with production of 44477 tons in the sultanate of Oman. It is very important vegetable crop of Oman oat present being an integral part of daily diet of the people in various from like salad. Ketchup and kitchen cooking. Oman agriculture relies upon groundwater only, a major portion of which is saline that may concentrate further with the ever increasing pumping and probable seawater intrusions. Hence, the use of saline water is inevitable that can ultimately salinized the good productive soils. The production potential of these soils will gradually decrease and sustainability cannot be kept. This study was conducted to manage the saline water for avoiding bad effect on crop yields and soil health. A field experiment was conducted on tomato (Ginan variety) crop. Two mulching materials: organic matter (from date palm residues) and black plastic sheet, were tested in comparison to control (without any mulch). Two saline waters (EC=3 and 6 dSm/sup -1/) were used for irrigation. Uniform dose of fertilizers was applied. Four pickings of tomato were obtained and yield data were recorded EC moisture % age and temperature of soils were recorded after harvesting of crops. It was observed that data palm mulch proved as the most superior in terms of tomato fruit yield and control of increase in soil EC and temperature. It was followed by black plastic mulch. Both types of mulches indicated significant differences over control as well as among each other. (author)

  16. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  17. Hyperkalemia by Euro-Collins solution in anesthesia for renal transplantation: a case report.

    Science.gov (United States)

    Hirata, Eunice Sizue; Pereira, Rosa Inês Costa; Filho, Gentil Alves; Braga, Angélica de Fátima Assunção

    2013-01-01

    To describe anesthesia for renal transplantation that progressed to a sharp potassium increase after kidney reperfusion with Euro-Collins' solution in the operative field. We will also report on diagnosis and treatment used. The use of infusion solutions in the surgical field requires careful monitoring, such as electrocardiography, measurement of serum potassium, and availability of calcium gluconate, insulin, and albuterol for immediate use. The replacement of Euro-Collins' solution for saline solution immediately before the implant may be a useful option in patients with high levels of potassium.

  18. Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation.

    Science.gov (United States)

    Islam, Faisal; Xie, Yuan; Farooq, Muhammad A; Wang, Jian; Yang, Chong; Gill, Rafaqat A; Zhu, Jinwen; Zhou, Weijun

    2018-05-01

    Distinct salinity levels have been reported to enhance plants tolerance to different types of stresses. The aim of this research is to assess the interaction of saline stress and the use of 2,4-D as a means of controlling the growth of Echinochloa crusgalli. The resultant effect of such interaction is vital for a sustainable approach of weed management and food production. The results showed that 2,4-D alone treatment reduces the chlorophyll contents, photosynthetic capacity, enhanced MDA, electrolyte leakage, and ROS production (H 2 O 2 , O 2 ·- ) and inhibited the activities of ROS scavenging enzymes. Further analysis of the ultrastructure of chloroplasts indicated that 2,4-D induced severe damage to the ultrastructure of chloroplasts and thylakoids. Severe saline stress (8 dS m -1 ) followed by mild saline stress treatments (4 dS m -1 ) also reduced the E. crusgalli growth, but had the least impact as compared to the 2,4-D alone treatment. Surprisingly, under combined treatments (salinity + 2,4-D), the phytotoxic effect of 2,4-D was reduced on saline-stressed E. crusgalli plants, especially under mild saline + 2,4-D treatment. This stimulated growth of E. crusgalli is related to the higher activities of enzymatic and non-enzymatic antioxidants and dynamic regulation of IAA, ABA under mild saline + 2,4-D treatment. This shows that 2,4-D efficacy was affected by salinity in a stress intensity-dependent manner, which may result in the need for greater herbicide application rates, additional application times, or more weed control operations required for controlling salt-affected weed.

  19. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbaek; Luckenbach, John Adam; Madsen, Steffen

    2007-01-01

    The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small...... in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed...

  20. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  1. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  2. Effectiveness of injection of local anesthetic into the retrobulbar space for postoperative analgesia following eye enucleation in dogs.

