WorldWideScience

Sample records for saline soils

  1. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  3. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  4. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  5. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  6. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  7. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  8. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  9. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale

    Directory of Open Access Journals (Sweden)

    Elia Scudiero

    2016-10-01

    Full Text Available Soil salinity undermines global agriculture by reducing crop yield and impairing soil quality. Irrigation management can help control salinity levels within the soil root-zone. To best manage water and soil resources, accurate regional-scale inventories of soil salinity are needed. The past decade has seen several successful applications of soil salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment based on analysis of surface soil reflectance (the most popular approach, and indirect assessment of root-zone (e.g., 0-1 m soil salinity based on analysis of crop canopy reflectance. In this perspective paper, we call on researchers and funding agencies to pay greater attention to the indirect approach because it is better suited for surveying agriculturally important lands. A joint effort between agricultural producers, irrigation specialists, environmental scientists, and policy makers is needed to better manage saline agricultural soils, especially because of projected future water scarcity in arid and semi-arid irrigated areas. The remote sensing community should focus on providing the best tools for mapping and monitoring salinity in such areas, which are of vital relevance to global food production.

  10. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  11. Spatiotemporal Distribution of Soil Moisture and Salinity in the Taklimakan Desert Highway Shelterbelt

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2015-08-01

    Full Text Available Salinization and secondary salinization often appear after irrigation with saline water. The Taklimakan Desert Highway Shelterbelt has been irrigated with saline ground water for more than ten years; however, soil salinity in the shelterbelt has not been evaluated. The objective of this study was to analyze the spatial and temporal distribution of soil moisture and salinity in the shelterbelt system. Using a non-uniform grid method, soil samples were collected every two days during one ten-day irrigation cycle in July 2014 and one day in spring, summer, and autumn. The results indicated that soil moisture declined linearly with time during the irrigation cycle. Soil moisture was greatest in the southern and eastern sections of the study area. In contrast to soil moisture, soil electrical conductivity increased from 2 to 6 days after irrigation, and then gradually decreased from 6 to 8 days after irrigation. Soil moisture was the greatest in spring and the least in summer. In contrast, soil salinity increased from spring to autumn. Long time drip-irrigation with saline groundwater increased soil salinity slightly. The soil salt content was closely associated with soil texture. The current soil salt content did not affect plant growth, however, the soil in the shelterbelt should be continuously monitored to prevent salinization in the future.

  12. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  13. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    Science.gov (United States)

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  14. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  15. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  16. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China

    Science.gov (United States)

    Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue

    2018-02-01

    In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.

  17. Cellulolytic activity of some cellulose-decomposing fungi in salinized soils

    Directory of Open Access Journals (Sweden)

    R. A. Badran

    2014-08-01

    Full Text Available Maximum evolution of CO2 was marked in control soil inoculated by tested fungi but its rate decreased with the increasing salinity. The period of 10 days was most suitable for cellulose degradation by A. niger and P. chrysoecnum and 15 days by A. flavus and C. globosum in control soil. High salinity levels affected greatly the cellulolylic activities of tesled fungi. Carbon content of saline soils increased white the nitrogen content decreased.

  18. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    Science.gov (United States)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  19. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  20. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    Science.gov (United States)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  1. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  2. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    OpenAIRE

    Masoud Noshadi; Hosein Valizadeh

    2017-01-01

    Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant o...

  3. Modelling soil salinity in Oued El Abid watershed, Morocco

    Science.gov (United States)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  4. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  5. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  6. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  7. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China

    Directory of Open Access Journals (Sweden)

    Jumeniyaz Seydehmet

    2018-02-01

    Full Text Available Significant anthropogenic and biophysical changes have caused fluctuations in the soil salinization area of the Keriya Oasis in China. The Driver-Pressure-State-Impact-Response (DPSIR sustainability framework and Bayesian networks (BNs were used to integrate information from anthropogenic and natural systems to model the trend of secondary soil salinization. The developed model predicted that light salinization (vegetation coverage of around 15–20%, soil salt 5–10 g/kg of the ecotone will increase in the near term but decelerate slightly in the future, and that farmland salinization will decrease in the near term. This trend is expected to accelerate in the future. Both trends are attributed to decreased water logging, increased groundwater exploitation, and decreased ratio of evaporation/precipitation. In contrast, severe salinization (vegetation coverage of around 2%, soil salt ≥20 g/kg of the ecotone will increase in the near term. This trend will accelerate in the future because decreased river flow will reduce the flushing of severely salinized soil crust. Anthropogenic factors have negative impacts and natural causes have positive impacts on light salinization of ecotones. In situations involving severe farmland salinization, anthropogenic factors have persistent negative impacts.

  8. The Effects of Biochar on Germination and Growth of Wheat in Different Saline-alkali Soil

    Institute of Scientific and Technical Information of China (English)

    Guijun; WANG; Zhenwen; XU

    2013-01-01

    Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil’s saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.

  9. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China.

    Science.gov (United States)

    Wang, Yugang; Deng, Caiyun; Liu, Yan; Niu, Ziru; Li, Yan

    2018-04-15

    Soil salinity accumulation is strong in arid areas and it has become a serious environmental problem. Knowledge of the process and spatial changes of accumulated salinity in soil can provide an insight into the spatial patterns of soil salinity accumulation. This is especially useful for estimating the spatial transport of soil salinity at the watershed scale. This study aimed to identify spatial patterns of salt accumulation in the top 20cm soils in a typical inland watershed, the Sangong River watershed in arid northwest China, using geostatistics, spatial analysis technology and the Lorenz curve. The results showed that: (1) soil salt content had great spatial variability (coefficient variation >1.0) in both in 1982 and 2015, and about 56% of the studied area experienced transition the degree of soil salt content from one class to another during 1982-2015. (2) Lorenz curves describing the proportions of soil salinity accumulation (SSA) identified that the boundary between soil salinity migration and accumulation regions was 24.3m lower in 2015 than in 1982, suggesting a spatio-temporal inequality in loading of the soil salinity transport region, indicating significant migration of soil salinity from the upstream to the downstream watershed. (3) Regardless of migration or accumulation region, the mean value of SSA per unit area was 0.17kg/m 2 higher in 2015 than 1982 (pwatershed during the studied period in the arid northwest of China. This study demonstrates the spatial patterns of soil salinity accumulation, which is particularly useful for estimating the spatial transport of soil salinity at the watershed scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  11. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2017-02-01

    Full Text Available Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant on the control of soil salinity and soil reclamation.The experimental design was randomized complete block design. Irrigation water salinities were 0.68(blank, 2, 4, 6, 8 and 10 dS/m, respectively, which artificially were constructed using sodium chloride and calcium chloride. At first, vetiver was transplanted and then moved to the farm. The amount of soil moisture was measured by the neutron probe. Irrigation depth was applied to refill soil water deficit up to field capacity. To evaluate the soil salinity in above salinity treatments, soil was sampled in each plot from 0-30, 30-60 and 60-90 cm depths and for each layer, electrical conductivity of saturated extract (ECe, sodium, potassium and chloride concentrations was measured .To measure the sodium, potassium and chloride concentrations in the leaves and roots of vetiver plant, samples were dried in oven. The dried samples were powdered and passed through the sieve (No. 200 and they were reduced to ash in 250 ◦C. 5 ml HCl was added to one gram of the ash, and after passing through filter paper, the volume of sample was brought to 50 ml by boiled distilled water. After preparing plant samples, the sodium, potassium and chloride concentrations were measured by Flame Photometer. Reults and discussion: The results showed that the vetiver grass was able to decrease soil salinity at different salinity levels except highest water salinity (10 dS/m and prevented salt accumulation in the soil. However, in the

  12. Effect of EM Bokashi application on control of secondary soil salinization

    Directory of Open Access Journals (Sweden)

    Shao Xiaohou

    2008-12-01

    Full Text Available In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.

  13. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  14. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  15. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  16. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  17. Organic matter and salinity modify cadmium soil (phyto)availability.

    Science.gov (United States)

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms

    Science.gov (United States)

    Soil salinity can negatively affect plant production and important biogeochemical cycles which are mainly carried out by soil microbes. The objective of this study was to contribute new information on soil biological N transformations by examining the impact primary salinity reduction has on a) the ...

  19. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    International Nuclear Information System (INIS)

    Zhuang Xuliang; Han Zhen; Bai Zhihui; Zhuang Guoqiang; Shim Hojae

    2010-01-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  20. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Xuliang, E-mail: xlzhuang@rcees.ac.c [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Bureau of Science and Technology for Resources and Environment, Chinese Academy of Sciences, Beijing 100864 (China); Han Zhen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Bai Zhihui; Zhuang Guoqiang [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Shim Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau (China)

    2010-05-15

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  1. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  2. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Science.gov (United States)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under

  3. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Directory of Open Access Journals (Sweden)

    Juan Herrero

    Full Text Available Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight extracts as the standard for expressing the electrical conductivity (EC of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1 to 183.0 dS m(-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  4. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Science.gov (United States)

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  5. Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing

    Science.gov (United States)

    Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.

    2016-12-01

    Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.

  6. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  7. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Science.gov (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  8. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  9. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  10. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9 allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v as well as other EMI instruments (e.g. DUALEM-421 can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  11. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  12. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Directory of Open Access Journals (Sweden)

    N. Bischoff

    2018-01-01

    Full Text Available Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak by assessing the organic carbon (OC stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity, and the microbial community composition based on phospholipid fatty acid (PLFA patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i soil OC stocks decrease along the salinity gradient, (ii the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii sodicity reduces the proportion and stability of mineral-associated OM, and (iv the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only  <  10 % in all three soil types, while mineral-associated OM contributed  >  90 %. Isotopic data (δ13C, 14C activity and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe

  13. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    Directory of Open Access Journals (Sweden)

    Masoumeh Ravanipour

    2011-04-01

    Full Text Available Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from soils such as Phenanthrene. The main object of this study is the assessment of the effects of salinity on the efficacy of the process of bioremediation on polluted soils by Phenanthrene. Methods: The bare soil of any organic and microbial pollution was first polluted artificially to the phenanthrene then a nutrient solution with two minimum and maximum concentrations of salinity were added to it in order to have the proportion of 10% w:v (soil: water. After that a microbial mixture which was enable degradation the phenanthrene added to the slurry and aerated. After the extraction of phenanthrene by ultrasonic, the residual concentration in the soil was analyzed by GC. Results: In the conditions that salinity concentration was maximum, the microbial growth has a longer lag phase than the minimum salinity. The findings from extraction process by GC depict the removal percentage of maximum and minimum salinity in 56th %70.5 day and %71.8, respectively. Conclusion: In In spite of the longer log phase of maximum concentration of salinity and according to GC results, there was just a little difference between two solutions. Therefore it reveals that salinity can increase the lag phase but haven't any inhibitory effect on Phenanthrene removal.

  14. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  15. Soil salinity study in Northern Great Plains sodium affected soil

    Science.gov (United States)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  16. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    Full Text Available Introduction: Iron is found in different forms in the soil. In the primary minerals, iron is found as Fe3+ or Fe2+ which converted to Fe2+ and released in unsuitable reduction conditions. Minerals such as sulfide or chlorine and bicarbonate can affect and change the different forms soil Fe. FeAs these elements are abundance in groundwater or soil, they are capable to react chemically with Fe and change different Fe forms and also may deposit or even leach them by increasing its solubility in the soil. Water table fluctuation is a regular phenomenon in Khuzestan that Fe forms change under these situations. The study of Fe oxide forms and its changes can be applied for evaluation of soil development. Therefore, the aim of this study is the water table fluctuation and its quality effects, and some physio-chemical properties on Fe oxides forms in non-saline and saline soils in Khuzestan. Materials and Methods: Soil samples were collected from two regions: saline (Abdolkhan and non-saline (South Susa regions. soil samples were collected from all horizons of 12 soil field studied profiles . The samples were analyzed for soil texture, pH, EC (soil: water ratio 1:5, organic carbon and aggregate stability (Kemper and Rosenau method. Fe forms also were extracted by two methods in all samples: di-tyonite sodium and ammonium oxalate extraction. Fe oxalate extracted was related to Feo (non crystal Fe and Fed-Feo was related to Fec (crystalline Fe. The Fe content were determined by atomic absorbtion spectrophotometer (AAS. Data were analysis in SAS and Excel software and results were presented. Results and Discussion: The results showed that texture were loamy sand to silty clay loam, OM was very poor (0.1-0.7%. The soil salinity was also 2.8-16.8 dS/m. Calcium carbonate equivalent was 38-40%. All pedons were classified in Entisols and Inceptisols according to Keys to soil taxonomy (2010. The results showed that the proportion of Fe with oxalate to di

  17. Seasonal variation in apparent conductivity and soil salinity at two Narragansett Bay salt marshes

    Science.gov (United States)

    Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide informat...

  18. Soil salinization in the agricultural lands of Rhodope District, northeastern Greece.

    Science.gov (United States)

    Pisinaras, V; Tsihrintzis, V A; Petalas, C; Ouzounis, K

    2010-07-01

    The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.

  19. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  20. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  1. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium

    Directory of Open Access Journals (Sweden)

    Ali Ebadi

    2017-11-01

    Full Text Available Bacteria able to produce biosurfactants can use petroleum-based hydrocarbons as a carbon source. Herein, four biosurfactant-producing Pseudomonas aeruginosa strains, isolated from oil-contaminated saline soil, were combined to form a bacterial consortium. The inoculation of the consortium to contaminated soil alleviated the adverse effects of salinity on biodegradation and increased the rate of degradation of petroleum hydrocarbon approximately 30% compared to the rate achieved in non-treated soil. In saline condition, treatment of polluted soil with the consortium led to a significant boost in the activity of dehydrogenase (approximately 2-fold. A lettuce seedling bioassay showed that, following the treatment, the soil's level of phytotoxicity was reduced up to 30% compared to non-treated soil. Treatment with an appropriate bacterial consortium can represent an effective means of reducing the adverse effects of salinity on the microbial degradation of petroleum and thus provides enhancement in the efficiency of microbial remediation of oil-contaminated saline soils.

  2. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters

    Directory of Open Access Journals (Sweden)

    Ramón Aragüés

    2014-05-01

    Full Text Available Soil mulching is a sensible strategy to reduce evaporation, accelerate crop development, reduce erosion and assist in weed control, but its efficiency for soil salinity control is not as well documented. The benefits of inorganic (plastic and organic (grapevine pruning residues mulching for soil salinity and sodicity control were quantified in a grapevine orchard (cultivars ‘Autumn’ Royal and ‘Crimson’ drip-irrigated with moderately saline waters. Soil samples were taken at the beginning and end of the 2008 and 2009 irrigation seasons in six vines of each cultivar and mulching treatment. Soil saturation extract electrical conductivity (ECe, chloride (Cle and sodium adsorption ratio (SARe values increased in all treatments of both grapevines along the irrigation seasons, but the increases were much lower in the mulched than in the bare soils due to reduced evaporation losses and concomitant decreases in salt evapo-concentration. The absolute salinity and sodicity daily increases in ‘Autumn’ and ‘Crimson’ 2008 and in ‘Crimson’ 2009 were on the average 44% lower in the plastic and 76% lower in the organic mulched soils than in the bare soil. The greater efficiency of the organic than the plastic mulch in ‘Crimson’ 2009 was attributed to the leaching of salts by a precipitation of 104 mm that infiltrated the organic mulch but was intercepted by the plastic mulch. Although further work is needed to substantiate these results, the conclusion is that the plastic mulch and, particularly, the organic mulch were more efficient than the bare soil for soil salinity and sodicity control.

  3. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  4. Cropping Effects on Microbial Population and Nitrogenase Activity in Saline Arid Soil

    OpenAIRE

    EGAMBERDIEVA, Dilfuza; KUCHAROVA, Zulfiya

    2008-01-01

    Soil salinization is a major problem in irrigated agriculture. A field study was conducted in the Sariosiyo district in the Surkhandarya region of southeast Uzbekistan to evaluate soil nitrogenase activity and nitrogen-fixing bacteria populations in saline serozem soils under wheat, maize, and alfalfa, as well as from adjacent fallow land. Composite soil samples were randomly collected from depths of 0-10, 10-20, and 20-30 cm in autumn, winter, spring, and summer, which were then 2-mm sieved ...

  5. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    Science.gov (United States)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  6. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  7. Effect of Cyanobacteria Isolates on Rice Seeds Germination in Saline Soil

    Directory of Open Access Journals (Sweden)

    Mostafa M. El -Sheekh

    2018-03-01

    Full Text Available Cyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178. The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed that the inoculation with Nostoc calcicola, Anabaena variabilis, and Nostoc linkia increased root length by 27.0, 4.0, 3.0 % and 39, 20, 19 % in EC5 and 10 (ds/m, respectively. Similarly, they increased shoot length by 121, 70, 55 %, 116, 88, 82 % in EC5 and 10 (ds/m, respectively. In EC15and more concentrations, control rice plants could not grow while those to which cyanobacteria were inoculated could withstand only EC15 but not other elevated concentrations. These results encourage using Nostoc calcicola,Anabaena variabilis, and Nostoc linkia as biofertilizer for rice plant in the saline soil for increasing growth and decrease soil electrical conductivity.

  8. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  9. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  10. Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China

    Science.gov (United States)

    Liu, Mingyue; Du, Baojia; Zhang, Bai

    2018-01-01

    Soil salinity and sodicity can significantly reduce the value and the productivity of affected lands, posing degradation, and threats to sustainable development of natural resources on earth. This research attempted to map soil salinity/sodicity via disentangling the relationships between Landsat 8 Operational Land Imager (OLI) imagery and in-situ measurements (EC, pH) over the west Jilin of China. We established the retrieval models for soil salinity and sodicity using Partial Least Square Regression (PLSR). Spatial distribution of the soils that were subjected to hybridized salinity and sodicity (HSS) was obtained by overlay analysis using maps of soil salinity and sodicity in geographical information system (GIS) environment. We analyzed the severity and occurring sizes of soil salinity, sodicity, and HSS with regard to specified soil types and land cover. Results indicated that the models’ accuracy was improved by combining the reflectance bands and spectral indices that were mathematically transformed. Therefore, our results stipulated that the OLI imagery and PLSR method applied to mapping soil salinity and sodicity in the region. The mapping results revealed that the areas of soil salinity, sodicity, and HSS were 1.61 × 106 hm2, 1.46 × 106 hm2, and 1.36 × 106 hm2, respectively. Also, the occurring area of moderate and intensive sodicity was larger than that of salinity. This research may underpin efficiently mapping regional salinity/sodicity occurrences, understanding the linkages between spectral reflectance and ground measurements of soil salinity and sodicity, and provide tools for soil salinity monitoring and the sustainable utilization of land resources. PMID:29614727

  11. Use of gypsum residues as a corrective for saline-sodic soil

    Directory of Open Access Journals (Sweden)

    Paulo Medeiros dos Santos

    2014-03-01

    Full Text Available One of the hugest problems faced by the civil construction sector is the final destination of residues, especially gypsum, which presents recycling restrictions. However, these residues present a high amount of calcium in their composition, and can be alternatively used for replacing mined gypsum as a saline-sodic soil corrective. This study aimed at evaluating the efficiency of gypsum residues from the civil construction, when compared to mined gypsum, for correcting a saline-sodic soil. A randomized blocks design was used, in a factorial arrangement consisting of two kinds of corrective (gypsum residue and mined gypsum and five leaching depths (0.5, 1.0, 1.5, 2.0 and 2.5 times the soil pores volume, with three replications. Electric conductivity, soluble cations and sodium adsorption ratio were evaluated in the soil saturation extract. The use of gypsum residue proved to be effective in leaching salts and soluble sodium in saline-sodic soil, and can be recommended as a calcium source for recovering from sodicity.

  12. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  13. Microbialproperty improvement of saline-alkali soil for vegetable cultivation in Shanghai coastal area and its evaluation

    Directory of Open Access Journals (Sweden)

    KOU Yiming

    2015-10-01

    Full Text Available In order to improve the fertility of saline-alkali soil in Shanghai coastal area,and make it suitable for vegetable cultiration,in the study,the saline-alkali soil was mixed with organic fertilizer,and then sprayed with composite microbes,which have the ability of the synergistically degrading organic substrate.The results showed that the saline-alkali soil added with 5∶1 organic fertilizer can rapidly increase the utilization ability soil organic matter.The soil microbial populations and microbial diversity index were significantly improved when applied with the 0.5% composite microbial liquid which containeds 1∶3∶3∶1 of Bacillus licheniformis,Pseudomonas sp., Flavobacterium sp.and Sphingomonas sp..At the same time,the enzymology indicators of soil urease,phosphatase,cellulase and catalase increased significantly.The vegetable cultivation experiments showed that:the biomass of Brassica chinensis nearly doubled in the original saline-alkali soil,while the yield of organic fertilizer increased 30.2% after 50 days.The research result on of the biological improvement for saline-alkali soil will have good application value in vegetable planting in coastal saline-alkali soil.

  14. Furfural and its biochar improve the general properties of a saline soil

    Science.gov (United States)

    Wu, Y.; Xu, G.; Shao, H. B.

    2014-07-01

    Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  15. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  16. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  17. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  18. An evaluation of hyperspectral vegetation indices for detecting soil salinity in sugarcane fields using EO-1 Hyperion Data

    Science.gov (United States)

    Hamzeh, S.; Naseri, A. A.; Alavi Panah, S. K.; Bartholomeus, H.; Mojaradi, B.; Clevers, J.; Behzad, M.

    2012-04-01

    Sugarcane is the major agricultural crops in the Khuzestan province, in the southwest of Iran. But soil salinity is a major problem affecting the sugarcane yield, and therefore, monitoring and assessment of soil salinity is necessary. This research was carried out to investigate the performance of several hyperspectral vegetation indices to assess salinity stress in sugarcane fields and to determine the suitable indicators and statistical models for detecting various soil salinity levels. For this purpose one Hyperion image was acquired on Sept 2, 2010 and soil salinity was measured in 108 points 5 to 15 days from this date. 60 Samples were used for modeling and 48 samples were used for validation. Values of the soil salinity were linked with the corresponding pixel at the satellite imagery and 16 (hyperspectral) spectral indices were calculated. Then, the potential of these indices for estimating the soil salinity were analyzed and results show that soil salinity can well be estimated by vegetation indices derived from Hyperion data. Indices that are based on the chlorophyll and water absorption bands have medium to high relationship with soil salinity, while indices that only use visible bands or combination of visible and NIR bands don't perform well. From the investigated indices the Optimized Soil-Adjusted Vegetation Index (OSAVI) has the strongest relationship (R2 = 0.69) with soil salinity, because this index minimizes the variations in reflectance characteristics of soil background.

  19. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  20. Salinity and spectral reflectance of soils

    Science.gov (United States)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  1. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  2. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    Directory of Open Access Journals (Sweden)

    Mª Auxiliadora Casterad

    2018-02-01

    Full Text Available A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index and ECe (electrical conductivity of the soil saturation extracts mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  3. The Comparison of Micromorphological properties of Saline – Sodic and Nonsaline-Nonsodic Soils around the Urmia Lake

    Directory of Open Access Journals (Sweden)

    S. chakherloo

    2015-06-01

    Full Text Available In order to comparision of the micromorphic properties of saline-sodic and nonsaline-nonsodic soils in the west of Urmia Lake, four soil profiles (2profile in saline-sodic soils and 2profiles in nonsaline-nonsodic soils were investigated. These profiles were described and sampled using standard methods. soil samples were used for physico chemical analysis and undisturbed and oriented samples were used for thin section preparation. Thin sections were studied using polarizing microscope in PPL and XPL lights. Thin sections studies showed that saline-sodic soils are structure less (apedal, and their voids are mostly vughs and channel and as a result, their, nonsaline-nonsodic soils are pedal with compound packing voids, vughs and planar voids and as a result, The b.fabric in these to group of soils is crystallitic. In saline sodic soils pedofeatures are illuvial clay coatings, salt accumulations including coatings and infillings of halite in channel and vughs. These pedofeatures were not seen in nonsaline-nonsodic soils. Organic coatings were seen as black colored films on peds and in some cases mixed with groundmass of saline-sodic soils.Calcium carbonate accumulations as nodules and coatings and nodules and coatings of iron and Mn oxides were seen in both saline-sodic and nonsaline-nonsodic soils.

  4. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  5. Effects of different remediation treatments on crude oil contaminated saline soil.

    Science.gov (United States)

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Remote Sensing of CO2 Absorption by Saline-Alkali Soils: Potentials and Constraints

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2014-01-01

    Full Text Available CO2 absorption by saline-alkali soils was recently demonstrated in the measurements of soil respiration fluxes in arid and semiarid ecosystems and hypothetically contributed to the long-thought “missing carbon sink.” This paper is aimed to develop the preliminary theory and methodology for the quantitative analysis of CO2 absorption by saline-alkali soils on regional and global scales. Both the technological progress of multispectral remote sensing over the past decades and the conjectures of mechanisms and controls of CO2 absorption by saline-alkali soils are advantageous for remote sensing of such absorption. At the end of this paper, the scheme for remote sensing is presented and some unresolved issues related to the scheme are also proposed for further investigations.

  7. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  8. Use of radioactive sodium-22 to study the processes of soil salinization and desalinization

    International Nuclear Information System (INIS)

    Alzubaidi, A.H.

    1979-01-01

    This study deals with the salinization of four undisturbed soil columns of silt loam soil, collected with special plexiglass columns. The salinization was effected by adding a certain volume of salt solution consisting of a mixture of NaCl, CaCl 2 and MgCl 2 and containing 0.5 mCi of sodium-22. The salt solution was added to the surface of the first two columns and then the soil columns were leached with distilled water, while for the other two columns, the salt solution was added from the bottom of the columns using a syphon technique. The first two columns represent a model for the desalinization process of saline soils, while the latter two columns represent a model for the salinization process under the effect of high groundwater table. The downward and upward movements of sodium through the soil columns were recorded by measuring sodium radioactivity periodically, using a special scanner which continuously and automatically detected the radioactivity of sodium with the help of a gamma spectrometer. The final distribution curves for sodium movement throughout these soil columns versus time were obtained by computer. The data obtained indicate that radioactive sodium can be used with success to study the movement of salts in soil. The results also bring a new and better understanding of the nature of the salt movement during the processes of salinization and desalinization, the most important soil processes in the arid and semi-arid regions. (author)

  9. Gas exchange of four woody species under salinity and soil waterlogging

    Directory of Open Access Journals (Sweden)

    Alan D. Lima

    Full Text Available ABSTRACT The objective of this study was to evaluate gas exchanges in seedlings of forest species grown in saline soils and subjected to soil waterlogging cycles. The experimental design was completely randomized in a factorial arrangement, with four forest species: Myracrodruon urundeuva Fr Allemão, Mimosa caesalpiniifolia Benth, Tabebuia impetiginosa (Mart. ex. DC. Standl and Azadirachta indica A. Juss, two soil salinity levels (1.2 and 8.6 dS m-1 and two water regimes (with and without waterlogging. Measurements of stomatal conductance, transpiration and CO2 assimilation rate were performed before and after each waterlogging period. The interaction of the highest saline level (8.6 dS m-1 and waterlogging caused greater reductions in leaf gas exchange, except for Mimosa caesalpiniifolia Benth. Tabebuia impetiginosa (Mart. ex. DC. Standl was the species with highest sensitivity to both studied factors of stress.

  10. Natural environmental radioactivity and estimation of radiation exposure from saline soils

    International Nuclear Information System (INIS)

    Akhtar, N.; Tufail, M.; Ashraf, M.

