WorldWideScience

Sample records for salicin arbutin maltose

  1. Arbutin increases Caenorhabditis elegans longevity and stress resistance

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2017-12-01

    Full Text Available Arbutin (p-hydroxyphenyl-β-D-glucopyranoside, a well-known tyrosinase inhibitor, has been widely used as a cosmetic whitening agent. Although its natural role is to scavenge free radicals within cells, it has also exhibited useful activities for the treatment of diuresis, bacterial infections and cancer, as well as anti-inflammatory and anti-tussive activities. Because function of free radical scavenging is also related to antioxidant and the effects of arbutin on longevity and stress resistance in animals have not yet been confirmed, here the effects of arbutin on Caenorhabditis elegans were investigated. The results demonstrated that optimal concentrations of arbutin could extend lifespan and enhance resistance to oxidative stress. The underlying molecular mechanism for these effects involves decreased levels of reactive oxygen species (ROS, improvement of daf-16 nuclear localization, and up-regulated expression of daf-16 and its downstream targets, including sod-3 and hsp16.2. In this work the roles of arbutin in lifespan and health are studied and the results support that arbutin is an antioxidant for maintaining overall health.

  2. Improvement of arbutin trans-epidermal delivery using ...

    African Journals Online (AJOL)

    Purpose: To assess the ability of radiofrequency (RF) microporation to promote trans-epidermal delivery of arbutin. Methods: To investigate the enhancing effect of RF microchannels on skin permeation of arbutin, in vitro skin permeability studies were performed with RF microporation-treated Hartley albino guinea pig skin ...

  3. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  4. Determination of the Thermodegradation of deoxyArbutin in Aqueous Solution by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Chih-Chien Lin

    2010-10-01

    Full Text Available Tyrosinase is the key and rate-limiting enzyme responsible for the conversion of tyrosine into melanin. Competitive inhibition of tyrosinase enzymatic activity results in decreased or absent melanin synthesis by melanocytes in human skin. DeoxyArbutin (4-[(tetrahydro-2H-pyran-2-yloxy]phenol, a novel skin whitening agent, was synthesized through the removal of hydroxyl groups from the glucose side-chain of arbutin. DeoxyArbutin not only shows greater inhibition of tyrosinase activity but is also safer than hydroquinone and arbutin. Hence, deoxyArbutin is a potential skin whitening agent for cosmetics and depigmenting drugs; however, stability of this compound under some conditions remains a problem. The lack of stability poses developmental and practical difficulties for the use of deoxyArbutin in cosmetics and medicines. Improving the thermostability of deoxyArbutin is an important issue for its development. In this research, we established an analytical procedure to verify the amount of deoxyArbutin in solutions using a high performance liquid chromatographic (HPLC method. The results indicate that this novel skin whitening agent is a thermolabile compound in aqueous solutions. Additionally, the rate constant for thermodegradation (k and the half-life (t1/2 of deoxyArbutin were determined and can be used to understand the thermodegradation kinetics of deoxyArbutin. This information can aid in the application of deoxyArbutin for many future uses.

  5. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis.

    Science.gov (United States)

    Tokiwa, Yutaka; Kitagawa, Masaru; Raku, Takao; Yanagitani, Shusaku; Yoshino, Kenji

    2007-06-01

    Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.

  7. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  8. Genetic analysis of the electrophysiological response to salicin, a bitter substance, in a polyphagous strain of the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Tetsuya Iizuka

    Full Text Available Sawa-J is a polyphagous silkworm (Bombyx mori L. strain that eats various plant leaves that normal silkworms do not. The feeding preference behavior of Sawa-J is controlled by one major recessive gene(s on the polyphagous (pph locus, and several minor genes; moreover, its deterrent cells possess low sensitivity to some bitter substances including salicin. To clarify whether taste sensitivity is controlled by the pph locus, we conducted a genetic analysis of the electrophysiological characteristics of the taste response using the polyphagous strain Sawa-J·lem, in which pph is linked to the visible larval marker lemon (lem on the third chromosome, and the normal strain Daiankyo, in which the wild-type gene of pph (+(pph is marked with Zebra (Ze. Maxillary taste neurons of the two strains had similar dose-response relationships for sucrose, inositol, and strychnine nitrate, but the deterrent cell of Sawa-J·lem showed a remarkably low sensitivity to salicin. The F(1 generation of the two strains had characteristics similar to the Daiankyo strain, consistent with the idea that pph is recessive. In the BF(1 progeny between F(1 females and Sawa-J·lem males where no crossing-over occurs, the lem and Ze phenotypes corresponded to different electrophysiological reactions to 25 mM salicin, indicating that the gene responsible for taste sensitivity to salicin is located on the same chromosome as the lem and Ze genes. The normal and weak reactions to 25 mM salicin were segregated in crossover-type larvae of the BF(1 progeny produced by a reciprocal cross, and the recombination frequency agreed well with the theoretical ratio for the loci of lem, pph, and Ze on the standard linkage map. These results indicate that taste sensitivity to salicin is controlled by the gene(s on the pph locus.

  9. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.).

  10. Structural characterization of inclusion complex of arbutin and ...

    African Journals Online (AJOL)

    Scanning electron micrographs of the inclusion complex showed that the original morphology of both components disappeared, and some tiny aggregates of amorphous areas of irregular size were present, revealing that the arbutin was dispersed in HP-β-CD. The powder XRD pattern of the inclusion complex was more ...

  11. Adulteration of apple with pear juice: emphasis on major carbohydrates, proline, and arbutin.

    Science.gov (United States)

    Thavarajah, Pushparajah; Low, Nicholas H

    2006-06-28

    Detection of juice-to-juice adulteration based on chemical composition studies is a common method used by government regulatory agencies and food companies. This study investigated the use of major carbohydrate (fructose, glucose and sucrose), polyol (sorbitol), proline, and phenolic profiles as indicators of pear adulteration of apple juice (PAAJ). For this work, a total of 105 authentic apple juice samples from 13 countries and 27 authentic pear juice samples from 5 countries were analyzed. Because the major carbohydrate ranges for these juices showed significant overlap their use as markers for PAAJ detection would be very limited. It was found that sorbitol and proline means for apple and pear were significantly different; however, their broad natural ranges would afford PAAJ at levels up to 30% without detection. In addition, careful selection of the pear juice used as the adulterant would further limit the usefulness of these markers for PAAJ detection. Arbutin was conclusively identified as a marker for pear juice on the basis of its presence in all 27 authentic pear samples and its absence (apple juice samples analyzed in this study. The application of the developed HPLC-PDA method for arbutin analysis to detect PAAJ at levels as low as 2% (v/v) was demonstrated. A confirmation method for the presence of arbutin in pure pear juice and apple adulterated with pear juice was introduced on the basis of the hydrolysis of arbutin to hydroquinone employing beta-glucosidase, with reactant and product monitoring by HPLC-PDA.

  12. Arbutin content and antioxidant activity of some Ericaceae species.

    Science.gov (United States)

    Pavlović, R D; Lakusić, B; Doslov-Kokorus, Z; Kovacević, N

    2009-10-01

    Quantitative analyses and investigation of antioxidant activity of herb and dry ethanolic extracts of five species from Ericaceae family (Arbutus unedo L., Bruckentalia spiculifolia Rchb., Calluna vulgaris Salisb., Erica arborea L. and Erica carnea L.) were performed. Total polyphenols, tannins and flavonoids were determined spectrophotometrically and arbutin content was measured both spectrophotometrically and by HPLC coupled with DAD detection. Antioxidative properites of the ethanolic extracts were tested by means of FRAP (total antioxidant capacity), lipid peroxidation and DPPH free radical scavenging activity. A significant amount of arbutin was detected only in Arbutus unedo. All samples investigated showed excellent antioxidant activity. The best inhibition of lipid peroxidation has been shown by Bruckentalia spiculifolia herb extract (62.5 microg/ml; more than 95%), which contained the highest amount of flavonoids (11.79%). The highest scavenging activity was obtained with leave extract of Arbutus unedo (IC50 = 7.14 microg/ml). The leaves of A. unedo contained a small amount of flavonoids but high content of non-tannins polyphenols.

  13. Photometric assay of maltose and maltose-forming enzyme activity by using 4-alpha-glucanotransferase (DPE2) from higher plants.

    Science.gov (United States)

    Smirnova, Julia; Fernie, Alisdair R; Spahn, Christian M T; Steup, Martin

    2017-09-01

    Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (α- and β-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify β-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels. Copyright © 2017. Published by Elsevier Inc.

  14. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    Science.gov (United States)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  15. An evaluation of the effect of a topical product containing salicin on the visible signs of human skin aging.

    Science.gov (United States)

    Gopaul, Remona; Knaggs, Helen E; Lephart, Janet F; Holley, Kara C; Gibson, Erica M

    2010-09-01

    There are many different visible signs of skin aging. These include wrinkles, hyperpigmentation, lack of firmness, poor texture, enlarged pores, and dryness. While there are many topical agents that claim to deliver wide-spectrum anti-aging benefits, few target all of the signs of skin aging to the same extent. Salicin, an extract from white willow bark, has been researched as a potent anti-inflammatory agent when taken orally. Based on unpublished in-house comprehensive consumer clinical studies, it is believed salicin may have anti-aging capabilities when applied topically to human skin. This research evaluated the effect of a topical serum formulation containing salicin at 0.5% on the visible signs of skin aging. This single-center study enrolled 30 female subjects, showing mild to moderate signs of aging, between the ages of 35 and 70 having Fitzpatrick skin types ranging between I and IV. Subjects used the study serum product containing 0.5% salicin on their face twice daily for 12 weeks. Ordinal grading on a nine-point scale (0 = none, 1-3 = mild, 4-6 = moderate, 7-9 = severe) of facial fine lines, molted pigmentation, uneven skin tone, tactile roughness, global firmness appearance, jaw-line contour, radiance, and overall appearance was performed by investigator at baseline, week 1, week 4, week 8, and week 12. Digital photography, ultrasound, cutometry, and corneometry measurements were also performed at each time point. Twenty-nine of 30 subjects successfully completed the study. No tolerability issues were reported. The clinical investigator found statistically significant improvements in wrinkles, tactile roughness, pore size, radiance, and overall appearance at week 1 time point (P ≤ 0.05) against baseline and statistically significant improvements in mottled pigmentation, global firmness, and jaw-line contour at week 4 time point (P ≤ 0.05) against baseline. Cutometry, corneometry, and ultrasound measurements showed significant improvements at week

  16. Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa.

    Science.gov (United States)

    Campbell, Michael C; Ranciaro, Alessia; Zinshteyn, Daniel; Rawlings-Goss, Renata; Hirbo, Jibril; Thompson, Simon; Woldemeskel, Dawit; Froment, Alain; Rucker, Joseph B; Omar, Sabah A; Bodo, Jean-Marie; Nyambo, Thomas; Belay, Gurja; Drayna, Dennis; Breslin, Paul A S; Tishkoff, Sarah A

    2014-02-01

    Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.

  17. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin

    Directory of Open Access Journals (Sweden)

    Zahra Tofighi, Mohsen Amini, Mahzad Shirzadi, Hamideh Mirhabibi, Negar Ghazi Saeedi, Narguess Yassa

    2016-06-01

    Full Text Available Background: The suspension culture of Vigna radiata was selected for biotransformation of hydroquinone to its β-D-glucoside form (arbutin as an important therapeutic and cosmetic compound. Methods: The biotransformation efficiency of a Vigna radiata cell culture in addition to different concentrations of hydroquinone (6-20 mg/100 ml was investigated after 24 hours in comparison to an Echinacea purpurea cell culture and attempts were made to increase the efficacy of the process by adding elicitors. Results: Arbutin was accumulated in cells and found in the media only in insignificant amounts. The arbutin content of the biomass extracts of V. radiata and E. purpurea was different, ranging from 0.78 to 1.89% and 2.00 to 3.55% of dry weight, respectively. V. radiata demonstrated a bioconversion efficiency of 55.82% after adding 8 mg/100 ml precursor, which was comparable with result of 69.53% for E. purpurea cells after adding 10 mg/100 ml hydroquinone (P>0.05. In both cultures, adding hydroquinone in two portions with a 24-hour interval increased the biotransformation efficiency. Different concentrations of methyl jasmonate (25, 50, and 100 µM and chitosan (50 and 100 µg/ml as elicitors increased the bio-efficiency percentage of the V. radiata culture in comparison with the flask containing only hydroquinone. Conclusion: This is the first report of the biotransformation possibility of V. radiata cultures. It was observed the bioconversion capacity increased by adding hydroquinone in two portions, which was comparable to adding an elicitor.

  18. In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes.

    Science.gov (United States)

    Jurica, K; Brčić Karačonji, I; Mikolić, A; Milojković-Opsenica, D; Benković, V; Kopjar, N

    2018-04-25

    Strawberry tree (Arbutus unedo L.) leaves have long been used in the traditional medicine of the Mediterranean region. One of their most bioactive constituents is the glycoside arbutin, whose presence makes A. unedo suitable as a potential substitute for bearberry [Arctostaphylos uva ursi (L.) Spreng] leaves, an herbal preparation widely used for treating urinary tract infections. The safety and biocompatibility of strawberry tree water leaf extract have not yet been documented well. This study estimated arbutin content in strawberry tree water leaf extract (STE) using high performance liquid chromatography. Furthermore, we performed an in vitro safety assessment of the 24 h exposure to three presumably non-toxic concentrations of standardized STE and arbutin in human peripheral blood lymphocytes using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus cytome assay. The STE was also tested for total antioxidant capacity and lipid peroxidation. At a concentration corresponding to the maximum allowable daily intake of arbutin, the tested extract was not cytotoxic, had a negligible potential for causing primary DNA damage and even hindered micronuclei formation in lymphocytes. It also showed a valuable antioxidant capacity, and did not exert marked lipid peroxidation. These promising results represent a solid frame for further development of STE-based herbal preparations. Although arbutin generally had a low DNA damaging potential, the slowing down of lymphocyte proliferation observed after 24 h of exposure points to a cytostatic effect, which merits further research.

  19. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.

    Science.gov (United States)

    Hatanaka, Haruyo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro

    2018-01-01

    Saccharomyces cerevisiae expresses α-glucoside transporters, such as MalX1p (X=1(Agt1p), 2, 3, 4, and 6), which are proton symporters. These transporters are regulated at transcriptional and posttranslational levels in the presence of glucose. Malt wort contains glucose, maltose, and maltotriose, and the assimilation of maltose is delayed as a function of glucose concentration. With the objective of increasing beer fermentation rates, we characterized α-glucoside transporters and bred laboratory yeasts that expressed various α-glucoside transporters for the simultaneous uptake of different sugars. Mal21p was found to be the most resistant transporter to glucose-induced degradation, and strain (HD17) expressing MAL21 grew on a medium containing glucose or maltose, but not on a medium containing both sugars (YPDM). This unexpected growth defect was observed on a medium containing glucose and >0.1% maltose but was not exhibited by a strain that constitutively expressed maltase. The defect depended on intracellular maltose concentration. Although maltose accumulation caused a surge in turgor pressure, addition of sorbitol to YPDM did not increase growth. When strain HD17 was cultivated in a medium containing only maltose, protein synthesis was inhibited at early times but subsequently resumed with reduction in accumulated maltose, but not if the medium was exchanged for YPDM. We conclude that protein synthesis was terminated under the accumulation of maltose, regardless of extracellular osmolarity, and HD17 could not resume growth, because the intracellular concentration of maltose did not decrease due to insufficient synthesis of maltase. Yeast should incorporate maltose after expressing adequate maltase in beer brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  1. Does maltose influence on the elasticity of SOPC membrane?

    Energy Technology Data Exchange (ETDEWEB)

    Genova, J; Zheliaskova, A; Mitov, M D, E-mail: ulia@issp.bas.b [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72, Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2010-11-01

    Thermally induced shape fluctuations of giant quasi-spherical lipid vesicles are used to study the influence of the disaccharide maltose, dissolved in the aqueous solution, on the curvature elasticity k{sub c} of a lipid membrane. The influence of the carbohydrate solute is investigated throughout a considerably wide interval of concentrations. The values of the bending elastic modulus for 200 mM and 400 mM of maltose in the water solution are obtained. The data for k{sub c} in presence of maltose is compared with previously obtained results for this constant for the most popular hydrocarbons: monosaccharides glucose and fructose and disaccharides sucrose and trehalose. It is shown that the presence of maltose, dissolved in the aqueous phase surrounding the membrane does not influence on the bending elasticity with the increase of its concentration in the aqueous solution. Up to our knowledge this is the first sugar that does not show decrease of the bending elastic modulus of the lipid membrane, when present in the water surrounding it in concentration up to 400 mM.

  2. Induction of Maltose Release by Light in the Endosymbiont Chlorella variabilis of Paramecium bursaria.

    Science.gov (United States)

    Shibata, Aika; Takahashi, Fumio; Kasahara, Masahiro; Imamura, Nobutaka

    2016-11-01

    The endosymbiotic green algae of Paramecium bursaria are known to release a photosynthate to the host cells. The endosymbiont Chlorella variabilis F36-ZK isolated in Japan releases maltose under acidic conditions, and such release requires both light and low pH. However, whether photosynthate release is due to light sensing by photoreceptors or is merely a consequence of active photosynthesis is unclear. Herein, we studied the effect of light on maltose release from C. variabilis F36-ZK; we measured maltose release using a combination of 1-phenyl-3-methyl-5-pyrazolone derivative and 14 C-tracer methods. Blue (450nm) or red (around 600nm) light was most effective to stimulate maltose release. This suggests that the photosynthetic pathway probably participates in maltose release, because the effective wavelength corresponds to the absorption spectrum of chlorophyll. Furthermore, maltose release was slightly affected by addition of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but was abolished by another inhibitor of photosynthesis, 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone, suggesting that electron flow through photosystem I may be more involved in maltose release. Interestingly, starving F36-ZK cells cultured under prolonged dark conditions did not release maltose but retained their photosynthetic capacity. Our results thus show that maltose release is regulated by light and cellular conditions in endosymbiotic Chlorella. Copyright © 2016. Published by Elsevier GmbH.

  3. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B.

    1996-01-01

    The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch...... cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid Delta mig1 strain exhibited an even more...... stringent glucose control of maltose metabolism than the corresponding wild-type strain, which could be explained by a more rigid catabolite inactivation of maltose permease, affecting the uptake of maltose. Growth on the glucose-sucrose mixture showed that the polyploid Delta mig1 strain was relieved...

  4. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  5. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    Science.gov (United States)

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  6. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  7. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.

    Science.gov (United States)

    Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna

    2018-04-06

    Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle

    International Nuclear Information System (INIS)

    Xiang, Zhuolin; Yen, Shih-Cheng; Zhang, Songsong; Lee, Chengkuo; Xue, Ning; Sun, Tao; Tsang, Wei Mong; Liao, Lun-De; Thakor, Nitish V

    2014-01-01

    The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe body while its flexibility can minimize the micromotion between the probe and brain tissue. To provide sufficient stiffness for penetration purposes, we developed a drawing lithography technology for uniform maltose coating to make the maltose-coated polyimide neural probe become a stiff microneedle. The coating thicknesses under different temperature and the corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on the neural probe recording electrodes to improve the charge delivery ability and reduce the impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated by in vivo tests. (paper)

  9. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle

    Science.gov (United States)

    Xiang, Zhuolin; Yen, Shih-Cheng; Xue, Ning; Sun, Tao; Mong Tsang, Wei; Zhang, Songsong; Liao, Lun-De; Thakor, Nitish V.; Lee, Chengkuo

    2014-06-01

    The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe body while its flexibility can minimize the micromotion between the probe and brain tissue. To provide sufficient stiffness for penetration purposes, we developed a drawing lithography technology for uniform maltose coating to make the maltose-coated polyimide neural probe become a stiff microneedle. The coating thicknesses under different temperature and the corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on the neural probe recording electrodes to improve the charge delivery ability and reduce the impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated by in vivo tests.