    Science.gov (United States)

    Myrna, Kathern E; Bentley, Ellison; Smith, Lesley J

    2010-07-15

    To assess the efficacy of a retrobulbar bupivacaine nerve block for postoperative analgesia following eye enucleation in dogs. Randomized controlled trial. 22 dogs. Client-owned dogs admitted to the hospital for routine eye enucleation were enrolled with owner consent and randomly assigned to a treatment (bupivacaine hydrochloride) or control (saline [0.9% NaCl] solution) group. Baseline subjective pain scores were recorded. Anesthesia consisted of hydromorphone and midazolam preoperatively, thiopental or propofol for induction, and isoflurane in oxygen for maintenance. An inferior-temporal palpebral retrobulbar injection of either saline solution or bupivacaine was administered. Transpalpebral eye enucleation was performed. Pain scores were recorded at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hours after extubation (time 0) by observers masked to treatment groups. Dogs were given hydromorphone (0.2 mg/kg [0.09 mg/lb], IM or IV) as a rescue analgesic if the subjective pain score totaled >or= 9 (out of a maximum total score of 18) or >or= 3 in any 1 category. 9 of 11 control dogs required a rescue dose of hydromorphone, but only 2 of 11 dogs in the bupivacaine treatment group required rescue analgesia. Mean time to treatment failure (ie, administration of rescue analgesia following extubation) was 0.56 hours (95% confidence interval, 0.029 to 1.095 hours) for the 11 dogs that received hydromorphone. Retrobulbar administration of bupivacaine in dogs in conjunction with traditional premedication prior to eye enucleation was an effective form of adjunctive analgesia and reduced the need for additional postoperative analgesics.

  3. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  4. Chemical behaviour of americium in natural aquatic solutions: Hydrolysis, radiolysis and redox reactions

    International Nuclear Information System (INIS)

    Stadler, S.; Kim, J.I.

    1988-06-01

    Hydrolysis and redox reactions of the Am(III) and Am(V) ions have been investigated in NaClO 4 and NaCl solutions as well as in natural saline groundwaters. The hydrolysis constants of Am(OH) n 3-n species and the solubility product of Am(OH) 3 (s) have been determined in 0.1 M NaClO 4 , 0.1 M NaCl and 0.6 M NaCl solutions. As observed in concentrated NaCl solutions (> 3 M), the α-radiation induces the radiolytic oxidation of the Cl - -ion to produce Cl 2 , HClO, ClO - and other oxidized species, which result in a strongly oxidizing medium. Consequently Am(III) is oxidized to Am(V). Under these conditions the hydrolysis constants of AmO 2 (OH) n 1-n species and the solubility product are also determined. The α-radiation induced radiolysis reactions in NaCl solution and the subsequent oxidation reaction of Am(III) have been systematically investigated by varying pH, NaCl concentration and specific α-activity. Also included in the investigation are a few selected groundwaters of relatively high salinity from the Gorleben aquifer systems. (orig.) [de

  5. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

  6. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

    Science.gov (United States)

    Anderson, Thomas A.; Bestland, Erick A.; Soloninka, Lesja; Wallis, Ilka; Banks, Edward W.; Pichler, Markus

    2017-12-01

    High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (˜800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity `hotspot'. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

  7. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  8. Can saline be an alternative to aesthetic surgery in extended breast quadrantectomy

    International Nuclear Information System (INIS)

    Hadi, Maha S.A. Abdel

    2007-01-01

    Objective was to explore other simpler options sparing the patients the morbidity and cost in extended breast quadrantectomy. This prospective was undertaken at King Fahd Hospital of the University, Al-Khobar Eastern Province of Saudi Arabia between 1999-2005. Factors considered for patients undergoing breast-conserving surgery were based on age, tumor size, pathological characteristics, and patient's preference. Frozen section was adopted in all procedures to insure negative margins. After extended quadrantectomy, 200-400 cc was injected into the cavity to retain breast contour. Magnetic resonance imaging was used for postoperative assessment. Twenty-four patients were included, aged 28-43 years and tumor size 3-5 cms. All margins were negative on frozen section. The contour of the breast was restored with saline, MRI was employed for follow up at the immediate post operative period and at 4-6 months, it demonstrated restored breast contour and the saline filled cavity replaced by lipo-fibrous tissue. Follow up after 4-24 months showed that all patients noticed some degree of asymmetry, yet were satisfied with the result, none required or requested additional surgery. In large issue excision injecting saline into cavities temporarily prevents the caving in of the redundant skin, which has the tendency to permanently adhere to the fascia thereby preventing gross deformities. It has proven effective, contour storing and scored high satisfaction among patients. It certainly does not replace cosmetic breast surgery, however, it should be considered in centers were once-plastic surgery is not readily available. (author)

  9. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  10. Role of abscisic acid and proline in salinity tolerance of wheat genotypes

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Khan, M.J.; Raziuddin; Khan, M.A.