    2005-01-01

    The study was conducted for the investigation of amount of radioactivity in the barren and cultivated soil of Bio saline Research Station in Pakka Anna, established by Nuclear Institute for Agriculture and Biology in 1990, 34 km. away from the city of Faisalabd, in the Punjab Province of Pakistan. The studies were done on an area of about 100 hectares of two types of virgin and fertilized saline soils. The technique of gamma ray spectrometry was applied using High Purity Germanium gamma ray detector and a P C based MCA. Activity concentration levels due to 40 K, 137 Cs, 226 Ra and 232 Th were measured in 250 saline soil samples collected at a spacing of about 4 hectares at the depth level of 0-25 cm. with a step of 5 cm. depth. Activity concentration ranges of the concerned radionuclides for both of the soils were as follows: 40 K, for virgin and cultivated saline soil was 500-610.2 and Bq/kg 560.2-635.6 respectively; 137 Cs, 3.57-3.63 and 1.98-5.15 Bq/kg 238 U, 26.3-31.6 and 30.6-38.7 Bq/kg, and 232 Th, 50.6-55.3 and 50.6-64.0 Bq/kg respectively. The absorbed dose rate in air lies in the region 63-73 nGyh -1 and 68-83 nGyh -1 for virgin and fertilized soils respectively. This indicates that this region lies in the area of higher radiation background, while comparing with the worlds' average. The slightly higher value of dose in the fertilized farm may be due to the use of fertilizers for cultivation. Before the radiometric measurements, chemical analysis for concentration of Na, Ca and Mg was also carried out along with the measurement of electrical conductivity and p H of the soil samples

  11. Partnership for adapting Vulnerable Populations to Soil Salinization ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Soil salinization affects nearly all regions of Sénégal. ... and sociological innovations to diversify income-generating productive activities (rice culture, bee keeping ... Addressing Africa's unmet need for family planning by intensifying sexual and ...

  12. Evaluation of some soil amendments plant productivity under saline conditions using nuclear techniques

    International Nuclear Information System (INIS)

    Aly, E.A.K.

    2004-01-01

    this study was carried out in Wadi Ras Sudr (south Saini government). this location was characterized as poor soil with high salinity (wasteland). in the same time it suffers from shortage of water resources. therefore, we aimed to utilize this soil as well as the saline ground water for introducing it into production systems. the reclamation of virgin poor soil need large efforts and much research, especially plant exposure to salinity which is rapidly followed by a decrease in growth rate. the use of natural organic sources as organic fertilizers improve the growth and yields of plants, and safe the environment from pollution . organic fertilizers (Of) such as green manure (G M) or poultry manure (P M) can be used as nutrient sources for good plant growth, where the soil amendments improve the physical, chemical and biological properties of the soil. economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. also , phosphorus and/or potassium supplementation separately or in combination with O F (G M and/or P M) improved the growth of both barley and wheat plants under such adverse condition of salinity using 15 N isotope dilution technique

  13. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    Science.gov (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  14. Soil salinity: Germination tolerance of alternative oilseed crops for soil health

    Science.gov (United States)

    World-wide, saline soils contribute to over US$27.3 billion in agricultural losses annually by reducing plant growth through osmotic imbalances and ion toxicity. Nearly 800,000 ha of salt affected land is located in the northern Great Plains. Limited information is available on the germination of al...

  15. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  16. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  17. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    Science.gov (United States)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  18. A Study on the Coupled Model of Hydrothermal-Salt for Saturated Freezing Salinized Soil

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available Water and heat interact in the process of freezing for the saturated soil. And for the salinized soil, water, heat, and salt interact in the freezing process, because salinized soil has soluble salt. In this paper, a one-dimensional mathematical coupled model of hydraulic-thermal-salt is established. In the model, Darcy’s law, law of conservation of energy, and law of conservation of mass are applied to derive the equations. Consider that a saturated salinized soil column is subjected to the condition of freezing to model the moisture migration and salt transport. Both experiment and numerical simulation under the same condition are developed in the soil column. Then the moisture content and salt content between simulation and experiment are compared. The result indicates that simulation matches well with the experiment data, and after 96 hours, the temperature distribution becomes stable, freezing front reaches a stable position, and a lot of unfrozen water has time to migrate. Besides, the excess salt precipitates when the concentration is greater than the solubility, and the precipitation is distributed discontinuously. These results can provide reference for engineering geology and environmental engineering in cold region and saline soil area.

  19. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  20. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices

    Science.gov (United States)

    El Harti, Abderrazak; Lhissou, Rachid; Chokmani, Karem; Ouzemou, Jamal-eddine; Hassouna, Mohamed; Bachaoui, El Mostafa; El Ghmari, Abderrahmene

    2016-08-01

    Soil salinization is major environmental issue in irrigated agricultural production. Conventional methods for salinization monitoring are time and money consuming and limited by the high spatiotemporal variability of this phenomenon. This work aims to propose a spatiotemporal monitoring method of soil salinization in the Tadla plain in central Morocco using spectral indices derived from Thematic Mapper (TM) and Operational Land Imager (OLI) data. Six Landsat TM/OLI satellite images acquired during 13 years period (2000-2013) coupled with in-situ electrical conductivity (EC) measurements were used to develop the proposed method. After radiometric and atmospheric correction of TM/OLI images, a new soil salinity index (OLI-SI) is proposed for soil EC estimation. Validation shows that this index allowed a satisfactory EC estimation in the Tadla irrigated perimeter with coefficient of determination R2 varying from 0.55 to 0.77 and a Root Mean Square Error (RMSE) ranging between 1.02 dS/m and 2.35 dS/m. The times-series of salinity maps produced over the Tadla plain using the proposed method show that salinity is decreasing in intensity and progressively increasing in spatial extent, over the 2000-2013 period. This trend resulted in a decrease in agricultural activities in the southwestern part of the perimeter, located in the hydraulic downstream.

  1. Soil salinization processes in rice irrigation schemes in the Senegal River Delta

    International Nuclear Information System (INIS)

    Ceuppens, J.; Wopereis, M.C.S.; Miezan, K.M.

    1997-01-01

    Soil salinization constitutes a major threat to irrigated agriculture (mainly rice, Oryza sativa L.) in the Senegal River Delta. It is generally hypothesized that salinization is caused by (i) capillary rise from a saline water table and (ii) concentration of salts in the field due to lack of adequate drainage facilities. The impact of field water management and rice cropping intensity on salinization in the Delta was determined using an electromagnetic conductivity meter (Geonics EM38). More than 4000 measurements were made in 40 rice fields on a typical heavy clay soil (Vertic Xerofluvent). Thirty EM38 measurements per field (0.25 ha) estimated average field soil salinity with a relative error of 20%. A multiple linear regression model based on EM38 readings explained 60 to 75% of the variability in conductivity of 1:5 saturation extracts at 0- to 5-, 10- to 15-, and 30- to 35-cm depths. Higher cropping intensity limited upward salt transport from the water table. Average horizontal and vertical EM38 measurements increased in the following order two rice crops per year with drainage: 0.73 and 0.98 dS m -1 ; one rice crop per year with drainage: 1.26 and 1.76 dS m -1 ; one rice crop per year without drainage: 2.23 and 2.98 dS m -1 ; and abandoned fields: 4.77 and 4.29 dS m -1 . Results indicate a beneficial effect of flooded rice on salinity for this type of heavy clay soil. Irrigation development in the area needs to be accompanied by monitoring of water table depth. (author)

  2. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Jingwei Wu

    2008-11-01

    Full Text Available This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1 the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2 the installation/innovation of the drainage system did help to control salinity; and (3 a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  3. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.

    Science.gov (United States)

    Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain

    2008-11-07

    This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  4. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  5. Soil Fertility, Salinity and Nematode Diversity Influenced by Tamarix ramosissima in Different Habitats in an Arid Desert Oasis

    Science.gov (United States)

    Yong-zhong, Su; Xue-fen, Wang; Rong, Yang; Xiao, Yang; Wen-jie, Liu

    2012-08-01

    The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The

  6. Enhancement of salinity tolerance in wheat through soil applied calcium carbide

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2009-05-01

    Full Text Available Calcium carbide (CaC2 has been reported to increase growth and yield of crops under normal soil conditions. This study assessed its capacity to enhance salinity tolerance in wheat (Triticum aestivum L.; cv- 1076 under saline conditions. Three levels of salinity: 0, 7 and 12 dS m-1 were created using NaCl. Nitrogen, phosphorus and potassium were applied as ammonium sulphate and KH2PO4 at 50 and 25 mg kg-1 soil, respectively. The encapsulated calcium carbide (ECC at 45 mg kg-1 soil produced 1291.8 µmols of acetylene (C2H2 and 257.5 µmols of its product ethylene (C2H4 over a period of 80 days. The results of the pot study indicated that ECC increased the weight of spike, weight of grains per spike, length of spike, total water concentration, root/shoot ratio and relative leaf water content up to 17, 23, 22, 35, 33 and 3%, respectively, over the control. Contrary to this, salinity (at 12 dS m -1 decreased all these parameters up to 68, 60, 26, 30, 28 and 8%, respectively, compared to the control. These results indicate that ECC enhances salinity tolerance in wheat by improving uptake of nutrients through enhanced root growth, increased hydraulic conductivity and hormonal action of ethylene released by ECC. Total water concentration was positively correlated (0.73 with grains spike-1 at P ≤ 0.05

  7. The effect of vesicular-arbuscular mycorrhiza isolated from Syrian soil on alfalfa growth and nitrogen fixation in saline soil

    International Nuclear Information System (INIS)

    El Atrash, F

    2001-01-01

    The influence of vesicular - arbuscular Mycorrhiza fungi (VAM) on symbiotic fixation of N 2 n alfalfa plants has been observed. Beneficial effects of study the effect of VAM or phosphorous fertilization on alfalfa (Medicago sativa L,) yields, umber of nodules and N 2 fixation by N 15 isotope dilution at different salinity levels. This experiment was realized in green house conditions, using soil of 2.3 dsm -1 conductivity mixed with sand (5: 2V) for alfalfa plants growing at various levels of phosphorus, or infected by Mycorrhiza fungi. Different conductivities (13.18, 22.2, 28.8, 43.5 dsm -1 ) were applied on these treatment by increasing concentrations of Nacl, CaCl 2 and MgCl 2 and MgCl 2 by salinity soil irrigation. Ten days after planting, soil was enriched with 2 ppm of (NH 4 15 ) 2 SO 4 . Plant were grown under greenhouse condition for ten weeks. Our results confirmed that increased salinity reduced nitrogen - fixation and the number of nodules. The negative effect with increasing salinity was less in Mycorrhiza plants than in plants fertilized with various levels of phosphorus, and only the higher levels of salinity reduced significantly, the percentage of Mycorrhiza colonization, However, at all levels of salinity, VAM stimulated plant growth and nutrient uptake. (author)

  8. The Earthworm Eisenia fetida Can Help Desalinate a Coastal Saline Soil in Tianjin, North China.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available A laboratory microcosm experiment was conducted to determine whether the earthworm Eisenia fetida could survive in a saline soil from a field site in North China, and an experiment using response surface methodology was conducted at that field site to quantify the effects of E. fetida and green waste compost (GWC on the salt content of the soil. The microcosm results showed that E. fetida survived in GWC-amended saline soil and increased the contents of humic acid, available N, and available P in the GWC-amended soil. The data from the field experiment were described by the following second-order model: [Formula in text], where y is the decrease in soil salinity (g of salt per kg of dry soil relative to the untreated control, x1 is the number of E. fetida added per m2, and x2 is the quantity of GWC added in kg per m2. The model predicted that the total salt content of the saline soil would decrease by > 2 g kg(-1 (p<0.05 when 29-90 individuals m-2 of E. fetida and 6.1-15.0 kg m(-2 of GWC were applied. We conclude that the use of E. fetida for soil desalination is promising and warrants additional investigation.

  9. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  10. Growth and nutrient concentrations of maize in pressmud treated saline-sodic soils

    Directory of Open Access Journals (Sweden)

    D. Muhammad

    2009-05-01

    Full Text Available n open-air pot experiment was conducted to investigate effects of pressmud (PM on saline-sodic soil reclamation, mitigating the adverse effects of saline irrigation and increase of maize (Zea mays L. growth. Pressmud was added at the rate of 0, 5, 10 and 20 Mg ha-1 to pots containing 6.8 kg air dried surface (0-20 cm soil collected from two sites. The increasing levels of PM enhanced maize plant height, shoots and roots biomass in both soils. However, the Soil 2, with initial EC and SAR of 5.43 dS m-1 and 18.67(m mol L-11/2, respectively, produced comparatively more biomass at all PM levels than Soil 1 [silty-clay loam, EC = 6.22 dS m-1, SAR = 20.72 (m mol L- 1 1/2]. The [P] in shoots was maximum at the highest PM in both the soils but the [K] increased with PM levels in Soil 1 and decreased in Soil 2 due to the dilution effect. The Soil 1 maintained several folds more [Na] in shoots and consequently lower K:Na ratio than Soil 2. The post harvest soil pH, Na, Ca+Mg and SAR in saturation extracts decreased with increasing levels of PM as compared to control. Soil 2 released more volume of leachate as compared to Soil 1 but the leachate EC and [Na] were comparable while [Ca+Mg] were relatively higher in Soil 2. The higher removal of total salts from Soil 2 resulted in lower soil pH, EC and SAR in this soil as compared to Soil 1. The increases in crop growth with each increment of PM up to 20 Mg ha-1 in the present study proved the benefits of PM in increasing crop yields and suggested that doses higher than 20 Mg PM ha-1 could be applied to the saline-sodic soils ofthe area to get maximum possible crop yields depending on soil and water quality

  11. THE HALOPHILICITY OF FILAMENTOUS FUNGI ISOLATED FROM SALINE SOILS OF SOUTH CAUCASUS

    Directory of Open Access Journals (Sweden)

    Kvesitadze E.

    2015-08-01

    Full Text Available The work is devoted to the isolation, purification, determination of taxonomical characteristics and application in soil improvement and other biotechnological processes halophilic microscopic fungi strains isolated from saline soils of Eastern Georgia (middle part of South Caucasus, where their existence is maximally supposed. In all soilclimatic zones the dominate forms of spread fungi are genera Aspergillus, Penicillium and Fusarium, followed by Trichoderma and Mucor. Other genera are met less intensively. The genera Aspergillus is widely spread in chestnut soils and in chernozem, in green forest soils the genera Penicillium is prevailing. The salinity of soil, lake or any other objects from which the isolation of microscopic fungi is performed greatly determines halophilisity of isolated strains. Finally, the collection of halophilic microscopic fungi has been created accounting 96 isolates of extreme halophiles, halophiles and week halophiles.

  12. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    Science.gov (United States)

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC 1:5 ) = 1.83 dS m -1 , sodium adsorption ratio (SAR 1:5 ) = 129.3 (mmol c L -1 ) 1/2 , pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha -1 . Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K + , Ca 2+ , and Mg 2+ , at a dose of 650 kg ha -1 . The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha -1 . The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  13. Status and Causes of Soil Salinization of Irrigated Agricultural Lands in Southern Baja California,Mexico

    International Nuclear Information System (INIS)

    Endo, T.; Yamamoto, S.; Fujiyama, H.; Honna, T.; Larrinaga, J.A.

    2011-01-01

    Selected farmlands in southern Baja California, Mexico, were surveyed to determine the levels and the causes of salinization/sodication in irrigated agricultural soil. The salt dynamics observed in profiles differed from farm to farm. Low EC and high ph levels were observed in the profiles of sandy fields, because the salt composition of these soils can easily change when salts are leached by irrigation water that contains carbonates of sodium. On the other hand, high levels of salinity and sodicity were observed in the soils of clayey fields. Soil salinization/sodication is complexly interrelated with soil characteristics, the amount and composition of salts in the soil, the quantity and quality of irrigation water applied, and the irrigation methods used. Our findings indicate that irrigation water in Baja California should be supplied at a rate that is sufficient to meet crop requirements without exacerbating salt accumulation.

  14. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  15. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  16. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  17. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  18. Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils

    NARCIS (Netherlands)

    Sorokin, Dimitry Y.; Kolganova, Tatiana V.; Khijniak, Tatiana V.; Jones, Brian E.; Kublanov, Ilya V.

    2017-01-01

    Alkaline saline soils, known also as ''soda solonchaks'', represent a natural soda habitat which differs from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we

  19. SMOS validation of soil moisture and ocen salinity (SMOS) soil moisture over watershed networks in the U.S.

    Science.gov (United States)

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must b...

  20. Monitoring soil coverage and yield of cowpea furrow irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Antonia Leila Rocha Neves

    Full Text Available Abstract Cowpea crop is of great importance for northeast Brazil. The objective of this work was to evaluate the application of saline water in different developing stages on plant growth and changes in soil characteristics, measured by soil coverage, and on yield of cowpea plants. The experiment was conducted under field conditions, during the dry season in a completely randomized block design with five treatments and five replications. Each experimental unit consisted of 4 lines of plants with 5.0 m long. The treatments evaluated were: 1. irrigation with groundwater with electrical conductivity (ECw of 0.8 dS m-1 during the whole crop cycle; 2. saline water (5.0 dS m-1 during the whole crop cycle; 3, 4 and 5. saline water (5.0 dS m-1 up to 22nd, during 23rd to 42nd and from the 43rd to 62nd days after sowing, respectively, and groundwater in the remaining period. Soil coverage was evaluated by digital images using the software ENVI for image processing and classification. It was found that the continuous use of saline water inhibits plant growth, while irrigation with saline water during germination and initial growth stages caused retardation in plant development, but in this last case a recovery was observed in the final part of the experimental period. For treatments 2 and 3, a reduction was verified in the number of pods and in seed production, as compared to other treatments. Irrigation with saline water during 23 to 42 and 43 to 62 days after sowing did not affect reproductive and vegetative growth, but the saline water application in the pre-flowering (treatment 4 caused anticipation of the reproductive cycle.

  1. Application of green remediation on soil salinity treatment : A review on halophytoremediation

    NARCIS (Netherlands)

    Nouri, Hamideh; Chavoshi Borujeni, Sattar; Nirola, Ramkrishna; Hassanli, Ali; Beecham, Simon; Alaghmand, Sina; Saint, Chris; Mulcahy, Dennis

    2017-01-01

    The salinity of soil and water resources is one of the economically expensive challenges to achieve sustainable development across the world. Salinity, which is a major environmental issue for both arid and semi-arid regions, is highly stressful for vegetation and adds to other stresses including

  2. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  3. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  4. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    Science.gov (United States)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  5. Sensitivity Analysis of Electromagnetic Induction Technique to Determine Soil Salinity in Large –Scale

    Directory of Open Access Journals (Sweden)

    Yousef Hasheminejhad

    2017-02-01

    Full Text Available Introduction: Monitoring and management of saline soils depends on exact and updatable measurements of soil electrical conductivity. Large scale direct measurements are not only expensive but also time consuming. Therefore application of near ground surface sensors could be considered as acceptable time- and cost-saving methods with high accuracy in soil salinity detection. . One of these relatively innovative methods is electromagnetic induction technique. Apparent soil electrical conductivity measurement by electromagnetic induction technique is affected by several key properties of soils including soil moisture and clay content. Materials and Methods: Soil salinity and apparent soil electrical conductivity data of two years of 50000 ha area in Sabzevar- Davarzan plain were used to evaluate the sensitivity of electromagnetic induction to soil moisture and clay content. Locations of the sampling points were determined by the Latin Hypercube Sampling strategy, based on 100 sampling points were selected for the first year and 25 sampling points for the second year. Regarding to difficulties in finding and sampling the points 97 sampling points were found in the area for the first year out of which 82 points were sampled down to 90 cm depth in 30 cm intervals and all of them were measured with electromagnetic induction device at horizontal orientation. The first year data were used for training the model which included 82 points measurement of bulk conductivity and laboratory determination of electrical conductivity of saturated extract, soil texture and moisture content in soil samples. On the other hand, the second year data which were used for testing the model integrated by 25 sampling points and 9 bulk conductivity measurements around each point. Electrical conductivity of saturated extract was just measured as the only parameter in the laboratory for the second year samples. Results and Discussion: Results of the first year showed a

  6. Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA

    Science.gov (United States)

    Testing soil salinity assessment methodologies over different regions is important for future continental and global scale applications. A novel regional-scale soil salinity modeling approach using plant-performance metrics was proposed by Zhang et al. (2015) for farmland in the Yellow River Delta, ...

  7. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  8. Effects of Soil Salinization and Waterlogging on the Concentrations of Some Macronutrients and Sodium in Corn Root

    Directory of Open Access Journals (Sweden)

    N Najafi

    2015-05-01

    Full Text Available Salinity and waterlogging are two abiotic stresses decrease plants yield. In this research, the effects of soil salinization and waterlogging having concentrations of calcium (Ca, potassium (K, magnesium (Mg and sodium (Na and K:Na ratio in corn (Zea mays cv. single cross 704 root were studied under greenhouse conditions. A factorial experiment with two factors on the basis of completely randomized design with three replications was performed. The factors under study were: waterlogging duration in five levels (0, 2, 4, 8, 20 days and soil saturate extract salinity in four levels (0.11, 2, 4, 8 dS/m. A loamy sand soil for plant growth substrate and NaCl salt for establishing the levels of salinity was used. The salinity and waterlogging factors were imposed simultaneously to the plants from the five-leaf stage of plant growth period. The plants were harvested 60 days after sowing and the concentrations of Ca, K, Mg and Na in corn root were determined by dry ashi method. The results showed that by increasing the level of NaCl salinity in the soil, the K concentration and K:Na ratio of corn root were decreased significantly but concentrations of Ca, Mg and Na in corn root were increased significantly. The Mg and Na concentrations of root in waterlogged conditions were significantly lower than that of non-waterlogged conditions but the K and Ca concentrations of root in waterlogged conditions were significantly greater than non-waterlogged conditions. However, the effects of soil waterlogging duration on the Ca, K, Mg and Na concentrations and Na:K ratio of root were dependent on the level of NaCl salinity in the soil. The results demonstrated that even short periods of soil waterlogging had considerable long-term effects on the concentrations of Ca, K, Mg and Na and K:Na ratio in corn root under saline and non-saline conditions.

  9. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele; Hirt, Heribert; Berg, Gabriele

    2014-01-01

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  10. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele

    2014-12-05

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  11. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    Science.gov (United States)

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  12. Simulation of Quinoa (Chenopodium Quinoa Willd.) response to soil salinity using the saltmed model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Ahmadi, Seyed Hamid

    Quinoa (Chenopodium quinoa Willd.) is a crop with high tolerance to salinity and drought and its response to varying soil moisture and salinity levels was studied in a field lysimeter experiment. Quinoa (cv. Titicaca) was irrigated with different concentrations of saline water (0, 10, 20, 30 and 40...

  13. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  14. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  15. Estimates of matter yield and N-uptake in sorghum grown on saline and non-saline soils manured with dhaincha (sesbania aculeata) plant residues utilizing 15N tracer techniques

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-11-01

    Pot experiments were conducted to study the effect of manuring with three types of plant residues (roots, shoots or roots plus shoots) of Dhaincha (Sesbania aculeata Pers.) on the yield and N-uptake of Sorghum bicolor grown in saline and non-saline soils. For measuring various sources of N-uptake, two isotopic dilution techniques were utilized by adding to these soils either 15 N-labelled inorganic N-fertilizer (indirect method) or 15 N-labelled sesbania leaves (direct method). For the indirect method, both soils manured with each type of sesbania residue, received four split applications of 15 N-labelled ammonium sulphate. Results indicated that each type of sesbania residue, applied as a green manure, resulted in significant increases in both dry matter yield and N-uptake of sorghum as compared with the un manured control. Moreover, sesbania residues decreased the harmful effect of salinity on plant growth. Percentages of N derived from residues (%Ndfr) in sorghum grown in non saline soil ranged between 3.9 and 33%; whereas, in saline soil, the observed values ranged between 4.9 and 19.8%. N recoveries in sorghum grown in non saline soil were 61, 45 and 37% of the total amount contained in the sesbania root, shoot and root plus shoot; whereas, values in sorghum grown in saline soils were 48, 14,8 and 15.7%, respectively. The beneficial effects of sesbania residues have been attributed not only to the additional N availability to the plants, but also to its effects on the enhancement of soil N uptake. Percentages and amounts of Ndfr calculated using the indirect method were not significantly different from those obtained by the direct method indicating that the indirect method used herein is feasible and simple for measuring N release from organic residues. It is suggested that the use of Sesbania aculeata residues, particularly the shoots, as a green manure, can provide a substantial portion of total N in sorghum. Moreover, the use of sesbania green manure in

  16. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    KAUST Repository

    Jadoon, Khan Zaib

    2015-05-12

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract – ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  17. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  18. Effect of Organic Matter and Gypsum Powder Some Traits of Maize in a Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    M Khotabaee

    2015-04-01

    Full Text Available Saline-sodic soils have improper physical, chemical and biological condition and the crop productivity is low in these conditions. Application of conditioners often can be a proper solution for reclamation and improving the productivity of saline-sodic soils. In order to study the effect of some conditioners on soil chemical characteristics and yield of maize (SC260 cultivar in a saline-sodic soil, an experiment was carried out as a completely randomized design with 3 replications in a research greenhouse of Ferdowsi university of Mashhad. The studied treatments included control and 10 ton/ha of compost (MC, vermi-compost (VC, poultry manure (PM, and gypsum powder (G. The results showed that poultry manure and vemi-compost treatments increased significantly (p

  19. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  20. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  1. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  2. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    S Tandisseh

    2017-03-01

    Full Text Available Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is an extreme need of vegetable oilseed in our country and also wide extent of saline soils in Iran, this study was conducted to determine the best type and amount of nitrogen fertilizers between calcium nitrate and ammonium sulfate under saline conditions. Materials and Methods A greenhouse experiment was conducted in a completely randomized design (factorial with three replications in February 2012 in the Research greenhouse of the Ferdowsi University of Mashhad. The treatments were consisted of two types of nitrogen fertilizer (calcium nitrate and ammonium sulfate, each with three levels of N (40, 80 and 120 mg per kg of soil in three levels of soil salinity (C0= control, C1= 5 and C2= 10dS m-1. Experimental soil (control collected from agricultural experimental station was leached by salt solutions containing salts of calcium chloride, magnesium chloride and sodium sulfate with specified concentrations and ratios during 50 days to reach the similar salt concentrations of leached water consisting the desired levels of salinity. The seeds of mustard were planted at a depth of one centimeter in soil of each pot and were irrigated with tap water to field capacity (by weight. Plants were harvested after 5 months and plant fresh and dry weights and nitrogen concentration and uptake of plant were measured by the Kjeldahl method. Irrigation water and physical and chemical properties of soil before and after harvest were determined. Data obtained were analyzed using

  3. Interrelationships of Land Use/Cover Change and Topography with Soil Acidity and Salinity as Indicators of Land Degradation

    Directory of Open Access Journals (Sweden)

    Ramita Manandhar

    2014-03-01

    Full Text Available As soil is the basis of all terrestrial ecosystems, degraded soil means lower fertility, reduced biodiversity and reduced human welfare. Therefore the focus of this paper is on elucidating the influence of land use and land cover (LULC change on two important soil quality indicators that are fundamental to effective measures for ameliorating soil degradation; namely soil acidity and soil salinity in the Lower Hunter Valley of New South Wales, Australia. First, Analysis of Variance was used to elucidate the effects of LULC categories on soil acidity and salinity. The results indicate that soils under Vineyard have significantly higher pH. In contrast there is no significant effect of LULC or its change on soil salinity. To further elucidate the complex interactions of these soil quality indicators with landscape attributes over 20 years and other terrain attributes, multivariate ordination techniques (correspondence analysis and canonical correspondence analysis were used. The results show that elevation exerted a more dominant influence on pH than the LULC types and their dynamics. In comparison, salinity of the soil appears to be higher in subsoil layers under woodland than under other LULC categories. The environmental implications of these interactions, as evidenced by this study, provide some insights for future land use planning in the region.