  10. Formation of a new crystalline form of anhydrous β-maltose by ethanol-mediated crystal transformation.

    Science.gov (United States)

    Verhoeven, Nicolas; Neoh, Tze Loon; Ohashi, Tetsuya; Furuta, Takeshi; Kurozumi, Sayaka; Yoshii, Hidefumi

    2012-04-01

    β-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of β-maltose (Mβ(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mβ(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of β-maltose monohydrate and anhydrous β-maltose obtained by vacuum drying (Mβ(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2010-01-01

    proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile...

  12. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria.

    Science.gov (United States)

    Miah, Farzana; Koliwer-Brandl, Hendrik; Rejzek, Martin; Field, Robert A; Kalscheuer, Rainer; Bornemann, Stephen

    2013-04-18

    Trehalose synthase (TreS) was thought to catalyze flux from maltose to trehalose, a precursor of essential trehalose mycolates in mycobacterial cell walls. However, we now show, using a genetic approach, that TreS is not required for trehalose biosynthesis in Mycobacterium smegmatis, whereas two alternative trehalose-biosynthetic pathways (OtsAB and TreYZ) are crucial. Consistent with this direction of flux, trehalose levels in Mycobacterium tuberculosis decreased when TreS was overexpressed. In addition, TreS was shown to interconvert the α anomer of maltose and trehalose using (1)H and (19)F-nuclear magnetic resonance spectroscopies using its normal substrates and deoxyfluoromaltose analogs, with the nonenzymatic mutarotation of α/β-maltose being slow. Therefore, flux through TreS in mycobacteria flows from trehalose to α-maltose, which is the appropriate anomer for maltose kinase of the GlgE α-glucan pathway, which in turn contributes to intracellular and/or capsular polysaccharide biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    Directory of Open Access Journals (Sweden)

    José Miguel P Ferreira de Oliveira

    Full Text Available Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15 and vesicular transport (e.g., the endosomal-cargo receptor Erv14. Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  14. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    Science.gov (United States)

    de Oliveira, José Miguel P Ferreira; van Passel, Mark W J; Schaap, Peter J; de Graaff, Leo H

    2011-01-01

    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  15. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Safety and Efficacy of Intravenous Ferric Carboxy Maltose in Iron Deficiency Anaemia During Post-partum Period.

    Science.gov (United States)

    Mishra, Vineet; Roy, Priyankar; Gandhi, Khushali; Choudhary, Sumesh; Aggarwal, Rohina; Sokabaj, Shaheen

    2018-01-01

    Iron deficiency is the commonest treatable cause of postpartum anaemia. Parenteral iron therapy results in faster and higher replenishment of iron stores and correction of haemoglobin levels with better compliance. Ferric Carboxy Maltose is an effective and a safe option which can be administered intravenously in single total correction dose without any serious adverse effects.The study was done to evaluate the efficacy and safety of Ferric Carboxy Maltose in the treatment of iron deficiency anaemia in post-natal patients. It was an open, single arm study including 615 women with diagnosis of Iron deficiency anaemia and haemoglobin (Hb) levels between 4gm% and 11gm% from January 2013 to December 2016. Intravenous Ferric Carboxy Maltose(500-1500mg) was administered and the improvement in haemoglobin levels and iron stores were assessed after three weeks of total dose infusion. Out of the 615 women, 595 women were included in the analysis. Most of the women were in the age group of 27-30 years. Most of the women had mild anaemia as per World Health Organisation guidelines. Mean hemoglobin levels significantly increased over a period of three weeks after Ferric Carboxy Maltose administration. Other parameters like total iron binding capacity, Ferritin and Iron also had a significant improvement after Ferric Carboxy Maltose administration. No serious adverse events were observed after Ferric Carboxy Maltose. Intravenous Ferric Carboxy Maltose was an effective and a safe treatment option for iron deficiency anaemia and has an advantage of single administration of high doses without serious adverse effects.

  17. Rapid quantitative determination of maltose and total sugars in sweet potato (Ipomoea batatas L. [Lam.]) varieties using HPTLC.

    Science.gov (United States)

    Lebot, Vincent

    2017-03-01

    When a raw sweet potato root is analysed, only sucrose, glucose and fructose are present but during cooking, starch is hydrolysed into maltose giving the sweet flavour to cooked roots. This study aimed at developing an HPTLC protocol for the rapid quantitative determination of maltose and total sugars in four commercial varieties and to compare them to 243 hybrids grouped by flesh colour (white, orange, purple). In commercial varieties, mean maltose content varied from 10.26 to 15.60% and total sugars from 17.83 to 27.77% on fresh weight basis. Hybrids showed significant variation in maltose content within each group, with means ranging from 7.65% for white-fleshed, to 8.53% in orange- and 11.98% in purple-fleshed. Total mean sugars content was 20.24, 22.11 and 26.84% respectively for white, orange and purple flesh hybrids. No significant correlations were detected between individual sugars but maltose and total sugars content were highly correlated. Compared to the best commercial variety ( Baby ), 25 hybrids (10.3%) presented a higher maltose content and 40 (16.5%) showed a higher total sugars content. HPTLC was observed as an attractive, cost efficient, high-throughput technique for quantitating maltose and total sugars in sweet potatoes. Perspectives for improving sweet potato quality for consumers' requirements are also discussed.

  18. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  19. Glucose and maltose metabolism in MIG1-disrupted and MAL-constitutive strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B

    1997-01-01

    in a mixed glucose-maltose medium revealed that the MAL-constitutive strains were more alleviated than the single MIG1-disrupted transformant. While all transformants exhibited higher maximum specific growth rates (0.24-0.25 h(-1)) in glucose-maltose mixtures than the wild type strain (0.20 h(-1)), the MAL-constitutive...

  20. Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri

    International Nuclear Information System (INIS)

    Souza, C. S.; Ferreira, L. C. S.; Thomas, L.; Barbosa, J. A. R. G.; Balan, A.

    2009-01-01

    The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 K using the hanging-drop vapour-diffusion method. Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 K using the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6 1 22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It diffracted to 2.24 Å resolution

  1. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate.

    Science.gov (United States)

    Miah, Farzana; Bibb, Maureen J; Barclay, J Elaine; Findlay, Kim C; Bornemann, Stephen

    2016-07-01

    The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.

  2. A Quantitative bgl Operon Model for E. coli Requires BglF Conformational Change for Sugar Transport

    Science.gov (United States)

    Chopra, Paras; Bender, Andreas

    The bgl operon is responsible for the metabolism of β-glucoside sugars such as salicin or arbutin in E. coli. Its regulatory system involves both positive and negative feedback mechanisms and it can be assumed to be more complex than that of the more closely studied lac and trp operons. We have developed a quantitative model for the regulation of the bgl operon which is subject to in silico experiments investigating its behavior under different hypothetical conditions. Upon administration of 5mM salicin as an inducer our model shows 80-fold induction, which compares well with the 60-fold induction measured experimentally. Under practical conditions 5-10mM inducer are employed, which is in line with the minimum inducer concentration of 1mM required by our model. The necessity of BglF conformational change for sugar transport has been hypothesized previously, and in line with those hypotheses our model shows only minor induction if conformational change is not allowed. Overall, this first quantitative model for the bgl operon gives reasonable predictions that are close to experimental results (where measured). It will be further refined as values of the parameters are determined experimentally. The model was developed in Systems Biology Markup Language (SBML) and it is available from the authors and from the Biomodels repository [www.ebi.ac.uk/biomodels].

  3. Biocidal properties of maltose reduced silver nanoparticles against American foulbrood diseases pathogens.

    Science.gov (United States)

    Çulha, Mustafa; Kalay, Şaban; Sevim, Elif; Pinarbaş, Müberra; Baş, Yıldız; Akpinar, Rahşan; Karaoğlu, Şengül Alpay

    2017-12-01

    Bee disease caused by spore-forming Paenibacillus larvae and Paenibacillus alvei is a serious problem for honey production. Thus, there is an ongoing effort to find an effective agent that shows broad biocidal activity with minimal environmental hazard. In this study, the biocidal effect of maltose reduced silver nanoparticles (AgNPs) is evaluated against American foulbrood and European foulbrood pathogens. The results demonstrate that the maltose reduced AgNPs are excellent short and long-term biocides against P. larvae isolates. The long-term effect suggests that the Ag + ions are released from the AgNPs with increasing time in a controlled manner.

  4. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.

    Science.gov (United States)

    Lin, Xue; Yu, Ai-Qun; Zhang, Cui-Ying; Pi, Li; Bai, Xiao-Wen; Xiao, Dong-Guang

    2017-11-09

    Tup1 is a general transcriptional repressor of diverse gene families coordinately controlled by glucose repression, mating type, and other mechanisms in Saccharomyces cerevisiae. Several functional domains of Tup1 have been identified, each of which has differing effects on transcriptional repression. In this study, we aim to investigate the role of Tup1 and its domains in maltose metabolism of industrial baker's yeast. To this end, a battery of in-frame truncations in the TUP1 gene coding region were performed in the industrial baker's yeasts with different genetic background, and the maltose metabolism, leavening ability, MAL gene expression levels, and growth characteristics were investigated. The results suggest that the TUP1 gene is essential to maltose metabolism in industrial baker's yeast. Importantly, different domains of Tup1 play different roles in glucose repression and maltose metabolism of industrial baker's yeast cells. The Ssn6 interaction, N-terminal repression and C-terminal repression domains might play roles in the regulation of MAL transcription by Tup1 for maltose metabolism of baker's yeast. The WD region lacking the first repeat could influence the regulation of maltose metabolism directly, rather than indirectly through glucose repression. These findings lay a foundation for the optimization of industrial baker's yeast strains for accelerated maltose metabolism and facilitate future research on glucose repression in other sugar metabolism.

  5. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  6. Gender differences in biochemical markers and oxidative stress of rats after 28 days oral exposure to a mixture used for weight loss containing p-synephrine, ephedrine, salicin, and caffeine

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina Schmitt

    Full Text Available ABSTRACT The association of p-synephrine, ephedrine, salicin, and caffeine in dietary supplements and weight loss products is very common worldwide, even though ephedrine has been prohibited in many countries. The aim of this study was to evaluate a 28-day oral exposure toxicity profile of p-synephrine, ephedrine, salicin, and caffeine mixture (10:4:6:80 w/w respectively in male and female Wistar rats. Body weight and signs of toxicity, morbidity, and mortality were observed daily. After 28 days, animals were euthanized and blood collected for hematological, biochemical, and oxidative stress evaluation. No clinical signs of toxicity, significant weight loss or deaths occurred, nor were there any significant alterations in hematological parameters. Biochemical and oxidative stress biomarkers showed lipid peroxidation, and hepatic and renal damage (p < 0.05; ANOVA/Bonferroni in male rats (100 and 150 mg/kg and a reduction (p < 0.05; ANOVA/Bonferroni in glutathione (GSH levels in all male groups. Female groups displayed no indications of oxidative stress or biochemical alterations. The different toxicity profile displayed by male and female rats suggests a hormonal influence on mixture effects. Results demonstrated that the tested mixture can alter oxidative status and promote renal and hepatic damages.

  7. The History of Maltose-active Disaccharidases.

    Science.gov (United States)

    Lentze, Michael J

    2018-06-01

    The history of maltose-active disaccharidases is closely related to the history of the sugar and starch industry. It began in the 19th century, when a shortage of cane sugar occurred in continental Europe, because Napoleon Bonaparte decreed that no goods could be imported from England to the countries he occupied. Other sugar sources had to be found, and it led to the identification of sugar beets as alternative source of sugar by Marggraf in 1774, to the detection of starch hydrolysis by diluted sulfuric acid by Kirchhoff in 1812, and to the starch digestion enzyme, α-amylase, by Payen in 1833. In the 20th century, Borkström's group in Sweden investigated the absorption of nutrients in human adults by transintubation techniques and found that the luminal concentration of invertase was small compared to that of α-amylase. They speculated that the major locus of this enzyme activity must be in the intestinal cells. Borkström's coworker, Dahlqvist, investigated the maltose-active enzymes in pig intestine, and a second group around Semenza studied the maltase-active enzymes in rabbit intestine. After the first descriptions of congenital sucrase-isomaltase deficiency in 1960 and 1961, the research on disaccharidases increased. Dahlqvist published the first quantitative method to measure these enzymes. Consecutive research led to the discovery of 4 maltases, which were later identified as 2 complex enzymes: the sucrase-isomaltase complex and the maltase-glucoamylase complex. The homology of the 2 enzyme complexes was later determined when the cDNA sequences of the 2 complexes in human intestine were identified.

  8. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.

    Science.gov (United States)

    Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-09-01

    In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evaluation of Maltose-Induced Chemical Degradation at the Interface of Bilayer Tablets.

    Science.gov (United States)

    Matsuzaki, Naoya; Yamamoto, Yousuke; Murayama, Daisuke; Katakawa, Yoshifumi; Mimura, Hisashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    Fixed dose combination tablets consisting of mirabegron (MB) and solifenacin succinate (SS) were developed and formulated into bilayer tablets in the current study. The results of a chemical stability study showed that the original formulation for the tablets led to a significant increase of unknown degradants in the SS layer. Two compatibility studies were conducted to simulate the interface between the MB and SS layers, and the results revealed that the degradants only formed in the presence of both active pharmaceutical ingredients (APIs), and that the presence of maltose in the SS layer was critical to inducing degradation. High resolution mass spectroscopy coupled with high performance liquid chromatography was used to determine the chemical structures of the degradants, which were identified to MB derivatives bearing one or two sugar units. These findings therefore suggested that the degradation of the API could be attributed to the addition of sugar units from maltose to MB under the acidic conditions caused by SS. With this in mind, we developed a new formulation by replacing maltose with hydroxypropyl cellulose as a polymer-type binder. The results showed that this formulation suppressed the formation of the degradants. The results of this study have shown that chemical degradation can occur at the interface of bilayer tablets and that an alternative strategy is available to formulate more stable MB/SS bilayer tablets.

  10. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2

    KAUST Repository

    Weng, Jingwei; Gu, Shuo; Gao, Xin; Huang, Xuhui; Wang, Wenning

    2017-01-01

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called

  11. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2

    KAUST Repository

    Weng, Jingwei

    2017-02-23

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called

  12. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    Science.gov (United States)

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  13. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.

    Science.gov (United States)

    Vidgren, Virve; Huuskonen, Anne; Virtanen, Hannele; Ruohonen, Laura; Londesborough, John

    2009-04-01

    The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer's ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous alpha-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24 degrees Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.

  14. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul

    2015-01-01

    characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n...

  15. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  16. New bacteria suitable for production of ethanol from maltose. Marutosu kara no etanoru seizo ni tekishita shinki saikin

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T.; Taguchi, H.; Nakamura, K. (Kirin Brewery Co. Ltd., Tokyo (Japan))

    1992-10-07

    Bacteria such as Zymomonas atracts attention in production of ethanol from carbohydrates in addition to yeast used for a long time, however, Zymomonas ferments only glucose, fructose and sucrose. After searching microbes in the nature with excellent properties in fermentation ability and salt resistance, a new Gram-negative bacterium has been isolated from a certain tree sap which is suitable for production of ethanol from maltose and starch hydrolyzate. The features of cell morphology of the new bacterium are: bacillus, peritrichous, no sport forming, Q-9 in quinone system, and an anaerobic Gram-negative bacterium. It utilizes maltose, sorbitol and maltose and produces [alpha]-glucosidas but no [beta]-galactosidase nor arginine dihydrase. The strain T109 is deposited as FERM BP-3292 to the Industrial Research Institute of Microbiology. 2 figs., 2 tabs.

  17. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Efficient one-pot enzymatic synthesis of alpha-(1 -> 4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1 -> 4)-glucostdic disacchandes from maltose and five monosacchandes in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction Thus phosphorolysis...

  19. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  20. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B.O.

    2009-01-01

    regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose...

  1. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography-mass spectrometry.

    Science.gov (United States)

    He, Yuqin; Zhang, Haide; Wen, Nana; Hu, Rongsuo; Wu, Guiping; Zeng, Ying; Li, Xiong; Miao, Xiaodan

    2018-01-01

    Arabica coffee is a sub-tropical agricultural product in China. Coffee undergoes a series of thermal reactions to form abundant volatile profiles after roasting, so it loses a lot of reducing sugars and amino acids. Adding carbonyl compounds with amino acids before roasting could ensure the nutrition and flavour of coffee. The technology is versatile for the development of coffee roasting process. This investigation evaluates the effects of combining maltose and lysine (Lys) to modify coffee aroma and the possibly related mechanisms. Arabica coffee was pretreated with a series of solvent ratios of maltose and Lys with an identical concentration (0.25 mol L -1 ) before microwave heating. It was found that the combination of maltose and Lys significantly (P ≤ 0.05) influenced quality indices of coffee (pH and browning degree). Ninety-six aromatic volatiles have been isolated and identified. Twelve volatile profiles revealed the relationship between fragrance difference and compound content in coffee. Moreover, coffee aroma was modified by a large number of volatiles with different chemical classes and character. Thus, our results suggest that the combination of reagents changed overall aroma quality through a series of complex thermal reactions, especially the ratio of Lys/maltose over 2:1. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Maltose Neopentyl Glycol-3 (MNG-3) Analogues for Membrane Protein Study

    OpenAIRE

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J.; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2015-01-01

    Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayer and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here we prepared MNG-3 analogues and characte...

  3. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate.

    Science.gov (United States)

    Lu, Xin; Sun, Jibin; Nimtz, Manfred; Wissing, Josef; Zeng, An-Ping; Rinas, Ursula

    2010-04-20

    The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and glucoamylase (multiple spots) was identified as the most

  4. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Science.gov (United States)

    Sun, Qingjie; Xing, Yan; Qiu, Chao; Xiong, Liu

    2014-01-01

    The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA) and Texture profile analysis (TPA) tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  5. Activity coefficients of CaCl2 in (maltose + water) and (lactose + water) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Zhuo Kelei; Liu Hongxun; Zhang Honghao; Liu Yaohui; Wang Jianji

    2008-01-01

    Activity coefficients of CaCl 2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl 2 ranged from about 0.01 mol . kg -1 to 0.20 mol . kg -1 , the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye-Hueckel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (g ES ) and salting constants (k S ) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model

  6. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate

    Directory of Open Access Journals (Sweden)

    Wissing Josef

    2010-04-01

    Full Text Available Abstract Background The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. Results The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and

  7. Sequential Action of MalE and Maltose Allows Coupling ATP Hydrolysis to Translocation in the MalFGK2 Transporter.

    Science.gov (United States)

    Bao, Huan; Dalal, Kush; Cytrynbaum, Eric; Duong, Franck

    2015-10-16

    ATP-binding cassette (ABC) transporters have evolved an ATP-dependent alternating-access mechanism to transport substrates across membranes. Despite important progress, especially in their structural analysis, it is still unknown how the substrate stimulates ATP hydrolysis, the hallmark of ABC transporters. In this study, we measure the ATP turnover cycle of MalFGK2 in steady and pre-steady state conditions. We show that (i) the basal ATPase activity of MalFGK2 is very low because the cleavage of ATP is rate-limiting, (ii) the binding of open-state MalE to the transporter induces ATP cleavage but leaves release of Pi limiting, and (iii) the additional presence of maltose stimulates release of Pi, and therefore increases the overall ATP turnover cycle. We conclude that open-state MalE stabilizes MalFGK2 in the outward-facing conformation until maltose triggers return to the inward-facing state for substrate and Pi release. This concerted action explains why ATPase activity of MalFGK2 depends on maltose, and why MalE is essential for transport. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Directory of Open Access Journals (Sweden)

    Qingjie Sun

    Full Text Available The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA and Texture profile analysis (TPA tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  9. Propriedades mecânicas e estrutura celular de melão desidratado osmoticamente em soluções de sacarose ou maltose, com adição de lactato de cálcio Mechanical properties and cellular structure of osmodehydrated melon in sucrose or maltose solutions with calcium lactate addition

    Directory of Open Access Journals (Sweden)

    Cristhiane Caroline Ferrari

    2011-08-01

    Full Text Available Objetivou-se, neste trabalho, estudar a influência do lactato de cálcio e do tipo de açúcar nas propriedades mecânicas e na estrutura celular de pedaços de melão desidratados osmoticamente. O processo foi conduzido por duas horas com agitação de 120 rpm e temperatura controlada (30º C, utilizando-se soluções desidratantes de sacarose ou maltose a 40ºBrix, contendo lactato de cálcio em concentrações de 0, 0,5, 1,0 e 1,5% (p/v. As amostras foram submetidas às determinações de perda de água, ganho de sólidos, incorporação de cálcio, propriedades mecânicas (tensão e deformação na ruptura e microscopia óptica. Os ensaios com maltose, em ação conjunta com o sal, promoveram uma maior perda de água e um menor ganho de sólidos. A adição de lactato de cálcio na solução osmótica de sacarose ou maltose resultou em maiores valores de tensão na ruptura para as frutas, sendo que tal aumento foi mais pronunciado nos ensaios com sacarose, devido à maior incorporação de cálcio observada nesses tratamentos. O lactato de cálcio mostrou-se eficiente na preservação da estrutura celular das amostras, quando utilizado em concentrações de até 1,0%. A maltose apresentou um maior efeito protetor na manutenção da funcionalidade da membrana celular, enquanto que o processo realizado apenas com soluções de sacarose, assim como os ensaios realizados com concentração de sal igual a 1,5% provocaram danos na parede celular e intensa plasmólise do citoplasma.The purpose of this work was to study the influence of calcium lactate and sugar type on mechanical properties and cellular structure of osmodehydrated melon pieces. The process was carried out for two hours under controlled temperature (30º C and agitation (120 rpm, using a 40ºBrix sucrose or maltose solution containing calcium lactate (0 to 2,0%. Samples were analyzed with respect to water loss, solids and calcium gain, mechanical properties (stress and strain at

  10. Cellulase production by a strain of Myrothecium sp

    Energy Technology Data Exchange (ETDEWEB)

    Kassim, E A

    1982-01-01

    A selected strain of Myrothecium sp. was grown on various carbon sources. Cellulose was found to be the highest inducer of cellulase. CMC resulted in a moderate yield. Cellobiose resulted in a low yield. Glucose, lactose, maltose and soluble starch resulted in negligible amounts. Sucrose, glycerol and salicin were extremely unsuitable. Continuous addition of glucose or cellobiose during fermentation to cellulosic culture media reduced cellulase production, whereas addition of the entire amount of glucose or cellobiose at the beginning did not affect the enzyme production. The enzyme was precipitated from the culture filtrate with ammonium sulfate giving crude cellulase, 3854 units/g. The culture filtrate was concentrated to a one-tenth volume, 97 units/ml. The purified cellulase was prepared by dialysis 6700 units/g of enzyme precipitate.