    2011-01-01

    Wheat genotypes were evaluated for salinity tolerance under 3 diverse environments of Yar Hussain, Baboo Dehari (District Swabi KPK Pakistan) and Khitab Koroona (District Charsadda KPK Pakistan). Eleven genotypes (Local, SR-24, SR-25, SR-7, SR-22, SR-4, SR-20, SR-19, SR-2, SR-23 and SR-40) were tested for their salinity tolerance. These locations had different salinity profile (i.e. Yar Hussain, EC. 3-3.5 dS m/sup -1/; Baboo Dehari, EC. 4-4.5 dS m/sup -1/ and Khitab Koroona, EC. 5-5.30 dSm/sup -1/). Different locations and wheat genotypes had a significant (p < 0.05) effect on endogenous shoot proline, shoot ABA (3, 6 and 9 weeks after emergence) and straw yield. Maximum endogenous shoot proline and ABA levels (3, 6 and 9 weeks after emergence) were recorded in genotype SR-40 followed by genotype SR-23. The results further indicated that minimum endogenous shoot proline and ABA concentrations (3, 6 and 9 weeks after emergence) were recorded at Yar Hussain. Maximum endogenous shoot proline and ABA concentration (3, 6 and 9 weeks after emergence) were observed at Khitab Koroona. (author)

  11. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida

    Science.gov (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.

    2016-03-15

    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  12. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  13. Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater

    Science.gov (United States)

    Uchikawa, Joji; Harper, Dustin T.; Penman, Donald E.; Zachos, James C.; Zeebe, Richard E.

    2017-12-01

    R and bulk solution chemistry, molecular-scale processes associated with calcite nucleation can be an important consideration for B incorporation, especially in complex ionic solutions. Lastly, the covariance of B/Ca with [DIC] and salinity observed here qualitatively agrees with those in planktic foraminifers. It follows that their impact on foraminiferal B/Ca is partly inorganically driven, which may explain why the effect is evident across different species.

  14. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  15. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  16. Comparison of two maintenance electrolyte solutions in children in the postoperative appendectomy period: a randomized, controlled trial

    Directory of Open Access Journals (Sweden)

    Maria Clara da Silva Valadão

    2015-09-01

    Conclusions: In the post‐appendectomy period, the use of hypotonic solution (30 mEq/L, 0.18% did not increase the risk of hyponatremia when compared to isotonic saline. The use of isotonic solution (150 mEq/L, 0.9% did not favor hypernatremia in these patients. Children who received hypotonic solution showed higher cumulative fluid balance in the preoperative period.

  17. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    sunny t

    water, 3.5 g of NaCl were dissolved to obtain 3.5 g/l salinity final solution. When the ... The nitrate adsorption was highly pH dependent, which affects the ... adsorption mechanism that the optimum pH for phosphate removal by .... Biosorption of copper(ii) from aqueous ... Accumulation and detoxification of toxic elements by ...

  18. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  19. About the issue of monitoring method of Ararat valley soils salinization

    Directory of Open Access Journals (Sweden)

    A.G. Yeghiazaryan

    2017-12-01

    equation of the ground water level changes has been formed in the result of the solution of which it becomes possible to forecast the elements of the water balance during the vegetation period and thereby to make the regime procedure of “ground water-soil-plant” system predictable and manageable. Keywords: Ground water, Evaporation, Evapo-transpiration, Irrigation, Salinization, Monitoring

  20. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina.

    Science.gov (United States)

    Jayawickreme, Dushmantha H; Santoni, Celina S; Kim, John H; Jobbágy, Esteban G; Jackson, Robert B

    2011-10-01

    Conversions of natural woodlands to agriculture can alter the hydrologic balance, aquifer recharge, and salinity of soils and groundwater in ways that influence productivity and sustainable land use. Using a land-use change chronosequence in semiarid woodlands of Argentina's Espinal province, we examined the distribution of moisture and solutes and estimated recharge rates on adjacent plots of native woodlands and rain-fed agriculture converted 6-90 years previously. Soil coring and geoelectrical profiling confirmed the presence of spatially extensive salt accumulations in dry woodlands and pervasive salt losses in areas converted to agriculture. A 1.1-km-long electrical resistivity transect traversing woodland, 70-year-old agriculture, and woodland, for instance, revealed a low-resistivity (high-salinity) horizon between approximately 3 m and 13 m depth in the woodlands that was virtually absent in the agricultural site because of leaching. Nine-meter-deep soil profiles indicated a 53% increase in soil water storage after 30 or more years of cultivation. Conservative groundwater-recharge estimates based on chloride tracer methods in agricultural plots ranged from approximately 12 to 45 mm/yr, a substantial increase from the led to >95% loss of sulfate and chloride ions from the shallow vadose zone in most agriculture plots. These losses correspond to over 100 Mg of sulfate and chloride salts potentially released to the region's groundwater aquifers through time with each hectare of deforestation, including a capacity to increase groundwater salinity to >4000 mg/L from these ions alone. Similarities between our findings and those of the dryland salinity problems of deforested woodlands in Australia suggest an important warning about the potential ecohydrological risks brought by the current wave of deforestation in the Espinal and other regions of South America and the world.