  4. About the issue of monitoring method of Ararat valley soils salinization

    Directory of Open Access Journals (Sweden)

    A.G. Yeghiazaryan

    2017-12-01

    Full Text Available The short description of the agro-ameliorative situation of the Republic of Armenia, particularly, that of Ararat valley shows that the unpredictable and unmanageable process of regime procedures at this area can cause serious consequences, pushing out the agricultural golden fund of the republic from the agricultural turnover, namely the land of Ararat valley. Numerous investigations on the soil reclaimed state in Ararat valley at the Republic of Armenia reveal that they are currently in an extremely threatening condition. The result analyses show that more than 35% of Ararat valley lands of agricultural importance are in insufficiently reclaimed state, moreover the 54% of them are weakly salinized, 11,8% are averagely and strongly salinized and 34.2% are strongly salinized. The analyses of the conducted theoretical and experimental research results show that the above mentioned negative processes are promoted by the depth of the ground water allocation, which in Ararat valley fluctuates within the depth of 1 m, 1-3 m and more than 3 m. According to the distribution area the ground waters on 6,6% land areas of Ararat valley irrigated soils are allocated at the depth of 1 m, in 27,8% land areas the ground waters are allocated at the depth of 1–3 m, and in the rest of 65,6% land area waters are allocated at the depth of more than 3 m. For the prevention of the soils salinization process at Ararat valley and for the development of measures for struggling against it, the impact of ground waters installation depth, their mineralization, calculated evapo-transpiration from the soil and plants, irrigation norm, watering regime and technique, pressure nutrition caused from underground water basin and the impact of evaporation raising from the ground water surfaces on the ground waters level change in the vegetation period is evaluated in the current work. For the evaluation of the above mentioned individual factors the integral

  5. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  6. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  7. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  10. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  11. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  12. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  13. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  14. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): a participatory approach

    Science.gov (United States)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2016-02-01

    Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.

  15. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  16. Effects of irrigation regime and salinity on soil characteristics and yield of tomato

    Directory of Open Access Journals (Sweden)

    Rita Leogrande

    2012-03-01

    Full Text Available A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated re-establishing 50 (I1, 75 (I2 and 100% (I3 of the crop evapotranspiration (ETc with two water quality: fresh water with EC 0.9 dS m-1 (FW and saline water with EC 6 dSm-1 (SW. At harvest, total and marketable yield, weight, number, , total soluble solids (TSS and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8 %, respectively. After the first field application of saline water, soil saturated extract cations (SSEC, electrical conductivity of soil paste extract (ECe, sodium absorption ratio (SAR and exchangeable sodium percentage (ESP cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.

  17. Effect of the salinity in the adsorption of a herbicide in agricultural soils

    International Nuclear Information System (INIS)

    Gonzalez M, L. C.; Hansen, A. M.

    2014-01-01

    To understand the effect of salinity in the adsorption of the herbicide atrazine in two soils from a Mexican agricultural area, the influence of sodium and calcium chloride concentrations were determined. Adsorption experiments were performed with soil samples from Irrigation District 063 (Dr 063), Guasave, Sinaloa, Mexico, suspended in 10 mm CaCl 2 , in the presence of several concentrations of different electrolytes and atrazine (0.01, 0.05, 0.1, 0.5 and 1.0 mg/L) with radioactive tracer (347.4 Bq U-ring- 14 C, Sigma Chemical Company, St. Louis, Mo, USA). It was found that for all the electrolytes,the time required to reach equilibrium adsorption of atrazine was less than 24 h and the adsorption isotherms were adjusted to Freundlich model. The presence of sodium in the aqueous solution favored the adsorption and inhibited desorption of atrazine in soils. Increasing the concentrations of sodium and calcium to about 40 nm and 60 mm, respectively, did not significantly affect (P <0.05), the adsorption of atrazine. However, there were differences in desorption of the herbicide with the increase of salts concentrations. The results of this study indicate that increased salinity, mainly caused by increased sodium concentrations in the soil-water system, has important effects on the fate of atrazine, due to salinization of soils favors the adsorption of atrazine, and inhibits its desorption. It is important to consider these properties when application options are analyzed as well as in the management and remediation of soils contaminated with atrazine. (Author)

  18. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils

    International Nuclear Information System (INIS)

    Manousaki, Eleni; Kadukova, Jana; Papadantonakis, Nikolaos; Kalogerakis, Nicolas

    2008-01-01

    Phytoremediation and more specifically phytoextraction, is an alternative restoration strategy for the clean up of heavy metal contaminated soils. Phytoextraction can only be successful if suitable plant species colonize the contaminated area, extract the toxic substances and accumulate them in their above ground tissues. In this study, the salt cedar Tamarix smyrnensis that is a widespread salt-tolerant plant in the Mediterranean region has been investigated. A pot experiment is conducted with T. smyrnensis grown in polluted soil with 16 ppm of cadmium and at three different salt concentrations (0.0, 0.5, 3.0% NaCl) for a 10-week period. It took place in an open-air area with natural light, at ambient temperature and humidity in an effort to keep the plants under conditions as similar as possible to those in the field. However, care was taken not to let them be rained on. Temperature ranged from 19 to 50 deg. C with 33 and 21 deg. C being the average day and night temperature, respectively. Humidity ranged from 28% to 87% with a 13-14 h photoperiod. The specific aims of this work are to investigate the accumulation of cadmium via root uptake at different saline conditions and cadmium excretion through salt glands on the surface of the leaves as a probable detoxification mechanism of the plant. Furthermore, measurements of chlorophyll content, biomass, and shoot length are used to evaluate the potential of the plant for the removal of cadmium from contaminated saline and non-saline soils. The experimental data suggest that increased soil salinity results in an increase of the cadmium uptake by T. smyrnensis. Analysis of white salt crystals taken from glandular tissue confirmed the fact that this plant excretes cadmium through its salt glands on the surface of the leaves as a possible detoxification mechanism in order to resist metal toxicity. Excreted cadmium is again released into the environment and it is redeposited on the top soil. Furthermore, increased

  19. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  20. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  1. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  2. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    Science.gov (United States)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  3. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  4. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils.

    Science.gov (United States)

    Li, Yan; Li, Xiangyue; Liu, Yajing; Wang, En Tao; Ren, Chenggang; Liu, Wei; Xu, Hualing; Wu, Hailong; Jiang, Nan; Li, Yunzhao; Zhang, Xiaoli; Xie, Zhihong

    2016-05-01

    Sesbania cannabina is a plant that grows naturally along the seashores in Rudong County, China (RDC) and it has been introduced into the Yellow River Delta (YRD) as a pioneer plant to improve the saline-alkaline soils. In order to investigate the diversity of S. cannabina rhizobia in these soils, a total of 198 rhizobial isolates were characterized and phylogenetic trees were constructed based on data from multilocus sequence analysis (MLSA) of the housekeeping genes recA, atpD and glnII, as well as 16S rRNA. Symbiotic features were also studied by establishing the phylogeny of the symbiotic genes nodA and nifH, and by performing nodulation assays. The isolates had highly conserved symbiotic genes and were classified into nine genospecies belonging to the genera Ensifer, Agrobacterium, Neorhizobium and Rhizobium. A unique community structure was detected in the rhizobia associated with S. cannabina in the saline-alkaline soils that was characterized by five novel genospecies and four defined species. In addition, Ensifer sp. I was the predominant rhizobia in YRD, whereas Ensifer meliloti and Neorhizobium huautlense were the dominant species in RDC. Therefore, the study demonstrated for the first time that this plant strongly selected the symbiotic gene background but not the genomic background of its microsymbionts. In addition, biogeographic patterns existed in the rhizobial populations associated with S. cannabina, which were mainly correlated with pH and salinity, as well as the mineral nutrient contents. This study provided novel information concerning the interaction between soil conditions, host plant and rhizobia, in addition to revealing the diversity of S. cannabina rhizobia in saline-alkaline soils. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Soil and plant responses from land application of saline-sodic waters: Implications of management

    Energy Technology Data Exchange (ETDEWEB)

    Vance, G.F.; King, L.A.; Ganjegunte, G.K. [University of Wyoming, Laramie, WY (United States). Department for Renewable Resources

    2008-09-15

    Land application of co-produced waters from coalbed natural gas (CBNG) wells is one management option used in the Powder River Basin (PRB) of Wyoming and Montana. Unfortunately the co-produced CBNG waters may be saline and/or sodic. The objective of this study was to examine the effects of irrigation with CBNG waters on soils and plants in the PRB. Soil properties and vegetation responses resulting from 1 to 4 yr of saline sodic water (electrical conductivity (EC) 1.6-4.8 dS m{sup -1} sodium adsorption ratio (SAR), 17-57 mmol L- applications were studied during 2003 and 2004 field seasons on sites (Ustic Torriorthent Haplocambid, Haplargid and Paleargid) representing native range grasslands seeded grass hayfields and alfalfa hayfields. Parameters measured from each irrigated site were compared directly with representative non-irrigated sites. Soil chemical and physical parameters including pH, EC, SAR, exchangeable sodium percent, texture, bulk density, infiltration and Darcy flux rates, were measured at various depth intervals to 120 cm. Mulitple-year applications of saline sodic water produced consistent trends of increased soil EC AND SAR values to depths of 30 cm reduced surface infiltration rates and lowered Darcy flux rates to 120 cm. Significant differences (p {le} 0.05) were determined between irrigated and non-irrigated areas for EC, SAR infiltration rates and Darcy flux (p {le} 0.10) at most sites. Saline sodic CBNG water applications significantly increased native perennial grass biomass production and cover on irrigated as compared with non-irrigated sites; however overall species evenness decreased. Biological effects were variable and complex reflecting site-specific conditions and water and soil management strategies.

  6. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  7. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    Science.gov (United States)

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    Science.gov (United States)

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  9. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS

    Directory of Open Access Journals (Sweden)

    Said Nawar

    2014-11-01

    Full Text Available The monitoring of soil salinity levels is necessary for the prevention and mitigation of land degradation in arid environments. To assess the potential of remote sensing in estimating and mapping soil salinity in the El-Tina Plain, Sinai, Egypt, two predictive models were constructed based on the measured soil electrical conductivity (ECe and laboratory soil reflectance spectra resampled to Landsat sensor’s resolution. The models used were partial least squares regression (PLSR and multivariate adaptive regression splines (MARS. The results indicated that a good prediction of the soil salinity can be made based on the MARS model (R2 = 0.73, RMSE = 6.53, and ratio of performance to deviation (RPD = 1.96, which performed better than the PLSR model (R2 = 0.70, RMSE = 6.95, and RPD = 1.82. The models were subsequently applied on a pixel-by-pixel basis to the reflectance values derived from two Landsat images (2006 and 2012 to generate quantitative maps of the soil salinity. The resulting maps were validated successfully for 37 and 26 sampling points for 2006 and 2012, respectively, with R2 = 0.72 and 0.74 for 2006 and 2012, respectively, for the MARS model, and R2 = 0.71 and 0.73 for 2006 and 2012, respectively, for the PLSR model. The results indicated that MARS is a more suitable technique than PLSR for the estimation and mapping of soil salinity, especially in areas with high levels of salinity. The method developed in this paper can be used for other satellite data, like those provided by Landsat 8, and can be applied in other arid and semi-arid environments.

  10. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  11. Effects of rhizobial bacteria on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils

    Directory of Open Access Journals (Sweden)

    S homayoon

    2016-05-01

    Full Text Available Introduction Soil salinity is one of the major agricultural problems and it is limiting crop productivity in many parts of the cultivated areas all over the world. Saline soils are differentiated by the presence of great ratios of Na/Ca, Na/K, Ca2+, Mg2+, and Cl/NO3 (Gratan & Catherine, 1993 and high levels of neutral salts in the surface layers, which are resulting from the capillary action (Al-Falih, 2002. Osmotic stress occurs when soluble salts increase in the soils and then results in specific ion toxicity (Agarwal & Ahmad, 2010. Therefore, one of the most important side effects of salinity is nutritional disorders. High concentration of NaCl in the root medium usually reduces nutrients uptake and affects the transportation of potassium and calcium ions in plant. (Gratan & Catherine, 1993 reported that the salinity of soils changes ionic strength of the substrate and it can influence mineral nutrient uptake and translocation. Salinity also changes the mineral nutrient availability and disrupts the mineral relations of plants. Hence, the main purpose of this research is to evaluate the effects of rhizobial bacteria inoculation on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils. Material and methods Soil sample was collected from Astan Ghodse Razavi farm, Mashhad Iran, and then was dried and passed through a 12-mesh (approximately 2 mm screen. Soil sample was divided into three parts and then was placed into three containers. Each container was watered by a different proportion of saline water (EC= 10 dS.m-1. Salinity of soils was regularly monitored until three salinities (2, 6 and 10 dS.m-1 came out. Then, a completely randomized design with a factorial arrangement was carried out in a greenhouse condition. The experimental factors included four levels of inoculation (Sinorhizobium meliloti, Bradyrhizobium japonicum and Rhizobium leguminosarum and control and three levels of soil salinity (2, 6 and 10 dS.m-1 with

  12. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  13. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China.

    Science.gov (United States)

    Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng

    2017-12-31

    Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship

  14. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  15. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  16. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity.

    Science.gov (United States)

    Nacke, Heiko; Schöning, Ingo; Schindler, Malte; Schrumpf, Marion; Daniel, Rolf; Nicol, Graeme W; Prosser, James I

    2017-11-01

    Coastal areas worldwide are challenged by climate change-associated increases in sea level and storm surge quantities that potentially lead to more frequent flooding of soil ecosystems. Currently, little is known of the effects of inundation events on microorganisms controlling nitrification in these ecosystems. The goal of this study was to investigate the impact of seawater flooding on the abundance, community composition and salinity tolerance of soil ammonia oxidisers. Topsoil was sampled from three islands flooded at different frequencies by the Wadden Sea. Archaeal ammonia oxidiser amoA genes were more abundant than their betaproteobacterial counterparts, and the distribution of archaeal and bacterial ammonia oxidiser amoA and 16S rRNA gene sequences significantly differed between the islands. The findings indicate selection of ammonia oxidiser phylotypes with greater tolerance to high salinity and slightly alkaline pH (e.g. Nitrosopumilus representatives) in frequently flooded soils. A cluster phylogenetically related to gammaproteobacterial ammonia oxidisers was detected in all samples analysed in this survey. Nevertheless, no gammaprotebacterial amoA genes could be amplified via PCR and only betaproteobacterial ammonia oxidisers were detected in enrichment cultures. A slurry-based experiment demonstrated the tolerance of both bacterial and archaeal ammonia oxidisers to a wide range of salinities (e.g. Wadden Sea water salinity) in soil naturally exposed to seawater at a high frequency. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils.

    Science.gov (United States)

    Barua, Shilajit; Tripathi, Sudipta; Chakraborty, Ashis; Ghosh, Sagarmoy; Chakrabarti, Kalyan

    2012-01-20

    Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance

    Science.gov (United States)

    Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Farmers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m/1, when salinity is measured as electrical...

  19. Reclaiming Saline-Sodic Soils Using Electrochemical Processes: A Case Study From Sahl El-Tina Plain, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Fattah Mohamed K.

    2014-10-01

    Full Text Available A leaching experiment was conducted using column techniques assessing efficiency of electrochemical process to reclaim saline-sodic soils. Soil material was collected from Sahl El-Tina plain, which located in North West coast of Sinai, Egypt. The experiment was designed as factorial randomized complete block and all treatments were replicated three times. Two 2.5 cm diameterx30 cm height mild stainless steel tubes were inserted into the soil matrix to serve as electrodes (i.e. cathode and anode. Distance between cathode and anode was 10 cm. Electrodes were supplied by a direct current (DC power supply; Volt ages of 0.3 or 9 Volt. Leaching was done using the intermittent method so as to add portions to the already saturated soil columns, and obtain leachates equal to the added portions. Pore volume 0.1 PV was used in the leaching processes which are equal 498.4 cm3, i.e. PV being volume of pores per column, thus 1 PV equals volume of pores (cm3 expressed as water quantity. Electric remediation increased ionic mobility and separated salts from soil. All treatments decreased soil EC and soil sodicity expressed as SAR and ESP. Results showed that 9 Volt treatment was more effective in decreasing the soil EC and soil sodicity than the other treatments. Efficiency of treatments were 9-Volt > 3-Volt > leaching alone (non-DC treatment. This study suggests that leaching using direct current (DC led to improvement of the chemical properties of saline sodic soils and required a short time to reclaim saline-sodic soils compared with leaching alone.

  20. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Science.gov (United States)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  1. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Directory of Open Access Journals (Sweden)

    K. Z. Jadoon

    2017-10-01

    Full Text Available A substantial interpretation of electromagnetic induction (EMI measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  2. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    KAUST Repository

    Jadoon, Khan Zaib

    2017-10-26

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes\\' rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  3. Effect of desertification and soil salinity on land productivity in the Sudan

    International Nuclear Information System (INIS)

    El-Karouri, M.O.H.

    1980-01-01

    Although the Sudan contains one of the largest reserves of cultivable and irrigable land in the world, desertification and salinization have had a severe effect on soil productivity. Irrational cultivation of marginal lands and the abuse of tractor power have led to severe erosion problems. Deforestation, overgrazing and the use of fire in land clearing have destroyed natural vegetation. Desertification has claimed most of the land between latitudes 15 0 and 17 0 N and continues to move rapidly. The wild life habitants has been drastically altered with many species becoming extinct. Conflicts have arisen between nomads and cultivators. The government has thus developed a six year programme with emphasis on range seeding, afforestation, water conservation, fire control, sand dune stabilization and shelter belt development. Soil salinity and sodicity present both chemical and physical soil problems especially in irrigated regions. Since the Sudan is increasing its irrigated area from 2 to 4 million ha the problems will increase. Gypsum has not been effective in reclaimation but cultural practices such as ridge planting, timely seeding, and crop selection have shown promise. (author)

  4. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    Science.gov (United States)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  5. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  6. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  7. Vegetation response to soil salinity and waterlogging in three saltmarsh hydrosequences through macronutrients distribution

    Science.gov (United States)

    Ferronato, Chiara; Speranza, Maria; Ferroni, Lucia; Buscaroli, Alessandro; Vianello, Gilmo; Vittori Antisari, Livia

    2018-01-01

    Saltmarshes consist of soil hydrosequences, where the complex interactions between water tide fluctuations, soil physicochemical properties and plant colonization contribute to the triggering of the pedogenetic processes and consequently to the stability of the saltmarsh edges. In this study, the composition and richness of the vegetation cover were investigated along soil transects in three different saltmarshes. With the aim to investigate the response of the vegetation to the soil hydroperiod and its influence on the availability of soil nutrients, plant and soil samples were collected in four representative sites on each saltmarsh transect (hydrosequence). Among the different species of saltmarshes, L. vulgare and S. europaea colonized intertidal areas, where an accumulation of nutrients (Ca, K, P, S and Na) and organic C and total N (OC and TN, respectively) was found. These intertidal areas are the "critical transition zones", which drive the transition between the terrestrial and the aquatic systems along the increase of soil salinity and water saturation. Among the different element cycles analysed in the soil-plant system, the analysis of the Na and S dynamic, through both bioconcentration and translocation indexes, explains the different adaptation mechanisms to different salinity and waterlogging stressors. The limiting of the species areal was generally associated firstly with a decrease in their Na and S bioconcentration factor and, to a lesser extent, with the increase in their Na and S translocation.

  8. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    Science.gov (United States)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  9. Contributions of groundwater conditions to soil and water salinization

    Science.gov (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  10. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  11. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of Underground Saline Water on the Growth Characteristic of Tamarix austromongolica in Halomorphic Soil

    Science.gov (United States)

    Iwama, Kenji; Kobayashi, Koji; Kaneki, Ryoichi; Furukawa, Masayuki; Odani, Hiromichi

    It is important to evaluate the salt tolerance of native plants in order to utilize them for improving halomorphic soil in arid regions. Tamarix austromongolica, a dominant species in Inner Mongolia, China, has the property of salt absorption and expected soil desalinization. The effect of salt concentration in groundwater on the growth of stock diameter and shoot length were evaluated by cultivation experiments, growing the plants from cuttings for two years. Though the plants grew well in 1% salt concentration of groundwater, the evapotranspiration in the second year was reduced because of the growth of the root system. The growth of the plants and evapotranspiration were reduced with increasing groundwater salinity of 3 to 5%, but most plants did not die. In contrast, the plants which were supplied with groundwater of 7% salt concentration in the second year started to die in about a month, and two thirds of them died within five months. Thus the results showed that the tolerant limit of salinity of the plants in groundwater was 7%, and the growth was constrained with groundwater salinity of 3 to 5% concentration. The plants that survived with 7% salinity in the second year, however, were grown in groundwater salt concentration of 3% to 5% in the first year. This result indicated that saline stress might have changed the characteristic of salinity tolerance of the plant.

  13. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data

    Directory of Open Access Journals (Sweden)

    Ilyas Nurmemet

    2018-04-01

    Full Text Available Timely monitoring and mapping of salt-affected areas are essential for the prevention of land degradation and sustainable soil management in arid and semi-arid regions. The main objective of this study was to develop Synthetic Aperture Radar (SAR polarimetry techniques for improved soil salinity mapping in the Keriya Oasis in the Xinjiang Uyghur Autonomous Region (Xinjiang, China, where salinized soil appears to be a major threat to local agricultural productivity. Multiple polarimetric target decomposition, optimal feature subset selection (wrapper feature selector, WFS, and support vector machine (SVM algorithms were used for optimal soil salinization classification using quad-polarized PALSAR-2 data. A threefold exercise was conducted. First, 16 polarimetric decomposition methods were implemented and a wide range of polarimetric parameters and SAR discriminators were derived in order to mine hidden information in PolSAR data. Second, the optimal polarimetric feature subset that constitutes 19 polarimetric elements was selected adopting the WFS approach; optimum classification parameters were identified, and the optimal SVM classification model was obtained by employing a cross-validation method. Third, the WFS-SVM classification model was constructed, optimized, and implemented based on the optimal match of polarimetric features and optimum classification parameters. Soils with different salinization degrees (i.e., highly, moderately and slightly salinized soils were extracted. Finally, classification results were compared with the Wishart supervised classification and conventional SVM classification to examine the performance of the proposed method for salinity mapping. Detailed field investigations and ground data were used for the validation of the adopted methods. The overall accuracy and kappa coefficient of the proposed WFS-SVM model were 87.57% and 0.85, respectively that were much higher than those obtained by the Wishart supervised

  14. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    Science.gov (United States)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  15. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  16. Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil.

    Science.gov (United States)

    Zhang, Meng; Guo, Shuhai; Li, Fengmei; Wu, Bo

    2017-10-15

    This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R 2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.

  17. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  18. Buried straw layer and plastic mulching increase microlfora diversity in salinized soil

    Institute of Scientific and Technical Information of China (English)

    LI Yu-yi; PANG Huan-cheng; HAN Xiu-fang; YAN Shou-wei; ZHAO Yong-gan; WANG Jing; ZHAI Zhen; ZHANG Jian-li

    2016-01-01

    Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.

  19. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils.

    Science.gov (United States)

    Setia, Raj; Rengasamy, Pichu; Marschner, Petra

    2013-11-01

    Sorption is a very important factor in stabilization of dissolved organic carbon (DOC) in soils and thus C sequestration. Saline soils have significant potential for C sequestration but little is known about the effect of type and concentration of cations on sorption and release of DOC in salt-affected soils. To close this knowledge gap, three batch sorption and desorption experiments were conducted using soils treated with solutions either low or high in salinity. In Experiment 1, salinity was developed with either NaCl or CaCl2 to obtain an electrical conductivity (EC) in a 1:5 soil: water extract (EC1:5) of 2 and 4 dS m(-1). In Experiments 2 and 3, NaCl and CaCl2 were added in various proportions (between 25 and 100%) to obtain an EC1:5 of 0.5 and 4 dS m(-1), respectively. At EC1:5 of 4 dS m(-1), the sorption of DOC (derived from wheat straw) was high even at a low proportion of added Ca(2+) and did not change with proportion of Ca added, but at EC1:5 of 0.5 dS m(-1) increasing proportion of Ca(2+) added increased DOC sorption. This can be explained by the differences in exchangeable Ca(2+) at the two salinity levels. At EC1:5 of 4 dS m(-1), the exchangeable Ca(2+) concentration did not increase beyond a proportion of 25% Ca(2+), whereas it increased with increasing Ca(2+) proportion in the treatments at EC1:5 of 0.5 dS m(-1). The DOC sorption was lowest with a proportion of 100% as Na(+). When Ca(2+) was added, DOC sorption was highest, but least was desorbed (with deionised water), thus sorption and desorption of added DOC were inversely related. The results of this study suggest that DOC sorption in salt-affected soils is mainly controlled by the levels of exchangeable Ca(2+) irrespective of the Ca(2+) concentration in the soil solution which has implications on carbon stabilization in salt-affected soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  1. Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available The ability of the following four organic amendments to ameliorate saline soil in coastal northern China was investigated from April 2010 to October 2012 in a field experiment: green waste compost (GWC, sedge peat (SP, furfural residue (FR, and a mixture of GWC, SP and FR (1∶1∶1 by volume (GSF. Compared to a non-amended control (CK, the amendments, which were applied at 4.5 kg organic matter m(-3, dramatically promoted plant growth; improved soil structure; increased the cation exchange capacity (CEC, organic carbon, and available nutrients; and reduced the salt content, electrical conductivity (EC, and exchangeable sodium percentage (ESP. At the end of the experiment in soil amended with GSF, bulk density, EC, and ESP had decreased by 11, 87, and 71%, respectively, and total porosity and organic carbon had increased by 25 and 96% respectively, relative to the CK. The GSF treatment resulted in a significantly lower Na(++K(+ content than the other treatments. CEC and the contents of available N, P, and K were significantly higher in the GSF-treated soil than in the CK and were the highest in all treatments. The FR treatment resulted in the lowest pH value and Ca(2+ concentration, which decreased by 8% and 39%, respectively, relative to the CK. Overall, the results indicate that a combination of green waste compost, sedge peat and furfural residue (GSF treatment has substantial potential for ameliorating saline soils in the coastal areas of northern China, and it works better than each amendment alone. Utilization of GWC and FR can be an alternative organic amendment to substitute the nonrenewable SP in saline soil amelioration.

  2. Effect of Phosphorous and Potassium Fertilization on Nitrogen Utilized by wheat Grown in Saline Soil Amended with Organic Manures

    International Nuclear Information System (INIS)

    Soliman, S.M.; Gadalla, A.M.; Kotb, E.A.; Mostafa, S.M.A.; Mansour, M.M.F.

    2008-01-01

    This study was carried out on poor saline soil located at Wad Ras Sudr, South Saini Governorate, and suffers from shortage of water resources. Therefore, we aimed to utilize this soil as well as the saline ground water for plant production. Organic fertilizers such as green manure(GM) or poultry manure(PM) can be used as nutrient sources, where it improves the physical, chemical and biological properties of the soil. Economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. Also, phosphorus and/or potassium supplementation separately or in combination with green or poultry manures improved the growth of wheat plants under such adverse condition of salinity. Application of 15 N technique indicated that labeled nitrogen added as ammonium sulphate (AS) to investigate and discrimination between the different N sources i.e. nitrogen derived from fertilizer (Ndff) and nitrogen derived from soil (Ndfs) as well as nitrogen use efficiency (FUE %)

  3. Analysis of Factors Influencing Soil Salinity, Acidity, and Arsenic Concentration in a Polder in Southwest Bangladesh

    Science.gov (United States)

    Ayers, J. C.; Patton, B.; Fry, D. C.; Goodbred, S. L., Jr.

    2017-12-01

    Soil samples were collected on Polder 32 in the coastal zone of SW Bangladesh in wet (October) and dry (May) seasons from 2013-2017 and analyzed to characterize the problems of soil salinization and arsenic contamination and identify their causes. Soils are entisols formed from recently deposited, predominantly silt-sized sediments with low carbon concentrations typical of the local mangrove forests. Soluble (DI extract) arsenic concentrations were below the Government of Bangladesh limit of 50 ppb for drinking water. Soil acidity and extract arsenic concentrations exhibit spatial variation but no consistent trends. In October soil extract As is higher and S and pH are lower than in May. These observations suggest that wet season rainwater oxidizes pyrite, reducing soil S and releasing H+, causing pH to decrease. Released iron is oxidized to form Hydrous Ferric Oxyhydroxides (HFOs), which sorb As and increase extractable As in wet season soils. Changes in pH are small due to pH buffering by soil carbonates. Soil and rice paddy water salinities are consistently higher in May than October, reaching levels in May that reduce rice yields. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice.