  11. Structure of Bacillus halmapalus alpha-amylase crystallized with and without the substrate analogue acarbose and maltose

    DEFF Research Database (Denmark)

    Lyhne-Iversen, Louise; Hobley, Timothy John; Kaasgaard, Svend G.

    2006-01-01

    Recombinant Bacillus halmapalus alpha-amylase (BHA) was studied in two different crystal forms. The first crystal form was obtained by crystallisation of BHA at room temperature in the presence of acarbose and maltose - data was collected at cryogenic temperatures to a resolution of 1.9 Å...

  12. Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates

    Directory of Open Access Journals (Sweden)

    Rafael Araujo-Silva

    2018-04-01

    Full Text Available Barley β-amylase was immobilized using different techniques. The highest global yield was obtained using the cross-linked enzyme aggregates (CLEA technique, employing bovine serum albumin (BSA or soy protein isolate (SPI as feeder proteins to reduce diffusion problems. The CLEAs produced using BSA or SPI showed 82.7 ± 5.8 and 53.3 ± 2.4% global yield, respectively, and a stabilization effect was observed upon immobilization at neutral pH value, e.g., after 12 h at 55 °C, the free β-amylase is fully inactivated, while CLEAs retained 25 and 15% of activity (using BSA and SPI, respectively. CLEA using SPI was selected because of its easier recovery, being chosen to convert the residual starch contained in cassava bagasse into maltose. This biocatalyst permitted to reach almost 70% of maltose conversion in 4 h using 30.0 g/L bagasse starch solution (Dextrose Equivalent of 15.88 and 1.2 U of biocatalyst per gram of starch at pH 7.0 and 40 °C. After 4 reuses (batches of 12 h the CLEA using SPI maintained 25.50 ± 0.01% of conversion due to the difficulty of recovering.

  13. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Zheng

    Full Text Available Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h. No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose.

  14. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  15. Chronic bacterial prostatitis: efficacy of short-lasting antibiotic therapy with prulifloxacin (Unidrox®) in association with saw palmetto extract, lactobacillus sporogens and arbutin (Lactorepens®).

    Science.gov (United States)

    Busetto, Gian Maria; Giovannone, Riccardo; Ferro, Matteo; Tricarico, Stefano; Del Giudice, Francesco; Matei, Deliu Victor; De Cobelli, Ottavio; Gentile, Vincenzo; De Berardinis, Ettore

    2014-07-19

    Bacterial prostatitis (BP) is a common condition accounting responsible for about 5-10% of all prostatitis cases; chronic bacterial prostatitis (CBP) classified as type II, are less common but is a condition that significantly hampers the quality of life, (QoL) because not only is it a physical condition but also a psychological distress. Commonly patients are treated with antibiotics alone, and in particular fluoroquinolones are suggested by the European Urology guidelines. This approach, although recommended, may not be enough. Thus, a multimodal approach to the prolonged antibiotic therapy may be helpful. 210 patients affected by chronic bacterial prostatitis were enrolled in the study. All patients were positive to Meares-Stamey test and symptoms duration was > 3 months. The purpose of the study was to evaluate the efficacy of a long lasting therapy with a fluoroquinolone in association with a nutraceutical supplement (prulifloxacin 600 mg for 21 days and an association of Serenoa repens 320 mg, Lactobacillus Sporogens 200 mg, Arbutin 100 mg for 30 days). Patients were randomized in two groups (A and B) receiving respectively antibiotic alone and an association of antibiotic plus supplement. Biological recurrence at 2 months in Group A was observed in 21 patients (27.6%) and in Group B in 6 patients (7.8%). Uropathogens found at the first follow-up were for the majority Gram - (E. coli and Enterobacter spp.). A statistically significant difference was found at the time of the follow-up between Group A and B in the NIH-CPSI questionnaire score, symptoms evidence and serum PSA. Broad band, short-lasting antibiotic therapy in association with a nutritional supplement (serenoa repens, lactobacillus sporogens and arbutin) show better control and recurrence rate on patients affected by chronic bacterial prostatitits in comparison with antibiotic treatment alone. NCT02130713. Date of trial Registration: 30/04/2014.

  16. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands.

    Directory of Open Access Journals (Sweden)

    Anna Russo

    Full Text Available Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.

  17. Activity coefficients of CaCl{sub 2} in (maltose + water) and (lactose + water) mixtures at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo Kelei [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)], E-mail: klzhuo@263.net; Liu Hongxun; Zhang Honghao; Liu Yaohui; Wang Jianji [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2008-05-15

    Activity coefficients of CaCl{sub 2} in disaccharide {l_brace}(maltose, lactose) + water{r_brace} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl{sub 2} ranged from about 0.01 mol . kg{sup -1} to 0.20 mol . kg{sup -1}, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye-Hueckel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (g{sub ES}) and salting constants (k{sub S}) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.

  18. Th e rediscovery of the Redwood orpiment and a Th e rediscovery of the Redwood orpiment and a cocktail of plants macerates containing arbutin to cocktail of plants macerates containing arbutin to defeat the Arribas-Silvestre defeat the Arribas-Silvestre,s syndrome in a bien agée s syndrome in a bien agée upper class lady

    Directory of Open Access Journals (Sweden)

    Lorenzo Martini

    2017-10-01

    Full Text Available The Arribas-Silvestre’s syndrome is a sort of photodermatitis induced especially in elder (especially women when they use to put pure essences or fragrances directly onto their skin, take some medicaments and expose to sun rays periodically. The black spots are irreversible and are aesthetically unpleasant. Generally people tend to renounce to treat this disease, since it seems no remedy is available and strongest lotions or emulsions containing 2-5% of hydroquinone are banished and anyway perilous. Here I herald a simplest method using on alternate days an ancient orpiment to abrade black spots and a mix of herb macerates containing arbutin, apt to bleach the original brownish or black maculae.Results are amazing.

  19. Regulation of gene expression: Cryptic β-glucoside (bgl operon of Escherichia coli as a paradigm

    Directory of Open Access Journals (Sweden)

    Dharmesh Harwani

    2014-12-01

    Full Text Available Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.

  20. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    Science.gov (United States)

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes.

  1. Comparison of the glucooligosaccharide profiles produced from maltose by two different transglucosidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Goffin, D.

    2010-01-01

    Full Text Available Prebiotic isomaltooligosaccharide (IMO preparations contain α-D-glucooligosaccharides and their structure is the key factor for their prebiotic potential. The transglucosylation selectivity is known to depend on the enzyme specificity and moreover, maltose and α-glucooligosaccharides can actually act as both glucosyl donor and acceptor in the reaction. Thus, two commercial enzymes, a glucosyltransferase and an α-glucosidase, were tested alone and in combination on pure maltose to study their specificities and the IMO profile obtained. The reactions were monitored using a step-forward AEC-PAD analytical method which permitted to detect and resolve new unknown IMO. Structural determination of unknown IMO was attempted using their retention times and relative abundance. As a general rule, the α-glucosidase has a more expressed hydrolyzing activity leading to products containing less residual digestible α-(1-4 linkages such as isomaltose, isomaltotriose, isomaltotetraose, kojibiose and nigerose while the glucosyltransferase produces important amount of panose. Finally, the combination of the two enzymes leaded to an intermediate IMO profile. IMO syrups composition was thus proved to be dependant on the specificity of the transglucosylating enzyme so that products profiles can be designed using different enzymes and in different proportion.

  2. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    Science.gov (United States)

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  3. Thermodynamic Effects of Replacements of Pro Residues in Helix Interiors of Maltose-Binding Protein

    OpenAIRE

    Prajapati, RS; Lingaraju, GM; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-01-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by...

  4. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state

    DEFF Research Database (Denmark)

    Aduri, Nanda G.; Ernst, Heidi A.; Prabhala, Bala K.

    2018-01-01

    and purification of recombinant PCFT. Following detergent screening n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating...

  5. A Bacterial Glucanotransferase Can Replace the Complex Maltose Metabolism Required for Starch to Sucrose Conversion in Leaves at Night

    DEFF Research Database (Denmark)

    Ruzanski, Christian; Smirnova, Julia; Rejzek, Martin

    2013-01-01

    Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl ...

  6. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A BIDISPERSE MODEL TO STUDY THE HYDROLYSIS OF MALTOSE USING GLUCOAMYLASE IMMOBILIZED IN SILICA AND WRAPPED IN PECTIN GEL

    Directory of Open Access Journals (Sweden)

    L.R.B. Gonçalves

    1997-12-01

    Full Text Available In this work, a bidisperse model is built to represent the hydrolysis of maltose using immobilized glucoamylase. The experimental set is a mixed-batch reactor, maintained at 30ºC, with pectin gel spherical particles that contain enzyme immobilized in macroporous silica. The possibility of substrate adsorption on the pectin gel is also studied because this phenomenon may result in smaller values of diffusivity. Equilibrium assays are then performed for different substrates (maltose, lactose and glucose at different temperatures and pHs. These assays show that adsorption on the pectin gel is not important for the three dextrins analysed. The bidisperse model presents a good fit with the experimental data, when using previously-estimated kinetic and mass transfer parameters (Gonçalves et al., 1997. This result shows that the methodology used (wrapping the silica in pectin gel is appropriate for experimental studies with silica, since it allows a higher degree of agitation without causing shearing

  8. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.

    Science.gov (United States)

    Clemente, María J; Fitremann, Juliette; Mauzac, Monique; Serrano, José L; Oriol, Luis

    2011-12-20

    Low molecular mass amphiphilic glycolipids have been prepared by linking a maltose polar head and a hydrophobic linear chain either by amidation or copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. The liquid crystalline properties of these amphiphilic materials have been characterized. The influence of the chemical structure of these glycolipids on the gelation properties in water has also been studied. Glycolipids obtained by the click coupling of the two components give rise to stable hydrogels at room temperature. The fibrillar structure of supramolecular hydrogels obtained by the self-assembly of these gelators have been characterized by electron microscopy. Fibers showed some torsion, which could be related with a chiral supramolecular arrangement of amphiphiles, as confirmed by circular dichroism (CD). The sol-gel transition temperature was also determined by differential scanning calorimetry (DSC) and NMR. © 2011 American Chemical Society

  9. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Fabiana G. Moreira

    2001-03-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  10. The use of a-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Moreira Fabiana G.

    2001-01-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  11. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  12. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates.

    Science.gov (United States)

    Xia, Wei; Chen, Wei; Peng, Wei-Fu; Li, Kun-Tai

    2015-06-01

    The aerobic Pseudomonas denitrificans is widely used for industrial and commercial vitamin B12 fermentation, due to its higher productivity compared to the anaerobic vitamin B12-producing microorganisms. This paper aimed to develop a cost-effective fermentation medium for industrial vitamin B12 production by P. denitrificans in 120,000-l fermenter. It was found that maltose syrup (a low-cost syrup from corn starch by means of enzymatic or acid hydrolysis) and corn steep liquor (CSL, a by-product of starch industry) were greatly applicable to vitamin B12 production by P. denitrificans. Under the optimal fermentation medium performed by response surface methodology, 198.27 ± 4.60 mg/l of vitamin B12 yield was obtained in 120,000-l fermenter, which was close to the fermentation with the refined sucrose (198.80 mg/l) and was obviously higher than that obtained under beet molasses utilization (181.75 mg/l). Therefore, maltose syrups and CSL were the efficient and economical substrates for industrial vitamin B12 fermentation by P. denitrificans.

  13. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular flavocytochrome capable of direct electron transfer (DET). Unlike other CDHs, the pH optimum for CDHs from Corynascus thermophilus (CtCDH) and Humicola insolens (HiCDH) is close to the human physiological pH in blood (7.4). These are......, therefore, interesting candidates for glucose measurements in human blood and the application in enzymatic fuel cells is, however, limited by their relatively low activity with this substrate. In this work, the substrate specificities of CtCDH and HiCDH have been altered by a single cysteine to tyrosine...... substitution in the active sites of CtCDH (position 291) and HiCDH (position 285), which resulted in improved kinetic constants with glucose while decreasing the activity with several disaccharides, including maltose. The DET properties of the generated CDH variants were tested in the absence...

  14. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study.

    Science.gov (United States)

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2015-05-07

    Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n-dodecyl-β-D-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP tendency to denature and aggregate. This set of MNGs represents viable alternatives to currently available detergents for handling MPs, and can be also used as tools to estimate MP sensitivity to denaturation and aggregation.

  15. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  16. Hydrogen production and enzyme activities in the hyperthermophile Thermococcus paralvinellae grown on maltose, tryptone and agricultural waste

    Directory of Open Access Journals (Sweden)

    Sarah A. Hensley

    2016-02-01

    Full Text Available Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L-1 at rates of 5-36 fmol H2 cell-1 h-1 on 0.5% (wt vol-1 maltose, 0.5% (wt vol-1 tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5 in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L-1 of medium when grown on up to 70% (vol vol-1 waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep’s Blood (selective for Staphylococcus, the typical cause of mastitis, and MacConkey (selective for Gram-negative enteric bacteria agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L-1 of medium when grown on 0.1-10% (wt vol-1 spent brewery grain while P. furiosus produced < 1 mmol of H2 L-1. Twelve of 13 enzyme activities in T. paralvinellae showed significant (p<0.05 differences across six different growth conditions

  17. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo; Marino, Daniele Di; Tramontano, Anna; Chinappi, Mauro; Cecconi, Fabio

    2014-01-01

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  18. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo

    2014-09-09

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  19. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  20. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, Caroline; Joshi, Monika [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Allingham, John S., E-mail: allinghj@queensu.ca [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  1. Effects of Different Levels of Echinostoma caproni Miracidial Dose on Glucose and Maltose Composition of Biomphalaria glabrata Snails as Determined by High Performance Thin-Layer Chromatography-Densitometry

    Directory of Open Access Journals (Sweden)

    Dolcie DeGrandchamp

    2015-04-01

    Full Text Available The effects of 5, 25, and 40 Echinostoma caproni miracidia on the sugar content of young adult and mature adult Biomphalaria glabrata were studied using high performance thin layer chromatography (HPTLC-densitometry. Analysis was done on the snail’s digestive gland gonad complex (DGG at two and four weeks postmiracidial exposure. The sugars were extracted from the DGG using 70% ethanol and analyzed on silica gel HPTLC plates with a preadsorbent zone using 1-butanol-glacial acetic acid-diethyl ether-deionized water (27:18:5:3 mobile phase. The separated bands were then detected using alpha-naphthol-sulfuric reagent and quantified by densitometry at 515 nm. Significant differences were found in the maltose content between two and four weeks post exposure for both age groups. Additionally, significantly lower maltose and glucose levels were observed in the high exposure groups of both ages.

  2. The Effect of Aerobic Training and Arbotin on Cardiac Nitric Oxide, Tumor Necrosis Factor alpha, and Vascular Endothelial Growth Factor in Male Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rahemeh Jahangiri Jahangiri

    2017-07-01

    Full Text Available Background and Objectives: Diabetes is one of the most important metabolic diseases, which its incidence rate has increased in recent years. In this disease, the insulin function is impaired, leading to several complications. Physical exercise and medicinal plants are considered as a way to control diabetes along with nutrition and medicine. The present study was conducted with the purpose of determining the effect of aerobic training and use of arbutin on cardiac nitric oxide, tumor necrosis factor-α and vessel endothelial growth factor in male diabetic rats. Methods: In this experimental study, 42 male adult Wistar rats (age, 8 weeks; weight, 190-220g, were randomly divided into 6 groups of 7 each (control, arbutin, diabetic, diabetic+training, diabetic+arbutin, and diabetic+training+arbutin. Training programs included 5 days of swimming per week for 6 weeks. Sampling from the heart was performed 72 hours after the last training session and arbutin consumption to analyze NO, TNF-α and VEGF. Data were analyzed using one-way ANOVA at the significance level p≤0.05. Results: Aerobic training along with use of arbutin led to increased levels of NO and VEGF and decreased level of TNF-α in cardiac tissue of diabetic rats (p<0.001. Conclusion: The results indicated that a period of regular aerobic training and use of arbutin can be considered as an appropriate non-medicinal method to control diabetes mellitus type 2 through decrease in inflammatory factors.

  3. Over-expressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters.

    Science.gov (United States)

    Vidgren, Virve; Londesborough, John

    2018-05-31

    Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were over-expressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and over-expressed transporters for access to the plasma membrane. This article is protected by copyright. All rights reserved.