  1. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn; Cusick, Roland D.; Kim, Younggy; Logan, Bruce E.

    2012-01-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown

  2. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  3. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  4. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  5. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    Science.gov (United States)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical

  6. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  7. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  8. Multi-detector row CT of the head and neck: comparison of different volumes of contrast material with and without a saline chaser

    International Nuclear Information System (INIS)

    Yoon, Dae Young; You, Su Yeon; Choi, Chul Soon; Chang, Suk Ki; Yun, Eun Joo; Seo, Young Lan; Park, Sang Joon; Lee, Yu-Jin; Moon, Jeung Hee; Rho, Young-Soo; Kim, Jin-Hwan

    2006-01-01

    The aim of this study was to determine the effect of different volumes of contrast material with and without a saline chaser on tissue enhancement in multidetector row CT (MDCT) of the head and neck. In a blind prospective fashion, 120 patients were randomized into the following four groups: group 1, 80 ml contrast material administered at a flow rate of 2.0 ml/s; group 2, 80 ml followed by 40 ml saline at 2.0 ml/s; group 3, 60 ml at 1.5 ml/s; and group 4, 60 ml followed by 30 ml saline at 1.5 ml/s. The attenuation values of the carotid artery, internal jugular vein, and muscle were measured at an interval of 1.5 s in each patient. The degree of perivenous artifacts was subjectively assessed. Mean attenuation values in the carotid artery and internal jugular vein were significantly higher in groups 1 and 2 than in groups 3 and 4. The width of the diagnostic window (both carotid and jugular enhancement >150 HU) were significantly longer in groups 1 and 2 than in groups 3 and 4. The addition of a saline chaser did not result in improved vascular enhancement or a wider diagnostic window, but reduced perivenous artifacts, compared with using contrast material alone. Reduction of contrast material from 80 to 60 ml results in insufficient enhancement of neck vessels. In addition, the benefit of a saline chaser technique is not obvious except for its ability to reduce perivenous artifacts. (orig.)

  9. 76 FR 60455 - The White House Council for Community Solutions Gives Notice of Their Following Meeting

    Science.gov (United States)

    2011-09-29

    ... CORPORATION FOR NATIONAL AND COMMUNITY SERVICE Sunshine Act Meeting Notice The White House Council for Community Solutions Gives Notice of Their Following Meeting DATE AND TIME: Friday, October 14, 2011, 9 a.m.-12:30 p.m. Eastern Daylight Time. PLACE: The Council will meet in the Eisenhower Executive...

  10. Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Yueru Wang

    Full Text Available Glutamate dehydrogenase (GDH is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA changes in muscle, under acute salinity stress (16‰ and 30‰ salinities, correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at

  11. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  12. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): a participatory approach

    Science.gov (United States)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2016-02-01

    Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.

  13. Growth and ion accumulation in dwarf cashew plants at different times of salinity exposure

    Directory of Open Access Journals (Sweden)

    Valdineia Soares Freitas

    2013-12-01

    Full Text Available This work aimed to evaluate the influence of salt stress exposition on growth and ion accumulation in dwarf cashew plants. For this purpose, cashew nuts (CCP 06 clone were sown in plastic trays containing vermiculite moistened with nutrient solution containing NaCl with electrical conductivities ranging from 0.0 to 18.0 dS m-1. Plants were harvested after 30 and 60 days under salt stress. It was determined the shoot dry masses (SDM and root (RDM, the SDM/RDM ratio, Na+, K+, Cl- and NO3 - contents and the Na+ and Cl- fluxes for whole plant in the period between two times of exposure to salt stress. The cashew growth was affected by salinity and by the exposure time to this stress, and the plants subjected to 60 days of stress were the most affected by NaCl. The Na+ and Cl- contents increased in all plant tissues, while the NO3 - content was reduced and K+ content has not changed by salinity. The Na+ and Cl-fluxes increased with salinity; however Cl- seemed to be more harmful to plants, since this ion has been absorbed in a higher ratio than Na+. The growth reduction in dwarf cashew is intensified when exposure to salt stress is longer and it is more associated with uptake and excessive accumulation of Cl- than Na+.

  14. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  15. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  16. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  17. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  18. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  19. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  20. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P