  4. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    Science.gov (United States)

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Effects of Vinegar Bad and Flyash on the Growth of Sorghum and the Improvement of Saline Soils

    Directory of Open Access Journals (Sweden)

    FAN Na

    2017-10-01

    Full Text Available Based on the sorghum growth and salinity soil improvement, the effects of vinegar bad and flyash on the growth of sorghum and the improvement of saline soils were studied. The experiment was carried out with random block design, in 4 treatment, which were pure vinegar bad(treatment 1, vinegar bad and fly ash 1:1 ratio(treatment 2, vinegar bad and fly ash 2:1 ratio(treatment 3 and control respectively. The results showed that the contents of available nutrient in the four periods of sorghum growth increased firstly and then decreased, and the effect of vinegar bad and flyash treatment was better than that of control. Among them, the ratio 1:1 of vinegar and fly ash had the best effect. The results showed that compared with the control, the soil bulk density of treatment 1~3 was decreased by 19.6%, 28.6% and 11.32%, respectively. The spike length of treatment 1~3 was 6.25%, 9.06%, 3.93% higher than that of the control, respectively. The yield per plant of treatment 1~3 was increased by 10.53%, 13.26% and 8.89%, respectively. In summary, vinegar bad, flyash could improve the physical and chemical properties of saline soil, improve the environment of deep soil for plant growth, thereby increase the yield of sorghum.

  6. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  7. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  8. utilization of bio fertilizers and organic sources in arable soils under saline conditions using tracer technique

    International Nuclear Information System (INIS)

    Salama, O.A.E.

    2011-01-01

    Recently, more attention has been paid to conserve and save surrounding environment via minimizing the excessive use of chemical fertilizers and, in general, the agrochemicals applied in heavy quantities in agricultural agroecosystems. Therefore, the attention of most of agronomists was turned towards the use of so called clean agriculture or organic farming. Many of organic systems was pointed out such as the recycling of farm wastes i.e. crop residues, animal manure, organic conditioners for reclamation of soil and in the same time enhancement of plant growth and improving yield quality. The application of organic wastes combined with or without microbial inoculants to plant media are considered as a good management practice in any agricultural production system because it improves, plant quality and soil fertility. Therefore, we have the opportunity to conduct some experiments for achieving the clean agriculture approach, combating the adverse effects of salinity and avoiding the environmental pollution. Series of laboratory and greenhouse experiments were carried out to evaluate the impact of (1) potent isolated fungi (Aspergillus oryzae and Aspergillus terreus) on degrading plant residues (Leucaena and Acacia green parts), and (2) biofertilizers (Sinorhizobium meliloti, Azospirillum brasilense, and Pseudomonas aeruginosa) in assessing barley and spinach plants to combat salinity of soil and irrigation water. 15 N-tracer technique that considered unique and more reliable technique may benefits in clarifying the responsible mechanisms related to plant growth and gave us the opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to spinach and barley plants grown on sandy saline soil and irrigated with saline water.

  9. Temporal variations of natural soil salinity in an arid environment using satellite images

    Science.gov (United States)

    Gutierrez, M.; Johnson, E.

    2010-11-01

    In many remote arid areas the scarce amount of conventional soil salinity data precludes detailed analyses of salinity variations for the purpose of predicting its impact on agricultural production. A tool that is an appropriate surrogate for on-ground testing in determining temporal variations of soil salinity is Landsat satellite data. In this study six Landsat scenes over El Cuervo, a closed basin adjacent to the middle Rio Conchos basin in northern Mexico, were used to show temporal variation of natural salts from 1986 to 2005. Natural salts were inferred from ground reference data and spectral responses. Transformations used were Tasseled Cap, Principal Components and several (band) ratios. Classification of each scene was performed from the development of Regions Of Interest derived from geochemical data collected by SGM, spectral responses derived from ENVI software, and a small amount of field data collected by the authors. The resultant land cover classes showed a relationship between climatic drought and areal coverage of natural salts. When little precipitation occurred three months prior to the capture of the Landsat scene, approximately 15%-20% of the area was classified as salt. This is compared to practically no classified salt in the wetter years of 1992 and 2005 Landsat scenes.

  10. Growth of cowpea plants inoculated with Rhizobium in a saline-sodic soil after application of gypsum

    Directory of Open Access Journals (Sweden)

    Angela Jessyka Pereira Brito Fontenele

    Full Text Available Two experiments were carried out with the aim of evaluating the growth of cowpea cultivated in saline-sodic soils corrected with gypsum: one experiment in the laboratory, to identify the best level of gypsum for the correction of the saline-sodic soils of the state of Pernambuco, Brazil; and the other in a greenhouse, after correction of the soils. As the test plant, the cowpea cultivar pele de moça, inoculated with Rhizobium strain BR3267 was used. The experiments were arranged in a randomised block design in a 2 x 5 factorial arrangement, two soils and five levels of the gypsum requirement (GR, equivalent to 50, 100, 150, 200 and 250% of the GR of the soil, as determined by the Schoonover M-1 method, with five replications. The following were evaluated: electrical conductivity of the soil saturation extract (EC, soil exchangeable sodium and percentage of soil exchangeable sodium (ESP, number of nodules (NN, nodule dry weight (NDW, shoot dry weight (SDW, shoot height (PH and nitrogen concentration (N in the shoots. Application of 100% of the GR, followed by the enough water for leaching, was effective for the correction of soil sodicity. The application of increasing levels of soil GR resulted in an increase in the number of nodules, dry weight of the nodules and shoots, and the height and levels of N absorbed by the plants in soil S2. In soil S1, the use of levels of 200 and 250% of soil the GR caused a decrease in all the variables under study.

  11. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  13. The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties

    Directory of Open Access Journals (Sweden)

    Tomescu Daniel

    2017-05-01

    Full Text Available Soil salinity is one of the best known stress factors of plants that can lead to crop yield reduction. Therefore, it is important to identify new tolerance varieties of plants that can grow on saline soils. We have studied the influence of salt on five different tomato varieties from the Western region of Romania and compared them with a commercial hybrid and found that one of them (Rudna is a very salt-tolerant variety (up to 200 mM NaCl. The assimilation rates and stomata conductance of water vapour are affected by salinity but some of the local varieties of tomato exhibit quite good tolerance. We found that all plants under salinity stress emit (Z-3-hexenol (a C6, green leaf volatile and the emission of all terpenes increased in proportion to the salt concentration. The emission of three terpenes, (Z-beta-ocimene. 2-carene and beta-phellandrene, have been quantitatively correlated with salt concentration.

  14. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  15. Effect of Different Levels of Irrigation Water Salinity and Soil Texture on Growth and N Use Efficiency of Tomato and Melochia Grown in Rotation using 15N

    International Nuclear Information System (INIS)

    Darwish, T.M.; El Moujabber, M.; Atallah, T.; El Chami, D.

    2008-01-01

    Increasing water demands and water scarcity imply large farmer's reliance on groundwater on the coastal area leading to water salinization by seawater intrusion. Irrigation using saline water accumulates salts in the soil notably under protected agriculture leading to negative impact on yields. Consequently salt removal by leaching is required. Bioremediation of salt affected soils through a rotation acquires economic and environmental importance. Pot experiments were conducted under plastic house conditions on sandy soil (T1) and clay soil (T2). Three saline water treatments were used: low (S1=1.0 dS.m-1), moderate (S2=2.5 dS.m-1) and high (S3=5.0 dS.m-1). Tomato cv Tyrade (S and G seeds) was planted first, followed by Melochia or Jew's mallow (Corchorus olitorius) for remediation purposes. Each soil was placed in 24 pots and treatments were distributed randomly. Fertigation was done using drip method. Labeled nitrogen 15 N was used to trace the direct and residual effect of nitrogen under different saline conditions. Tomato yield, for the sandy soil, was negatively affected by the higher level of salinity. This effect could be attributed to the smaller buffering capacity of the sand soil. As a result of salinity, there was a remarkable increase in dry matter contents of fruits in the sandy soil only. Texture had a major effect on leaf area index (LAI) with better development in clay soil. Water consumption in the first 200 days of growth period did not show any significant difference among treatments with around 350-375 mm consumed. Nitrogen derived from fertilizers (% Ndff) was not affected by the soil texture or by the salinity. N yield and use efficiency were higher in the clay soil texture. Moreover, yield and Ndff in Melochia plants were negatively affected due to salt accumulation in the soil. Counting for all recovered N in the tomato-Melochia rotation, N use efficiency was higher in plants grown on clay soil (47%) compared to sandy soil (37.5%). (author)

  16. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  17. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    Salihu Lukman

    2013-01-01

    Full Text Available In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  18. Dynamics of 14C-labeled glucose and ammonium in saline arable soils

    International Nuclear Information System (INIS)

    Vuelvas-Solorzano, Alma; Hernandez-Matehuala, Rosalina; Conde-Barajas, Eloy; Cardenas-Manriquez, Marcela; Luna-Guido, Marco L.; Dendooven, Luc

    2009-01-01

    Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14 C labeled glucose with or without 200 mg kg - 1 of NH 4 + -N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m - 1 (low EC; LEC) and 6.72 dS m - 1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO 2 and 14 CO 2 were monitored. Approximately 60 % of the glucose- 14 C added to LEC soil evolved as 14 CO 2 , but only 20 % in HEC soil after the incubation period of 21 days. After one day, 14 C was extractable from LEC soil, but > 500 mg 14 C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH 4 + -N. The NO 2 - and NO 3 - concentrations were on average higher in LEC than in HEC soil, with exception of NO 2 - in HEC amended with NH 4 + -N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil. (author)

  19. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  20. Influence of NaCl-Induced Salinity and Cd Toxicity on Respiration Activity and Cd Availability to Barley Plants in Farmyard Manure-Amended Soil

    Directory of Open Access Journals (Sweden)

    Adel R. A. Usman

    2015-01-01

    Full Text Available The objective of this study was to evaluate the Cd availability and toxicity as affected by NaCl-induced salinity and farmyard manure addition. The Cd availability and toxicity were investigated in greenhouse pot and incubation experiments were conducted on a calcareous loamy sand soil contaminated with Cd (0.5, 1.5, 3, 6, 12, and 24 mg kg−1 of soil and amended with two rates of 0.0 and 30 g farmyard manure (FYM kg−1. Barley seeds (Hordeum vulgare L. were sown in pots and irrigated with water containing different levels of salinity (0, 30, 60, and 120 mM NaCl. The results revealed that the DTPA-extractable Cd and its content in barley plant shoots tended to increase in line as Cd was applied and salt levels increased. Elevated decreases in the soil basal respiration with increased Cd applied and NaCl-induced salinity were found. However, applying FYM significantly reduced Cd availability and increased plant growth and soil respiration activity. The results clearly showed that adding farmyard manure as soil organic amendment decreased the availability of Cd to barley plants and mitigated the toxicity of both Cd and salinity to soil microbial activity.

  1. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.)

    OpenAIRE

    S Tandisseh; A. R Astaraei; H Emami

    2017-01-01

    Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is...

  2. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  3. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2017-11-01

    Full Text Available It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE Program (ANSYS. In this paper, the process of salt heaving and frost heaving was divided into 3 stages and FE models were established based on fluid–structure interaction (FSI model. It is shown that under both effects of salt heaving and frost heaving, the tensile stress of asphalt surface course could be up to 96.75% of its tensile strength, which means its tensile strength was seriously inadequate; however, traffic loads could help to dramatically counteract effects of salt heaving and frost heaving, which could decrease 40–80% of the tensile stress in asphalt surface course. It is also shown that in Jinan-Dongying Freeway effects of salt heaving had slightly larger effects on pavement compared with that of frost heaving, probably because salt heaving occurred from the top to the bottom of subgrade. However, as a whole, in sulfate saline soil area, compared with general area, crack resistance of asphalt courses and foundation treatment should always be strengthened. Keywords: Sulfate saline soil subgrade, Asphalt pavement, Pavement mechanic, FEM, FSI, Cracks and bulging

  4. Soil salinity and acidity : spatial variabil[it]y and effects on rice production in West Africa's mangrove zone

    NARCIS (Netherlands)

    Sylla, M.

    1994-01-01

    In the mangrove environment of West Africa, high spatial and temporal variability of soil constraints (salinity and acidity) to rice production is a problem for the transfer and adoption of new agronomic techniques, for land use planning, and for soil and water management. Recently, several

  5. Differential response to soil salinity in endangered key tree cactus: implications for survival in a changing climate.

    Directory of Open Access Journals (Sweden)

    Joie Goodman

    Full Text Available Understanding reasons for biodiversity loss is essential for developing conservation and management strategies and is becoming increasingly urgent with climate change. Growing at elevations <1.4 m in the Florida Keys, USA, the endangered Key tree cactus (Pilosocereus robinii experienced 84 percent loss of total stems from 1994 to 2007. The most severe losses of 99 and 88 percent stems occurred in the largest populations in the Lower Keys, where nine storms with high wind velocities and storm surges, occurred during this period. In contrast, three populations had substantial stem proliferation. To evaluate possible mortality factors related to changes in climate or forest structure, we examined habitat variables: soil salinity, elevation, canopy cover, and habitat structure near 16 dying or dead and 18 living plants growing in the Lower Keys. Soil salinity and elevation were the preliminary factors that discriminated live and dead plants. Soil salinity was 1.5 times greater, but elevation was 12 cm higher near dead plants than near live plants. However, distribution-wide stem loss was not significantly related to salinity or elevation. Controlled salinity trials indicated that salt tolerance to levels above 40 mM NaCl was related to maternal origin. Salt sensitive plants from the Lower Keys had less stem growth, lower root:shoot ratios, lower potassium: sodium ratios and lower recovery rate, but higher δ (13C than a salt tolerant lineage of unknown origin. Unraveling the genetic structure of salt tolerant and salt sensitive lineages in the Florida Keys will require further genetic tests. Worldwide rare species restricted to fragmented, low-elevation island habitats, with little or no connection to higher ground will face challenges from climate change-related factors. These great conservation challenges will require traditional conservation actions and possibly managed relocation that must be informed by studies such as these.

  6. Simulation of Zinc Release Affected by Microbial Inoculation and Salinity Levels in a non-sterile Calcareous Soil Using kinetic Models

    Directory of Open Access Journals (Sweden)

    hamidreza boostani

    2017-02-01

    Full Text Available Introduction: Zinc (Zn is an important nutrient element for humans and plants that controls many biochemical and physiological functions of living organisms. Zinc deficiency is common in high pH, low organic matter, carbonatic, saline and sodic soils. Salinity is a major abiotic environmental stresses that limits growth and production in arid and semi-arid regions of the world. Bioavailability of Zn is low in calcareous and saline soils having high levels of pH and calcium. Desorption of Zinc (Zn from soil as influenced by biological activities is one of the important factors that control Zn bioavailability. Few reports on the effects of salinity on the availability and desorption kinetics of Zn are available. Rupa et al. (2000 reported that increasing the salt concentration led to increase Zn desorption from soil due to ion competition on soil exchangeable sites. Different kinetic equations have been used to describe the release kinetics of nutrients. Reyhanitabar and Gilkes (2010 found that the power function model was the best equation to describe the release of Zn from some calcareous soil of Iran, whereas Baranimotlagh and Gholami (2013 stated that the best model for describing Zn desorption from 15 calcareous soils of Iran was the first-order equation.less attention has been paid to kinetics of Zn release by DTPA extractant over time by inoculation of plant growth promoting rhizobacteria and mycorrhizae fungi in comination with soil salinity.The objective of this study was to evaluate the effect of plant growth promoting rhizobacteria (PGPR and mycorrhizae fungi (MF inoculation on release kinetic of Zn in a calcareous soil at different salinity levels after in cornplantation Materials and Methods: A composite sample of bulk soil from the surface horizon (0-30 cm of a calcareous soil from southern part of Iran was collected, air dried, passed through 2 mm sieve, and thoroughly mixed. Routine soil analysis was performed to determine some

  7. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil

    International Nuclear Information System (INIS)

    Chand, M.

    1980-01-01

    The application of fulvic acid to a saline-sodic soil augmented the solubility of zinc by thousands fold. Zinc fulvate when applied at levels equivalent to that of zinc sulphate was more effective in enhancing diffusion of zinc in the soil. Application of gypsum, zinc sulphate and fulvic acid significantly increased dry matter yield and uptake of zinc by rice crop in a saline-sodic soil. Application of gypsum with pressmud or with fulvic acid and zinc sulphate resulted in significantly higher yield and zinc uptake than in other treatments. (orig.)

  8. Effect of inorganic nitrogenous fertilizer on productivity of recently reclaimed saline sodic soils with and without biofertilizer.

    Science.gov (United States)

    Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G

    2007-07-15

    Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.

  9. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  10. Effects of NaCl and seawater induced salinity on survival and reproduction of three soil invertebrate species.

    Science.gov (United States)

    Pereira, C S; Lopes, I; Sousa, J P; Chelinho, S

    2015-09-01

    The increase of global mean temperature is raising serious concerns worldwide due to its potential negative effects such as droughts and melting of glaciers and ice caps leading to sea level rise. Expected impacts on soil compartment include floodings, seawater intrusions and use of saltwater for irrigation, with unknown effects on soil ecosystems and their inhabitants. The present study aimed at evaluating the effects of salinisation on soil ecosystems due to sea level rise. The reproduction and mortality of three standard soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer) in standard artificial OECD soil spiked with serial dilutions of seawater/gradient of NaCl were evaluated according to standard guidelines. An increased sensitivity was observed in the following order: H. aculeifer≪E. crypticus≈F. candida consistent with the different exposure pathways: springtails and enchytraeids are exposed by ingestion and contact while mites are mainly exposed by ingestion due to a continuous and thick exoskeleton. Although small differences were observed in the calculated effect electrical conductivity values, seawater and NaCl induced the same overall effects (with a difference in the enchytraeid tests where a higher sensitivity was found in relation to NaCl). The adverse effects described in the present study are observed on soils not considered saline. Therefore, the actual limit to define saline soils (4000 μS cm(-1)) does not reflect the existing knowledge when considering soil fauna. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  12. [Effects of biochar and PAM application on saline soil hydraulic properties of coastal reclamation region].

    Science.gov (United States)

    Cao, Yu Tong; She, Dong Li

    2017-11-01

    Disc infiltration tests were carried out to study the soil infiltration characteristics under different rates of soil amendments application, and to investigate the effects of biochar and polyacrylamide (PAM) application on saline soil hydraulic properties, pore characteristics and contribution of each pore to soil water flow in coastal reclamation region. The results showed that soil satura-ted hydraulic conductivity increased by 46.4% when biochar was applied at 2% compared with the control, and decreased with increasing PAM application. The total effective soil porosity and r>100 μm pores were increased by 8.3% and 10.2% (PPAM application. Particularly, the total effective soil porosity decreased markedly when PAM was applied at 1‰ and the reduction was up to 88%. With the application of biochar and PAM, the contribution of r500 μm played a major role in determining water flows.

  13. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    Science.gov (United States)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  14. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  15. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    International Nuclear Information System (INIS)

    Wang, S.M.; Zheng, Z.; Wang, J.Y.

    2012-01-01

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  16. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS Soil Moisture: Retrieval Ensembles

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2015-12-01

    Full Text Available Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV bias correction method for Soil Moisture and Ocean Salinity (SMOS soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration. In contrast, the existing method of Cumulative Distribution Function (CDF matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area and Niger (dry and sandy bare soils, it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

  17. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  18. Salinity effect of irrigation with treated wastewater in basal soil respiration in SE of Spain

    Science.gov (United States)

    Morugan, A.; Garcia-Orenes, F.; Mataix-Solera, J.

    2012-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. Wastewater use in agriculture is not a new practice, all over the world this reuse has been common practice for a long time, but the concept is of greater importance currently because of the global water crisis. Replacement of freshwater by treated wastewater is seen as an important conservation strategy contributing to agricultural production, substantial benefits can derive from using this nutrient-rich waste water but there can also be a negative impact. For this reason it is necessary to know precisely the composition of water before applying it to the soil in order to guarantee minimal impact in terms of contamination and salinization. In this work we have been studying, for more than three years, different parameters in calcareous soils irrigated with treated wastewater in an agricultural Mediterranean area located at Biar (Alicante, SE Spain), with a crop of grape (Vitis labrusca). Three types of waters were used for the irrigation of the soil: fresh water (control) (TC), and treated wastewater from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type during the study period. A soil sampling was carried out every four months. We show the results of the evolution of basal soil respiration (BSR), and its relationship with other parameters. We observed a similar pattern of behavior for BSR between treatments, a decrease at the first eighteen months of irrigation and an increase at the end of study. In our study case, the variations of BSR obtained for all the treatments seem to be closely related to the dose and frequency of irrigation and the related soil wetting and drying cycles. However, the results showed a negative correlation between BSR and

  19. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  20. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  1. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  2. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    Science.gov (United States)

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  3. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline and 1960 (Soil B, nonsaline were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  4. Earth Observation and Geospatial techniques for Soil Salinity and Land Capability Assessment over Sundarban Bay of Bengal Coast, India

    Directory of Open Access Journals (Sweden)

    Das Sumanta

    2016-12-01

    Full Text Available To guarantee food security and job creation of small scale farmers to commercial farmers, unproductive farms in the South 24 PGS, West Bengal need land reform program to be restructured and evaluated for agricultural productivity. This study established a potential role of remote sensing and GIS for identification and mapping of salinity zone and spatial planning of agricultural land over the Basanti and Gosaba Islands(808.314sq. km of South 24 PGS. District of West Bengal. The primary data i.e. soil pH, Electrical Conductivity (EC and Sodium Absorption ratio (SAR were obtained from soil samples of various GCP (Ground Control Points locations collected at 50 mts. intervals by handheld GPS from 0–100 cm depths. The secondary information is acquired from the remotely sensed satellite data (LANDSAT ETM+ in different time scale and digital elevation model. The collected field samples were tested in the laboratory and were validated with Remote Sensing based digital indices analysisover the temporal satellite data to assess the potential changes due to over salinization. Soil physical properties such as texture, structure, depth and drainage condition is stored as attributes in a geographical soil database and linked with the soil map units. The thematic maps are integrated with climatic and terrain conditions of the area to produce land capability maps for paddy. Finally, The weighted overlay analysis was performed to assign theweights according to the importance of parameters taken into account for salineareaidentification and mapping to segregate higher, moderate, lower salinity zonesover the study area.

  5. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  6. Dynamics of {sup 14}C-labeled glucose and ammonium in saline arable soils

    Energy Technology Data Exchange (ETDEWEB)

    Vuelvas-Solorzano, Alma; Hernandez-Matehuala, Rosalina [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Bioquimica. Lab. de Bioingenieria; Conde-Barajas, Eloy; Cardenas-Manriquez, Marcela [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Ambiental. Lab. de Bioingenieria], e-mail: marcela@itc.mx; Luna-Guido, Marco L.; Dendooven, Luc [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav), D.F. (Mexico). Dept. de Biotecnologia y Bioingenieria. Lab. de Ecologia de Suelos], e-mail: dendoove@cinvestav.mx

    2009-07-15

    Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. {sup 14}C labeled glucose with or without 200 mg kg{sup -}1 of NH{sub 4} {sup +}-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m{sup -}1 (low EC; LEC) and 6.72 dS m{sup -}1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO{sub 2} and {sup 14}CO{sub 2} were monitored. Approximately 60 % of the glucose-{sup 14}C added to LEC soil evolved as {sup 14}CO{sub 2}, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg {sup 14}C was extractable from LEC soil, but > 500 mg {sup 14}C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH{sub 4}{sup +}-N. The NO{sub 2}{sup -} and NO{sub 3}{sup -} concentrations were on average higher in LEC than in HEC soil, with exception of NO{sub 2}{sup -} in HEC amended with NH{sub 4}{sup +}-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil. (author)

  7. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  8. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    Science.gov (United States)

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  9. Soil salinity and yield of mango fertigated with potassium sources

    Directory of Open Access Journals (Sweden)

    Marcio A. Carneiro

    Full Text Available ABSTRACT Irrigated fruit crops have an important role in the economic and social aspects in the region of the Sub-middle São Francisco River Valley. Thus, the aim of this study was to evaluate soil salinity and the productive aspects of the mango crop, cv. Tommy Atkins, fertigated with doses of potassium chloride (KCl and potassium sulfate (K2SO4 during two crop cycles (from January to March 2014 and from January to March 2015. The experiment was carried out in a strip-split-plot design and five potassium doses (50, 75, 100, 125 and 150% of the recommended dose as plots and two potassium sources (KCl and K2SO4 as subplots, with four replicates. Soil electrical conductivity (EC, exchangeable sodium (Na+ and potassium (K+ contents and pH were evaluated. In addition, the number of commercial fruits and yield were determined. The fertilization with KCl resulted in higher soil EC compared with K2SO4 fertigation. Soil Na+ and K+ contents increased with increasing doses of fertilizers. K2SO4 was more efficient for the production per plant and yield than KCl. Thus, under the conditions of this study, the K2SO4 dose of 174.24 g plant-1 (24.89 kg ha-1 or 96.8% of recommendation, spacing of 10 x 7 m was recommended for a yield of 23.1 t ha-1 of mango fruits, cv. Tommy Atkins.

  10. A New Sesquiterpenoid Derivative from the Coastal Saline Soil Fungus Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2016-05-01

    Full Text Available A new sesquiterpenoid derivative, named aspergiketone (1, along with seven known compounds (2-8 were isolated from the coastal saline soil fungus Aspergillus fumigatus. Their structures were elucidated by spectroscopic analysis, and by comparison of experimental and reported data. The absolute configuration of compound 1 was defined by X-ray diffraction analysis. Compound 1 was cytotoxic towards HL-60 and A549 cell lines with IC 50 values of 12.4 and 22.1 μ M , respectively.

  11. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    Science.gov (United States)

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  12. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  13. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  14. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Science.gov (United States)

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  15. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  16. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    KAUST Repository

    Jadoon, Khan Zaib; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; Al-Mashharawi, Samir K.; McCabe, Matthew

    2015-01-01

    -Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water

  17. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  18. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    Science.gov (United States)

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  19. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  20. Progress with the reclamation of saline soils in Peru

    International Nuclear Information System (INIS)

    Estrada, J.A.

    1983-01-01

    The present report is the result of five years' experimental work at the Costa Regional Development Institute (IRD-Costa), based in Canete, Lima, Peru, on the reclamation of land affected by salts and hence of seriously limited agricultural value (production lower than 50%). A reclamation method combining surface and at depth washing with artificial drainage of excess water has been tried out and a method of nutrition has been developed which is based on tonification of the seeds before sowing. The results obtained are rather encouraging, so the method looks very promising, especially as it also makes for considerable savings in fertilizers (some 20% less) and for better yields per unit area. Once the ionic behaviour of this method has been studied by means of radioisotopes a large contribution will have been made towards alleviating the problem of saline soils. (author)

  1. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    Science.gov (United States)

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected

  2. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  3. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  4. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  5. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  6. PHYSIOLOGICAL REACTION OF THE SPECIES BRASSICA JUNCEA (L. CZERN. ON SALINIZED SOILS AMELIORATED WITH ZEOLITIC TUFF, PEAT AND PERLITE

    Directory of Open Access Journals (Sweden)

    Maria Cătălina PASTIA

    2017-12-01

    Full Text Available The physiological reaction of saline stress which Brassica juncea (L. Czern. plants undergo shows a greater growth and fresh substance gain process on previously cultivated soils that were fined with 20% zeolitic tuff and 5.09 g of neutral peat than the ones that had a substrate which hasn’t been cultivated on before that was fined with 5% zeolitic tuff and 1.39 g of perlite. The dry substance values obtained present a positive correlation with the values of fresh substance. Analysis of stomatal conductance enhances the hydric stress of plants which respond to saline stress with osmotic adjustment, accumulating high quantities of water comparing to the witness plant, which induces lower values of stomatal conductance and implicitly values are decreasing for photosynthesis, determining a low productivity. Higher values of stomatal conductance are reached at plants grown on previously cultivated soils fined with 20% zeolitic tuff and peat, and also at the ones grown on uncultivated soils fined with peat (29.45, respectively 30.05 mmol/m2/s.