  4. Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system

    International Nuclear Information System (INIS)

    Crevillen, Agustin G.; Barrigas, Ines; Blasco, Antonio Javier; Gonzalez, Maria Cristina; Escarpa, Alberto

    2006-01-01

    This work examines in deep the analytical performance of an example of 'first-generation' microdevices: capillary electrophoresis microchip (CE) with end-channel electrochemical detection (ED). A hydroquinone and arbutin separation strategically chosen as route involving pharmaceutical-clinical testing, public safety and food control scenes was carried out. The reproducibility of the unpinched electrokinetic protocol was carefully studied and the technical possibility of working indiscriminately and/or sequentially with both simple cross-injectors was also demonstrated using a real sample (R.S.D.'s less than 7%). The robustness of the injection protocol allowed checking the state of the microchip/detector coupling and following the extraction efficiency of the analyte from real sample. Separation variables such as pH, ionic strength and, separation voltage were also carefully assayed and optimized. Analyte screening was performed using borate buffer (pH 9, 60 mM) in less than 180 s in the samples studied improving dramatically the analysis times used for the same analytes on a conventional scale (15 min), with good precision (R.S.D.'s ranging 5-10%), accuracy (recoveries ranging 90-110%) and acceptable resolution (Rs ≥ 1.0). In addition, the excellent analytical performance of the overall analytical method indicated the quality of the whole analytical microsystem and allowed to introduce the definition of robustness for methodologies developed into the 'lab-on-a-chip' scene

  5. Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system

    Energy Technology Data Exchange (ETDEWEB)

    Crevillen, Agustin G. [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Barrigas, Ines [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Blasco, Antonio Javier [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Gonzalez, Maria Cristina [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)]. E-mail: alberto.escarpa@uah.es

    2006-03-15

    This work examines in deep the analytical performance of an example of 'first-generation' microdevices: capillary electrophoresis microchip (CE) with end-channel electrochemical detection (ED). A hydroquinone and arbutin separation strategically chosen as route involving pharmaceutical-clinical testing, public safety and food control scenes was carried out. The reproducibility of the unpinched electrokinetic protocol was carefully studied and the technical possibility of working indiscriminately and/or sequentially with both simple cross-injectors was also demonstrated using a real sample (R.S.D.'s less than 7%). The robustness of the injection protocol allowed checking the state of the microchip/detector coupling and following the extraction efficiency of the analyte from real sample. Separation variables such as pH, ionic strength and, separation voltage were also carefully assayed and optimized. Analyte screening was performed using borate buffer (pH 9, 60 mM) in less than 180 s in the samples studied improving dramatically the analysis times used for the same analytes on a conventional scale (15 min), with good precision (R.S.D.'s ranging 5-10%), accuracy (recoveries ranging 90-110%) and acceptable resolution (Rs {>=} 1.0). In addition, the excellent analytical performance of the overall analytical method indicated the quality of the whole analytical microsystem and allowed to introduce the definition of robustness for methodologies developed into the 'lab-on-a-chip' scene.

  6. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts

    DEFF Research Database (Denmark)

    Piddocke, Maya Petrova; kreisz, Stefan; Heldt-Hansen, Hans Peter

    2009-01-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence...... of high-gravity brewing on the fermentation performance of the brewer’s yeast under model brewing conditions. The lager brewer’s strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity...... resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer’s yeast metabolism and the influence of the type...

  7. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    Science.gov (United States)

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  8. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    OpenAIRE

    Moreira, Fabiana G.; Lenartovicz, Veridiana; Souza, Cristina G.M. de; Ramos, Edivan P.; Peralta, Rosane M.

    2001-01-01

    The use of a methyl-D-glucoside (alphaMG), a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob m...

  9. A study of the properties of tablets made of directly compressible maltose.

    Science.gov (United States)

    Muzíková, J; Balhárková, J

    2008-01-01

    The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.

  10. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae.

    Science.gov (United States)

    Donnini, C; Lodi, T; Ferrero, I; Puglisi, P P

    1992-02-01

    The IMP2 gene of Saccharomyces cerevisiae is involved in the nucleo-mitochondrial control of maltose, galactose and raffinose utilization as shown by the inability of imp2 mutants to grow on these carbon sources in respiratory-deficient conditions or in the presence of ethidium bromide and erythromycin. The negative phenotype cannot be scored in the presence of inhibitors of respiration and oxidative phosphorylation, indicating that the role of the mitochondria in the utilization of the above-mentioned carbon sources in imp2 mutants is not at the energetical level. Mutations in the IMP2 gene also confer many phenotypic alterations in respiratory-sufficient conditions, e.g. leaky phenotype on oxidizable carbon sources, sensitivity to heat shock and sporulation deficiency. The IMP2 gene has been cloned, sequenced and disrupted. The phenotype of null imp2 mutants is indistinguishable from that of the originally isolated mutant.

  11. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    Science.gov (United States)

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  12. Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Denis Bucher

    2011-04-01

    Full Text Available Periplasmic binding proteins (PBPs are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE experiments have shown that the maltose binding protein (MBP - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime mixture comprising an open state (approx 95%, and a minor partially closed state (approx 5%. Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175-184 is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins.

  13. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    Science.gov (United States)

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  14. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag.

    Science.gov (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2015-06-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    Science.gov (United States)

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Anti-Melanogenic Effect of Oenothera laciniata Methanol Extract in Melan-a Cells.

    Science.gov (United States)

    Kim, Su Eun; Lee, Chae Myoung; Kim, Young Chul

    2017-01-01

    We evaluated the antioxidant activity and anti-melanogenic effects of Oenothera laciniata methanol extract (OLME) in vitro by using melan-a cells. The total polyphenol and flavonoid content of OLME was 66.3 and 19.0 mg/g, respectively. The electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity, and superoxide dismutase (SOD)-like activity of OLME (500 μg/mL) were 94.5%, 95.6%, and 63.6%, respectively. OLME and arbutin treatment at 50 μg/mL significantly decreased melanin content by 35.5% and 14.2%, respectively, compared to control ( p < 0.05). OLME and arbutin treatment at 50 μg/mL significantly inhibited intra-cellular tyrosinase activity by 22.6% and 12.6%, respectively, compared to control ( p < 0.05). OLME (50 μg/mL) significantly decreased tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor-M (MITF-M) mRNA expression by 57.1%, 67.3%, 99.0%, and 77.0%, respectively, compared to control ( p < 0.05). Arbutin (50 μg/mL) significantly decreased tyrosinase, TRP-1, and TRP-2 mRNA expression by 24.2%, 42.9%, and 48.5%, respectively, compared to control ( p < 0.05). However, arbutin (50 μg/mL) did not affect MITF-M mRNA expression. Taken together, OLME showed a good antioxidant activity and anti-melanogenic effect in melan-a cells that was superior to that of arbutin, a well-known skin-whitening agent. The potential mechanism underlying the anti-melanogenic effect of OLME was inhibition of tyrosinase activity and down-regulation of tyrosinase, TRP-1, TRP-2, and MITF-M mRNA expression.

  17. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  18. Digestive cell lysosomes as main targets for Ag accumulation and toxicity in marine mussels, Mytilus galloprovincialis, exposed to maltose-stabilised Ag nanoparticles of different sizes.

    Science.gov (United States)

    Jimeno-Romero, A; Bilbao, E; Izagirre, U; Cajaraville, M P; Marigómez, I; Soto, M

    2017-03-01

    Bioavailability and toxicity of maltose-stabilised AgNPs of different sizes (20, 40 and 100 nm) in mussels were compared with bulk and aqueous forms of the metal through a two-tier experimental approach. In the first tier, mussels were exposed for 3 d to a range of concentrations (0.75, 75, 750 μg Ag/l) in the form of Ag20-Mal, Ag40-Mal, Ag100-Mal, bulk Ag and aqueous Ag (as AgNO 3 ), as well as to the concentrations of maltose used in the formulation of NPs. Mortality, bioaccumulation, tissue and cell distribution and lysosomal responses were investigated. In the second tier, mussels were exposed for 21 d to Ag20-Mal, Ag100-Mal, bulk Ag and aqueous Ag at the lowest effective concentration selected after Tier 1 (0.75 μg Ag/l), biomarkers and toxicopathic effects were investigated. Aqueous Ag was lethal within 3 d at 75 μg Ag/l; Ag NPs or bulk Ag did not produce significant mortality at 750 μg Ag/l. Ag accumulation was limited and metallothionein gene transcription was not regulated although metal accumulation occurred in digestive, brown and stomach epithelial cells and in gut lumen after exposure to AgNPs and aqueous Ag starting at low concentrations after 1 d. Electrondense particles (lysosomes and residual bodies after exposure to AgNPs contained Ag and S (X-ray). Intralysosomal metal accumulation and lysosomal membrane destabilisation were enhanced after exposure to all the forms of Ag and more marked after exposure to Ag20-Mal than to larger NPs. 21 d exposure to AgNPs provoked digestive cell loss and loss of digestive gland integrity, resulting in atrophy-necrosis in digestive alveoli and oedema/hyperplasia in gills (Ag NP), vacuolisation in digestive cells (aqueous Ag) and haemocyte infiltration of connective tissue (all treatments). Intralysosomal metal accumulation, lysosomal responses and toxicopathic effects are enhanced at decreasing sizes and appear to be caused by Ag +  ions released from NPs, although the metal was not substantially

  19. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis.

    Science.gov (United States)

    Sharma, Archana; Satyanarayana, T

    2012-05-01

    The α-amylase encoding gene from acidophilic bacterium Bacillus acidicola was cloned into pET28a(+) vector and expressed in Escherichia coli BL21 (DE3). The recombinant E. coli produced a 15-fold higher α-amylase than B. acidicola strain. The recombinant α-amylase was purified to homogeneity by one-step nickel affinity chromatography using Ni(2+)-NTA resin with molecular mass of 62 KDa. It is active in the pH range between 3.0 and 7.0 and 30 and 100 °C with optimum at pH 4.0 and 60 °C. The enzyme is Ca(2+)-independent with K (m) and k (cat) values (on soluble starch) of 1.6 mg ml(-1) and 108.7 s(-1), respectively. The α-amylase of B. acidicola is acidstable, high maltose forming and Ca(2+)-independent, and therefore, is a suitable candidate for starch hydrolysis and baking.

  20. Salicilatos isolados de folhas e talos de Salix martiana Leyb. (Salicaceae Salicylates isolated from leaves and stems of Salix martiana Leyb. (Salicaceae

    Directory of Open Access Journals (Sweden)

    Carromberth Carioca Fernandes

    2009-01-01

    Full Text Available Salix martiana Leyb. is an endemic species from the Amazon river floodplain areas (varzeas, of the State of Amazonas. Stems and leaves were extracted with dichloromethane, methanol and hydro-alcohol and these extracts were fractionated by using conventional chromatographic techniques. The major substances isolated, salicin and trichocarposide (6-0-p-coumaroyl salicin, were determined through analyses of NMR 1D (¹H and 13C and NMR 2D (gHSQC and gHMBC. These compounds were isolated for the first time in Salix martiana Leyb. (Salicaceae. The percentage of these compounds in S. martiana is very high. The extracts were analyzed for their DPPH antioxidant capacity and the methanolic from the leaves and the hydro-alcoholic from the stems were the more active.

  1. Salicylates isolated from leaves and stems of Salix martiana Leyb. (Salicaceae); Salicilatos isolados de folhas e talos de Salix martiana Leyb. (Salicaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Carromberth Carioca [Universidade Federal do Acre (UFAC), Rio Branco, AC (Brazil). Centro de Ciencias Biologicas e da Natureza; Cursino, Lorena Mayara de Carvalho; Novaes, Jussival de Abreu Pinheiro; Demetrio, Camilla Avelino; Pereira Junior, Orlando Liborio; Nunez, Cecilia Veronica [Instituto de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Pesquisas em Produtos Naturais; Amaral, Ieda Leao do [Instituto de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Pesquisas em Botanica

    2009-07-01

    Salix martiana Leyb. is an endemic species from the Amazon river floodplain areas (varzeas), of the State of Amazonas. Stems and leaves were extracted with dichloromethane, methanol and hydro-alcohol and these extracts were fractionated by using conventional chromatographic techniques. The major substances isolated, salicin and trichocarposide (6-0-p-coumaroyl salicin), were determined through analyses of NMR 1D ({sup 1}H and {sup 13}C) and NMR 2D (gHSQC and gHMBC). These compounds were isolated for the first time in Salix martiana Leyb. (Salicaceae). The percentage of these compounds in S. martiana is very high. The extracts were analyzed for their DPPH antioxidant capacity and the methanolic from the leaves and the hydro-alcoholic from the stems were the more active. (author)

  2. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING AND AZO-DYE DECOLORIZING SERRATIA MARCESCENS STRAIN NENI-1 FROM INDONESIAN SOIL

    Directory of Open Access Journals (Sweden)

    Neni Gusmanizar

    2016-01-01

    Full Text Available Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, dmannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Moblue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.

  3. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein.

    Directory of Open Access Journals (Sweden)

    Benjamin Dälken

    Full Text Available BACKGROUND: The apoptosis-inducing serine protease granzyme B (GrB is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. METHODS AND FINDINGS: We investigated the influence of bacterial maltose-binding protein (MBP fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. CONCLUSIONS: Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins.

  4. Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein

    Science.gov (United States)

    Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.

    2010-01-01

    Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542

  5. Estabilidad de la glucosa oxidasa en sistemas amorfos formados por los disacáridos sacarosa, maltosa y trehalosa Glucose oxidase stability in amorphous systems formed by saccharose, maltose and trehalose disaccharides

    Directory of Open Access Journals (Sweden)

    Hans L. D. Valenzuela

    2007-01-01

    Full Text Available Glucose-oxidase (GOD, suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v. The K D values (K D.10-4 at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.

  6. [Preparation of cysteine-click maltose modified silica as a hydrophilic interaction liquid chromatography material for the enrichment of glycopeptides].

    Science.gov (United States)

    Sun, Xudong; Zhang, Lingyi; Zhang, Weibing

    2017-07-08

    Because of the low abundance of glycoprotein and glycopeptide in complex biological samples, it is urgent to develop an efficient method for glycopeptide enrichment in comprehensive and in-depth glycoproteomes research. Herein, a novel hydrophilic silica was developed through surface modification with cysteine-click maltose (Cys-Mal@SiO 2 ). The developed hydrophilic silica was packed into a solid phase extraction (SPE) column, and applied to the highly selective enrichment and identification of N -linked glycopeptides. The Cys-Mal@SiO 2 demonstrated better identification capability over Cys@SiO 2 , Mal@SiO 2 and commercial hydrophilic interaction liquid chromatography (HILIC) in glycopeptide enrichment due to the synergistic effect of the two kinds of hydrophilic molecules. In the selective enrichment of tryptic digest from human immunoglobulin G, glycopeptides with higher signal-to-noises were detected by Cys-Mal@SiO 2 . In addition, 1551 unique glycopeptides with 906 N -glycosylation sites from 466 different N -linked glycoproteins were identified from the proteins extracted from mouse liver after the enrichment with Cys-Mal@SiO 2 . In contrast, the numbers of identified glycopeptides, glycoproteins and N -glycosylation sites identified by Cys@SiO 2 were 211, 67, 127 respectively less than by Cys-Mal@SiO 2 , and the corresponding numbers were 289, 76, 193 by Mal@SiO 2 . These results showed that the developed Cys-Mal@SiO 2 is a promising affinity material for N -glycoproteomics research of real complex biological samples.

  7. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  8. Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis.

    Science.gov (United States)

    Geiger, A; Fardeau, M-L; Falsen, E; Ollivier, B; Cuny, G

    2010-06-01

    We report the isolation of a novel bacterium, strain C1(T), from the midgut of the tsetse fly Glossina palpalis gambiensis, one of the vector insects responsible for transmission of the trypanosomes that cause sleeping sickness in sub-Saharan African countries. Strain C1(T) is a motile, facultatively anaerobic, rod-like bacterium (0.8-1.0 microm in diameter; 2-6 microm long) that grows as single cells or in chains. Optimum growth occurred at 25-35 degrees C, at pH 6.7-8.4 and in medium containing 5-20 g NaCl l(-1). The bacterium hydrolysed urea and used L-lysine, L-ornithine, citrate, pyruvate, D-glucose, D-mannitol, inositol, D-sorbitol, melibiose, amygdalin, L-arabinose, arbutin, aesculin, D-fructose, D-galactose, glycerol, maltose, D-mannose, raffinose, trehalose and d-xylose; it produced acetoin, reduced nitrate to nitrite and was positive for beta-galactosidase and catalase. The DNA G+C content was 53.6 mol%. It was related phylogenetically to members of the genus Serratia, family Enterobacteriaceae, the type strain of Serratia fonticola being its closest relative (99 % similarity between 16S rRNA gene sequences). However, DNA-DNA relatedness between strain C1(T) and S. fonticola DSM 4576(T) was only 37.15 %. Therefore, on the basis of morphological, nutritional, physiological and fatty acid analysis and genetic criteria, strain C1(T) is proposed to be assigned to a novel Serratia species, Serratia glossinae sp. nov. (type strain C1(T) =DSM 22080(T) =CCUG 57457(T)).

  9. Untitled

    Indian Academy of Sciences (India)

    Kinetics of starch hydrolysis by enzyme extracts from barley digests after autolysis for different periods. Autolysis for. After shaking. 4. for two hours. Time 48 hrs. 72 hrs. 96 hrs. 8 days k s mins. --. Maltose Maltose : Maltose Maltose : Maltose : t per -- per per per per -- cent. cent. cent. cent, cent. i. 4.6 4.6 12.5 12.5 3 2 13.2 14.3 ...

  10. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis

    International Nuclear Information System (INIS)

    Martin, S.A.; Russell, J.B.

    1987-01-01

    Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments, indicated that separate phosphotransferases systems existed for glucose, maltose, and sucrose. [ 14 C]maltose transport was inhibited by excess glucose and to a lesser extent by sucrose. [ 14 C]glucose and [ 14 C]sucrose transports were not inhibited by an excess of maltose. Since [ 14 C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of P/sub i/ was increased from 0 to 100 mM, a maltose phosphorylase was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for α-glucose 1-phosphate. Only sucrose-grown cells possessed sucrose hydrolase activity, and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities

  11. Maltose binding protein-fusion enhances the bioactivity of truncated forms of pig myostatin propeptide produced in E. coli.

    Directory of Open Access Journals (Sweden)

    Sang Beum Lee

    Full Text Available Myostatin (MSTN is a potent negative regulator of skeletal muscle growth. MSTN propeptide (MSTNpro inhibits MSTN binding to its receptor through complex formation with MSTN, implying that MSTNpro can be a useful agent to improve skeletal muscle growth in meat-producing animals. Four different truncated forms of pig MSTNpro containing N-terminal maltose binding protein (MBP as a fusion partner were expressed in E. coli, and purified by the combination of affinity chromatography and gel filtration. The MSTN-inhibitory capacities of these proteins were examined in an in vitro gene reporter assay. A MBP-fused, truncated MSTNpro containing residues 42-175 (MBP-Pro42-175 exhibited the same MSTN-inhibitory potency as the full sequence MSTNpro. Truncated MSTNpro proteins containing either residues 42-115 (MBP-Pro42-115 or 42-98 (MBP-Pro42-98 also exhibited MSTN-inhibitory capacity even though the potencies were significantly lower than that of full sequence MSTNpro. In pull-down assays, MBP-Pro42-175, MBP-Pro42-115, and MBP-Pro42-98 demonstrated their binding to MSTN. MBP was removed from the truncated MSTNpro proteins by incubation with factor Xa to examine the potential role of MBP on MSTN-inhibitory capacity of those proteins. Removal of MBP from MBP-Pro42-175 and MBP-Pro42-98 resulted in 20-fold decrease in MSTN-inhibitory capacity of Pro42-175 and abolition of MSTN-inhibitory capacity of Pro42-98, indicating that MBP as fusion partner enhanced the MSTN-inhibitory capacity of those truncated MSTNpro proteins. In summary, this study shows that MBP is a very useful fusion partner in enhancing MSTN-inhibitory potency of truncated forms of MSTNpro proteins, and MBP-fused pig MSTNpro consisting of amino acid residues 42-175 is sufficient to maintain the full MSTN-inhibitory capacity.

  12. Phytopharmacology and medicinal properties of Salix aegyptiaca L ...

    African Journals Online (AJOL)

    S. aegyptiaca has recently been shown to have antioxidant, anxiolytic activity and hypocholestrolemic effect. High amounts of phenols and flavonoids such as gallic acid, caffeic acid, myricetin, catechin, quercetin as well as salicin, are reported from the leaves of this plant. 1,4-dimethoxybenzene, phenylethyl alcohol, ...

  13. A C-terminal segment of the V{sub 1}R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Adikesavan, Nallini Vijayarangan; Mahmood, Syed Saad; Stanley, Nithianantham; Xu, Zhen; Wu, Nan [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Thibonnier, Marc [Department of Medicine, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Shoham, Menachem, E-mail: mxs10@case.edu [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States)

    2005-04-01

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V{sub 1} vascular vasopressin receptor (V{sub 1}R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V{sub 1}R has been cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V{sub 1}R.