  7. EFFECT OF SOIL SULFUR FERTILIZER AND SOME FOLIAR FERTILIZERS ON GROWTH AND YIELD OF BROCCOLI IN SALINE SOIL

    Directory of Open Access Journals (Sweden)

    Ali Husain JASIM

    2015-12-01

    Full Text Available Factorial experiment was conducted in the open fields of Agricultural College, Al-Qasim Green University during the agricultural seasons of 2013/2014 and 2014/2015 to study the effect of adding two levels of agricultural sulfur (control and add 100 kg.ha-1 and four levels of nutrient spray (without spray, high-potash fertilizer, high-phosphorus fertilizer and humic acid on growth and yield of broccoli under drip irrigation and polyethylene soil mulching in saline soil (9.6 dS.m-1. Randomized complete block design with three replicates was used. The results showed that agricultural sulfur led to increase number of leaves, leaf area, leaves chlorophyll content, diameter and weight of flower head compared to control. Spraying foliar fertilizer and its interaction with sulfur fertilizer also led to increase all of parameters above (except leaves chlorophyll content significantly compared to control treatment.

  8. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    Science.gov (United States)

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  9. Agricultural Soil Alkalinity and Salinity Modeling in the Cropping Season in a Spectral Endmember Space of TM in Temperate Drylands, Minqin, China

    Directory of Open Access Journals (Sweden)

    Danfeng Sun

    2016-08-01

    Full Text Available This paper presents the potential of the four-image spectral endmember (EM space comprising sand (SL, green vegetation (GV, saline land (SA, and dark materials (DA, unmixed from Landsat TM/ETM+ to map dryland agricultural soil alkalinity and salinity (i.e., soil alkalinity (pH and soil electrical conductivity (EC in the shallow root zone (0–20 cm using partial least squares regression (PLSR and an artificial neural network (ANN. The results reveal that SA, SL, and GV fractions at the subpixel level, and land surface temperature (LST are necessary independent variables for soil EC modeling in Minqin Oasis, a temperate-arid system in China. The R2 (coefficient of determination of the optimized parameters with the ANN model was 0.79, the root mean squared error (RMSE was 0.13, and the ratio of prediction to deviation (RPD was 1.95 when evaluated against all sampled data. In addition to the aforementioned four variables, the DA fraction and the recent historical SA fraction (SAH in the spring dry season in 2008 were also helpful for soil pH modeling. The model performance is R2 = 0.76, RMSE = 0.24, and RPD = 1.96 for all sampled data. In summary, the stable EMs and LST space of TM imagery with an ANN approach can generate near-real-time regional soil alkalinity and salinity estimations in the cropping period. This is the case even in the critical agronomic range (EC of 0–20 dS·m−1 and pH of 7–9 at which researchers and policy-makers require near-real-time crop management information.

  10. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  11. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  12. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    Science.gov (United States)

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  13. Faraday Rotation for SMOS Retrievals of Ocean Salinity and Soil Moisture

    Science.gov (United States)

    El-Nimri, Salem; Le Vine, David M.

    2016-01-01

    Faraday rotation is a change in polarization as radiation propagates from the surface through the ionosphere to the sensor. At L-band (1.4 GHz) this change can be significant and can be important for the remote sensing of soil moisture and ocean salinity from space. Consequently, modern L-band radiometers (SMOS, Aquarius and SMOS) are polarimetric to measure Faraday rotation in situ so that a correction can be made. This is done using the ratio of the third and second Stokes parameters. In the case of SMOS this procedure has produced very noisy estimates. An alternate procedure is reported here in which the total electron content is estimated and averaged to reduce noise.

  14. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  15. Balanço hídrico e da salinidade do solo na bananeira irrigada com água de diferentes salinidades = Soil water and salinity balance on banana irrigated with water of varied salinity

    Directory of Open Access Journals (Sweden)

    Ancélio Ricardo de Oliveira Gondim

    2009-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de diferentes níveis de salinidade de água de irrigação no uso consultivo na fase reprodutiva da bananeira e evolução da salinidade do solo. Adotou-se o delineamento inteiramente casualizado em parcelas subdivididas, totalizando oito tratamentos com quatro repetições por tratamento. Os níveis de salinidade foram obtidos a partir de águas naturais de poços dos aquíferos arenito e calcário e foram misturadas em tanques de alvenaria para a obtenção das concentrações de salinidade desejada. Verificou-se que a área do bulbo com umidade superior a 8% representa aproximadamente 50% do volume do solo. A evapotranspiração da cultura diminuiu com o aumento da salinidade entre os tratamentos, o kc médio no período variou de 1,01 a 1,09 em águas de salinidade extremas. Comparando os perfis da salinidade do solo, verificou-se quea concentração de sais foi superior na camada superficial aos 440 dias após plantio.The objective this work was to evaluate the advisory use of two cultivars banana and the salinity of the soil in different water salinity levels (0.55; 1.70; 2.85; and 4.00 dS m-1 during the reproductive phase. The experimental design chosen was randomizedcomplete blocks in subdivided plots, totaling eight treatments with four repetitions per treatment. The salinity levels were obtained from natural waters of wells from sandstone and calcareous aquifers and were mixed in masonry tanks in order to obtain the desiredsalinity concentrations. It was verified that the area of the bulb with moisture greater than 8% represents approximately 50% of the volume of the soil. The evapotranspiration of the culture decreased with the increase in the salinity among the treatments; the average kc in the period varied from 1.01 to 1.09 in waters of extreme salinity. Comparing the salinity profiles of the soil, it was verified that the concentration of salts was highest on the surfacelayer at 440

  16. Irrigation and drainage in agriculture: a salinity and environmental perspective

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Stofberg, S.F.; Yang, X.; Liu, Y.; Islam, M.N.; Hu, Yin Fei

    2017-01-01

    Whereas irrigation and drainage are intended to address the shortage and surplus of soil water, respectively, an important aspect to address is also the management of salinity. Plants have a limited tolerance for soil water salinity, and despite significant gaps in our practical knowledge, an

  17. Manejo da fertirrigação e controle da salinidade do solo sob ambiente protegido, utilizando-se extratores de solução do solo Fertigation management and soil salinity control in a protected ambient using soil solution extractors

    Directory of Open Access Journals (Sweden)

    Nildo da S. Dias

    2005-12-01

    Full Text Available Com o objetivo de avaliar o uso de extratores de soluções do solo no auxílio ao manejo da fertirrigação e no controle da salinidade em solo cultivado com melão rendilhado, conduziu-se um estudo em ambiente protegido na área experimental do Departamento de Engenharia Rural da ESALQ/USP, localizada no município de Piracicaba, SP. Os tratamentos se compunham da combinação de dois fatores: 6 níveis de salinidade inicial do solo (S1 = 1,0; S2 = 2,0; S3 = 3,0; S4 = 4,0; S5 = 5,0 e S6 = 6,0 dS m-1 e dois manejos de fertirrigação: tradicional e com controle da condutividade elétrica da solução do solo. Procedeu-se à salinização inicial do solo por meio da aplicação de soluções salinas preparadas a partir de fertilizantes, em que a quantidade de sais a ser adicionada foi determinada tomando-se por base uma curva de salinização artificial, obtida previamente em laboratório. Os resultados mostraram que, com o uso de extratores de solução do solo, pode-se monitorar a concentração iônica da solução do solo, com precisão satisfatória. A salinidade do solo evoluiu com o tempo, estando os maiores níveis próximos à superfície do solo e do gotejador. A diferença no consumo de água entre os níveis de salinidade foi mais evidenciada no manejo controlado da fertirrigação, ajustando-se a um modelo quadrático.A study was carried out under greenhouse conditions at the experimental area of the Department of Rural Engineering of "Escola Superior de Agricultura Luiz de Queiroz-USP", Piracicaba, São Paulo state, Brazil, aiming to evaluate the performance of ceramic cup samplers in fertigation management and soil salinity control in a plot cultivated with netmelon. The treatments consisted of combination of two factors: six levels of initial soil salinity (S1 = 1.0, S2 = 2.0, S3 = 3.0, S4 = 4.0, S5 = 5.0 and S6 = 6.0 dS m-1 and two fertigation management control: the traditional and the control of electrical conductivity of soil

  18. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  19. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  20. Accumulation and localization of sodium and potassium ions in maize plants on saline soil

    Directory of Open Access Journals (Sweden)

    S. N. Kabuzenko

    2013-02-01

    Full Text Available The goal of this work is studying the accumulation and distribution of Na+ and K+ in maize hybrids of different salt tolerance under conditions of the chloride salinity. The new corn hybrid Veselka MV (salt-tolerant and Odessa 375 MB (not salt-tolerant were studied. The plants grown in salt-free chernozem soil are control. In the experiment, sodium chloride was dissolved in the irrigation water to form the salinity of test soils up to concentrations of 0.25, 0.5, 0.75, and 1.0% of ovendry weight. Soil moisture in the pots was maintained at 60% of the full field water capacity, the air temperature was +25…+27 °C, and the light – 10 klux. Plant samples were dried in the oven under 70 °C. Then, the average sample of 10 specimens was thoroughly levigated in the porcelain pounder  and dispersed in distilled water at 100 °C. The ions were extracted, and the extracts were centrifuged for 20 min at 3000 rpm. The ions content in the cell sap was analysed. Plant samples (1 g were incubated 10 min in chloroform, dried carefully with filter paper, and then the cell sap was squeezed. 1 ml of clear top layer of the cell sap was dissolved in 10 ml of distilled water. Ions content was determined by the atomic absorption spectrophotometer ("Karl Zeiss", Germany. Salt-tolerant maize hybrid Veselka MW (14 days age is characterized by an increased content of Na+ in the root tissues in comparison with the above-ground parts. In Odessa 375 MB hybrid this regularity is less pronounced. With the increase of sodium chloride concentration in the soil the content of Na+ in the aerial parts of plants rises. That may be connected with the reduced role of a root barrier. The salt-tolerant hybrid has a higher content of Na+ in the roots as compared to the above-ground parts. The content of K+ was higher in the above-ground parts, which is more pronounced in the salt-tolerant hybrid Veselka MB. The decrease of K+ in cell sap of the root under saline conditions was

  1. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    Science.gov (United States)

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  2. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  3. Determination of Nutrient Contents and Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

    Directory of Open Access Journals (Sweden)

    M. Boga

    2014-06-01

    Full Text Available The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (ECECECEC was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM, acid detergent fiber, digestible dry matter, dry matter intake (DMI were affected by plant, salinity and plant×salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV, and DMI were affected by salinity and plant×salinity interaction. Mineral contents were affected by plant species, salinity and salinity×plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME, and net energy lactation (NEL were affected by plant and plant×salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.

  4. Crescimento inicial do cafeeiro irrigado com água salina e salinização do solo Initial growth of coffee plants irrigated with saline water and soil salinization

    Directory of Open Access Journals (Sweden)

    Vladimir B. Figueirêdo

    2006-03-01

    Full Text Available A cultura do cafeeiro (Coffea arabica L. vem-se expandindo para regiões ainda pouco exploradas, em que o uso da irrigação com água salina possa ser fator limitante. Nesse contexto, avaliou-se o crescimento inicial do cafeeiro, conduzido em casa de vegetação do Departamento de Engenharia da Universidade Federal de Lavras (UFLA, submetendo-o a níveis crescentes de salinidade da água de irrigação. O delineamento utilizado foi inteiramente casualizado com 6 tratamentos (S0 = 0,0 dS m-1, S1 = 0,6 dS m-1, S2 = 1,2 dS m-1, S3 = 1,8 dS m-1, S4 = 2,4 dS m-1 e S5 = 3,0 dS m-1 e 4 repetições. A reposição de água foi realizada com base na curva característica do solo, pela leitura da tensão de água por blocos de resistência, retornando o conteúdo de água à capacidade de campo. Verificou-se que os tratamentos influenciaram significativamente as características da planta e que a salinidade da água a partir de 1,2 dS m-1 prejudicou o crescimento e, em alguns casos, provocou a morte das plantas. A área foliar foi a variável mais prejudicada. Ao final do experimento o solo foi classificado como salino-sódico.The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA, under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m-1, S1 = 0.6 dS m-1, S2 = 1.2 dS m-1, S3 = 1.8 dS m-1, S4 = 2.4 dS m-1 and S5 = 3.0 dS m-1 and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m-1 caused damage to plant development resulting, in some cases, in death of

  5. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  6. Impact of reclaimed water irrigation on soil salinity, hydraulic conductivity, cation exchange capacity and macro-nutrients

    Directory of Open Access Journals (Sweden)

    Saif A. Al-Khamisi

    2016-01-01

    Full Text Available Field studies were conducted at Agriculture Research Center, Oman during the year 2010/2011 to monitor the impact of reclaimed water irrigation on soil physical and chemical properties after wheat, cowpea and maize cultivation (in rotation. Three different water sources (Groundwater (GW, desalinized water (DW, and Reclaimed Water (RW were used as the treatments in Randomized Completely Block Design (RCBD with 3 blocks (replicates. Samples were taken from four depths (30, 45, 60 and 90 cm after harvesting time of the three crops. Soil salinity (ECe in all soil depths decreased with time. Organic carbon did not show significant difference between harvest timings of wheat and cowpea. Organic carbon increased with time in soil irrigated with reclaimed water. The saturated hydraulic conductivity of the soil, Ksat didn’t show significant difference among the water types and their interaction with soil depths. Total nitrogen was the highest after cowpea harvest in reclaimed water irrigation. The soil phosphorus and potassium were not affected by any of the three water irrigation types. The highest concentrations of phosphorus and potassium were found to be in the upper soil layers. Overall, no adverse impacts of reclaimed water irrigation were observed after growing three crops of rotation.

  7. Germination behavior of Albizia Lebbeck (L. Benth in weakly saline soils in Río Cauto

    Directory of Open Access Journals (Sweden)

    Giosvany Yuriet Oliva Arias

    2013-06-01

    Full Text Available The present study aimed to evaluate the behavior of nursery germination of Albizia lebbeck (L Benth weakly saline soils in the municipality of Río Cauto, Granma Province. The research was conducted in the period from March to June 2012 in the forest nursery Cauto Embarcadero belonging to Río Cauto silvicultural UEB. To determine the germination of the seeds, the germination test performed which consisted in putting to germinate 25 seeds per treatment at 5 for plates with filter paper petris as Treatment 1: added 10 mL of chloride solution sodium (NaCl, adjusted to an electric conductivity of 2 dS m-1 and as treatment 2: a sample pattern with deionized water having an electrical conductivity of 0, 02 dS.m-1 counts were performed daily until the 30 days. The electrical conductivity was measured with the brand portable conductivity meter HANNA HI 9033 multi-range model. Four treatments were studied: a standard with no saline growing medium and three growing media evaluated as weakly saline in a range of 1 to 2 dS m-1. Statistical analysis showed that there were no significant differences between treatments.

  8. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  9. The threat of soil salinity

    NARCIS (Netherlands)

    Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J.

    2016-01-01

    Soil salinisation is one of the major soil degradation threats occurring in Europe. The effects of salinisation can be observed in numerous vital ecological and non-ecological soil functions. Drivers of salinisation can be detected both in the natural and man-made environment, with climate and

  10. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Junhong, E-mail: junhongbai@163.com; Huang, Laibin, E-mail: seahuanglaibin@gmail.com; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg{sup −1}] for salinity and [0–4.0 mg kg{sup −1}] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg{sup −1} available Cd and 778.6 mg kg{sup −1} salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity.

  11. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    International Nuclear Information System (INIS)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-01-01

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg −1 ] for salinity and [0–4.0 mg kg −1 ] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg −1 available Cd and 778.6 mg kg −1 salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity

  12. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    OpenAIRE

    Xueying Zhao; Aiqin Shen; Yinchuang Guo; Peng Li; Zhenhua Lv

    2017-01-01

    It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE) Program (ANSYS). In this paper, the process of salt heaving and frost heav...

  13. Laboratory Performance of Five Selected Soil Moisture Sensors Applying Factory and Own Calibration Equations for Two Soil Media of Different Bulk Density and Salinity Levels

    Science.gov (United States)

    Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma

    2016-01-01

    Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH2O EC-10, ECH2O EC-20, ECH2O EC-5, and ECH2O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH2O EC-5 and ECH2O TE, which also performed surprisingly well in saline conditions. PMID:27854263

  14. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    Science.gov (United States)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  15. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  16. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ecosystem Services and Community-Based Approaches to Wastewater and Saline Soils Reclamation in the Drylands of Uzbekistan

    Science.gov (United States)

    Toderich, Kristina; Khujanazarov, Timur; Aralova, Dildora; Shuyskaya, Elena; Gismatulina, Liliya; Boboev, Hasan

    2017-04-01

    The working hypothesis of this article support an indication of declining water quality, increasing soils salinity and higher production costs in the Bukhara oasis- a borderline lands between the sandy Kyzylkum Desert and irrigated zone in the lower stream of Zarafshan River Basin. The pollution of waters and soils with toxic metals is the major environmental problem in these agro-ecological zones. Conventional remediation approaches usually do not ensure adequate results. The mobility of toxic pollutants can be highly facilitated by the chemical properties of soils and the aridity of the climate. The impact of these factors of land degradation induces reduction in biodiversity and yields losses of agricultural crops and wild desert plant communities. A recent survey showed that the chemical composition of the drainage effluents is sulfate-chloride-hydrocarbonate - magnesium-sodium-calcium with high level of mineralization 4200 - 18800 ppm. Concentration of chloride and sulfate, detected both in drainage effluents and ground water, is 10 times higher than maximum allowable concentration (MAC); and traces of heavy metals, such as strontium, selenium, arsenic, lead, zinc, uranium are 2 times higher than MAC. Distribution of boron showed a strong correlation with those of arsenic and antimony. Aluminum has a significant correlation with arsenic and lead distribution. Antimony correlates significantly with zinc and arsenic, while copper and iron (Fe57) also well correlate with each other. Because these metals rarely exist in natural environment, it is presumed that they are caused both by the usage of some chemicals at the agricultural field in harvest season and by the discharge of some technogenic chemicals from industry. The desalinated/treated wastewater were used to irrigate high value crops and the waste brine is transformed into a resource that was used to grow aquatic species (fish, algae) and irrigate halophytic species with benefits for livestock, farmers and

  18. Sr ISOTOPIC EVIDENCE FOR STUDYING THE SALINIZATION OF SOILS: AN EXAMPLE FROM THE SAN VITALE PINEWOOD (RAVENNA

    Directory of Open Access Journals (Sweden)

    Umberto Masi

    2009-12-01

    Full Text Available In the frame of a multidisciplinary project of research on the San Vitale Pinewood ecosystem, north of Ravenna, the Sr isotope study of a soil profile developed on an old coastal dune aiming at detecting the effect of salinization is presented. The Sr isotope ratios of the bulk soil samples decreased significantly from upper (0.717 to lower (0.712 horizons because of the abundant marine salts deposited by the brackish water present in the deep soil. While the main source of Sr in the upper horizons is the silicates, especially the feldspaths contained in the old dune sediments; in contrast, Sr in the lower horizons is significantly also of evaporitic origin (0.707-0.709. This latter is dominantly the strontium bio-available to the plants.

  19. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    Science.gov (United States)

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  20. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  1. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  2. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    Science.gov (United States)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated

  3. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia.

    Science.gov (United States)

    Huang, Jingyi; Prochazka, Melissa J; Triantafilis, John

    2016-05-01

    In the Murray-Darling Basin of Australia, secondary soil salinization occurs due to excessive deep drainage and the presence of shallow saline water tables. In order to understand the cause and best management, soil and vadose zone information is necessary. This type of information has been generated in the Toobeah district but owing to the state border an inconsistent methodology was used. This has led to much confusion from stakeholders who are unable to understand the ambiguity of the results in terms of final overall risk of salinization. In this research, a digital soil mapping method that employs various ancillary data is presented. Firstly, an electromagnetic induction survey using a Geonics EM34 and EM38 was used to characterise soil and vadose zone stratigraphy. From the apparent electrical conductivity (ECa) collected, soil sampling locations were selected and with laboratory analysis carried out to determine average (2-12m) clay and EC of a saturated soil-paste extract (ECe). EM34 ECa, land surface parameters derived from a digital elevation model and measured soil data were used to establish multiple linear regression models, which allowed for mapping of various hazard factors, including clay and ECe. EM38 ECa data were calibrated to deep drainage obtained from Salt and Leaching Fraction (SaLF) modelling of soil data. Expert knowledge and indicator kriging were used to determine critical values where the salinity hazard factors were likely to contribute to a shallow saline water table (i.e., clay ≤35%; ECe>2.5dS/m, and deep drainage >100mm/year). This information was combined to produce an overall salinity risk map for the Toobeah district using indicator kriging. The risk map shows potential salinization areas and where detailed information is required and where targeted research can be conducted to monitor soil conditions and water table heights and determine best management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    Science.gov (United States)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  5. Effect of the salinity in the adsorption of a herbicide in agricultural soils; Efecto de la salinidad en la adsorcion de un herbicida en suelos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, L. C. [Universidad de Occidente, Unidad Guasave, Departamento de Ingenieria y Tecnologia, Av. Universidad s/n, Centro, 81000 Guasave, Sinaloa (Mexico); Hansen, A. M., E-mail: ahansen@tlaloc.imta.mx [Instituto Mexicano de Tecnologia del Agua, Coordinacion de Hidrologia, Subcoordinacion de Hidrologia Subterranea, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2014-10-01

    To understand the effect of salinity in the adsorption of the herbicide atrazine in two soils from a Mexican agricultural area, the influence of sodium and calcium chloride concentrations were determined. Adsorption experiments were performed with soil samples from Irrigation District 063 (Dr 063), Guasave, Sinaloa, Mexico, suspended in 10 mm CaCl{sub 2}, in the presence of several concentrations of different electrolytes and atrazine (0.01, 0.05, 0.1, 0.5 and 1.0 mg/L) with radioactive tracer (347.4 Bq U-ring-{sup 14}C, Sigma Chemical Company, St. Louis, Mo, USA). It was found that for all the electrolytes,the time required to reach equilibrium adsorption of atrazine was less than 24 h and the adsorption isotherms were adjusted to Freundlich model. The presence of sodium in the aqueous solution favored the adsorption and inhibited desorption of atrazine in soils. Increasing the concentrations of sodium and calcium to about 40 nm and 60 mm, respectively, did not significantly affect (P <0.05), the adsorption of atrazine. However, there were differences in desorption of the herbicide with the increase of salts concentrations. The results of this study indicate that increased salinity, mainly caused by increased sodium concentrations in the soil-water system, has important effects on the fate of atrazine, due to salinization of soils favors the adsorption of atrazine, and inhibits its desorption. It is important to consider these properties when application options are analyzed as well as in the management and remediation of soils contaminated with atrazine. (Author)

  6. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    International Nuclear Information System (INIS)

    Motenko, R.G.

    2010-01-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  7. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    Energy Technology Data Exchange (ETDEWEB)

    Motenko, R.G. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geocryology; Grechishcheva, E.S. [Fundamentproek, Moscow (Russian Federation)

    2010-07-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  8. Cumulative effect of sulfur and calcium on wheat growth and yield under saline-sodic soils

    International Nuclear Information System (INIS)

    Arshadullah, M.; Hyder, S.I.

    2013-01-01

    A field experiment was carried out to investigate the effect of three rates of gypsum on growth and ionic concentration of wheat variety (Saher) sown in saline-sodic soil (ECe=5.32 dS m , pH=8.52 and SAR=18.87) at Soil Salinity Research Institute (SSRI) Farm, Pindi Bhattian during rabi 2009-10. Treatments were arranged using randomized complete block design (RCBD) with three replications. The crop was harvested at maturity, data on tillering, plant height, spike length, number of grains spike , 1000-grain weight, straw and paddy yields were recorded. Potassium (K), Na, Ca, S and Mg concentrations in grain were estimated using atomic absorption spectroscopy. Tillering, grains spike , 1000-grain weight and paddy yield significantly (P = 0.05) enhanced by increasing the rate of gypsum (CaSO/sub 4/). The maximum 4 number of grains spike (60), 1000-grain weight (47 g) and grain yields (4.01 t ha ) were recorded with CaSO application at the rate 150 kg ha . Grain 4 yield was 43% more than control treatment. Positive correlations (r2+ + 0.96), (r=0.96) and (r=0.91) between Ca , K , S and negative correlation r+ (-0.99) between Na contents in grain and wheat grain yield, respectively. It indicates presence of significantly higher Ca , K contents in grain receiving CaSO/sub 4/ help plants to attain more Ca/sup 2+/ , K and S to avoid Na 4 uptake. (author)

  9. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy); Fagnano, Massimo, E-mail: fagnano@unina.i [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy)

    2009-05-15

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O{sub 3} damages, we hypothesized that soil salinization may increase O{sub 3} tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O{sub 3} (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m{sup -1} reduced both stomatal conductance and plant O{sub 3} uptake, thus linearly reducing O{sub 3} effects on yield. Therefore a reliable flux-based model for assessing the effects of O{sub 3} on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  10. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  11. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  12. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  13. Efeitos da lixiviação e salinidade da água sobre um solo salinizado cultivado com beterraba Effects of leaching and water salinity on a saline soil cultivated with sugar beet

    Directory of Open Access Journals (Sweden)

    Paulo A. Ferreira

    2006-09-01

    Full Text Available Os efeitos de cinco lâminas de lixiviação e quatro níveis de salinidade da água de irrigação sobre a salinidade de um Neossolo Flúvico e a produtividade da cultura da beterraba (Beta vulgaris L. foram estudados em lisímetros de drenagem. Os tratamentos foram dispostos em arranjo fatorial com quatro níveis de condutividade elétrica da água de irrigação (1,0, 2,0, 3,0 e 4,0 dS m-1, a 25 °C e cinco lâminas de lixiviação equivalente a 0,25, 0,50, 0,75, 1,00 e 1,25 do volume de poros do solo ou 53, 106, 159, 206 e 248 mm, respectivamente, no delineamento inteiramente casualizado, com quatro repetições. Os componentes avaliados foram a produtividade da cultura e as salinidades no solo e no lixiviado. Os resultados obtidos mostraram incrementos da salinidade no lixiviado com o decréscimo das lâminas de lixiviação. Os maiores índices de salinidade no perfil do solo, ao final do ciclo da cultura, corresponderam aos tratamentos que receberam as menores lâminas de lixiviação e condutividade elétrica da água de irrigação. A produtividade total da beterraba e a produção das raízes com diâmetros maiores que 3, 4, 5, 6 e 7 cm, não foram influenciadas pelos níveis de salinidade da água de irrigação e lâminas de lixiviação.The effects of five leaching depths and four salinity levels of the irrigation water on the salinity of a Neossol Fluvent and the productivity of sugar beet crop were studied using drainage lysimeters. A completely randomized experimental design was used with four replications, the treatments being displayed in a factorial scheme with four electrical conductivity levels of the irrigation water (1.0, 2.0, 3.0 and 4.0 dS m-1 at 25 °C and five leaching depths equivalent to 0.25, 0.50, 0.75, 1.00 and 1.25 of the soil pores volume or 53, 106, 159, 206 e 248 mm, respectively. The crop productivity and the salinity of soil and leachate were evaluated. The results showed increased salinity in the leachate

  14. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  15. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  16. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  17. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  18. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  19. [Biodiversity and enzymes of culturable facultative-alkaliphilic actinobacteria in saline-alkaline soil in Fukang, Xinjiang].

    Science.gov (United States)

    Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun

    2014-02-04

    In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.