  14. Effects of plant phenols of performance of southern armyworm larvae.

    Science.gov (United States)

    Lindroth, R L; Peterson, S S

    1988-03-01

    We evaluated the effects of two classes of phenols on performance of penultimate instar southern armyworms, Spodoptera eridania. One class consisted of phenols containing a catechol (ortho-dihydroxybenzene) moiety and included chlorogenic acid, quercetin, rutin, and rhamnetin. A second group consisted of the phenolic glycoside salicin and its derivatives salicortin and tremulacin. The compounds were painted onto lima bean (Phaseolus lunatus) leaves and fed to larvae for the duration of the fifth instar. Chlorogenic acid and rhamnetin had no deleterious effects; rutin and quercetin caused some mortality and rutin reduced growth rates by decreasing consumption and digestion efficiency. Results showed that ortho-dihydroxybenzene groups may be necessary, but are not sufficient for biological activity. Salicin did not affect larvae; salicortin and tremulacin reduced growth rates primarily by decreasing consumption. These two compounds also caused degenerative lesions in midgut tissues. The presence of a benzoyl ester group in tremulacin accentuates its toxicity, relative to that of salicortin.

  15. Tropical Journal of Pharmaceutical Research - Vol 13, No 11 (2014)

    African Journals Online (AJOL)

    Improvement of arbutin trans-epidermal delivery using radiofrequency ... Effect of ketoprofen on immune cells in mice · EMAIL FREE FULL TEXT EMAIL FREE ... fed high-fat diet via activation of peroxisome proliferator-activated receptor γ ...

  16. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents.

    Science.gov (United States)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2018-03-15

    The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO 3 /CoFe 2 O 4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO 3 /CoFe 2 O 4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera through molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Pratchaya Pramoj Na Ayutthaya

    Full Text Available Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT preferred sucrose to maltose as a substrate, while the Y227H mutant (MT preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This

  18. Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.

    Science.gov (United States)

    Tanaka, Mizuki; Hiramoto, Tetsuya; Tada, Hinako; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    Aspergillus oryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzae IMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by

  19. Preliminary study on isolation and quality analysis of enzymes from fermented oil palm empty fruit bunch

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Tamikazu Kume; Shinpei Matsuhashi

    1998-01-01

    Palm Empty Fruit Bunch (EFB) is a cellulosic waste, consisting of 40 - 60 % cellulose with the remaining components comprised of hemicellulose, lignin and other materials. Cellulase is a complex of enzymes containing chiefly endo and exo glucanase, as well as cellobiase plus others (Mandel et al, 1976). Studies on cellulase production from Trichodermaa viride have been reported. The enzyme system from this fungi is considered to be a complete composition of cellulase; and it was reported to be able to hydrolyse slowly a more resistant or crystalline portion of cellulose. Previous work showed Pleorotus sajor-caju and Coprinus cinereus can be easily grown on EFB. The quality of this enzyme system was characterized based on its degradation activity on filter paper, salicin and xylan into simple sugars. These activity tests would revealed the ability of cellulase enzyme system to break down insoluble cellulose, and hydrolysing salicin such as cellobiose and xylanase for breaking down hemicellulose. In this study, the enzyme system derived from liquid state fermentation by these fungi utilizing EFB as carbon source was investigated

  20. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  1. Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis.

    Science.gov (United States)

    Choi, Young Hae; Sertic, Sarah; Kim, Hye Kyong; Wilson, Erica G; Michopoulos, Filippos; Lefeber, Alfons W M; Erkelens, Cornelis; Prat Kricun, Sergio D; Verpoorte, Robert

    2005-02-23

    The metabolomic analysis of 11 Ilex species, I. argentina, I. brasiliensis, I. brevicuspis, I. dumosavar. dumosa, I. dumosa var. guaranina, I. integerrima, I. microdonta, I. paraguariensis var. paraguariensis, I. pseudobuxus, I. taubertiana, and I. theezans, was carried out by NMR spectroscopy and multivariate data analysis. The analysis using principal component analysis and classification of the (1)H NMR spectra showed a clear discrimination of those samples based on the metabolites present in the organic and aqueous fractions. The major metabolites that contribute to the discrimination are arbutin, caffeine, phenylpropanoids, and theobromine. Among those metabolites, arbutin, which has not been reported yet as a constituent of Ilex species, was found to be a biomarker for I. argentina,I. brasiliensis, I. brevicuspis, I. integerrima, I. microdonta, I. pseudobuxus, I. taubertiana, and I. theezans. This reliable method based on the determination of a large number of metabolites makes the chemotaxonomical analysis of Ilex species possible.

  2. Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: a new gateway to food environments.

    Science.gov (United States)

    Blasco, Antonio Javier; Barrigas, Inés; González, María Cristina; Escarpa, Alberto

    2005-12-01

    This paper examines for the first time the analytical possibilities of fast and simultaneous detection of prominent natural antioxidants including examples of flavonoids and vitamins using a CE microchip with electrochemical detection (ED). Unpinched injection conditions, zone electrophoretic separation and amperometric detection were carefully assayed and optimised. Analysis involved the zone electrophoretic separation of arbutin, (+)-catechin and ascorbic acid in less than 4 min using a borate buffer (pH 9.0, 50 mM), employing 2 kV as the separation voltage and +1.0 V as the detection potential. In addition, the separation of different 'couples' of natural antioxidants of food significance including (+)-catechin and ascorbic acid, (+)-catechin and rutin, as well as arbutin and phlorizdin is proposed. To demonstrate the potential and future role of CE microsystems, analytical possibilities and a new route in the raw sample analysis are presented. The preliminary results obtained allow the proposal of CE-ED microchips as a real gateway to microanalysis in foods.

  3. Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield

    Directory of Open Access Journals (Sweden)

    Straus Suzana K

    2011-06-01

    Full Text Available Abstract Background Obtaining membrane proteins in sufficient quantity for biophysical study and biotechnological applications has been a difficult task. Use of the maltose binding protein/hexahistidine dual tag system with E.coli as an expression host is emerging as a high throughput method to enhance membrane protein yield, solubility, and purity, but fails to be effective for certain proteins. Optimizing the variables in this system to fine-tune for efficiency can ultimately be a daunting task. To identify factors critical to success in this expression system, we have selected to study U24, a novel membrane protein from Human Herpesvirus type-6 with potent immunosuppressive ability and a possible role in the pathogenesis of the disease multiple sclerosis. Results We expressed full-length U24 as a C-terminal fusion to a maltose binding protein/hexahistidine tag and examined the effects of temperature, growth medium type, cell strain type, oxidizing vs. reducing conditions and periplasmic vs. cytoplasmic expression location. Temperature appeared to have the greatest effect on yield; at 37°C full-length protein was either poorly expressed (periplasm or degraded (cytoplasm whereas at 18°C, expression was improved especially in the periplasm of C41(DE3 cells and in the cytoplasm of oxidizing Δtrx/Δgor mutant strains, Origami 2 and SHuffle. Expression of the fusion protein in these strains were estimated to be 3.2, 5.3 and 4.3 times greater, respectively, compared to commonly-used BL21(DE3 cells. We found that U24 is isolated with an intramolecular disulfide bond under these conditions, and we probed whether this disulfide bond was critical to high yield expression of full-length protein. Expression analysis of a C21SC37S cysteine-free mutant U24 demonstrated that this disulfide was not critical for full-length protein expression, but it is more likely that strained metabolic conditions favour factors which promote protein expression. This

  4. TLR9 played a more important role than TLR2 in the combination of maltose-binding protein and BCG-induced Th1 activation.

    Science.gov (United States)

    Ni, Weihua; Wang, Fang; Liu, Guomu; Zhang, Nannan; Yuan, Hongyan; Jie, Jing; Tai, Guixiang

    2016-11-01

    Our previous study demonstrated that maltose-binding protein (MBP) combined with BCG induced synergistic mouse Th1 activation in vivo. Here, to explore the mechanism of MBP combined with BCG on Th1 activation, mouse purified CD4 + T cells were stimulated with MBP and BCG in vitro. The results showed that MBP combined with BCG synergistically increased IFN-γ production, accompanied with the upregulation of TLR2/9 expressions, suggesting that TLR2/9 were involved in the combination-induced Th1 activation. Next, TLR2 antibodies and TLR9 inhibitor were used to further analyze the effects of TLRs in Th1 activation. Results showed TLR2 antibody partly decreased MBP combined with BCG-induced IFN-γ production, MyD88 expression and IκB phosphorylation, indicating that TLR2-mediated MyD88-dependent pathway was involved in the MBP combined with BCG-induced Th1 activation. Moreover, MBP combined with BCG-induced Th1 activation was completely abrogated by TLR9 inhibitor, suggesting that TLR9-mediated MyD88-dependent pathway played a more important role than TLR2 in the combination-induced Th1 activation. Further study showed that TLR9 inhibitor downregulated TLR2 expression, suggesting that TLR9 signaling regulated TLR2 activation to favor Th1 resonse induced by MBP combined with BCG. Collectively, we demonstrated for the first time that the cross-talk of TLR2 and TLR9 triggered Th1 activation collaboratively and our findings provided valuable information about designing more effective adjuvant for cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.

    Science.gov (United States)

    Weusthuis, R A; Visser, W; Pronk, J T; Scheffers, W A; van Dijken, J P

    1994-04-01

    Growth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S. cerevisiae could be grown under dual limitation of oxygen and sugar. Respiration and alcoholic fermentation occurred simultaneously and the catabolite fluxes through these processes were dependent on the magnitude of the oxygen feed. C. utilis could also be grown under dual limitation of glucose and oxygen. However, at very low oxygen feed rates (i.e. below 4 mmol l-1 h-1) growth was limited by oxygen only, as indicated by the high residual glucose concentration in the culture. In contrast to S. cerevisiae, C. utilis could not be grown anaerobically at a dilution rate of 0.1 h-1. With C. utilis absence of oxygen resulted in wash-out, despite the presence of ergosterol and Tween-80 in the growth medium. The behaviour of C. utilis with respect to maltose utilization in oxygen-limited cultures was remarkable: alcoholic fermentation did not occur and the amount of maltose metabolized was dependent on the oxygen supply. Oxygen-limited cultures of C. utilis growing on maltose always contained high residual sugar concentrations. These observations throw new light on the so-called Kluyver effect. Apparently, maltose is a non-fermentable sugar for C. utilis CBS 621, despite the fact that it can serve as a substrate for growth of this facultatively fermentative yeast. This is not due to the absence of key enzymes of alcoholic fermentation. Pyruvate decarboxylase and alcohol dehydrogenase were present at high levels in maltose-utilizing cells of C. utilis grown under oxygen limitation. It is concluded that the Kluyver effect, in C. utilis growing on maltose, results from a regulatory mechanism that prevents the sugar from being fermented. Oxygen is not a key factor in this phenomenon since under oxygen limitation alcoholic fermentation of

  6. Crescimento de Acidovorax avenae subsp. citrulli sob diferentes temperaturas, pH, concentrações de cloreto de sódio e fontes de carbono Growth of Acidovorax avenae subsp. citrulli under different variable temperature, pH, sodium chloride concentrations and carbon sources

    Directory of Open Access Journals (Sweden)

    Márcia Tanajura Cavalcanti

    2005-12-01

    Full Text Available O objetivo deste estudo foi determinar o efeito da temperatura (0 a 45°C, pH (4 a 10 e concentração de NaCl (1 a 10% sobre o crescimento de Acidovorax avenae subsp. citrulli (Aac. Quatro estirpes de Aac foram cultivadas em meio de cultura líquido específico e o crescimento avaliado pela absorbância (580nm. Os dados obtidos foram submetidos à análise de regressão não linear. O crescimento das estirpes também foi avaliado em caldo base para fermentação contendo 1% dos carboidratos glicose, galactose, ramnose, sacarose, lactose, maltose, amido, inulina, manitol, dulcitol, sorbitol e salicina, indicada pela mudança da cor do meio. Com base nas análises de regressão, as temperaturas mínima, ótima e máxima para crescimento de Aac foram, respectivamente, 1, 32 e 41°C; o pH ótimo para crescimento dessa bactéria foi 7,4 com os extremos mínimo de 4,0 e máximo de 10,8 e; o crescimento de Aac decresceu com o aumento da concentração de NaCl, sendo o nível de 6,2% letal. Todos os carboidratos testados foram utilizados pelas estirpes de Aac como fonte de carbono, com pequena variação de crescimento observada pela velocidade e intensidade da utilização do substrato com produção de ácido.The objective of this study was to determine the effect of temperature (0 to 45°C, pH (4 to 10 and NaCl concentration (1 to 10% in the growth of Acidovorax avenae subsp. citrulli (Aac. Four Aac strains were grown in specific liquid medium, and their growth evaluated by absorbance (580nm. Data were submitted to nonlinear regression analysis. The bacterial growth was also studied in fermentation broth containing 1% of fermentable carbohydrates, glucose, galactose, rhamnose, sucrose, lactose, maltose, starch, inulin, mannitol, dulcitol, sorbitol and salicin, being evaluated by medium color change. Based upon regression analyses, the minimum, optimum and maximum temperatures for Aac growth were respectively 1, 32 and 41°C; the optimum pH for Aac

  7. Improvement of Arbutin Trans-Epidermal Delivery Using ...

    African Journals Online (AJOL)

    Furthermore, improved depigmentation effects in brown guinea pig in vivo after ... microporation technology was initially developed to remove .... using an isocratic mobile phase consisting of ... acetonitrile (92:8, v/v) at a flow rate of 1.0. μL/min.

  8. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  9. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  10. Sugar-Decorated Sugar Vesicles : Lectin-Carbohydrate Recognition at the Surface of Cyclodextrin Vesicles

    NARCIS (Netherlands)

    Voskuhl, Jens; Stuart, Marc C. A.; Ravoo, Bart Jan

    2010-01-01

    An artificial glycocalix self-assembles when unilamellar bilayer vesicles of amphiphilic beta-cyclodextrins are decorated with maltose and lactose by host-guest interactions. To this end, maltose and lactose were conjugated with adamantane through a tetra(ethyleneglycol) spacer. Both

  11. ON THE ACTIVITY OF α-AMYLASE IN SOME CULTURE AND SPONTANEOUS GRAMINACEAE, DURING THEIR GERMINATION PERIOD

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2006-08-01

    amylase (595.871 M maltose / g has been evidenced 12 hours after the beginning of germination, while, in the case of bristle grass, -amylase attains the maximum level of its activity after 144 hours of germination (429.824 M maltose / g.

  12. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  13. Structural characterization of inclusion complex of arbutin and ...

    African Journals Online (AJOL)

    1School of Food Science and Technology, Wuhan Polytechnic University, 2Hubei Collaborative Innovation Center for. Processing ... are very attractive ingredients for making artificial enzymes ... as food additives, for stabilization of flavors, for.

  14. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  15. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  16. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  17. Purification and characterization of a beta-glucosidase from the root parasitic plant Orobanche minor Sm.

    Science.gov (United States)

    Sasanuma, Izumi; Hirakawa, Go

    2010-01-01

    The beta-glucosidase of a root parasitic angiosperm, Orobanche minor Sm., was purified and characterized. The optimum pH and temperature for activity of the enzyme were 5.0 and 50 degrees C. The beta-glucosidase was stable at up to 50 degrees C at pH 4.0-10.0. The M(r) was estimated to be 33 kD by SDS-PAGE. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside and salicin, but not the cell wall of O. minor or cellohexaose.

  18. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  19. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    Science.gov (United States)

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  20. Inhibitory Effect of Corn Silk on Skin Pigmentation

    OpenAIRE

    Sang Yoon Choi; Yeonmi Lee; Sung Soo Kim; Hyun Min Ju; Ji Hwoon Baek; Chul-Soo Park; Dong-Hyuk Lee

    2014-01-01

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin prod...

  1. Molecular dynamics simulations of lysozyme in water/sugar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-18

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  2. Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria.

    Science.gov (United States)

    Sack, Eveline L W; van der Wielen, Paul W J J; van der Kooij, Dick

    2014-04-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  3. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    Science.gov (United States)

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  4. On-line monitoring of Aspergillus niger GH1 growth in a bioprocess for the production of ellagic acid and ellagitannase by solid-state fermentation.

    Science.gov (United States)

    Aguilar-Zárate, Pedro; Wong-Paz, Jorge E; Rodríguez-Duran, Luis V; Buenrostro-Figueroa, Juan; Michel, Mariela; Saucedo-Castañeda, Gerardo; Favela-Torres, Ernesto; Ascacio-Valdés, Juan A; Contreras-Esquivel, Juan C; Aguilar, Cristóbal N

    2018-01-01

    The present work describes the monitoring of CO 2 production by Aspergillus niger GH1 in a bioprocess for the production of ellagitannase (EAH) and ellagic acid by solid state fermentation. Pomegranate ellagitannins, mainly punicalagin, were used as carbon source and EAH inducer. A second condition, using ellagitannins and maltose as growth promoting carbon source, was tested. The ellagic acid production was quantified and the EAH activity was assayed. The accumulated metabolites were identified by HPLC-ESI-MS/MS. Higher CO 2 production (7.79mg/grams of dry material) was reached in media supplemented with maltose. Short-time lag phase (7.79h) and exponential phase (10.42h) were obtained using only ellagitannins, despite its lower CO 2 production (3.79mg/grams of dry material). Without the use of maltose lower ellagic acid (11.85mg/L/h) and EAH (21.80U/L/h) productivities were reached. The use of maltose enhances the productivity of EA (33.18mg/L/h) and EAH (33.70U/L/h). Besides of punicalin and ellagic acid, two unknown compounds with mass weight of 702 and 290g/mol (ions 701 and 289m/z in negative mode, respectively) were identified and characterized by HPLC-ESI-MS/MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fermentation of starch by Klebsiella oxytoca P2, containing plasmids with {alpha}-amylase and pullulanase genes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, V.L. dos; Araujo, E.F.; Barros, E.G. de; Guimaraes, W.V.

    1999-12-20

    Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12--24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower {alpha}-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.

  6. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations.

    Science.gov (United States)

    Struyf, Nore; Laurent, Jitka; Lefevere, Bianca; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-03-01

    It is generally believed that maltose drives yeast-mediated bread dough fermentation. The relative importance of fructose and glucose, released from wheat fructan and sucrose by invertase, compared to maltose is, however, not documented. This is surprising given the preference of yeast for glucose and fructose over maltose. This study revealed that, after 2h fermentation of wheat flour dough, about 44% of the sugars consumed were generated by invertase-mediated degradation of fructan, raffinose and sucrose. The other 56% were generated by amylases. In whole meal dough, 70% of the sugars consumed were released by invertase activity. Invertase-mediated sugar release seems to be crucial during the first hour of fermentation, while amylase-mediated sugar release was predominant in the later stages of fermentation, which explains why higher amylolytic activity prolonged the productive fermentation time only. These results illustrate the importance of wheat fructan and sucrose content and their degradation for dough fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    Science.gov (United States)

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  8. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Science.gov (United States)

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Mutations that alter the transport function of the LamB protein in Escherichia coli.

    OpenAIRE

    Wandersman, C; Schwartz, M

    1982-01-01

    Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in...

  10. PURIFICATION AND SOME PROPERTIES OF CELLULASE FROM ODONTOTERMES FORMOSANUS (ISOPTERA: TERMITIDAE)

    Institute of Scientific and Technical Information of China (English)

    Tian-ciYang; Jian-chuMo; Jia-anCheng

    2004-01-01

    The purification of the cellulase from Odontotermes forrnosanus workers was achieved by using anion-exchange column of UNOsphere Q, BioLogic DuoFlow chromatography system. The purified cellulase was identified as an endoglucanase and some of its properties were investigated. The EGase activity was 807.5-fold as high as the initial enzyme activity using CMC as substrate and 14.4-fold using salicin as substrate. The enzyme preparations were homogeneous as judged by SDS-PAGE electrophoresis, molecular weight of which was 80 kDa and confirmed by 2-DE zymogram analysis. The enzyme was isoelectric at pH 6.4, which was active on CMC substrate.

  11. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37 Produção e glucoamilase por Aspergillus flavus A1.1 e Thermomyces lanuginosus A13.37

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2005-03-01

    Full Text Available Thirteen thermophilic fungal strains were isolated from agricultural soil, tubers and compost samples in tropical Brazil. Two strains were selected based on of their ability to produce considerable glucoamylase activity while growing in liquid medium at 45ºC with starch as the only carbon source. They were identified as Aspergillus flavus A1.1 and Thermomyces lanuginosus A 13.37 Tsiklinsky. The experiment to evaluate the effect of carbon source, temperature and initial pH of the medium on enzyme production was developed in a full factorial design (2x2x3. Enzyme productivity was influenced by the type of starch used as carbon source. Cassava starch showed to be a better substrate than corn starch for glucoamylase production by A. flavus but for T. lanuginosus the difference was not significant. Enzyme activities were determined using as substrates 0.3% soluble starch, 0.3% maltose or 0.3% of starch plus 0.1% maltose. The enzymes from A. flavus A1.1 hydrolyzed soluble starch preferentially but also exhibited a significant maltase activity. Moreover higher quantities of glucose were released when the substrate used was a mixture of starch and maltose, suggesting that this fungus produced two types of enzyme. In the case T. lanuginosus A 13.37, the substrate specificity test indicated that the enzyme released also hydrolyzed starch more efficiently than maltose, but there was no increase in the liberation of glucose when a mixture of starch and maltose was used as substrate, suggesting that only one type of enzyme was secreted. Glucoamylases produced from A. flavus A1.1 and T. lanuginous A.13-37 have high optimum temperature (65ºC and 70ºC and good thermostability in the absence of substrate (maintaining 50% of activity for 5 and 8 hours, respectively, at 60ºC and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for industrial starch processing.Entre 13 linhagens de fungos filamentosos

  12. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Ali, Shahid; Ali, Gul Shad

    2016-12-01

    Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.

  13. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Alves-Araújo, C; Pacheco, A; Almeida, M J; Spencer-Martins, I; Leão, C; Sousa, M J

    2007-03-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T. delbrueckii PYCC 5321, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T. delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO(2) production and O(2) consumption showed a significantly higher contribution of respiration to the overall metabolism in T. delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T. delbrueckii by the baking industry.

  14. The evaluation of winter wheat roots and leaf sheath diseases diagnostic methods

    Directory of Open Access Journals (Sweden)

    Ewa Solarska

    2012-12-01

    Full Text Available The maltose and mineral media for isolation of Gaeumannomyces graminis from roots were assessed. The differences in numbers of obtained isolates were found depending on the medium used and sampling date. Easier identification of pathogen was possible employing maltose medium. The fungi from genus Fusarium occurring on winter wheat leaf sheaths were identified by mycological analysis and PCR, while the fungus Pseudocercosporella herpotrichoides was detected by PCR and ELISA methods. PCR and ELISA methods enabled to detect pathogens also in periods before the disease symptoms on plants occurred.

  15. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG

    Directory of Open Access Journals (Sweden)

    Lamosa Pedro

    2010-05-01

    Full Text Available Abstract Background Maltose-1-phosphate was detected in Mycobacterium bovis BCG extracts in the 1960's but a maltose-1-phosphate synthetase (maltokinase, Mak was only much later purified from Actinoplanes missouriensis, allowing the identification of the mak gene. Recently, this metabolite was proposed to be the intermediate in a pathway linking trehalose with the synthesis of glycogen in M. smegmatis. Although the M. tuberculosis H37Rv mak gene (Rv0127 was considered essential for growth, no mycobacterial Mak has, to date, been characterized. Results The sequence of the Mak from M. bovis BCG was identical to that from M. tuberculosis strains (99-100% amino acid identity. The enzyme was dependent on maltose and ATP, although GTP and UTP could be used to produce maltose-1-phosphate, which we identified by TLC and characterized by NMR. The Km for maltose was 2.52 ± 0.40 mM and 0.74 ± 0.12 mM for ATP; the Vmax was 21.05 ± 0.89 μmol/min.mg-1. Divalent cations were required for activity and Mg2+ was the best activator. The enzyme was a monomer in solution, had maximal activity at 60°C, between pH 7 and 9 (at 37°C and was unstable on ice and upon freeze/thawing. The addition of 50 mM NaCl markedly enhanced Mak stability. Conclusions The unknown role of maltokinases in mycobacterial metabolism and the lack of biochemical data led us to express the mak gene from M. bovis BCG for biochemical characterization. This is the first mycobacterial Mak to be characterized and its properties represent essential knowledge towards deeper understanding of mycobacterial physiology. Since Mak may be a potential drug target in M. tuberculosis, its high-level production and purification in bioactive form provide important tools for further functional and structural studies.

  16. Mycelial glucoamylases produced by the thermophilic fungus Scytalidium thermophilum strains 15.1 and 15.8: purification and biochemical characterization Glucoamilases miceliais produzidas pelas linhagens 15.1 e 15.8 do fungo termofílico Scytalidium thermophilum: purificação e caracterização bioquímica

    Directory of Open Access Journals (Sweden)

    M.S. Ferreira-Nozawa

    2008-06-01

    Full Text Available Two strains (15.1 and 15.8 of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45% recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM-Cellulose and Concanavalin A-Sepharose chromatography, with 7.38% recovery. Temperature and pH optima were in the range of 50-60ºC and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min than that of S. thermophilum 15.1 (t50= 11-15 min, at 60ºC. The glucoamylase activities were enhanced by several ions (e.g. Mn2+ and Ca2+ and inhibited by β-mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.Duas linhagens (15.1 e 15.8 do fungo termofílico Scytalidium thermophilum se mostraram produtoras de grandes quantidades de glucoamilases, com potencial aplicação industrial. A isoforma I de glucoamilase produzida pela linhagem 15.1 foi submetida seqüencialmente a cromatografia em colunas de DEAE-celulose e CM-celulose, sendo purificada 141 vezes com porcentagem de recuperação de 5,45%. A glucoamilase da linhagem 15.8 foi purificada 71 vezes através do uso de colunas de cromatografia de CM-celulose e Concanavalina A-sepharose com porcentagem de recuperação de 7,38%. Temperatura e pH

  17. Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia.

    Science.gov (United States)

    Khleifat, Khaled M

    2006-11-01

    Two bacterial consortia capable of degrading SLES were isolated from a wastewater treatment plant. The two consortia consisted of three members, Acinetobacter calcoacetiacus and Klebsiella oxytoca in one co-culture (A-K) and Serratia odorifera in the second co-culture (S-A), which contains Acinetobacter calcoacetiacus as well. In all experiments, cells were grown on SLES (1000-7000 ppm) containing the M9 minimal medium as sole carbon source. The co-culture A-K demonstrated a higher growth rate (0.26 h(-1)) and significant greater viability than that of the co-culture S-A (0.21 h(-1)). Glucose, sucrose, maltose, mannitol, and succinic acid as carbon sources produced the same degradation rate (approximately 100 ppm/h) and enhanced the SLES degradation rate by 3-fold upon the control (without an added carbon source). In the case of the co-culture S-A, the situation was different; all the carbon sources being tested except maltose caused a repression in the degradation ability in a range between 25-100%. Maltose causes an enhancement by almost fivefold, compared with the positive control.

  18. Salix alba attenuated oxidative stress in the heart and kidney of hypercholesterolemic rabbits

    Directory of Open Access Journals (Sweden)

    Narges Amel Zabihi

    2017-12-01

    Full Text Available Objective: Oxidative stress plays a critical role in the development of hypercholesterolemia-induced complications. This study evaluated the effects of aspirin and Salix alba hydroethanolic extract on oxidative stress in the heart and kidney of hypercholesterolemic rabbits. Materials and Methods: The antioxidant activity, as well as total phenolic and salicin content of S. alba (Sa extract were assessed by DPPH radical scavenging activity, Folin-Ciocalteu and HPLC methods, respectively. Animals were divided into two groups of control (fed with normal chow, and HD (fed with high cholesterol diet for 6 weeks. Then, hypercholesterolemic animals allocated to the following treatment groups: CHO (received HD, Sa extract (HD plus extract 60 and 120 mg/kg, and aspirin (HD plus aspirin 120 mg/kg and received the treatments on a daily basis for 6 weeks. MDA, GSH, and nitrite concentrations as well as the activities of SOD and CAT were evaluated in cardiac and kidney tissues. Results: The scavenging activity, total phenolic content and salicin were 19.1 µg/ml (IC50, 153.75 ± 3.6 mg of gallic acid/g, and 18.03 µg/mg, respectively. In comparison to CHO group, MDA levels were diminished in Sa and ASA groups but GSH levels were improved. NO metabolites increased in the heart of Sa 120 mg/kg group and in the kidney of all Sa and ASA treated groups. SOD activity increased only in the heart of Sa groups and in the kidney of Sa and ASA groups. CAT activity increased in the heart and kidney tissues of all Sa and ASA treated groups. Conclusion: The results showed S. alba extract improved redox homeostasis in heart and kidney tissues of hypercholesterolemic rabbits. The extract antioxidant property may be related to its phenolic content.

  19. Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberger, Jared J.; Veleti, Sri Kumar; Wilson, Brittney N.; Sucheck, Steven J.; Ronning, Donald R. (Toledo)

    2015-08-06

    GlgE is a bacterial maltosyltransferase that catalyzes the elongation of a cytosolic, branched α-glucan. In Mycobacterium tuberculosis (M. tb), inactivation of GlgE (Mtb GlgE) results in the rapid death of the organism due to a toxic accumulation of the maltosyl donor, maltose-1-phosphate (M1P), suggesting that GlgE is an intriguing target for inhibitor design. In this study, the crystal structures of the Mtb GlgE in a binary complex with maltose and a ternary complex with maltose and a maltosyl-acceptor molecule, maltohexaose, were solved to 3.3 Å and 4.0 Å, respectively. The maltohexaose structure reveals a dominant site for α-glucan binding. To obtain more detailed interactions between first generation, non-covalent inhibitors and GlgE, a variant Streptomyces coelicolor GlgEI (Sco GlgEI-V279S) was made to better emulate the Mtb GlgE M1P binding site. The structure of Sco GlgEI-V279S complexed with α-maltose-C-phosphonate (MCP), a non-hydrolyzable substrate analogue, was solved to 1.9 Å resolution, and the structure of Sco GlgEI-V279S complexed with 2,5-dideoxy-3-O-α-D-glucopyranosyl-2,5-imino-D-mannitol (DDGIM), an oxocarbenium mimic, was solved to 2.5 Å resolution. These structures detail important interactions that contribute to the inhibitory activity of these compounds, and provide information on future designs that may be exploited to improve upon these first generation GlgE inhibitors.

  20. Hydroquinone: O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences.

    Science.gov (United States)

    Arend, J; Warzecha, H; Stöckigt, J

    2000-01-01

    Plant cell suspension cultures of Rauvolfia are able to produce a high amount of arbutin by glucosylation of exogenously added hydroquinone. A four step purification procedure using anion exchange, hydrophobic interaction, hydroxyapatite-chromatography and chromatofocusing delivered in a yield of 0.5%, an approximately 390 fold enrichment of the involved glucosyltransferase. SDS-PAGE showed a M(r) for the enzyme of 52 kDa. Proteolysis of the pure enzyme with endoproteinase LysC revealed six peptide fragments with 9-23 amino acids which were sequenced. Sequence alignment of the six peptides showed high homologies to glycosyltransferases from other higher plants.

  1. A theoretical study of carbohydrates as corrosion inhibitors of iron

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Salim M.; Ali, Nozha M. [Libyan Academy for Graduate Studies, Tripoli (Libyan Arab Jamahiriya). Chemistry Dept.; Ali-Shattle, Elbashir E. [Tripoli Univ. (Libyan Arab Jamahiriya). Chemistry Dept.

    2013-08-15

    The inhibitive effect of fructose, glucose, lactose, maltose, and sucrose against the iron corrosion is investigated using density functional theory at the B3LYP/6-31 G level (d) to search the relation between the molecular structure and corrosion inhibition. The electronic properties such as the energy of the highest occupied molecular orbital (HOMO), the energy of lowest unoccupied orbital (LUMO), the energy gap (LUMO-HOMO), quantum chemical parameters such as hardness, softness, the fraction of the electron transferred, and the electrophilicity index are reported. The inhibition efficiency of the investigated carbohydrates follows the trend: maltose < sucrose < lactose < fructose < glucose. (orig.)

  2. [Chemical constituents from Imperata cylindrica].

    Science.gov (United States)

    Liu, Xuan; Zhang, Binfeng; Chou, Guixin; Yang, Li; Wang, Zhengtao

    2012-08-01

    Chemical investigation of Imperata cylindrica led to the isolation of thirteen compounds using various chromatographic techniques. The structure of these compounds were identified as: three phenylpropanoids, 1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol ( 1 ), 1-O-p-coumaroylglycerol (2), 4-methoxy-5-methyl coumarin-7-O-beta-D-glucopyranoside (3); four organic acids, 4-hydroxybenzene carboxylic acid(4), 3,4-dihydroxybenzoic acid (5), vanillic acid (6), 3, 4-dihydroxybutyric acid (7); one phenolic compound, salicin (8); and five triterpenes, namely, arundoin (9), cylindrin (10), fernenol (11), simiarenol (12), glutinone (13) by their physicochemical properties and spectral data analysis. Among them, compounds 1-8 were isolated from the genus Imperata for the first time.

  3. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    Science.gov (United States)

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  4. The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation.

    Science.gov (United States)

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-12-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.

  5. The importance of adding EDTA for the nanopore analysis of proteins.

    Science.gov (United States)

    Krasniqi, Besnik; Lee, Jeremy S

    2012-06-01

    Nanopore analysis is a promising technique for studying the conformation of proteins and protein/protein interactions. Two proteins (bacterial thioredoxin and maltose binding protein) were subjected to nanopore analysis with α-hemolysin. Two types of events were observed; bumping events with a blockade current less than -40 pA and intercalation events with blockade currents between -40 pA and -100 pA. In potassium phosphate buffer, pH 7.8, both proteins gave intercalation events but the frequency of these events was significantly reduced in TRIS or HEPES buffers especially in the presence of 0.01 mM divalent metal ions. The frequency of events was restored by the addition of EDTA. For maltose binding protein, the frequency of intercalation events was also decreased in the presence of maltose but not lactose to which it does not bind. It is proposed that the events with large blockade currents represent transient intercalation of a loop or end of the protein into the pore and that divalent metal ions inhibit this process. The results demonstrate that the choice of buffer and the effects of metal ion contamination are important considerations in nanopore analysis.

  6. Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    Science.gov (United States)

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K.; Jesudhasan, Palmy R.

    2012-01-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium. PMID:22843534

  7. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts.

    Science.gov (United States)

    Panusa, Alessia; Petrucci, Rita; Marrosu, Giancarlo; Multari, Giuseppina; Gallo, Francesca Romana

    2015-07-01

    The aim of this study was to get a rapid metabolic fingerprinting and to gain insight into the metabolic profiling of Arctostaphylos pungens H. B. K., a plant morphologically similar to Arctostaphylos uva-ursi (L.) Spreng. (bearberry) but with a lower arbutin (Arb) content. According to the European Pharmacopoeia the Arb content in the dried leaf of A. uva-ursi (L.) Spreng. must be at least 7% (wt/wt) but other species, like A. pungens, are unintentionally or fraudulently marketed instead of it. Therefore, methanolic leaf extracts of nine A. uva-ursi and six A. pungens samples labeled and marketed as "bearberry leaf" have been analyzed. A five-minute gradient with a UHPLC-PDA-ESI-TOF/MS on an Acquity BEH C18 (50×2.1 mm i.d.) 1.7 μm analytical column has been used for the purpose. A comprehensive assignment of secondary metabolites has been carried out in a comparative study of the two species. Among twenty-nine standards of natural compounds analyzed, fourteen have been identified, while other fifty-five metabolites have been tentatively assigned. Moreover, differences in both metabolic fingerprinting and profiling have been evidenced by statistical multivariate analysis. Specifically, main variations have been observed in the relative content for Arb, as expected, and for some galloyl derivative like tetra- and pentagalloylglucose more abundant in A. uva-ursi than in A. pungens. Furthermore, differences in flavonols profile, especially in myricetin and quercetin glycosilated derivatives, were observed. Based on principal component analysis myricetrin, together with a galloyl arbutin isomer and a disaccharide are herein proposed as distinctive metabolites for A. pungens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece.

    Science.gov (United States)

    Pavlović, Dragana R; Branković, Suzana; Kovačević, Nada; Kitić, Dušanka; Veljković, Slavimir

    2011-05-01

    Arbutus unedo leaf is used traditionally for gastrointestinal complaints. Ethanol extracts from Arbutus unedo collected in both Montenegro (AuM) and Greece (AuG) were found to decrease the ileal basal tonus, with AuG producing a significantly higher (p plant material were studied, and both extracts were found to possess considerable antioxidant properties. AuG showed a stronger in vitro antioxidative activity in the DPPH assay and in the TBA test. Polyphenol, tannin and flavonoid levels were higher in AuG, supporting the more potent spasmolytic and antioxidative effects, whereas the arbutin content was higher in dry plant material collected in Montenegro. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  10. Interference studies with two hospital-grade and two home-grade glucose meters.

    Science.gov (United States)

    Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry

    2009-10-01

    Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was

  11. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.

    Science.gov (United States)

    Manas, Nor Hasmaliana Abdul; Bakar, Farah Diba Abu; Illias, Rosli Md

    2016-06-01

    Maltogenic amylase (MAG1) from Bacillus lehensis G1 displayed the highest hydrolysis activity on β-cyclodextrin (β-CD) to produce maltose as a main product and exhibited high transglycosylation activity on malto-oligosaccharides with polymerization degree of three and above. These substrate and product specificities of MAG1 were elucidated from structural point of view in this study. A three-dimensional structure of MAG1 was constructed using homology modeling. Docking of β-CD and malto-oligosaccharides was then performed in the MAG1 active site. An aromatic platform in the active site was identified which is responsible in substrate recognition especially in determining the enzyme's preference toward β-CD. Molecular dynamics (MD) simulation showed MAG1 structure is most stable when docked with β-CD and least stable when docked with maltose. The docking analysis and MD simulation showed that the main subsites for substrate stabilization in the active site are -2, -1, +1 and +2. A bulky residue, Trp359 at the +2 subsite was identified to cause steric interference to the bound linear malto-oligosaccharides thus prevented it to occupy subsite +3, which can only be reached by a highly bent glucose molecule such as β-CD. The resulted modes of binding from docking simulation show a good correlation with the experimentally determined hydrolysis pattern. The subsite structure generated from this study led to a possible mode of action that revealed how maltose was mainly produced during hydrolysis. Furthermore, maltose only occupies subsite +1 and +2, therefore could not be hydrolyzed or transglycosylated by the enzyme. This important knowledge has paved the way for a novel structure-based molecular design for modulation of its catalytic activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Transglycosylation properties of maltodextrin glucosidase (MalZ) from Escherichia coli and its application for synthesis of a nigerose-containing oligosaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung-Mo [Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Shim, Jae-Hoon [Department of Biology, University of Incheon, Incheon 406-772 (Korea, Republic of); Park, Jong-Tae; Kim, Sung-Hee [Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Young-Wan [Department of Food and Biotechnology, Korea University, Jochiwon 339-700 (Korea, Republic of); Boos, Winfried [Department of Biology, University of Konstanz, Konstanz 78457 (Germany); Park, Kwan-Hwa, E-mail: parkkh@incheon.ac.kr [Department of Biology, University of Incheon, Incheon 406-772 (Korea, Republic of)

    2010-06-18

    The transglycosylation reaction of maltodextrin glucosidase (MalZ) cloned and purified from Escherichia coli K12 was characterized and applied to the synthesis of branched oligosaccharides. Purified MalZ preferentially catalyzed the hydrolysis of maltodextrin, {gamma}-cyclodextrin (CD), and cycloamylose (CA). In addition, when the enzyme was incubated with 5% maltotriose (G3), a series of transfer products were produced. The resulting major transfer products, annotated as T1, T2, and T3, were purified and their structures were determined by TLC, MALDI-TOF/MS, {sup 13}C NMR, and enzymatic analysis. T1 was identified as a novel compound, maltosyl {alpha}-1,3-maltose, whereas T2 and T3 were determined to be isopanose and maltosyl-{alpha}-1,6-maltose, respectively. These results indicated that MalZ transferred sugar moiety mainly to C-3 or C-6-OH of glucose of the acceptor molecule. To obtain highly concentrated transfer products, the enzyme was reacted with 10% liquefied cornstarch, and then glucose and maltose were removed by immobilized yeast. The T1 content of the resulting reaction mixture reached 9.0%. The mixture of T1 containing a nigerose moiety can have an immunopotentiating effect on the human body and may be a potential functional sugar stuff.