  20. GROWTH AND MINERAL NUTRITION OF NEEM (Azadirachta indica A. Juss. AND CINNAMOMUM (Melia azedarach Linn. SUBMITTED TO SALINITY

    Directory of Open Access Journals (Sweden)

    Antonio Lucineudo de Oliveira Freire

    2010-08-01

    Full Text Available The objective of this study was to verify the effects of soil salinity on growth and nutrient and sodium accumulation in neem (Azadirachta indica and cinnamomum (Melia azedarach. The experimental delineation was completely randomized in a 2 x 4 factorial arrangement, with two species (neem and cinnamomum, four salinity levels (electrical conductivity 0.49 (non saline soil, 4.15, 6.33 and 10.45 dS m-1 and four replications. Initially, plants were grown in tubes, and 60 days after emergence, they were transferred to pots containing 3 kg of substrate [soil + manure (2:1], according to the saline treatment. After 45 days, plant height, dry matter (leaves, stem, shoot (stem + leaves, roots and total and N, P, K, Ca, Mg, S and Na+ shoot accumulation were evaluated. Salinity reduced the plant height in both species, but the effect was more pronounced in neem. Increases in soil salinity caused an increase in the accumulation of Na + and reduced the accumulation of nutrients in shoots of both species, especially in neem. The cinnamomum was more tolerant to salinity levels of soils than neem.

  1. Exploration, antifungal and antiaflatoxigenic activity of halophilic bacteria communities from saline soils of Howze-Soltan playa in Iran.

    Science.gov (United States)

    Jafari, Samaneh; Aghaei, Seyed-Soheil; Afifi-Sabet, Hossein; Shams-Ghahfarokhi, Masoomeh; Jahanshiri, Zahra; Gholami-Shabani, Mohammadhassan; Shafiei-Darabi, Seyedahmad; Razzaghi-Abyaneh, Mehdi

    2018-01-01

    In the present study, halophilic bacteria communities were explored in saline soils of Howze-Soltan playa in Iran with special attention to their biological activity against an aflatoxigenic Aspergillus parasiticus NRRL 2999. Halophilic bacteria were isolated from a total of 20 saline soils using specific culture media and identified by 16S rRNA sequencing in neighbor-joining tree analysis. Antifungal and antiaflatoxigenic activities of the bacteria were screened by a nor-mutant A. parasiticus NRRL 2999 using visual agar plate assay and confirmed by high-performance liquid chromatography. Among a total of 177 halophilic bacteria belonging to 11 genera, 121 isolates (68.3%) inhibited A. parasiticus growth and/or aflatoxin production. The most potent inhibitory bacteria of the genera Bacillus, Paenibacillus and Staphylococcus were distributed in three main phylogenetic clusters as evidenced by 16S rRNA sequence analysis. A. parasiticus growth was inhibited by 0.7-92.7%, while AFB 1 and AFG 1 productions were suppressed by 15.1-98.9 and 57.0-99.6%, respectively. Taken together, halophilic bacteria identified in this study may be considered as potential sources of novel bioactive metabolites as well as promising candidates to develop new biocontrol agents for managing toxigenic fungi growth and subsequent aflatoxin contamination of food and feed in practice.

  2. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  3. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  4. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  5. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Science.gov (United States)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  6. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  7. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    Science.gov (United States)

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  8. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  9. Evaluation of Different Methods for Soil Classifications by Using Geographic Information Systems and Remote Sensing

    Directory of Open Access Journals (Sweden)

    S. H Sanaeinejad

    2012-12-01

    Full Text Available Soil salinity is an important factor that affects plant growth and reduces production of plantat different growth stages Remote sensing technology and GIS have a great potential for monitoring dynamic soil processes such as salinity. In the present study the efficiency of remote sensing technology and its integration with GIS was examined to estimate soil salinity for Neyshabour basin. Different classification methods for soil salinity were also investigated. We used 6 bands of LandSat ETM+ for this study. Classification results obtained from applying mathematical models for the images were compared with different band combinations results. The area of saline and non saline soil classes were identified in the study area based on the both methods and also based on the combination of the two methods. The results showed that the best method for soil classification was using of the two methods in the first stage to separate two classes of saline and non saline soils and then classifying the non saline soils in the second stage. As the variation in the numerical values of the image for different soil salinity in the study area was small, it was concluded that there is a limit potential of LandSat ETM+ images for identifying and classification of soil salinity in such an area.

  10. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  11. Salinity monitoring using remote sensing in the 038 Rio Mayo Irrigation District. Sonora, Mexico, by remote sensing

    International Nuclear Information System (INIS)

    Pulido Madrigal, L.; Gonzalez Meraz, J.

    2009-01-01

    a soil salinity survey was carried out in the Rio Mayo irrigation district (ID) in 1996, using satellite imagery along with and EM-38 electromagnetic (EM) device. Data from Landsat TM imagery were calibrated with field data, according to the Plant Indicator methodology. This methodology yielded a partial salinity map of the ID, but including only those areas where indicator crops were cultivated. The remaining non-mapped areas were surveyed with an EM-38 electromagnetic device, generating a second partial salinity map. Both partial maps were integrated to get a complete soil salinity map of the ID. In 2001, another soil salinity survey was carried out using solely the EM device. The results of both methodologies were analyzed, resulting in less affected areas in 2001 compared too those obtained in 1996. (Author) 4 refs.

  12. Respiration intensiveness and inclusion of 32P in the composition of phosphorus-organic combinations in radiomutants of cotton plants and their initial forms under salinization of soil

    International Nuclear Information System (INIS)

    Nazirov, N.N.; Tashmatov, N.T.; Vakhabov, A.; Nabiev, A.G.

    1981-01-01

    Salinization of soil affects respiration intensity, 32 P introduction into plants and its inclusion in the content of phosphoric organic compounds as well as their content in tissues of cotton plants. Respiration intensity increases: respiration intensity of weakly-stable plants increases to a greater degree. General character of changes caused by the salinization effect of different cotton sorts, is analogous, differences are only in the destruction degree [ru

  13. Urease activity in different soils of Egypt.

    Science.gov (United States)

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  14. Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

    Directory of Open Access Journals (Sweden)

    Nisha Kadian

    2014-08-01

    Full Text Available A pot experiment was conducted under polyhouse conditions, to evaluate the effect of two different arbuscular mycorrhizal fungi (G. mosseae and A. laevis in combination with Bradyrhizobium japonicum on growth and nutrition of mungbean plant grown under different salt stress levels (4 dS m−1, 8dS m−1 and 12 dS m−1. It was found that under saline conditions, mycorrhizal fungi protect the host plant against the detrimental effect of salinity. The AM inoculated plants showed positive effects on plant growth, dry biomass production, chlorophyll content, mineral uptake, electrolyte leakage, proline, protein content and yield of mungbean plants in comparison to non-mycorrhizal ones but the extent of response varied with the increasing level of salinity. In general, the reduction in Na uptake along with associated increase in P, N, K, electrolyte leakage and high proline content were also found to be better in inoculated ones. The overall results demonstrate that the co-inoculation of microbes with AM fungi promotes salinity tolerance by enhancing nutrient acquisition especially phosphorus (P, producing plant growth hormones, improving rhizospheric and condition of soil by altering the physiological and biochemical properties of the mungbean plant.

  15. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    Science.gov (United States)

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. Copyright © 2016. Published by Elsevier B.V.

  16. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  17. Effluent salinity of pipe drains and tube-wells : a case study from the Indus plain

    NARCIS (Netherlands)

    Kelleners, T.J.

    2001-01-01

    Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt-water upconing, soil salinity, stream-function, subsurface drainage

    Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity problems.

  18. Mulching for sustainable use of saline water to grow tomato in sultanate of oman

    International Nuclear Information System (INIS)

    Wahaibi, N.S.A.; Hussain, N.; Rawah, A.A.

    2007-01-01

    Tomato is grown in 991 hectares with production of 44477 tons in the sultanate of Oman. It is very important vegetable crop of Oman oat present being an integral part of daily diet of the people in various from like salad. Ketchup and kitchen cooking. Oman agriculture relies upon groundwater only, a major portion of which is saline that may concentrate further with the ever increasing pumping and probable seawater intrusions. Hence, the use of saline water is inevitable that can ultimately salinized the good productive soils. The production potential of these soils will gradually decrease and sustainability cannot be kept. This study was conducted to manage the saline water for avoiding bad effect on crop yields and soil health. A field experiment was conducted on tomato (Ginan variety) crop. Two mulching materials: organic matter (from date palm residues) and black plastic sheet, were tested in comparison to control (without any mulch). Two saline waters (EC=3 and 6 dSm/sup -1/) were used for irrigation. Uniform dose of fertilizers was applied. Four pickings of tomato were obtained and yield data were recorded EC moisture % age and temperature of soils were recorded after harvesting of crops. It was observed that data palm mulch proved as the most superior in terms of tomato fruit yield and control of increase in soil EC and temperature. It was followed by black plastic mulch. Both types of mulches indicated significant differences over control as well as among each other. (author)

  19. The genome sequence of Polymorphum gilvum SL003B-26A1(T reveals its genetic basis for crude oil degradation and adaptation to the saline soil.

    Directory of Open Access Journals (Sweden)

    Yong Nie

    Full Text Available Polymorphum gilvum SL003B-26A1(T is the type strain of a novel species in the recently published novel genus Polymorphum isolated from saline soil contaminated with crude oil. It is capable of using crude oil as the sole carbon and energy source and can adapt to saline soil at a temperature of 45°C. The Polymorphum gilvum genome provides a genetic basis for understanding how the strain could degrade crude oil and adapt to a saline environment. Genome analysis revealed the versatility of the strain for emulsifying crude oil, metabolizing aromatic compounds (a characteristic specific to the Polymorphum gilvum genome in comparison with other known genomes of oil-degrading bacteria, as well as possibly metabolizing n-alkanes through the LadA pathway. In addition, COG analysis revealed Polymorphum gilvum SL003B-26A1(T has significantly higher abundances of the proteins responsible for cell motility, lipid transport and metabolism, and secondary metabolite biosynthesis, transport and catabolism than the average levels found in all other genomes sequenced thus far, but lower abundances of the proteins responsible for carbohydrate transport and metabolism, defense mechanisms, and translation than the average levels. These traits support the adaptability of Polymorphum gilvum to a crude oil-contaminated saline environment. The Polymorphum gilvum genome could serve as a platform for further study of oil-degrading microorganisms for bioremediation and microbial-enhanced oil recovery in harsh saline environments.

  20. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  1. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments.

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0-2,000 mg kg(-1)] for salinity and [0-4.0 mg kg(-1)] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg(-1) available Cd and 778.6 mg kg(-1) salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  3. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress.

    Science.gov (United States)

    Romeh, Ahmed Ali Ali

    2017-10-01

    Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H 2 O 2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  5. Phytoremediation potential of some halophytic species for soil salinity.

    Science.gov (United States)

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  6. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    Science.gov (United States)

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  7. Salinity modeling by remote sensing in central and southern Iraq

    Science.gov (United States)

    Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.

    2012-12-01

    Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence

  8. Quality of jackfruit seedlings under saline water stress and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    Francisco Ítalo Fernandes de Oliveira

    2017-08-01

    Full Text Available The lack of good quality water for agriculture purposes regarding salts and quantity in relation to demand for the plants has, for more than 30 years, been forcing the use of restrictive water because of salinity issues in agricultural production systems worldwide. In Brazil, the situation is no different, in the semi-arid areas, there are reports of losses of seed germination, initial growth of seedlings and yield of crops of commercial importance due to the salinity of the water used in irrigation systems. Therefore, an experiment was carried out from June to September/2014 in a protected environment, with a plastic film on the upper base and a thin screen against insects on the sides, to evaluate the effects of salinity interaction between water irrigation and nitrogen fertilisation sources on soil salinity, initial plant growth and the quality of the jackfruit seedlings. The treatments were distributed in randomised blocks, in the factorial scheme 5 × 3, reference irrigation water of 0.3, 1.0, 2.0, 3.0 and 4.0 dS m-1, in soil with and without ammonium sulfate and urea. An increase in the salinity of the irrigation water to 1.32 and 1.70 dS m-1 on the substrate without nitrogen stimulated an increase in the number of leaves and leaf area of the jackfruit seedlings. The ammonium sulfate was the nitrogen source that mainly contributed to the increase of soil salinity and to the reduction of the quality index of the seedlings. Despite the reduction of the Dickson quality index due to the salinity of the irrigation water and the nitrogen sources, the seedlings were suitable for cultivation.

  9. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  10. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  11. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  12. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    Science.gov (United States)

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  13. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  14. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  15. Using multilayer perceptron and a satellite image for the estimation of soil salinity

    International Nuclear Information System (INIS)

    Lau, A.; Ruiz, M.E.; Garcia, E.

    2008-01-01

    Applying the model of the Perceptron multilayer with momentum of an artificial neural network particularly and a multispectral image of high resolution spatial and radiometric, for the first time estimated the salinity of the soil cultivated with sugar cane. The study area is the UBPC 'Lazaro Romero' of the sugar company 'Hector Molina' of the locality San Nicolas de Bari, Havana province, located at 22° 44' North latitude and 81 ° 56' longitude West. The experiments were made in the framework of the El-479 project funded by the Inter universities Council of Flanders, Belgium. 36 samples geo referenced of soils were taken at 3 depths in each of the 4 sugar cane selected blocks, which determined the electrical conductivity of the saturation extract; half of that amount of data was used for the training of the network and the other half for control in a computer program of the artificial neural network created to that effect, together with the reflectance of vegetation indexes for the image, which were maps of electrical conductivity of each block and bands. They were compared with those obtained by simple linear regression between the normalized difference vegetation index and electrical conductivity, Ndv with the approach of the neuronal network, the correlation coefficient was 0.78 to 0.83, while the linear regression was between 0.65 to 0.75

  16. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  17. Nutritional value and chemical composition of Cichorium spinosum L. under saline conditions

    OpenAIRE

    Petropoulos, Spyridon Α.; Vasilios, Antoniadis; Efi, Levizou; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C.F.R.

    2016-01-01

    Soil salinity is an ever‐growing problem that hinders vegetable cultivation in many areas within the Mediterranean basin. Cichorium spinosum is native to the Mediterranean basin and is usually found in coastal areas and plateaus. In the present study, C. spinosum plants were grown under saline conditions (1.8, 4 and 8 dS/m), in order to evaluate the effect of salinity on their nutritional value and chemical composition. From the results it was observed that high salinity levels...

  18. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  19. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?

    Science.gov (United States)

    Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J

    2016-07-01

    In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized

  20. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  1. Inversion of soil electrical conductivity data to estimate layered soil properties

    Science.gov (United States)

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  2. Incorporação de gesso para correção da salinidade e sodicidade de solos salino-sódicos Incorporation of gypsum to correct the salinity and sodicity of saline-sodic soils

    Directory of Open Access Journals (Sweden)

    Antonio N. Tavares Filho

    2012-01-01

    Full Text Available Com o objetivo de avaliar o efeito da aplicação do gesso nas características químicas de solos salino-sódicos coletados no Perímetro Irrigado do Moxotó, localizado no município de Ibimirim, PE, um experimento foi realizado em colunas de solo instaladas no Laboratório de Mecânica do Solo e Aproveitamento de Resíduo da Universidade Federal Rural de Pernambuco. Os tratamentos foram dispostos em um delineamento inteiramente casualizado com esquema fatorial de dois solos (S1 e S2 e sete níveis da necessidade de gesso (50, 75, 100, 125, 150, 175 e 200% determinado pelo Método de Laboratório Schoonover-M1. O gesso foi incorporado aos solos, em três repetições, totalizando 42 unidades experimentais. As variáveis avaliadas foram: i condutividade elétrica (CE, ii cátions solúveis e iii relação de adsorção de sódio (RAS no extrato de saturação do solo. O nível de 100% da necessidade de gesso causou diminuição da sodicidade para valores de RAS Aiming to evaluate the effect of gypsum on the modification of chemical properties of saline-sodic soils collected in the Irrigated Perimeter of Ibimirim-PE, an experiment was carried out in soil columns installed at the Soil Mechanics and Residue Recovery Laboratoy at the Universidade Federal Rural de Pernambuco. The treatments were arranged in a completely randomized design with factorial arrangement of two soils (S1 and S2 and seven levels of gypsum requirement (50, 75, 100, 125, 150, 175 and 200% determined by the Laboratory Method Schoonover-M1. The gypsum was incorporated in to the soils, in three replications, totaling 42 experimental units. The parameters evaluated were: electrical conductivity (EC, soluble cations and sodium adsorption ratio (SAR in the saturation extract of soil. The level of the 100% of gypsum requirement caused decreased in sodicity values of SAR under 13 (mmol L-1½, presenting itself as an effective method in reducing the levels of sodium in areas affected

  3. Response of three soil water sensors to variable solution electrical conductivity in different soils

    Science.gov (United States)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  4. Comportamento hídrico e crescimento do feijão vigna cultivado em solos salinizados Hydric behaviour and growth of cowpea cultivated in salinized soils

    Directory of Open Access Journals (Sweden)

    José B. M. Coelho

    2013-04-01

    Full Text Available A salinização dos solos reduz a capacidade das plantas de absorver água o que, em geral, provoca diminuição na sua taxa de crescimento. As respostas das plantas ao estresse salino são melhor correlacionadas com o potencial osmótico do que com a condutividade elétrica do extrato de saturação do solo. Com o objetivo de avaliar os efeitos do estresse salino no crescimento, evapotranspiração e potencial osmótico foliar do feijoeiro vigna [Vigna unguiculata L. (Walp.] conduziu-se um experimento em casa de vegetação da Universidade Federal Rural de Pernambuco (Recife, PE, Brasil. Os tratamentos constaram de um arranjo fatorial 2 x 4 composto de duas texturas de solo e quatro níveis de salinidade do solo (4, 8 e 12 dS m-1 a 25 ºC além da testemunha sem a adição de sais com cinco repetições. Concluiu-se que a salinidade do solo causa redução no consumo de água, no potencial osmótico foliar, na altura das plantas, no número de folhas e na biomassa seca da parte aérea do feijoeiro vigna.Soil salinization reduces the capacity of plants to absorb water, and in general causes decrease in plant growth. Plant responses to salt stress are better correlated with osmotic potential compared to electrical conductivity of soil saturation extract. In order to evaluate the effect of salt stress on growth, water use and leaf osmotic potential of cowpea [Vigna unguiculata L. (Walp.], an experiment was carried out in a greenhouse of the Federal Rural University of Pernambuco (Recife-PE, Brazil. The Treatments were in a factorial arrangement of 2 x 4, comprising of two soil textures and four levels of soil salinity (4, 8 and 12 dS m-1 at 25 °C, and the control without salt addition with five replications. It was concluded that soil salinity causes reduction in water consumption, leaf osmotic potential, plant height, number of leaves and dry biomass of shoot of cowpea.

  5. GS Soil - Assessment and strategic development of INSPIRE compliant Geodata-Services for European Soil Data

    DEFF Research Database (Denmark)

    Krogh, Paul Henning; Münier, Bernd

    facilities and long term observations as part of the Annex III theme "Environmental Monitoring Facilities", • Information about the soil related aspects of Annex III theme "Natural Risk Zones" as e.g. landslides, soil erosion, soil compaction, soil organic carbon decline, salinization, acidification and soil...

  6. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-10-15

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health--changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and other conditions unfavorable to propagation of the most desirable moist soil plants. Hence, the implementation of a program to monitor annual changes in the most common moist soil plants might serve as an index of habitat health and sustainability. Our review of the current scientific and popular literature failed to identify a good, comprehensive field guide that could be used to calibrate and verify high resolution remote sensing imagery, that we had started to use to develop maps of wetland moist soil plants in the Grassland Water District. Since completing the guide it has been used to conduct ground truthing field surveys using the California Native Plant Society methodology in 2004. Results of this survey and a previous wetland plant survey in 2003 are published in a companion LBNL publication summarizing 4 years of fieldwork to advance the science of real-time wetland salinity management.

  7. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  8. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  9. Crescimento do meloeiro cultivado sob diferentes níveis de salinidade, com e sem cobertura do solo Growth of muskmelon under different levels of salinity, with and without soil covering

    Directory of Open Access Journals (Sweden)

    José F. de Medeiros

    2007-06-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o crescimento de híbridos de meloeiro submetidos a três níveis de salinidade da água de irrigação, com presença e ausência de cobertura do solo. O experimento foi conduzido na Fazenda São João, em Mossoró, RN. Utilizou-se um esquema fatorial 3 x 2 x 2 em blocos completos casualizados, com quatro repetições. Os fatores foram três níveis de salinidade da água de irrigação, com condutividade elétrica de 1,2, 2,5 e 4,5 dS m-1, dois híbridos, Gold Mine e Trusty, com e sem cobertura de solo, por filme de polietileno dupla face preto-prateado. A área foliar, fitomassa e taxa de crescimento absoluto foram afetadas pela salinidade da água e cobertura do solo, variando com a idade da planta. A cobertura do solo proporcionou maior área foliar e fitomassa das plantas. O híbrido Trusty reduziu a fitomassa apenas quando se utilizou água de maior salinidade. A taxa de crescimento absoluto (TCA foi máxima entre 35 e 45 dias após o plantio e neste período foi reduzida com o aumento da salinidade. As taxas de crescimento relativo (TCR e de assimilação líquida (TAL não foram afetadas pela salinidade da água, cobertura do solo e híbridos.The objective of this work was to evaluate the growth of melon hybrids submitted to three irrigation water salinity levels with and without soil covering. The experiment was conducted at the São João Farm, Mossoró in the State of Rio Grande do Norte, Brazil. The factorial (3 x 2 x 2 scheme was adapted in completely randomized blocks, with four repetitions. The factors were three salinity levels of irrigation water, with electrical conductivity of 1.2, 2.5 and 4.5 dS m-1, two hybrids (Gold Mine and Trusty, with and without soil covering by a film of double face black-silvery polyethylene. The leaf area, dry weight and rate of absolute growth were affected by water salinity and soil covering, varying with plant age. The soil covering provided a larger leaf

  10. Effect of salinity and silicon application on oxidative damage of sorghum [sorghum bicolor (L.) moench.

    International Nuclear Information System (INIS)

    Kafi, M.; Nabati, J.; Masoumi, A.; Mehrgerdi, M.Z.

    2011-01-01

    Application of silicon (Si) to soil is considered as an alternative approach to alleviate salinity stress in crop plants. Therefore, a field experiment was conducted to investigate the effects of Si application [control (without Si), 1.44 and 1.92 g.kg /sup -1/ soil on membrane stability index (MSI), relative water content (RWC), leaf proline, soluble sugars, antioxidant activity, total phenols and dry matter accumulation of two sorghum (Sorghum bicolor) cultivars under three levels of salinity of irrigation water (5.2, 10.5 and 23.1 dS m/sup -1/ . The results showed that leaf proline content, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), Na/sup +/ concentration significantly increased only at high level of salinity, while, RWC Si caused an and dry matter accumulation were significantly decreased at all salinity levels. Soil application of 1.44 g.kg/sup -1/ increase in the activities of APX, catalase (CAT), superoxide dismutase (SOD), peroxidase (PRO), glutathione reductase soil Si caused an increase in membrane stabilityindex, (GR), total antioxidant and total phenol contents and 1.92 g.kg/sup -1/ soluble sugar and total phenol contents, CAT, SOD and total antioxidant activity. Soluble sugars, total phenols, SOD and total antioxidant activity and dry matter accumulation in cv. Omidbakhsh were higher than those in cv. Sepideh. In conclusion, alleviation of salinity stress by exogenous application of Si was found to be associated partly with enhanced antioxidant activity. (author)

  11. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  12. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  13. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  14. Tolerance of photoperiod insensitive mutant of Sesbania rostrata to salinity and pH

    International Nuclear Information System (INIS)

    Ramani, Saradha; Joshua, D.C.; Shaikh, M.S.; Athalye, V.V.

    1998-01-01

    The photoperiod insensitive mutant, TSR-1 of Sesbania rostrata was compared with the parent variety for its response to soil salinity and different levels of pH in hydroponics. The plant growth and stem nodulation were not significantly affected by salinity. However, salinity in soil without farmyard manure stimulated plant growth. Radiotracer studies showed that the translocation of Na to stem and leaves was much less compared to uptake in both parent and mutant. The growth of TSR-1 was comparable to or marginally better than that of the parent variety in the pH range of 3.5-8.0. Root nodulation was less with low pH. The nitrogen content was not adversely affected by pH, but it was reduced with 200 mM NaCl. This mutant in addition to being short-day insensitive, is tolerant to low to moderate salinity levels and pH like its parent. (author)

  15. Influence of salinity on soil chemical properties and surrounding ...

    African Journals Online (AJOL)

    Akomolafe Gbenga

    2013-11-14

    Nov 14, 2013 ... Brock, 2001; USDA, Natural Resources Conservation. Service, 2002). ... management practices through their effect on salinity and ..... resources: Human causes, extent, management and case studies. ... 7th edition. p.

  16. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  17. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    Science.gov (United States)

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  18. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan.

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Halbe, Johannes; Prasher, Shiv

    2015-04-01

    Over the course of the last twenty years, participatory modeling has increasingly been advocated as an integral component of integrated, adaptive, and collaborative water resources management. However, issues of high cost, time, and expertise are significant hurdles to the widespread adoption of participatory modeling in many developing countries. In this study, a step-wise method to initialize the involvement of key stakeholders in the development of qualitative system dynamics models (i.e. causal loop diagrams) is presented. The proposed approach is designed to overcome the challenges of low expertise, time and financial resources that have hampered previous participatory modeling efforts in developing countries. The methodological framework was applied in a case study of soil salinity management in the Rechna Doab region of Pakistan, with a focus on the application of qualitative modeling through stakeholder-built causal loop diagrams to address soil salinity problems in the basin. Individual causal loop diagrams were developed by key stakeholder groups, following which an overall group causal loop diagram of the entire system was built based on the individual causal loop diagrams to form a holistic qualitative model of the whole system. The case study demonstrates the usefulness of the proposed approach, based on using causal loop diagrams in initiating stakeholder involvement in the participatory model building process. In addition, the results point to social-economic aspects of soil salinity that have not been considered by other modeling studies to date. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    Science.gov (United States)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable

  20. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  1. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline–sodic water amending by potassium and farm yard manure

    Directory of Open Access Journals (Sweden)

    M. Ashraf

    2017-12-01

    Full Text Available Sunflower (Helianthus annuus L. plants were grown with saline–sodic water (SSW by treating with potassium (K @ 100 and 200 mg K2O kg−1 soil and farm yard manure (FYM @ 5 and 10% of soil, w/w. Irrigation with untreated SSW caused soil salinization/sodification, leading to an increase in electrical conductivity (EC of 165% and sodium adsorption ratio (SAR 100% with the subsequent increase of 736% in shoot Na+, a decrease of 52% in shoot K+ and 94% in shoot K+:Na+ratio compared to canal water. SSW also decreased physiological activities: 31% relative water content (RWC, 34% membrane stability index (MSI, 51% protein, 33% chlorophyll and 58% photosynthetic rate compared to canal water. Integrated application of K and FYM, at higher level, decreased soil EC by 54% and SAR 43%, and shoot Na+ 57% with a corresponding improvement in soil organic matter 166%, shoot K+ 360%, shoot K+:Na+ratio 987%, RWC 34%, MSI 37%, protein 60%, photosynthetic rate 102%, superoxide dismutase 92%, peroxidase 78% and catalase 52% compared to SSW without K and/or FYM. In conclusion, exogenous application of K and FYM could be a promising approach to use brackish water in agriculture on a sustainable basis.

  2. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    Science.gov (United States)

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  3. Field-scale apparent soil electrical conductivity

    Science.gov (United States)

    Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...

  4. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    Science.gov (United States)

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambrosia maritima L. Plant

    International Nuclear Information System (INIS)

    Moemen, A.M.E.