  13. Improvement in properties of plastic teeth by electron beam irradiation

    International Nuclear Information System (INIS)

    Sano, Yuko; Ishikawa, Shun-ichi; Seguchi, Tadao

    2011-01-01

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 o C in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: → Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 o C in inert gas. → Water and glucose absorption and maltose adhesion on PC teeth were much reduced. → Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  14. Three new triterpene esters from pumpkin (Cucurbita maxima) seeds.

    Science.gov (United States)

    Kikuchi, Takashi; Ueda, Shinsuke; Kanazawa, Jokaku; Naoe, Hiroki; Yamada, Takeshi; Tanaka, Reiko

    2014-04-16

    Three new multiflorane-type triterpene esters, i.e. 7α-hydroxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1), 7α-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (2), and 7β-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (3), were isolated from seeds of Cucurbita maxima, along with the known compound, multiflora-7,9(11)-diene-3α,29-diol 3,29-dibenzoate (4). Compound 1 exhibited melanogenesis inhibitory activities comparable with those of arbutin. In cytotoxicity assays, compounds 1 and 3 exhibited weak cytotoxicity, with IC50 values of 34.5-93.7 μM against HL-60 and P388 cells.

  15. Three New Triterpene Esters from Pumpkin (Cucurbita maxima Seeds

    Directory of Open Access Journals (Sweden)

    Takashi Kikuchi

    2014-04-01

    Full Text Available Three new multiflorane-type triterpene esters, i.e. 7α-hydroxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1, 7α-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (2, and 7β-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (3, were isolated from seeds of Cucurbita maxima, along with the known compound, multiflora-7,9(11-diene-3α,29-diol 3,29-dibenzoate (4. Compound 1 exhibited melanogenesis inhibitory activities comparable with those of arbutin. In cytotoxicity assays, compounds 1 and 3 exhibited weak cytotoxicity, with IC50 values of 34.5–93.7 μM against HL-60 and P388 cells.

  16. Allelopathy of small everlasting (Antennaria microphylla) : Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture.

    Science.gov (United States)

    Hogan, M E; Manners, G D

    1990-03-01

    Media and media extracts from callus cultures of small everlasting (Antennaria microphylla) inhibited leafy spurge (Euphorbia esula L.) callus tissue and suspension culture growth (50 and 70% of control, respectively) and were phytotoxic in lettuce and leafy spurge root elongation bioassays (64 and 77% of control, respectively). Hydroquinone, a phytotoxic compound previously isolated from small everlasting, was also biosynthesized by callus and suspension cultures of this species. Exogenously supplied hydroquinone (0.5 mM) was toxic to leafy spurge suspension culture cells and was only partially biotransformed to its nontoxic water-soluble monoglucoside, arbutin, by these cells. This report confirms the chronic involvement of hydroquinone in the allelopathic interaction between small everlasting and leafy spurge.

  17. Continuous saccharification and fermentation in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, I Ya; Gracheva, I M; Mikhailova, L E; Babaeva, S A; Ustinnikov, B A

    1968-01-01

    Submerged cultures of Aspergillus niger NRRL 337 and A. batatae 61, or a mixture of submerged A. niger culture with a surface culture of A. oryzae Kc are used for fermentations and compared with the usual barley malt procedure. The latter yields 71% maltose and 24 to 28% glucose, wherease the fungal procedure gives 14 to 21% maltose and 80 to 85% glucose in a continuous mashing-fermentation process with barley. The fungal method gives a higher degree of fermentation for sugars and dextrins and a lower content of total and high-molecular-weight residual dextrins. The amounts of propanol PrOH and iso-BuOH isobutyl alcohol are almost equal, whereas the amount of isoamylalcohol is lower in fungal fermentations.

  18. A broader role for AmyR in Aspergillus niger: regulation of the utilisation of D-glucose or D-galactose containing oligo- and polysaccharides.

    Science.gov (United States)

    vanKuyk, Patricia A; Benen, Jaques A E; Wösten, Han A B; Visser, Jaap; de Vries, Ronald P

    2012-01-01

    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on D-glucose- and D-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that D-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed.

  19. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Immobilization of Aspergillus niger. beta. -D-glucosidase on aminated chitin and alumina/alginate

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Freire, D.; Mendes, M.F.; Soares. V.F.

    1986-01-01

    The immobilization of ..beta..-glucosidase was studied by (a) covalent coupling to aminated chitin (IME-C) and (b) adsorption onto alumina followed by gel entrapment of the suspension with calcium alginate (IME-A). The levels of catalytic activity determined against salicin at 50 C were 23.0 U/g and 0.2 U/g for the IME-C and IMA-A respectively. The first system was shown to be quite stable with a loss of only 2% of the initial activity over 14 days. The IME-A system had a half life of 14 days. The activity of IME-C was studied using cellobiose and enzymatic hydrolysates of sugar cane bagasse at several cellobiose concentrations. The activities obtained with cellobiose were 104.0 U/g and 72.0 U/g respectively. 13 references.

  1. Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe.

    Science.gov (United States)

    Freier, T A; Beitz, D C; Li, L; Hartman, P A

    1994-01-01

    A small, anaerobic, gram-positive coccobacillus that reduces cholesterol to coprostanol was isolated from a hog sewage lagoon. This isolate, strain HLT (T = type strain) does not require cholesterol for growth, but it requires lecithin and has phospholipase activity. Much acid is produced by the fermentation of amygdalin, lactose, and salicin. Arabinose, cellobiose, fructose, glucose, mannose, and melibiose are fermented weakly. Acetic, formic, and succinic acids are produced, as is hydrogen. The isolate does not reduce nitrate, produce indole, or hydrolyze starch and gelatin. Esculin is hydrolyzed. The properties of strain HLT are most similar to those of members of the genus Eubacterium. Because strain HL (= ATCC 51222) has unique morphological and physiological properties, we propose that it should be the type strain of a new species in the genus Eubacterium, Eubacterium coprostanoligenes.

  2. Pullulan production from coconut by-products by Aureobasidium ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... Key words: Pullulan, Aureobasidium pullulans, coconut water, coconut milk, characterization, FT-IR. ... sugars such as sucrose, glucose, fructose, maltose, starch, or ... sate, cornmeal hydrolysates, corn syrup, fuel ethanol.

  3. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L. cv. SVPR-2

    Directory of Open Access Journals (Sweden)

    G. Prem Kumar

    2015-09-01

    Full Text Available An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose was found to be the best carbon source for effectively controlling phenolic secretion in callus induction medium. High frequency of callus induction was obtained on MSB5 medium supplemented with 3% Maltose, 2,4-D (0.90 μM and Kinetin (4.60 μM from both cotyledon and hypocotyl explants. The best result of callus induction was obtained with hypocotyl explant (94.90% followed by cotyledon explant (85.20%. MSB5 medium supplemented with 2,4-D (0.45 μM along with 2iP (2.95 μM gave tremendous proliferation of callus with high percentage of response. Varying degrees of colors and textures of callus were observed under different hormone treatments. The present study offers a solution for controlling phenolic secretion in cotton callus culture by adjusting carbon sources without adding any additives and evaluates the manipulation of plant growth regulators for efficient callus culture of SVPR-2 cotton cultivar.

  4. Synthesis, spectroscopic characterization of palladium(II)-orthohydroxyacetophenone azine nano-optical sensor doped in sol–gel matrix and its use as probe for assessment of α-amylase activity in human saliva

    International Nuclear Information System (INIS)

    El-Sayed, B.A.; Abo-Aly, M.M.; Attia, M.S.; Gamal, S.

    2016-01-01

    PdAPA (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel matrix is synthesized. It is characterized using UV-visible, infrared spectra and TEM image. A novel, simple, sensitive spectrofluorometric method was developed for measuring the activity of the α-amylase enzyme in human saliva for smokers and non-smokers with age range (17–64 years) based on the quenching of the luminescence intensity at 450 nm of the new synthesized complex characterized by various concentrations of the maltose released from the hydrolysis of starch by α-amylase enzyme and was successfully used as nano-optical sensor. The calibration plot was achieved over the concentration range 4.7×10 −6 –9.3×10 −10 mol L −1 maltose with a correlation coefficient of 0.996 and a detection minimum limit value of 7.55×10 −10 mol L −1 . The method was satisfactorily used for the assessment of the α-amylase activity in a number of human saliva samples for various smokers and non-smoker's volunteers. - Highlights: • The (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel was prepared. • It was used for the assessment of of α-amylase enzyme activity. • By maltose resulting from the reaction of α-amylase enzyme with starch. • A novel, simple, sensitive and precise spectrofluorometric method was developed.

  5. ISOLATION AND CHARACTERIZATION OF BACTERIA FROM THE ...

    African Journals Online (AJOL)

    xx

    Bacterial smears were prepared on cover glasses, heat fixed over a flame for 1 to ... Catalase. +. Lactose. _. Indole production. +. Dextrose. +. Methyl red test. _. Maltose. + .... Treatment. Larvae. Number of larvae develop to puparium.  ...

  6. Allelopathic potential of macrofungi on germinating maize (Zea ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... fructose (96.85%), maltose (95.64%), oleic acid (97.50%) and linoleic acid ... HPLC,. High performance liquid chromatography; MF, macrofungi; MFE, ... Quantitative determination of oleic and linoleic acids was performed.

  7. Effect of the medium composition on formation of amylase by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Eliana de Oliveira. Santos

    2003-01-01

    Full Text Available Studies on the alpha -amylase synthesis was carried out with a moderately thermophilic, facultatively anaerobic Bacillus sp, isolated from soil samples. The cells were cultivated in a complex medium containing soluble starch or maltose as carbon source. The levels of the alpha -amylaseactivity detected in culture supernatants varied greatly with the type of carbon source used. Maltose, soluble starch and citrate stimulated alpha -amylaseformation. Addition of exogenous glucose repressed formation of alpha -amylase, demonstrating that a classical glucose effect was operative in this organism. The concentration of yeast extract was found to be important factor in the alpha -amylase synthesis bythe isolate.The activity of the enzyme increased between 2 and 5 g/L yeast extract concentration and then fell very rapidly beyond this point. The best concentration of peptone to alpha-amylase formation was found to be around 10g/L.Estudos sobre a síntese de alfa -amilase foram realizados com uma bactéria termofílica moderada e facultativa anaeróbica, isolada de amostras de solo. As células foram cultivadas em um meio complexo contendo amido solúvel ou maltose como fonte de carbono. Os níveis da atividade de alfa -amilase detectados no sobrenadante da cultura variaram grandemente com o tipo da fonte de carbono utilizada. Amido solúvel, maltose e citrato estimularam a formação de alfa -amilase. A adição de glicose as culturas reprimiu a formação da alfa -amilase, demonstrando que o clássico efeito glicose foi operativo neste organismo. A concentração de extrato de levedura foi um fator importante na formação de alfa -amilase pelo isolado. A atividade da enzima aumentou entre concentrações de 2 a 5 g/L e então caiu muito rapidamente em torno deste ponto. A melhor concentração de peptona para a formação da alfa -amilase foi em torno de 10 g/L.

  8. Laboratory scale production of glucose syrup by the enzymatic ...

    African Journals Online (AJOL)

    Jen

    Laboratory scale production of glucose syrup by the enzymatic ... The industrial processing of starch to glucose, maltose and dextrin involves gelatinization, ... due to non-availability of appropriate technology and industry to harness these into.

  9. Effect of micro-organism and particle size on fermentation of ...

    African Journals Online (AJOL)

    Aziwo Niba

    2013-06-26

    Jun 26, 2013 ... fermentation for pH, sugar and organic acids analysis. .... performance liquid chromatography (HPLC) according to the ... are the sums of maltose, glucose and fructose concentrations. n=number of observations per mean.

  10. Applications of high resolution 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of β-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs

  11. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2008-01-01

    Full Text Available Abstract Background The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry. Results We demonstrate that the two maltose ATP binding cassette (ABC transporter operons now found in Tc. litoralis and P. furiosus (termed mal and mdx genes, respectively are not closely related to one another. The Tc. litoralis and P. furiosus mal genes are most closely related to bacterial mal genes while their respective mdx genes are archaeal. The genes of the two mal operons in Tt. maritima are not related to genes in either of these archaeal operons. They are highly similar to one another and belong to a phylogenetic lineage that includes mal genes from the enteric bacteria. A unique domain of the enteric MalF membrane spanning proteins found also in these Thermotogales MalF homologs supports their relatively close relationship with these enteric proteins. Analyses of genome sequence data from other Thermotogales species, Fervidobacterium nodosum, Thermosipho melanesiensis, Thermotoga petrophila, Thermotoga lettingae, and Thermotoga neapolitana, revealed a third apparent mal operon, absent from the published genome sequence of Tt. maritima strain MSB8. This third operon, mal3, is more closely related to the Thermococcales' bacteria-derived mal genes than are mal1 and mal2. F. nodosum, Ts. melanesiensis, and Tt. lettingae have only one of the mal1-mal2 paralogs. The mal2 operon from an unknown species of Thermotoga appears to

  12. Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon

    Directory of Open Access Journals (Sweden)

    Sylvia A. Reimann

    2011-01-01

    Full Text Available Bacteria adapt to changing environments by means of tightly coordinated regulatory circuits. The use of synthetic lethality, a genetic phenomenon in which the combination of two nonlethal mutations causes cell death, facilitates identification and study of such circuitry. In this study, we show that the E. coli ompR malTcon double mutant exhibits a synthetic lethal phenotype that is environmentally conditional. MalTcon, the constitutively active form of the maltose system regulator MalT, causes elevated expression of the outer membrane porin LamB, which leads to death in the absence of the osmoregulator OmpR. However, the presence and metabolism of glycolytic carbon sources, such as sorbitol, promotes viability and unveils a novel layer of regulation within the complex circuitry that controls maltose transport and metabolism.

  13. Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets

    Science.gov (United States)

    Tiwari, Farindra; Singh, D. K.

    Snail control is one of the most important tools in the campaign to reduce the incidence of fascioliasis. In order to attain this objective, the method of bait formulation in order to contain an attractant and a molluscicide is an expedient approach to lure the target snail population to the molluscicide. This study identifies certain carbohydrates, namely sucrose, maltose, glucose, fructose and starch, for preparing such baits. These were tested on Lymnaea acuminata, an intermediate host of the digenean trematodes Fasciola hepatica and Fasciola gigantica. The behavioural responses of snails to these carbohydrates were examined. Significant variations in behavioural responses were observed in the snail even when the five carbohydrates were used in low concentrations in snail-attractant pellets. Starch emerged as the strongest attractant for Lymnaea acuminata, followed by maltose.

  14. A mutant sialidase having trans-sialidase activity for use in production of sialylated glycans

    DEFF Research Database (Denmark)

    2014-01-01

    galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), malto-oligosaccharides (MOS), isomalto-oligosaccarides (IMO), lactulose, melibiose, maltose, glycosyl sucrose, lactosucrose and fucose. Trans-sialidated mono- and oligo- saccharides, produced with the mutant enzyme, are useful in preparing...

  15. Highly efficient and enzymatic regioselective undecylenoylation of gastrodin in 2-methyltetrahydrofuran-containing systems.

    Science.gov (United States)

    Yang, Rongling; Liu, Xueming; Chen, Zhiyi; Yang, Chunying; Lin, Yaosheng; Wang, Siyuan

    2014-01-01

    Highly efficient and regioselective acylation of pharmacologically interesting gastrodin with vinyl undecylenic acid has been firstly performed through an enzymatic approach. The highest catalytic activity and regioselectivity towards the acylation of 7'-hydroxyl of gastrodin was obtained with Pseudomonas cepacia lipase. In addition, it was observed the lipase displayed higher activity in the eco-friendly solvent 2-methyltetrahydrofuran-containing systems than in other organic solvents. In the co-solvent mixture of tetrahydrofuran and 2-methyltetrahydrofuran (3/1, v/v), the reaction rate was 60.6 mM/h, substrate conversion exceeded 99%, and 7'-regioselectivity was 93%. It was also interesting that the lipase-catalyzed acylation couldn't be influenced by the benzylic alcohol in gastrodin. However, pseudomonas cepacia lipase displayed different regioselectivity towards gastrodin and arbutin.

  16. Natural ingredients for darker skin types: growing options for hyperpigmentation.

    Science.gov (United States)

    Alexis, Andrew F; Blackcloud, Paul

    2013-09-01

    Dyschromia is one of the most common dermatological concerns in patients with darker skin.1 Disorders of hyperpigmentation, including postinflammatory hyperpigmentation, melasma, solar lentigines, and miscellaneous causes of facial hyperpigmentation, are the most frequently treated dyschromias and can have a considerable psychosocial impact. Given the high prevalence of hyperpigmentation and the considerable demand for an even complexion, newer treatment options for hyperpigmentation are of growing interest among consumers, manufacturers, and dermatologists. Blinded, controlled studies demonstrating skin lightening effects in soy, niacinamide, n-acetylglucosamine, licorice extract, arbutin, vitamin c, kojic acid, emblica extract, lignin peroxidase, and glutathione have led to the development of a growing list of non-prescription skin care products that can be incorporated (mostly as adjuncts) in the management of hyperpigmentation.

  17. Structural Relaxations and Thermodynamic Properties of Molecular Amorphous Solids by Mechanical Milling

    Science.gov (United States)

    Tsukushi, I.; Yamamuro, O.; Matsuo, T.

    The organic crystals of tri-O-methyl-β-cyclodextrin (TMCD) and its three clathrate compounds containing benzoic acid (BA), p-nitrobenzoic acid (NBA) and p-hydroxybenzoic acid (HBA), sucrose (SUC), salicin (SAL), phenolphthalein (PP), 1,3,5-tri-α-naphthylbenzene (TNB) were amorphized by milling with a vibrating mill for 2 ˜ 16 hours at room temperature. The amorphization was checked by differential scanning calorimetry (DSC) and X-ray powder diffraction. The heat capacities of crystals, liquid quenched glasses (LQG), and mechanically-milled amorphous solid (MMAS) of TMCD and TNB were measured with an adiabatic calorimeter in the temperature range between 12 and 375 K. For both compounds, the enthalpy relaxation of MMAS appeared in the wide temperature range below Tg and the released configurational enthalpy was much larger than that of LQG, indicating that MMAS is more disordered and strained than LQG.

  18. Chemical Constituents of Caesalpinia decapetala (Roth Alston

    Directory of Open Access Journals (Sweden)

    Song Yang

    2013-01-01

    Full Text Available The current study targets the chemical constituents of Caesalpinia decapetala (Roth Alston and investigates the bioactivities of the isolated compounds. Fourteen known compounds were isolated using column chromatography, and structural identification was performed by physical and spectral analyses. The biological activities of the compounds were also evaluated by 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT and 2,2-diphenlyl-1-picrylhydrazyl (DPPH assays. Emodin (6, baicalein (9, and apigenin (12 displayed antitumor activities against the MGC-803 cell line, while quercetin (2, rutin (5, baicalein (9, and epicatechin (13 showed stronger DPPH scavenging activities compared with ascorbic acid. Andrographolide (1, quercetin (2, bergenin (4, rutin (5, emodin (6, betulin (7, baicalein (9, polydatin (10, salicin (11, and apigenin (12, were obtained from C. decapetala (Roth Alston for the first time.

  19. diphtheriae in a child Corynebacterium

    African Journals Online (AJOL)

    isolated from blood cultures in suspected cases of. lE. Hpwever, his .... dextrin -, maltose +, sucrose -, catalase +,glucose +, mannitol-, trehalose -, nitrate ... by Abbott.9 Whether in acquired or congenital heart disease, the bacteraemia of lE is ...