    2012-01-01

    This work achieved to study the effects of, mixture of salt 2:2:1 (Na Cl-CaCl 2 and Mg SO 4 ), concentration of (0, 2000, 4000 and 6000 ppm). on growth characters, some chemical components and some active ingredients in shoots of Ambrosia maritima plants, at different stages of growth, during two seasons. Pots 30 cm in diameter were filled of sand-loamy soils in appropriate concentration, all pots were irrigated with tap water. The exposed damsisa seeds to gamma rays, doses (0, 20, 40, and 80 Gy) before sowing together with control non irradiated seeds were sown in saline soils (0, 2000, 4000 and 6000 ppm). Soil salinity treatments caused a decrease in plant height, number of leaves, content of damsin, and an increase in fresh weigh, dry weight, total sugars, total chlorophyll, amino acids and ambrosine content. Also, Gamma rays caused an increase in most of growth parameters and most of chemical composition. It was observed that 40 or 80 Gy was more effective. We investigated the combined effect of levels of salinity and doses of radiation used, this interference improve growth parameters and chemical composition in ambrosia maritima plants and caused ascertain the role of gamma irradiation in plants tolerance to soil salinity and alleviation their harmful effect on plants.

  6. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  7. Effects of Salinity and Nitrogen Application Methods on Yield and Yield Components of Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    R Farshid

    2012-07-01

    Full Text Available To evaluate interaction of salinity stress and nitrogen use methods on yield and yield components, in experiment was conducted in split plot in randomized complete block with 3 replications. Treatments included: salinity of irrigation water levels 1.5, 4.4 and 7.9 ds/m as main plots, and nitrogen treatments 1. using N fertilizer at 3 stage in soil, 2. using two third N fertilizer in soil at planting and tillering and heading and one third in form of foliar application of N at tillering, 4. using and one third in form of foliar application at heading, 3. Using two third of N fertilizer in soil at planting one third of N fertilizer in soil at planting and two third in form of foliar application at tillering and heading, as sub plots. Results this study showed that increased in salt stress significant decreased total yield components such that showed decrease 41/5 kg/h in yield with increase in per unite salinity. Also methods of nitrogen application in salinity condition, have significant effects on total yield components. At the tillering, one stage of foliar with soil application of urea could increase spike no. m-2 and kernels of spike compared with other treatments. Foliar application of urea at heading stage increased kernels weight.

  8. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  9. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula).

    Science.gov (United States)

    Yaish, Mahmoud W; Al-Lawati, Abbas; Jana, Gerry Aplang; Vishwas Patankar, Himanshu; Glick, Bernard R

    2016-01-01

    In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05) altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is consistent with the

  10. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.)

    KAUST Repository

    Shah, Syed Haleem

    2017-09-12

    Abiotic stress can alter key physiological constituents and functions in green plants. Improving the capacity to monitor this response in a non-destructive manner is of considerable interest, as it would offer a direct means of initiating timely corrective action. Given the vital role that plant pigments play in the photosynthetic process and general plant physiological condition, their accurate estimation would provide a means to monitor plant health and indirectly determine stress response. The aim of this work is to evaluate the response of leaf chlorophyll and carotenoid (C-t) content in wheat (Triticum aestivum L.) to changes in varying application levels of soil salinity and fertilizer applied over a complete growth cycle. The study also seeks to establish and analyze relationships between measurements from a SPAD-502 instrument and the leaf pigments, as extracted at the anthesis stage. A greenhouse pot experiment was conducted in triplicate by employing distinct treatments of both soil salinity and fertilizer dose at three levels. Results showed that higher doses of fertilizer increased the content of leaf pigments across all levels of soil salinity. Likewise, increasing the level of soil salinity significantly increased the chlorophyll and Ct content per leaf area at all levels of applied fertilizer. However, as an adaptation process and defense mechanism under salinity stress, leaves were found to be thicker and narrower. Thus, on a per-plant basis, increasing salinity significantly reduced the chlorophyll (Chl(t)) and Ct produced under each fertilizer treatment. In addition, interaction effects of soil salinity and fertilizer application on the photosynthetic pigment content were found to be significant, as the higher amounts of fertilizer augmented the detrimental effects of salinity. A strong positive (R-2 = 0.93) and statistically significant (p < 0.001) relationship between SPAD-502 values and Chlt and between SPAD-502 values and Ct content (R-2 = 0

  11. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  12. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit

  13. Enhanced dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of the Athel tamarisk (Tamarix aphylla L. Karst.) grown in saline-alkaline soils of the former lake Texcoco.

    Science.gov (United States)

    Betancur-Galvis, Liliana A; Carrillo, Hernando; Luna-Guido, Marco; Marsch, Rodolfo; Dendooven, Luc

    2012-09-01

    Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated alkaline saline soil with phreatophyte or "water loving plants" was investigated by spiking soil from the former lake Texcoco with 100 mg phenanthrene (Phen) kg(-1) soil, 120 mg anthracene (Ant)kg(-1) soil and 45 mg benzo(a)pyrene (BaP) kg(-1) soil and vegetating it with Athel tamarisk (Tamarix aphylla L Karst.). The growth of the Athel tamarisk was not affected by the PAHs. In soil cultivated with Athel tamarisk, the leaching of PAHs to the 32-34 cm layer decreased 2-fold compared to the uncultivated soil. The BaP concentration decreased to 39% of the initial concentration at a distance smaller than 3 cm from the roots and to 45% at a distance larger than 3cm, but 59% remained in unvegetated soil after 240 days. Dissipation of Ant and Phen decreased with depth, but not BaP. The biodegradation of PAHs was affected by their chemical properties and increased in the presence of T. aphylla, but decreased with depth.

  14. Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model

    Science.gov (United States)

    Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...

  15. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  16. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.).

    Science.gov (United States)

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle ( Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  17. Salinity Stress is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.

    Directory of Open Access Journals (Sweden)

    Kun Yan

    2016-10-01

    Full Text Available Abstract Honeysuckle (Lonicera japonica Thunb. is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74% and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05% and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42% and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improves

  18. Salinidade, sodicidade e propriedades microbiológicas de Argissolo cultivado com erva-sal e irrigado com rejeito salino Salinity, sodicity and microbiological properties of an Ultisol cultivated with saltbush and irrigated with saline effluents

    Directory of Open Access Journals (Sweden)

    Célia Maria Maganhotto de Souza Silva

    2008-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da irrigação com rejeito da dessalinização, oriundo de tanques de produção de tilápia-rosa, sobre as propriedades químicas e microbiológicas de solos cultivados com erva-sal (Atriplex nummularia Lindl.. Quatro áreas foram usadas, das quais duas foram irrigadas com rejeito salino e cultivadas, durante um e cinco anos, com erva-sal. As outras duas áreas foram conduzidas sem irrigação: uma cultivada com vegetação natural e outra com a halófita. Avaliaram-se os parâmetros relativos à salinidade e sodicidade do solo, e também as seguintes características: carbono da biomassa microbiana (Cmic; relação Cmic/carbono orgânico; atividade das enzimas fosfatase ácida, fosfatase alcalina, beta-glucosidase, protease, L-asparaginase, L-glutaminase. A adição de sais afetou as propriedades físicas e químicas dos solos irrigados com rejeito salino, com tendência à salinização e sodificação. A salinidade afetou as propriedades microbiológicas nos solos irrigados, mas o cultivo da halófita favoreceu a produção das enzimas estudadas. O cultivo da erva-sal em áreas que recebem rejeito salino pela irrigação melhora a qualidade biológica dos solos e sua fertilidade, mas não impede a salinização.The objective of this work was to evaluate the effects of irrigation with saline effluents, from red tilapia production ponds, on chemical and microbiological properties of soils cultivated with saltbush (Atriplex nummularia Lindl. Four areas were used, from which two were irrigated with saline waste and cultivated with A. nummularia, during one and five years. The other two areas were not irrigated, and one was cultivated with natural vegetation and the other with the halophyte. The parameters related to soil salinity and sodicity were evaluated, as well as the following characteristics: microbial biomass carbon (Cmic; Cmic/organic carbon; the activity of acid and alcaline phosphatase

  19. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  20. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  1. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

    Science.gov (United States)

    Anderson, Thomas A.; Bestland, Erick A.; Soloninka, Lesja; Wallis, Ilka; Banks, Edward W.; Pichler, Markus

    2017-12-01

    High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (˜800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity `hotspot'. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

  2. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  3. Evaluation of SMOS soil moisture products over the CanEx-SM10 area

    Science.gov (United States)

    The Soil Moisture and Ocean Salinity (SMOS) Earth observation satellite was launched in November 2009 to provide global soil moisture and ocean salinity measurements based on L-Band passive microwave measurements. Since its launch, different versions of SMOS soil moisture products processors have be...

  4. The Potential of Algarrobo ( Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions

    Science.gov (United States)

    Westphal, Claus; Gachón, Paloma; Bravo, Jaime; Navarrete, Carlos; Salas, Carlos; Ibáñez, Cristian

    2015-07-01

    Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75 % germination at 300 mM NaCl, followed by 50 % germination at 450 mM NaCl and 30 % germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97 % at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils.

  5. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  6. Effects of environmental conditions on soil salinity and arid region in Tunisia

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    The shortage of water resources of good water quality is becoming an issue in the arid and semi arid regions. for this reason, the use of water resources of marginal quality such as treated wastewater and saline groundwater has become and important consideration, particularly in arid region in Tunisia, where large quantities of saline water are used for irrigation. (Author)

  7. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  8. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment

    Science.gov (United States)

    Glenn, Edward P.; Nagler, Pamela L.; Morino, Kiyomi; Hultine, Kevin

    2013-01-01

    Background and aims: We sought to understand the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

  9. [Amelioration of secondary bare alkali-saline patches in Songnen Plain through inserting cornstalk].

    Science.gov (United States)

    He, Nianpeng; Wu, Ling; Jiang, Shicheng; Zhou, Daowei

    2004-06-01

    Based on the field experiment on Songnen grassland, a new method was established to ameliorate the secondary bare alkali-saline patches (SAP) through inserting cornstalk. The experiment was rested on the assumption that through inserting cornstalk in the secondary bare alkali-saline patches (SAP) to retain seeds moving over its surface, the necessary seed source could be gained; and these seeds should be able to germinate and survive successfully on the cornstalk itself or in its neighborhood, where should be more fit to grow than other sites in SAP, due to the decomposition of cornstalk and its special role, so that, the aim to restore vegetation of SAP could be achieved at a pretty low cost and rapid speed. The results showed that the seed bank in soil was increased significantly, owing to the inserted cornstalk and its operating processes. The seed number in ameliorated soil was 4020.0 +/- 1773.6 seeds x m(-2), while that in the secondary bare alkali-saline patches (SAP) was only 10.0 +/- 31.6 seeds x m(-2). Although the soil chemical and physical characters in ameliorated zone were improved to some extent, the overall situation of soil was still bad for plant growth, as the pH, soluble saline ion and organic matter were concerned. Most of Chloris virgata grew around or on the cornstalk, the plants around each cornstalk being 3.9 +/- 2.2, and the total being 48.64 +/- 38.72 g x m(-2). Therefore, this method demanded a few resources, and needed simple technology and low cost, which is potentially deserved to popularize.

  10. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  12. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    Science.gov (United States)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  13. Ecophysiological Analysis of Drought and Salinity Stress Quinoa (Chenopodium Quinoa Willd.

    Directory of Open Access Journals (Sweden)

    Bosque Sanchez, H.

    2000-01-01

    Full Text Available We have studied the relative influence of drought and salinity stress, with similar soil water potentials on growth, water relations and photosynthetic rate of quinoa (Chenopodium quinoa Willd., testing at the same time certain techniques of stress physiology studies. As treatments, we have imposed two levels of salinity stress (S1 = 3852, 8 mg. V-1 NaCI and S2 = 8051.2 mg. V-1 NaCI and two of levels of drought stress with-0.159 MPa (D1 and -0, 279 MPa (D2 of soil water potentials (f^, and the control (c treatment without stress (65 % of volumetric soil water content, i. e. ¥m = -0.059 MPa. Our results of the greenhouse experiment have shown that quinoa has better relative and absolute growth rate in saline conditions, and the plant have developed adaptations mechanisms to drought through higher water use efficiency and high root/shoot ratio. The stomatal resistance and leaf water potential were higher as higher were the stress conditions. The variable chlorophyll fluoresence to maximal chlorophyll fluorescence-ratio (Fv/Fm and the fluorescence quenching analysis (photochemical : qP and non-photochemical : qN have shown the plants under drought stress are less protected against photoinhibition. Finally the use of Dynamic Diffusion Porometer has limitations for studies of plants species with salt bladders as quinoa.

  14. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area

    International Nuclear Information System (INIS)

    Fahad, S.; Bano, A.

    2012-01-01

    The aim of the present investigation was to determine the effect of exogenously applied salicylic acid (SA) on physiology of maize (Zea mays L.) hybrid cv. 3025 grown in saline field (pH 8.4 and EC 4.2 ds/m) as well as on the nutrient status of saline soil. The salicylic acid (10/sup -5/M) was applied as foliar spray, 40 days after sowing (DAS) at vegetative stage of maize plants. The salinity significantly increased sugar contents, protein, proline and superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APOX) activities but the chlorophyll, carotenoid contents, osmotic potential and membrane stability index (MSI) were lower than the control. Foliar application of salicylic acid (SA) to salt stressed plants further augmented the sugar, protein, proline, superoxide dismutase (SOD), peroxidase (POD) ascorbate peroxidase (APOX) activities, endogenous abscisic acid (ABA) , indole acetic acid (IAA) content, and root length, fresh and dry weights of roots whereas, the chlorophyll a/b and ABA/IAA ratio were decreased. The exogenous application of SA significantly decreased the Na/sup +/, Ni/sup +3/, Pb/sup +4/, Zn/sup +2/, and Na/sup +//K/sup +/ content of soil and roots while increased the Co/sup +3/, Mn/sup +2/, Cu/sup +3/, Fe/sup +2/, K/sup +/ and Mg/sup +2/ content under salinity stress. It can be inferred that exogenous application of SA (10/sup -5/M) was effective in ameliorating the adverse effects of salinity on nutrient status of soil. SA (10/sup -5/M) can be implicated to mitigate the adverse effects of salinity on maize plants. (author)

  15. Performance of neutron scattering relative to Diviner2000 for estimating soil water content in salt affected soils

    International Nuclear Information System (INIS)

    Al-Ain, F.; Attar, J.; Hussein, F.

    2007-05-01

    A field experiment was conducted on sandy clay and clayey soils at Deir Ezzor to compare the performance of Neutron Scattering (NS) relative to a capacitance probe (CP), Diviner2000, in our local conditions under saline soils. The effect of soil electrical conductivity (ECe) and bulk density (?b) on the precession, accuracy and sensitivity of the tested equipment s were evaluated. Also, the ability to improve the calibration equation for these equipment s, by including ECe and ?b as independent variables in the equation formula, was studied. The study showed that, Diviner2000 was very sensitive to soil bulk density and electrical conductivity of the soil (i.e. soil salinity) compared to the NS. Multiple non-linear regressions improved the fitting when both parameters (?b and ECe) were included in the equation, even though the correlation coefficient (R2) remained low in the case of Diviner2000.(author)

  16. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  17. Shaping an Optimal Soil by Root-Soil Interaction.

    Science.gov (United States)

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  19. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes

    Directory of Open Access Journals (Sweden)

    Wenqing Tang

    2018-06-01

    Full Text Available Sea surface salinity (SSS links various components of the Arctic freshwater system. SSS responds to freshwater inputs from river discharge, sea ice change, precipitation and evaporation, and oceanic transport through the open straits of the Pacific and Atlantic oceans. However, in situ SSS data in the Arctic Ocean are very sparse and insufficient to depict the large-scale variability to address the critical question of how climate variability and change affect the Arctic Ocean freshwater. The L-band microwave radiometer on board the NASA Soil Moisture Active Passive (SMAP mission has been providing SSS measurements since April 2015, at approximately 60 km resolution with Arctic Ocean coverage in 1–2 days. With improved land/ice correction, the SMAP SSS algorithm that was developed at the Jet Propulsion Laboratory (JPL is able to retrieve SSS in ice-free regions 35 km of the coast. SMAP observes a large-scale contrast in salinity between the Atlantic and Pacific sides of the Arctic Ocean, while retrievals within the Arctic Circle vary over time, depending on the sea ice coverage and river runoff. We assess the accuracy of SMAP SSS through comparative analysis with in situ salinity data collected by Argo floats, ships, gliders, and in field campaigns. Results derived from nearly 20,000 pairs of SMAP and in situ data North of 50°N collocated within a 12.5-km radius and daily time window indicate a Root Mean Square Difference (RMSD less than ~1 psu with a correlation coefficient of 0.82 and a near unity regression slope over the entire range of salinity. In contrast, the Hybrid Coordinate Ocean Model (HYCOM has a smaller RMSD with Argo. However, there are clear systematic biases in the HYCOM for salinity in the range of 25–30 psu, leading to a regression slope of about 0.5. In the region North of 65°N, the number of collocated samples drops more than 70%, resulting in an RMSD of about 1.2 psu. SMAP SSS in the Kara Sea shows a consistent

  20. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  1. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    Full Text Available In addition to being a forage crop, Caliph medic (Medicago truncatula is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05 altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is

  2. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  3. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC e 15, water EC w 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N 2 -fixation using 15 N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N 2 fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N 2 fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  4. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt

    Science.gov (United States)

    Masoud, Alaa A.; El-Horiny, Mohamed M.; Atwia, Mohamed G.; Gemail, Khaled S.; Koike, Katsuaki

    2018-06-01

    Salinization of groundwater and soil resources has long been a serious environmental hazard in arid regions. This study was conducted to investigate and document the factors controlling such salinization and their inter-relationships in the Dakhla Oasis (Egypt). To accomplish this, 60 groundwater samples and 31 soil samples were collected in February 2014. Factor analysis (FA) and hierarchical cluster analysis (HCA) were integrated with geostatistical analyses to characterize the chemical properties of groundwater and soil and their spatial patterns, identify the factors controlling the pattern variability, and clarify the salinization mechanism. Groundwater quality standards revealed emergence of salinization (av. 885.8 mg/L) and extreme occurrences of Fe2+ (av. 17.22 mg/L) and Mn2+ (av. 2.38 mg/L). Soils were highly salt-affected (av. 15.2 dS m-1) and slightly alkaline (av. pH = 7.7). Evaporation and ion-exchange processes governed the evolution of two main water types: Na-Cl (52%) and Ca-Mg-Cl (47%), respectively. Salinization leads the chemical variability of both resources. Distinctive patterns of slight salinization marked the northern part and intense salinization marked the middle and southern parts. Congruence in the resources clusters confirmed common geology, soil types, and urban and agricultural practices. Minimizing the environmental and socioeconomic impacts of the resources salinization urges the need for better understanding of the hydrochemical characteristics and prediction of quality changes.

  5. Studying of the combined salts effect on the engineering properties of clayey soil

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Anwar

    2018-01-01

    Full Text Available In recent years, a number of studies had been performed to investigate the effect of pore water chemistry on the strength and compressibility characteristics of soil. Although the effect of chloride and sulfates salts separately in pore fluids on the geotechnical properties of soil seems to be well understood, but the influence of combined effect of sulfates and chlorides in pore water on the behavior of soil is still unclear mostly due to the limited numbers of studies as well as the complexity of processes that may occur in soil (with the presence of salts in pore water-soil interaction. Southern regions of Iraq, especially Basra suffers from low water levels in the summer season in addition to the lack of rain water, which causes a significant increase of salt in the Shatt al Arab. Water salinity continues to increase with time. To investigate the combined impacts of water salinity on the behavior of clayey soils, the basic characteristics of the soil brought from Al-Nahrawan site was studied. Chemical methods were done with three types of water (distilled, water of highly saline as Shatt Al-Arab water and water of Tarmiya as moderate saline water. The effect of water salinity on the geotechnical properties of fine grain soil was investigated. Different laboratory tests such as Atterberg limits, standard compaction, consolidation and shear strength of soil .Results showed that the presence of perceptible amounts of dissolved salts in water can lead to changes in the engineering properties of the soil.

  6. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  7. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  8. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina.

    Science.gov (United States)

    Jayawickreme, Dushmantha H; Santoni, Celina S; Kim, John H; Jobbágy, Esteban G; Jackson, Robert B

    2011-10-01

    Conversions of natural woodlands to agriculture can alter the hydrologic balance, aquifer recharge, and salinity of soils and groundwater in ways that influence productivity and sustainable land use. Using a land-use change chronosequence in semiarid woodlands of Argentina's Espinal province, we examined the distribution of moisture and solutes and estimated recharge rates on adjacent plots of native woodlands and rain-fed agriculture converted 6-90 years previously. Soil coring and geoelectrical profiling confirmed the presence of spatially extensive salt accumulations in dry woodlands and pervasive salt losses in areas converted to agriculture. A 1.1-km-long electrical resistivity transect traversing woodland, 70-year-old agriculture, and woodland, for instance, revealed a low-resistivity (high-salinity) horizon between approximately 3 m and 13 m depth in the woodlands that was virtually absent in the agricultural site because of leaching. Nine-meter-deep soil profiles indicated a 53% increase in soil water storage after 30 or more years of cultivation. Conservative groundwater-recharge estimates based on chloride tracer methods in agricultural plots ranged from approximately 12 to 45 mm/yr, a substantial increase from the led to >95% loss of sulfate and chloride ions from the shallow vadose zone in most agriculture plots. These losses correspond to over 100 Mg of sulfate and chloride salts potentially released to the region's groundwater aquifers through time with each hectare of deforestation, including a capacity to increase groundwater salinity to >4000 mg/L from these ions alone. Similarities between our findings and those of the dryland salinity problems of deforested woodlands in Australia suggest an important warning about the potential ecohydrological risks brought by the current wave of deforestation in the Espinal and other regions of South America and the world.

  9. Rehabilitation of saline ecosystems through cultivation of salt tolerant plants

    International Nuclear Information System (INIS)

    Abdul, R.; Mahmood, K.

    2012-01-01

    In Pakistan, salt-affected regions have been drastically disturbed by unchecked activities of local populations. Removal of deep-rooted perennials and overgrazing destroy the native vegetation leading to rapid desertification. Shallow-rooted agricultural crops are grown on marginal soils on limited area that is not enough with respect to the spread of salinity problem. Sustainable restoration of these ecosystems requires a large scale integration of perennial plants (trees, shrubs and herbs) back in to farming systems. However, selenization processes continue because the available options for cultivation of perennial plants prove less profitable than agricultural crops. This study relates to resort the salt-affected lands for plant production and develop a technology for sustainable saline ecosystem. Plants, having salt tolerance potential, have been identified and introduced on salt-affected wastelands to develop a sustainable ecosystem with increased productivity. The biomass so produced can be used directly as forage, fuel, and even as food or feed. In addition, fish aquaculture, and some value-added products make this ecosystem more sustainable. This technology is practically demonstrated at Biosaline Research Station of Nuclear Institute for Agriculture and Biology (NIAB), Pakka Anna, Faisalabad, Pakistan. The marginally saline soils and wastelands ameliorated as a result of growing salt tolerant perennials can also be used for growing salt tolerant cultivars of conventional crops like wheat, barley and mustard. So, through proper management the saline ecosystem can become economical and profitable. (author)

  10. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  12. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  13. Crescimento inicial do tomateiro-cereja sob irrigação com águas salinas em solo com biofertilizantes bovino Initial growth of cherry tomatoes under irrigation with saline water in a soil with bovine biofertilizer

    Directory of Open Access Journals (Sweden)

    Reinaldo F. Medeiros

    2011-05-01

    Full Text Available Um experimento foi desenvolvido no período de outubro de 2009 a fevereiro de 2010, em ambiente telado do Departamento de Solos e Engenharia Rural do Centro de Ciências Agrárias da Universidade Federal da Paraíba, Areia, PB, para avaliar a influência da salinidade da água de irrigação no crescimento inicial do tomate-cereja em solo não salino, sem e com dois tipos de biofertilizante bovino. O delineamento experimental foi inteiramente casualizado em esquema fatorial 5x3, com seis repetições, referente aos valores de condutividade elétrica da água de irrigação: 0,5; 1,0; 2,0; 3,0 e 4,0 dS m-1, em solo sem biofertilizante, com biofertilizante comum e enriquecido com leite, melaço e gesso agrícola. Depois de diluídos em água não salina (0,5 dS m-1 na razão de 1:1. Os biofertilizantes foram aplicados uma única vez, dois dias antes da semeadura, a nível de 10% do volume do substrato. Os biofertilizantes proporcionaram maior crescimento das plantas em relação ao solo sem os respectivos insumos, independentemente do nível de salinidade das águas. A adição do biofertilizante comum e do enriquecido elevou o caráter salino do solo com superioridade sobre os tratamentos com apenas águas salinas, mas sem diferença significativa entre ambos.An experiment was conducted, from October 2009 to February 2010, in a greenhouse of the Soil and Rural Engineering Department from CCA – UFPB, Areia – PB, to evaluate the influence of the irrigation water salinity in the initial growth of the cherry tomatoes in a non-saline soil with and without two types of bovine biofertilizer. The experimental design was completely randomized in factorial scheme 5 x 3, with six repetitions, referring to values of electrical conductivity of the irrigation water: 0.5; 1.0; 2.0; 3.0 and 4.0 dS m-1 , in the soil without biofertilizer, with ordinary biofertilizer and enriched with milk, molasses, agricultural gypsum. The biofertilizers after

  14. Effects of salinity and Cu on total uptake of micronutrient in shoot and root of pistachio cultivars (Pistacia vera L.)

    OpenAIRE

    S. Eskandari; V. Mozaffari

    2013-01-01

    To study the effects of soil Cu and salinity levels on uptake of micronutrients by shoots and roots of pistachio seedlings, a factorial experiment was carried out as completely randomized design with three replications in greenhouse of College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran, in May 2008. Treatments consisted of five salinity levels (0, 800, 1600, 2400 and 3200 mg NaCl per kg soil), four Cu levels (0, 2.5, 5 and 7.5 mg Cu per kg soil) and two pistachio cultivars (Bada...

  15. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Science.gov (United States)

    Madrid, Eric N.; Armitage, Anna R.; López-Portillo, Jorge

    2014-01-01

    Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near-term climate change

  16. Avicennia germinans (black mangrove vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Eric N Madrid

    2014-09-01

    Full Text Available Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near

  17. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    ABOU-ELKHAIR, R.A.; EL-MOHTASEM, M.O.; SOLIMAN, S.M.; GALAL, Y.G.M.; ABD EL-LATIF, E.M.

    2009-01-01

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m -1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m -1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15 N atom excess was applied to sorghum at rate of 100 kg N fed -1 . Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios

  18. Studying the effects of different levels of salinity which caused by NaCl on early growth and germination of Lactuca Sativa L. seedling

    OpenAIRE

    KESHAVARZI MOHAMMAD HOSEIN BIJEH

    2012-01-01

    Soil salinity is one of the most important constraints that limit crop production in arid and semi arid regions. Seed germination is a critical stage in the history of plants and salt tolerance during germination is crucial for the establishment of plants that grow in saline soils. This research was carried out in order to test the effects of different salinity levels on germination and early growth of lettuce (Lactuca Sativa L.). The experiment was carried out using completely randomized des...

  19. Soils Newsletter, Vol. 33, No. 2, January 2011

    International Nuclear Information System (INIS)

    2011-01-01

    In this Newsletter under the Feature Article and Status of Coordinated Research Project (CRP) headings, you will see that stable isotopes can be combined with fallout radionuclides to effectively identify hot spots in critically-degraded areas of agricultural catchments and hence help to target cost-effective measures to conserve soil quality for production and reduce not only soil erosion, but also others forms of soil degradation such as soil salinization. With increasing water scarcity in many parts of the world resulting from the competition for water use from non-agricultural sectors and the impacts of climate change and variability on rainfall distribution, salinization, which is the process of soil and water salinity development and aggravation, can seriously affect crop and livestock production and ultimately farmers' livelihoods. In the Feature Article of this Newsletter, you will find an Abstract relating to a review paper on salinization conducted by the SWMCN Subprogramme which was recently published in the internationally-recognized Advances in Agronomy Journal. In October of this year, I was in Valencia, Spain, to attend the 'Global Forum on Salinization and Climate Change' as a Member of both the Organizing and Scientific Committees. The Forum highlighted the increasing concern in many Member States with this global issue of salinization. A successful integrated approach, involving soil-water management and crop improvement, is evident in the number of technical cooperation projects (TC) that the SWMCN and Plant Breeding and Genetics Sections have been jointly involved in during 2010. Since integrated cropping-livestock production systems are increasingly practiced in many parts of the world, an holistic farm management approach, taking into account the interaction between soil, water and livestock is important to ensure sustainable land productivity for livestock farming. Towards this aim, the SWMCN Section and the Animal Production and Health

  20. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    Salinity Control Unit was 10,700 tons/year. This accounts for approximately 27 percent of the decrease observed downstream from the Grand Valley Salinity Control Unit. Salinity loads were decreasing at the fastest rate (6,950 tons/year) in Region 4, which drains an area between the Colorado River at Cameo, Colorado (station CAMEO) and Colorado River above Glenwood Springs, Colorado (station GLEN) streamflow-gaging stations. Trends in salinity concentration and streamflow were tested at station CAMEO to determine if salinity concentration, streamflow, or both are controlling salinity loads upstream from the Grand Valley Salinity Control Unit. Trend tests of individual ion concentrations were included as potential indicators of what sources (based on mineral composition) may be controlling trends in the upper Colorado. No significant trend was detected for streamflow from 1986 to 2003 at station CAMEO; however, a significant downward trend was detected for salinity concentration. The trend slope indicates that salinity concentration is decreasing at a median rate of about 3.54 milligrams per liter per year. Five major ions (calcium, magnesium, sodium, sulfate, and chloride) were tested for trends. The results indicate that processes within source areas with rock and soil types (or other unidentified sources) bearing calcium, sodium, and sulfate had the largest effect on the downward trend in salinity load upstream from station CAMEO. Downward trends in salinity load resulting from ground-water sources and/or land-use change were thought to be possible reasons for the observed decreases in salinity loads; however, the cause or causes of the decreasing salinity loads are not fully understood. A reduction in the amount of ground-water percolation from Region 4 (resulting from work done through Federal irrigation system improvement programs as well as privately funded irrigation system improvements) has helped reduce annual salinity load from Region 4 by approxima

  1. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    Science.gov (United States)

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  2. Tea (Camellia sinensis (L.) Kuntze) leaf compost ameliorates the adverse effects of salinity on growth of cluster beans (Cyamopsis tetragonoloba L.)

    International Nuclear Information System (INIS)

    Saeed, R.; Shah, P.; Jahan, B.

    2016-01-01

    The pot experiment was carried out to evaluate the effect of tea compost on plant growth under salinity. Plants were grown in clay pots filled with sandy loam soil and irrigated by saline water (0, 50 and 100mM NaCl) with and without tea compost amendments. Soil evapotranspiration (ET), vegetative and reproductive growth and biochemical parameters were studied in this experiment. ET rate was increased with increasing salinity, whereas, it decreased with application of tea compost under all salinity. Vegetative (shoot height, number of leaves, fresh and dry biomass) and reproductive (number of seeds per plant) growth significantly decline under increasing salinity levels. Tea compost treatment helped in improving all these parameters. Total photosynthetic pigments (chlorophyll a, b, carotenoids and total chlorophyll content) showed reduction under raising salinity levels, while betterment was recorded with application of tea compost. Organic solutes (soluble sugars, proteins, free amino acids and phenolic content) increased with increasing salinity (50-100mM NaCl). Increased soluble sugars were found with tea compost treatment under non-saline control and decreased in salinity. Soluble proteins, amino acids and phenolic content increased with application of tea compost under both control and salinity. It is concluded that tea compost treatment is found to cope with salinity stress and improve plant growth and biochemical parameters by diluting the hazardous effects of salinity. (author)

  3. Selection of rice mutants Oryza Sativa L. with tolerance to saline grounds

    International Nuclear Information System (INIS)

    Hernandez Aguero, L.A.

    2001-01-01

    A selection of rice mutants with tolerance to salinity, took place in the Escuela de Ciencias Agrarias de la Universidad Nacional de Heredia, in conditions of hothouse starting from a population of M2 segregative seed, coming from commercial seed radiated with Co 60 gamma rays. The studied segregatives were: Setesa-9, Experimental II and Experimental I. For making this selection, the seed M2 was planted in plastic trays with saline soil with electrical conductivity values from 8 to 10 mmhos/cm. In each case, non-radiated original seed was used as control. After 22 days the seedling germinated, an evaluation was made and it was seen that any of the controls had resisted to the saline stress, and only those segregatives resistent to salinity survived. These were the next ones: 9 individuals of Setesa, 10 of the Experimental II, and 9 of Experimental I. The index of selection obtained was: 3.6, 4.0 y 3.6 respectively. In a second phase of the experiment, the seedling selected as salinity resistant, were taken to the ground were they were developed for getting the M3 mutant seed tolerant to salinity. The plants were individually harvested in the ground and each one had a specific identification. Then, weight and number data, fertile grain and ineffectives of the M3 seed were taken. After, for corroborating the capacity of tolerance to salinity, M3 seed was planted in flowerpots with saline soil with a value of electrical conductivity between 8 and 10 mmhos/cm. After data were analyzed, it was proved that some rice mutants had a profit of even 28 grams for 1000 grams as: ExpI-17, ExpI-15, ExpI-08, ExpII-22, ExpII-08, ExpII-30 and Se-9-14, Se-9-39 and Se-9-10. Therefore, the methodology utilized showed being effective and efficient for the objectives of the work [es

  4. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  5. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  6. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  7. Measurement of N{sub 2} fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using {sup 15}N isotopic dilution technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Khalifa, K; Janat, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC{sub e} 15, water EC{sub w} 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N{sub 2}-fixation using {sup 15}N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N{sub 2} fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N{sub 2} fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  8. International Conference on Biotechnology for Salinity and Drought Tolerance in Plants

    International Nuclear Information System (INIS)

    Malik, K.A.; Mahmood, K.

    2005-01-01

    International Conference on Biotechnology for Salinity and Drought Tolerance in Plants was held from 28-29 March, 2005 at Islamabad, Pakistan. Abstracts of this conference have been presented in this proceeding. There were six technical sessions like 1) Stress Physiology/Ion Transport, 2) Stress Sensing and Signaling, 3) Genomis, Metabolomics and Proteomics, 4) Genetic Engineering, 5) Gene Expression, 6) Field Studies and Management. This seminar was quite useful specially drought resistance and salinity in the soil. Researches exchange their views in the seminar. (A.B.)

  9. Salinity stress and some physiological relationships in Kochia (Kochia scoparia

    Directory of Open Access Journals (Sweden)

    Jafar Nabati

    2018-06-01

    Full Text Available Introduction Soil salinity is one of the major abiotic stresses affecting plant growth and production. It is estimated that approximately half of the irrigated lands of Iran are affected by salinity and much of the agricultural lands of Iran especially in the central regions are susceptible to salinity. According to the development of saline soils and water resources, utilization of halophytes as alternatives for cultivation in saline conditions could be a suitable strategy to crop production. In addition to understanding the physiological salinity tolerance pathways, studying such crops could help to plant breeding and transferring these useful traits to crop species and also domestication of these plants. Materials and methods This experiment was conducted in 2009-2010 in Salinity Research Station of faculty of agriculture, Ferdowsi University of Mashhad as split-plot based on Complete Randomized Block Design with three replications. Salinity as the main plot had two levels of 5.2 and 16.5 dSm-1 and five kochia ecotypes including Birjand, Urmia, Borujerd, Esfahan and Sabzevar were allocated as sub-plot. Seedlings were irrigated with saline water having electrical conductivity (EC of 5.2 dSm-1 until the full establishment and thereafter salinity stress was imposed with saline water having EC=16.5 dSm-1. Physiological and biochemical traits were measured in the youngest fully expanded leaf at the beginning of the anthesis and shoot biomass at the end of the growth season. Data analysis was performed using Minitab 16 and means were compared by LSD test at a significance level of 0.05. Results and Discussion Results indicated that biomass was increased in Birjand, Isfahan and Urmia ecotypes as salinity level increased while it was decreased in Sabzevar and Boroujerd ecotypes. A reduction of 34, 31, 11 and 29 percentage and an increase of 4 percentage in seed yield was seen in Sabzevar, Birjand, Boroujerd, Urmia and Isfahan, respectively. Harvest

  10. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    Science.gov (United States)

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  11. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    Science.gov (United States)

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  12. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    Science.gov (United States)

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  13. Mapping salinity stress in sugarcane fields with hyperspectral satellite imagery

    NARCIS (Netherlands)

    Hamzeh, S.; Naseria, A.A.; Alavi Panah, S.K.; Mojaradic, B.; Bartholomeus, H.; Herold, M.

    2012-01-01

    Soil salinity is a huge problem negatively affecting physiological and metabolic processes in plant life, ultimately diminishing growth and yield. An area with more than 70,000 ha sugarcane farming and its by-products are the major agricultural activities in the Khuzestan province, in the southwest

  14. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  15. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done

  16. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  17. Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California

    Directory of Open Access Journals (Sweden)

    Stephen R. Kaffka

    2013-09-01

    Full Text Available Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV. We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L. Pers. growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.

  18. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  19. Recuperação de um solo salinizado após cultivo em ambiente protegido Reclamation of a salinized soil after cultivation in greenhouse

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2001-04-01

    Full Text Available O excesso de fertilizantes e o manejo inadequado da irrigação nos cultivos em ambiente protegido, têm levado à salinização dos solos, o que resulta na redução da produtividade das culturas. O objetivo deste trabalho foi avaliar diferentes lâminas de lavagem e métodos de aplicação na recuperação de um solo salinizado em ambiente protegido. Foram utilizadas três diferentes frações (2/3, 1 e 3/2 da lâmina calculada, aplicadas por gotejamento e inundação, resultando em um esquema fatorial 2 x 3, com três repetições. Pelos resultados obtidos, concluiu-se que a aplicação por gotejamento foi mais eficiente na lixiviação dos sais acumulados no solo, devendo-se utilizar lâmina relativa de lavagem e coeficiente k de 0,9 e 0,1 para gotejamento e de 1,3 e 0,2 para inundação, respectivamente.Overapplication of fertilizers and inadequate irrigation management in greenhouse crops have caused soil salinization, resulting in reduction of crop yields. The aim of this work was to evaluate different depths of leaching and methods of application for reclamation of a salinized soil under greenhouse conditions. Three relative water depths (2/3, 1, 3/2, based on calculated leaching water depth, were applied by drip irrigation and flooding, in a 2 x 3 factorial scheme, with 3 replications. From the obtained results, it may be concluded that the application by drip was more efficient than flooding in leaching the accumulated salts in the soil and the relative water depth and coefficient k of 0.9 and 0.1 for drip and 1.3 and 0.2 for flooding, respectively, should be used.

  20. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  1. Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Liu, Y.; Liu, Q.

    2017-12-01

    Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.

  2. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew

    2015-01-01

    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...

  3. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  4. Effect of salinity on biomass production and activities of some key enzymatic antioxidants in kochia (kochia scoparia)

    International Nuclear Information System (INIS)

    Nabati, J.; Masoumi, A.; Mehrjerd, M.Z.; Kafi, M.; Nezami, A.; Moghaddam, P.R.

    2011-01-01

    Soil salinity is a major constraint to food production due to its negative impact on crop yield. Kochia (Kochia scoparia) is a salinity-resistant plant that can widely be used as emergency forage for livestock by using saline waters and soils in desert ecosystems. In order to investigate physiological mechanism, antioxidants activity and potential production of Kochia in response to different levels of salinity, an experiment was performed in a split plot based on randomized complete block design with three replications. Saline waters (5.2, 10.5 and 23.1 dS m/sup -1/) and three Kochia ecotypes (Birjand, Borujerd and Sabzevar) were allocated as main and sub plots, respectively. The results showed that salinity did not impose any significant effect on dry matter production but relative water content (RWC) and seed yield decreased by salinity stress. In general, no positive correlation coefficient was observed between dry matter production and physiological and biochemical parameters except superoxide dismutase (SOD) at 23.1 dS m/sup -1/. There was no significant difference among ecotypes in dry matter production and seed yield. Sabzevar ecotype showed the highest proline, total phenol content and peroxidase (POX) activity. Ascorbate peroxidase (APX), catalase (CTA), and superoxide dismutase (SOD) activity was higher in Borujerd ecotype, while highest soluble sugar, glutathione reductase (GR) activity and DPPH - radical scavenging activity was observed in Birjand ecotype. According to these results, Kochia has a reliable tolerance to elevated levels of salinities up to 23 dS m/sup -1/ and it seems that it can control oxidative stress by continuing growth. (author)

  5. The nature and classification of Australian soils affected by sodium

    Science.gov (United States)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups

  6. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  7. Soil Fertility Gradient in the Restinga Ecosystem

    Science.gov (United States)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  8. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements

    Directory of Open Access Journals (Sweden)

    Bruno Ladeiro

    2012-01-01

    Full Text Available With the continue increase of the world population the requirements for food, freshwater, and fuel are bigger every day. This way an urgent necessity to develop, create, and practice a new type of agriculture, which has to be environmentally sustainable and adequate to the soils, is arising. Among the stresses in plant agriculture worldwide, the increase of soil salinity is considered the major stress. This is particularly emerging in developing countries that present the highest population growth rates, and often the high rates of soil degradation. Therefore, salt-tolerant plants provide a sensible alternative for many developing countries. These plants have the capacity to grow using land and water unsuitable for conventional crops producing food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products. In addition to their production capabilities they can be used simultaneously for landscape reintegration and soil rehabilitation. This review will cover important subjects concerning saline agriculture and the crop potential of halophytes to use salt-contaminated resources to manage food requirements.

  9. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera have performance advantage over native populations only in low soil salinity.

    Directory of Open Access Journals (Sweden)

    Leiyi Chen

    Full Text Available Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt in a greenhouse. We used both norm reaction and plasticity index (PIv to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR, aboveground biomass, stem biomass and specific leaf area (SLA. The plasticity Index (PIv of height growth rate (HGR and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  10. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China.

    Science.gov (United States)

    Tang, Shu-Kun; Wang, Yun; Lou, Kai; Mao, Pei-Hong; Xu, Li-Hua; Jiang, Cheng-Lin; Kim, Chang-Jin; Li, Wen-Jun

    2009-06-01

    A Gram-positive actinobacterium, designated strain YIM 90716(T), was isolated from a saline soil sample collected from Ganjiahu Suosuo Forest National Nature Reserve in Xinjiang Province, north-west China. The new isolate contained lysine, glutamic acid and alanine with peptidoglycan type Lys-Ala(3) (variation A3alpha). The major phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The predominant menaqinone was MK-7(H(2)). The major fatty acids were anteiso-C(15 : 0), iso-C(16 : 0) and anteiso-C(17 : 0). The DNA G+C content of strain YIM 90716(T) was 68.0 mol%. Chemotaxonomic properties supported the affiliation of strain YIM 90716(T) to the genus Kocuria. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism was related most closely to Kocuria kristinae DSM 20032(T) (96.8 % similarity) and showed lower levels of 16S rRNA gene similarity (Kocuria. The results of fatty acid analysis and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain YIM 90716(T) from its closest relatives. On the basis of data from the present polyphasic study, strain YIM 90716(T) is considered to represent a novel species of the genus Kocuria, for which the name Kocuria halotolerans sp. nov. is proposed. The type strain is YIM 90716(T) (=DSM 18442(T)=KCTC 19172(T)=CCTCC AB 206069(T)).

  11. Analysis and Mapping of the Spectral Characteristics of Fractional Green Cover in Saline Wetlands (NE Spain Using Field and Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Manuela Domínguez-Beisiegel

    2016-07-01

    Full Text Available Inland saline wetlands are complex systems undergoing continuous changes in moisture and salinity and are especially vulnerable to human pressures. Remote sensing is helpful to identify vegetation change in semi-arid wetlands and to assess wetland degradation. Remote sensing-based monitoring requires identification of the spectral characteristics of soils and vegetation and their correspondence with the vegetation cover and soil conditions. We studied the spectral characteristics of soils and vegetation of saline wetlands in Monegros, NE Spain, through field and satellite images. Radiometric and complementary field measurements in two field surveys in 2007 and 2008 were collected in selected sites deemed as representative of different soil moisture, soil color, type of vegetation, and density. Despite the high local variability, we identified good relationships between field spectral data and Quickbird images. A methodology was established for mapping the fraction of vegetation cover in Monegros and other semi-arid areas. Estimating vegetation cover in arid wetlands is conditioned by the soil background and by the occurrence of dry and senescent vegetation accompanying the green component of perennial salt-tolerant plants. Normalized Difference Vegetation Index (NDVI was appropriate to map the distribution of the vegetation cover if the green and yellow-green parts of the plants are considered.

  12. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  13. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  14. Simulating Durum Wheat (Triticum turgidum L. Response to Root Zone Salinity based on Statistics and Macroscopic Models

    Directory of Open Access Journals (Sweden)

    Vahid Reza Jalali

    2017-10-01

    Full Text Available Introduction Salinity as an abiotic stress can cause excessive disturbance for seed germination and plant sustainable production. Salinity with three different mechanisms of osmotic potential reduction, ionic toxicity and disturbance of plant nutritional balance, can reduce performance of the final product. Planning for optimal use of available water and saline water with poor quality in agricultural activities is of great importance. Wheat is one of the eight main food sources including rice, corn, sugar beet, cattle, sorghum, millet and cassava which provide 70-90% of all calories and 66-90% of the protein consumed in developing countries. Durum wheat (Triticum turgidum L. is an important crop grows in some arid and semi-arid areas of the world such as Middle East and North Africa. In these regions, in addition to soil salinity, sharp decline in rainfall and a sharp drop in groundwater levels in recent years has emphasized on the efficient use of limited soil and water resources. Consequently, in order to use brackish water for agricultural productions, it is required to analyze its quantitative response to salinity stress by simulation models in those regions. The objective of this study is to assess the capability of statistics and macro-simulation models of yield in saline conditions. Materials and methods In this study, two general approach of simulation includes process-physical models and statistical-experimental models were investigated. For this purpose, in order to quantify the salinity effect on seed relative yield of durum wheat (Behrang Variety at different levels of soil salinity, process-physical models of Maas & Hoffman, van Genuchten & Hoffman, Dirksen et al. and Homaee et al. models were used. Also, statistical-experimental models of Modified Gompertz Function, Bi-Exponential Function and Modified Weibull Function were used too. In order to get closer to real conditions of growth circumstances in saline soils, a natural saline

  15. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  16. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  17. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  18. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  19. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    National Research Council Canada - National Science Library

    Le Vine, David M; Abraham, Saji; Wentz, F; Lagerloef, G. S

    2005-01-01

    ... to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes...

  20. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  1. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  2. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  3. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  4. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Makarov, M. I.

    2017-09-01

    Chloride ions in soil may interact with soil organic matter and form organochlorine compounds in situ. The biotic chlorination of soil organic substances takes places under aerobic conditions with participation of H2O2 forming from peroxidases released by soil microorganisms (in particular, by microscopic fungi). The abiotic chlorination results also from the redox reactions with the participation of Fe3+/Fe2+ system, but it develops several times slower. Chlorination of soil organic substances is favored by Cl- coming to soil both from natural (salinized soil-forming rocks and groundwater, sea salt) and anthropogenic sources of chlorides, i.e., spills of saline water at oil production, road deicing chemicals, mineral fertilizers, etc. The study of the biogeochemical chlorine cycle should take into account the presence of organochlorine compounds in soils, in addition to transformation and migration of chloride ions.

  5. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  6. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... accumulation on the leaves and stem, and free amino acids in the roots, leaves and stems. Plants showed a ... with soil salinity, which has increased due to excessive fertilization ... The salts effects in plants has been studied, and its must be of ... To adapt and survive in these adverse conditions, the plants ...

  7. New techniques to control salinity-wastewater reuse interactions in golf courses of the Mediterranean regions

    Science.gov (United States)

    Beltrao, J.; Costa, M.; Rosado, V.; Gamito, P.; Santos, R.; Khaydarova, V.

    2003-04-01

    Due to the lack water around the Mediterranean regions, potable water luxurious uses - as in golf courses - are increasingly contested. In order to solve this problem, non conventional water resources (effluent, gray, recycled, reclaimed, brackish), like treated wastewater, for irrigation gained increasing role in the planning and development of additional water supplies in golf courses. In most cases, the intense use of effluent for irrigation attracted public awareness in respect of contaminating pathogens and heavy metals. The contaminating effect of salinity in soil and underground water is very often neglected. The objective of this work is to present the conventional techniques to control salinity of treated wastewater and to present some results on new clean techniques to solve this problem, in the framework of the INCO-COPERNICUS project (no. IC-15CT98-0105) "Adaptation of Efficient Water Use Criteria in Marginal Regions of Europe and Middle Asia with Scarce Sources Subject to Environmental Control, Climate Change and Socio-Economic Development" and of the INCO-DC project (no. IC18-CT98-0266) "Control of Salination and Combating Desertification Effects in the Mediterranean Region. Phase II". Saline water is the most common irrigation water in arid climates. Moreover, for each region treated wastewater is always more saline than tap water, and therefore, when treated wastewater is reused in golf courses, more salinity problems occur. Conventional techniques to combat the salination process in golf courses can be characterized by four generations: 1) Problem of root zone salination by soil leaching - two options can occur - when there is an impermeable layer, salts will be concentrated above this layer; on the other hand, when there is no impermeable layer, aquifers contamination can be observed; 2) Use of subsurface trickle irrigation - economy of water, and therefore less additional salts; however the problem of groundwater contamination due to natural rain

  8. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris; Berger, Bettina; Tester, Mark A.; Roy, Stuart

    2014-01-01

    Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines

  9. Changes in standing stocks and fluxes of carbon due to salinization: tidal freshwater wetland forest retreat to marsh

    Science.gov (United States)

    Krauss, K.; Noe, G. B.; Duberstein, J. A.; Conner, W. H.; Stagg, C. L.; Jones, M.; Bernhardt, C. E.; Cormier, N.

    2017-12-01

    Assessments of organic carbon (C) standing stocks and fluxes as wetland ecosystems transition from tidally influenced freshwater forested wetlands to low-salinity marshes are not typically included in "blue carbon" accounting. However, these ecosystems have the potential to store and convey large quantities of C. Here, we report on data collected from eight riverine sites along salinity and hydro-edaphic gradients in South Carolina and Georgia to provide the first complete estimates of C storage, flux, and burial, including estimation of C export to aquatic environments, in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. Total standing stocks of C ranged from 280 to 891 Mg C/ha along both rivers but with no consistent trend in standing stock shifts along salinity gradients between the two rivers. Soil C standing stocks were most variable among sites. Furthermore, we assessed input (litterfall, woody growth, herbaceous growth, root growth and surface sediment C accretion) in comparison with output (surface litter decomposition, root decomposition and gaseous C) fluxes over periods ranging from 2 to 11 years. C sequestration from mass balance calculations ranged from 103 to 728 g C/m2/year among sites, with generally greater C sequestration on sites with prominent salinity-mediated conversion to oligohaline marsh. Dissolved C export was estimated as the difference between C sequestration and soil C burial using 14C dating of cores, and ranged from 144 to 404 g C/m2/year, representing a large amount of C export to feed aquatic biogeochemical transformations and secondary productivity. Along with C accounting, these sites also differed in how N and P were mineralized in soils, with considerable N mineralization on salinity-stressed (2.4-4.3 parts per thousand) forested sites with newly encroached marsh plants and considerable P mineralization on slightly higher salinity marshes. In all, C storage from tidal freshwater forested wetlands

  10. Studying the effects of different levels of salinity which caused by NaCl on early growth and germination of Lactuca Sativa L. seedling

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Bijeh Keshavarzi

    2012-04-01

    Full Text Available Soil salinity is one of the most important constraints that limit crop production in arid and semi arid regions. Seed germination is a critical stage in the history of plants and salt tolerance during germination is crucial for the establishment of plants that grow in saline soils. This research was carried out in order to test the effects of different salinity levels on germination and early growth of lettuce (Lactuca Sativa L.. The experiment was carried out using completely randomized design in four replication in 2011 Zabol University laboratory Iran. The results showed that by increasing salinity, percentage and race of germination decreased, So that, in the 150 mM of salinity level, germination reached to minimized (8.33%. Other measured parameters such as plumule length, radicle length, dry and wet weight decreased as well. All the results analyzed by SAS statistical software and comparison of average had done by Duncan test on 5% possible level.

  11. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    McMillen, S.J.; Young, G.N.; Davis, P.S.; Cook, P.D.; Kerr, J.M.; Gray, N.R.; Requejo, A.G.

    1995-01-01

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  12. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  13. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  14. Effect of Black and Clear Polyethylene Mulch on Yield and Yield Components of Melon in Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    Peyman Jafari

    2017-02-01

    Full Text Available Introduction: The term of Mulch, is the German word (Molsh means the soft, however, not soft, and made of plant debris or synthetic substances. Many positive effects attributed to the use of plastic mulch such as adjusting the temperature in the root environment, conserve moisture, reduce weeds, increase root growth, reduce soil erosion, and soil condensation and improve germination and early plant establishment. The use of mulch can reduce the harmful effects of salt in plants. Materials and Methods: To evaluate the effects of black and clear polyethylene mulch on yield and yield components of melon in salinity stress condition, a study was conducted in 2011 using split plot randomized based on complete block design with three replications in Varamin region. Three salinity levels of irrigation water of 2, 5 and 8 dS-1 as main factor and three plastic mulch treatments (no mulch, clear mulch and black mulch were considered as sub-plots. At harvest and after determining the yield and number of fruits harvested from each plot, the average number of fruits per plant was measured and fruit pulp thickness was recorded with calipers. Results Discussion The results showed interactive effects of salinity and mulch on fruit yield, number of fruits per plant, average fruit weight, fruit length, days to first harvest and fruit soluble solids percentage were statistically significant. In salinity levels of 2, 5 and 8 dS m-1, fruit yield increased, respectively, 19.6, 59, and 45.4 %in clear mulch compared to control. Similarly these increases for the black mulch were equal to 15.7, 41.9, and 21.4 percent, respectively. With 2, 5 and 8 dS m-1 salinity levels, fruit yield in the first harvest were 7.44, 7.72, and 6.98 t ha -1, respectively, which was significantly higher than without mulch and black mulch. Mulch can reduce evaporation and increase the level of moisture in the soil and thereby dilute the salt and reduce the harmful effects of salinity. Some

  15. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  16. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress.

    Science.gov (United States)

    Bharti, Nidhi; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2015-07-01

    The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions. Additive main effect and multiplicative interaction ordination analysis revealed that plant growth promoting rhizobacteria (PGPR) inoculations as well as salinity are major drivers of microbial community shift in maize rhizosphere. Salinity negatively impacts microbial community as analysed through diversity indices; among the PGPR-inoculated plants, STR2-inoculated plants recorded higher values of diversity indices. As observed in the terminal-restriction fragment length polymorphism analysis, the inoculation of halotolerant rhizobacteria prevents major shift of the microbial community structure, thus enhancing the resilience capacity of the microbial communities.

  17. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  18. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  19. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  20. Bacillus cereus: a competent plant growth promoting bacterium of saline sodic field

    International Nuclear Information System (INIS)

    Hassan, T.; Naz, I.; Hussain, M.

    2018-01-01

    The effects of Bacillus cereus were investigated on wheat in the presence or absence of L-tryptophan, in a saline sodic field. An aqueous solution of L-tryptophan was added to the rhizosphere soil at 1 µg/L, after 8d of seeds germination with irrigated water. The survival efficiency measured as colony forming unit revealed that B. cereus was salt tolerant to rhizosphere soil filtrate and in NaCl. Bio-inoculation of B. cereus significantly decreased Electrical conductivity (EC), Na and Cl contents by 35%, and increased K, NO3-N, P, and organic matter by (25%) over control. Tryptophan addition assisted B. cereus to further decrease Na, Cl, sodium absorption ratio (SAR) and Na/K by 80%. Inoculation of B. cereus alone and with tryptophan significantly increased proline, antioxidant enzymes, phytohormones and yield attributes. The results revealed that tryptophan addition augmented the potential of B. cereus in improving crop growth and productivity which was mediated by the salinity alleviation. (author)