  20. ORF Alignment: NC_004578 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available otein (Maltose-Binding Protein) Mutant, With ... Arginine Replacing Tryptophan At Position 230 ... ...g Protein) ... Mutant, With Arginine Replacing Tryptophan At Position ... ... With Arginine ... Replacing Tryptophan At Position 230 (Trp-230-Arg) ... Length = 368 ... Query:

  1. African Journal of Biotechnology Vol

    African Journals Online (AJOL)

    Admin

    consumed between the fermentative and the respiratory pathways in the ... carbon dioxide and ethanol from sugars (i.e. maltose and ... In order to achieve a maximum yield at the highest ... parameters when operating a baker's yeast plant.

  2. A High Molecular-Mass Anoxybacillus sp. SK3-4 Amylopullulanase: Characterization and Its Relationship in Carbohydrate Utilization

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    2013-05-01

    Full Text Available An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC domains. In addition, the existence of a S-layer homology (SLH domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.

  3. Synthesis, spectroscopic characterization of palladium(II)-orthohydroxyacetophenone azine nano-optical sensor doped in sol–gel matrix and its use as probe for assessment of α-amylase activity in human saliva

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, B.A. [Chemistry department, Faculty of Science, al Azhr University, Cairo (Egypt); Abo-Aly, M.M., E-mail: aboalymoh@hotmail.com [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Attia, M.S.; Gamal, S. [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2016-01-15

    PdAPA (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel matrix is synthesized. It is characterized using UV-visible, infrared spectra and TEM image. A novel, simple, sensitive spectrofluorometric method was developed for measuring the activity of the α-amylase enzyme in human saliva for smokers and non-smokers with age range (17–64 years) based on the quenching of the luminescence intensity at 450 nm of the new synthesized complex characterized by various concentrations of the maltose released from the hydrolysis of starch by α-amylase enzyme and was successfully used as nano-optical sensor. The calibration plot was achieved over the concentration range 4.7×10{sup −6}–9.3×10{sup −10} mol L{sup −1} maltose with a correlation coefficient of 0.996 and a detection minimum limit value of 7.55×10{sup −10} mol L{sup −1}. The method was satisfactorily used for the assessment of the α-amylase activity in a number of human saliva samples for various smokers and non-smoker's volunteers. - Highlights: • The (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel was prepared. • It was used for the assessment of of α-amylase enzyme activity. • By maltose resulting from the reaction of α-amylase enzyme with starch. • A novel, simple, sensitive and precise spectrofluorometric method was developed.

  4. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  5. Modeling and measurements of solid-liquid and vapor-liquid equilibria of polyols and carbohydrates in aqueous solution

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Cooke, S.A.; Macedo, E.A.

    2002-01-01

    The solubilities of five saccharides in water have been measured at various temperatures. This includes the monosaccharides xylose and galactose, and the disaccharides maltose monohydrate, cellobiose and trehalose dihydrate. A method that uses interaction energies and interaction parameters...

  6. Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in Helicoverpa armigera (Hübner)

    NARCIS (Netherlands)

    Zhang, Y.F.; Loon, van J.J.A.; Wang, C.Z.

    2010-01-01

    In adult female Helicoverpa armigera (Hübner), the fifth tarsomere of the prothoracic legs bears 14 gustatory trichoid chemosensilla. These chemosensilla were characterized through electrophysiological experiments by stimulating with sucrose, glucose, fructose, maltose, myo-inositol and 20 common

  7. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  8. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea

    International Nuclear Information System (INIS)

    Boyce, J.M.; Mitchell, E.B. Jr.; Knapp, J.S.; Buttke, T.M.

    1985-01-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14 C-labeled gas was produced significantly faster by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the 14 C-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits

  9. Gustatory perception and metabolic utilization of sugars by Myrmica rubra ant workers

    NARCIS (Netherlands)

    Boevé, J-L.; Wäckers, F.L.

    2003-01-01

    The suitability of various nectar and honeydew sugars as a food source for the polyphagous ant species M. rubra (L.) was studied. The sugars used included monosaccharides (fructose, glucose, galactose, mannose, rhamnose), disaccharides (sucrose, maltose, trehalose, melibiose, lactose) and

  10. Effect of organic waste compost and microbial activity on the growth ...

    African Journals Online (AJOL)

    Obgonna

    2012-08-02

    Aug 2, 2012 ... mm (FAO, 1984) while the annual temperature ranges from an average ... Faculty of Agriculture, RUST and was treated by allowing it to air- dry for two ..... MR VP Glucose Lactose Sucrose Maltose Probable identity. Large ...

  11. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  12. Sustainable Synthesis of Organics and Nanomaterials Using Microwave Irradiation

    Science.gov (United States)

    MW-assisted synthesis of heterocyclic compounds and nanomaterials under benign conditions is summarized. Shape-controlled aqueous synthesis of noble nanostructures via MW spontaneous reduction of metal salts using -D-glucose, sucrose, and maltose will be presented. A general met...

  13. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in saccharomyces pastorianus lager brewing yeast

    NARCIS (Netherlands)

    Brickwedde, A.; van den Broek, M.A.; Geertman, Jan Maarten A.; Magalhães, Frederico; Kuijpers, Niels G.A.; Gibson, Brian; Pronk, J.T.; Daran, J.G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S.

  14. Role of alpha-glucosidase in the fermentable sugar composition of sorghum malt mashes

    CSIR Research Space (South Africa)

    Taylor, JRN

    1994-11-01

    Full Text Available The cause of the high glucose to maltose ratio in sorghum malt worts was studied. Mashing temperature and pH strongly affected both the amount of glucose and the proportion of glucose relative to total fermentable sugars. The relative proportion...

  15. UTILIZATION OF CORN STARCH AS SUBSTRATE FOR Я

    African Journals Online (AJOL)

    IITA

    substrate, 10.1 X102 CFU/ml soluble starch and nutrient broth medium ... enzymatic activity with corresponding maltose yield of 46.4mg/ml and 68.0mg/ml .... stand for 15min at room temperature, the ... order to inactivated the beta amylase.

  16. Induction of feline immunodeficiency virus specific antibodies in cats with an attenuated Salmonella strain expressing the Gag protein.

    NARCIS (Netherlands)

    E.J. Tijhaar (Edwin); C.H.J. Siebelink (Kees); J.A. Karlas (Jos); M.C. Burger; F.R. Mooi (Frits); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractSalmonella typhimurium aroA strains (SL3261), expressing high levels of the Gag protein of feline immunodeficiency virus (FIV) fused with maltose binding protein (SL3261-MFG), were constructed using an invertible promoter system that allows the stable expression of heterologous antigens

  17. Effects of thermal treatments and germination on physico-chemical ...

    African Journals Online (AJOL)

    Certain physico-chemical properties including viscoelasticity, crystallinity and maltose content of corn depends on the gelatinization of starch under different treatments. Three different treatments were performed; boiling in water, steam heating, and germination. The effects of gelatinization on viscoelastic property of corn ...

  18. Smart phone: a popular device supports amylase activity assay in fisheries research.

    Science.gov (United States)

    Thongprajukaew, Karun; Choodum, Aree; Sa-E, Barunee; Hayee, Ummah

    2014-11-15

    Colourimetric determinations of amylase activity were developed based on a standard dinitrosalicylic acid (DNS) staining method, using maltose as the analyte. Intensities and absorbances of red, green and blue (RGB) were obtained with iPhone imaging and Adobe Photoshop image analysis. Correlation of green and analyte concentrations was highly significant, and the accuracy of the developed method was excellent in analytical performance. The common iPhone has sufficient imaging ability for accurate quantification of maltose concentrations. Detection limits, sensitivity and linearity were comparable to a spectrophotometric method, but provided better inter-day precision. In quantifying amylase specific activity from a commercial source (P>0.02) and fish samples (P>0.05), differences compared with spectrophotometric measurements were not significant. We have demonstrated that iPhone imaging with image analysis in Adobe Photoshop has potential for field and laboratory studies of amylase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Poly(Propylene Imine Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Natalia Wrońska

    2015-10-01

    Full Text Available Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine (PPI dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3. The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

  20. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  1. Highly efficient and enzymatic regioselective undecylenoylation of gastrodin in 2-methyltetrahydrofuran-containing systems.

    Directory of Open Access Journals (Sweden)

    Rongling Yang

    Full Text Available Highly efficient and regioselective acylation of pharmacologically interesting gastrodin with vinyl undecylenic acid has been firstly performed through an enzymatic approach. The highest catalytic activity and regioselectivity towards the acylation of 7'-hydroxyl of gastrodin was obtained with Pseudomonas cepacia lipase. In addition, it was observed the lipase displayed higher activity in the eco-friendly solvent 2-methyltetrahydrofuran-containing systems than in other organic solvents. In the co-solvent mixture of tetrahydrofuran and 2-methyltetrahydrofuran (3/1, v/v, the reaction rate was 60.6 mM/h, substrate conversion exceeded 99%, and 7'-regioselectivity was 93%. It was also interesting that the lipase-catalyzed acylation couldn't be influenced by the benzylic alcohol in gastrodin. However, pseudomonas cepacia lipase displayed different regioselectivity towards gastrodin and arbutin.

  2. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    Science.gov (United States)

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  3. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    Directory of Open Access Journals (Sweden)

    Benjamin Wiseman

    Full Text Available Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12 but not with Lauryldimethylamine-N-oxide (LDAO or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  4. Selected aspects of Lentinus edodes (Berk. Sing. biology in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Brodziak

    2014-08-01

    Full Text Available Glucose, mannose, maltose and starek have been shown to be the optimal carbon sources for Lentinus edodes. The most intensive growth took place at 35°C and pH 3.5. The greatest increase In mass occurred at 25°C.

  5. Dynamic strength of the interaction between lung surfactant protein D (SP-D) and saccharide ligands

    DEFF Research Database (Denmark)

    Thormann, Esben; Dreyer, Jakob K; Simonsen, Adam C

    2007-01-01

    In order to investigate the dynamic strength of the interaction between lung surfactant protein D (SP-D) and different sugars, maltose, mannose, glucose, and galactose, we have used an atomic force microscope to monitor the interaction on a single molecule scale. The experiment is performed...

  6. Mode of action of LciA, the lactococcin A immunity protein

    NARCIS (Netherlands)

    Venema, K.; Haverkort, R.E.; Abee, T.; Haandrikman, A.J.; Leenhouts, K.J.; Leij, L. de; Venema, G.; Kok, J.

    Monoclonal antibodies were raised against a fusion between the Escherichia coli maltose-binding protein and LciA, the immunity protein that protects Lactococcus lactis against the effects of the bacteriocin lactococcin A. One of the antibodies directed against the LciA moiety of the fusion protein

  7. The Role of alpha-Glucosidase in Germinating Barley Grains

    DEFF Research Database (Denmark)

    Stanley, Duncan; Rejzek, Martin; Næsted, Henrik

    2011-01-01

    The importance of alpha-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementa...

  8. Kinetic modelling of reactions in heated disaccharide-casein systems

    NARCIS (Netherlands)

    Brands, C.M.J.; Boekel, van M.A.J.S.

    2003-01-01

    The reactions occurring in disaccharide-casein reaction mixtures during heating at 120 degreesC and pH 6.8 were studied. The existence of two main degradation routes were established: (1) Isomerisation of the aldose sugars lactose and maltose in their ketose isomers lactulose and maltulose,

  9. Triglycerides : Frequently Asked Questions

    Science.gov (United States)

    ... sweet rolls and cinnamon toast. High fructose corn-syrup is 55% fructose, and 45% glucose - not 100% fructose. 9. Why are you singling ... on labels include: • Brown sugar • Corn sweetener • Corn ... fructose, glucose, lactose, maltose, sucrose) • High-fructose corn syrup • Fruit ...

  10. Otariodibacter oris gen. nov., sp. nov., a member of the family Pasteurellaceae isolated from the oral cavity of pinnipeds

    DEFF Research Database (Denmark)

    Hansen, Mie Johanne; Bertelsen, Mads Frost; Christensen, Henrik

    2012-01-01

    from existing genera of the Pasteurellaceae by the following tests: positive reactions for catalase, oxidase, Voges-Proskauer and indole; no X- or V-factor dependency; and acid production from L-arabinose (slow), L-fucose, maltose and trehalose, but not from dulcitol, D-mannitol, D-mannose or sucrose...

  11. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine

    NARCIS (Netherlands)

    Witteveldt, J.; Vlak, J.M.; Hulten, van M.C.W.

    2004-01-01

    Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein

  12. Synthesis of Isomalto-Oligosaccharides by Pichia pastoris Displaying the Aspergillus niger α-Glucosidase.

    Science.gov (United States)

    Zhao, Nannan; Xu, Yanshan; Wang, Kuang; Zheng, Suiping

    2017-11-01

    We explored the ability of an Aspergillus niger α-glucosidase displayed on P. pastoris to act as a whole-cell biocatalyst (Pp-ANGL-GCW61) system to synthesize isomalto-oligosaccharides (IMOs). IMOs are a mixture that includes isomaltose (IG 2 ), panose (P), and isomaltotriose (IG 3 ). In this study, the IMOs were synthesized by a hydrolysis-transglycosylation reaction in an aqueous system of maltose. In a 2 mL reaction system, the IMOs were synthesized with a conversion rate of approximately 49% in 2 h when 30% maltose was utilized under optimal conditions by Pp-ANGL-GCW61. Additionally, the 0.5-L reaction system was conducted in a 2-L stirred reactor with a conversion rate of approximately 44% in 2 h. Moreover, the conversion rate was relatively stable after the whole-cell catalyst was reused three times. In conclusion, Pp-ANGL-GCW61 has a high reaction efficiency and operational stability, which makes it a powerful biocatalyst available for industrial scale synthesis.

  13. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry.

    Science.gov (United States)

    Monošík, Rastislav; Magdolen, Peter; Stredanský, Miroslav; Šturdík, Ernest

    2013-05-01

    The aim of the present study was to analyze sugar levels (namely maltose, maltotriose, glucose and fructose) and alcohols (ethanol and glycerol) during the fermentation process in wort samples by amperometric enzymatic biosensors developed by our research group for industrial application, HPLC and spectrophotometry, and to compare the suitability of the presented methods for determination of individual analytes. We can conclude that for the specific monitoring of maltose or maltotriose only the HPLC method was suitable. On the other hand, biosensors and spectrophotometry reflected a decrease in total sugar concentration better and were able to detect both glucose and fructose in the later stages of fermentation, while HPLC was not. This can be attributed to the low detection limits and good sensitivity of the proposed methods. For the ethanol and glycerol analysis all methods proved to be suitable. However, concerning the cost expenses and time analysis, biosensors represented the best option. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy.

    Directory of Open Access Journals (Sweden)

    Fei Ren

    Full Text Available In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase.

  16. On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products.

    Science.gov (United States)

    Balto, Amy S; Lapis, Trina J; Silver, Rachel K; Ferreira, Andrew J; Beaudry, Christopher M; Lim, Juyun; Penner, Michael H

    2016-04-15

    Considerable research is focused on understanding the functionality of starch hydrolysis products (SHP) consisting of glucose, maltose, maltooligosaccharides (MOS), and maltopolysaccharides (MPS). A confounding factor in this research is the high molecular dispersity of commercially available SHP. The study presented herein characterizes a flexible fractionation approach for lowering the dispersity of such products. This was accomplished by fractionating a corn syrup solids (CSS) preparation based on the differential solubility of its component saccharides in aqueous-ethanol solutions. Products obtained from selected fractionations were characterized with respect to degree of polymerization (DP; liquid chromatography), dextrose equivalency (reducing sugar assays), and prevalence of branching (NMR). Glucose and maltose were preferentially removed from CSS using high (⩾90%) ethanol extractants. Preparations with relatively narrow ranges of MOS, lower DP MPS, and higher DP MPS were obtained through repetitive 70%-ethanol extractions. Linear, as opposed to branched, MOS and MPS were preferentially extracted under all conditions tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An evaluation of D-glucosamine as a gratuitous catabolite repressor of Saccharomyces carlsbergensis.

    Science.gov (United States)

    Furst, A; Michels, C A

    1977-10-24

    Glucose represses mitochondrial biogenesis and the fermentation of maltose, galactose and sucrose in yeast. We have analyzed the effect of D-glucosamine on these functions in order to determine if it can produce a similar repression. It was found that glucosamine represses the respiration rate (QO2) but more rapidly than glucose and to a final level slightly higher than in glucose-treated cells. Derepression of the respiration rate following either glucose or glucosamine repression was similar. A two hour lag was followed by a linear increase in QO2 to the derepressed level. Both glucose and glucosamine repressed the level of cytochrome oxidase to the same level. Glucosamine was also found to repress maltose and galactose fermentation but not sucrose fermentation. The derepression of maltase synthesis was inhibited by glucosamine. The constitutive synthesis of maltase was repressed by the addition of glucosamine. Glucosamine was judged to produce a repressed state similar to glucose repression in many respects.

  18. Calcium lactate effect on the shelf life of osmotically dehydrated guavas.

    Science.gov (United States)

    Pereira, Leila M; Carmello-Guerreiro, Sandra M; Junqueira, Valéria C A; Ferrari, Cristhiane C; Hubinger, Miriam D

    2010-01-01

    The effect of calcium lactate on osmodehydrated guavas in sucrose and maltose solutions was monitored during storage under passive modified atmosphere for 24 d at 5 °C. Sample texture and color characteristics, microbial spoilage, sensory acceptance, structural changes, and gas composition inside the packages were periodically evaluated. Calcium lactate inhibited microbial growth on guavas, with yeast and mold counts in the order of 10(2) CFU/g throughout storage. The calcium salt reduced respiration rate of guava products, showing O(2) and CO(2) concentrations around 18% and 3% inside the packages. A firming effect on fruit texture, with up to 5 and 2 times higher stress and strain at failure values and tissue structure preservation could also be attributed to calcium lactate use. However, fruits treated with calcium lactate, osmodehydrated in maltose and sucrose solutions, showed sensory acceptance scores below the acceptability limit (4.5) after 13 and 17 d of storage, respectively. © 2010 Institute of Food Technologists®

  19. Skin optical clearing potential of disaccharides

    Science.gov (United States)

    Feng, Wei; Shi, Rui; Ma, Ning; Tuchina, Daria K.; Tuchin, Valery V.; Zhu, Dan

    2016-08-01

    Skin optical clearing can significantly enhance the ability of biomedical optical imaging. Some alcohols and sugars have been selected to be optical clearing agents (OCAs). In this work, we paid attention to the optical clearing potential of disaccharides. Sucrose and maltose were chosen as typical disaccharides to compare with fructose, an excellent monosaccharide-OCA, by using molecular dynamics simulation and an ex vivo experiment. The experimental results indicated that the optical clearing efficacy of skin increases linearly with the concentration for each OCA. Both the theoretical predication and experimental results revealed that the two disaccharides exerted a better optical clearing potential than fructose at the same concentration, and sucrose is optimal. Since maltose has an extremely low saturation concentration, the other two OCAs with saturation concentrations were treated topically on rat skin in vivo, and optical coherence tomography imaging was applied to monitor the optical clearing process. The results demonstrated that sucrose could cause a more significant increase in imaging depth and signal intensity than fructose.

  20. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  1. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta

    NARCIS (Netherlands)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-01-01

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49. 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol

  2. Comparative studies on production of cellulases from three strains of aspergillus niger

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.

    2014-01-01

    Three strains of Aspergillus niger were retrieved from culture collection of the Department of Microbiology, University of Karachi, Pakistan and were studied for their ability to produce cellulases. Cultivation at different temperatures and in presence of various carbon sources revealed that all the three strains produced more amounts of endoglucanase, glucosidase and filter-paperase activities at 35 degree C; carboxymethyl cellulose promotes the production of filter paperase and endoglucanase activities whereas salicin induced glucosidase activity. Experiments on growth and enzyme production kinetics showed that generation time and hence volumetric rate of biomass production is influenced by the carbon source used in the medium; simple carbon source, such as glucose favored the growth of all the strains. Cellulases from all the strains showed optimum activity at temperature >50 degree C and under acidic range of pH, while melting temperature was 64-65 degree C. These findings affirm that cellulases from A. niger are potential candidates as alternative to Trichoderma cellulases. (author)

  3. Identification of Staphylococcus species with the API STAPH-IDENT system.

    Science.gov (United States)

    Kloos, W E; Wolfshohl, J F

    1982-01-01

    The API STAPH-IDENT system was compared with conventional methods for the identification of 14 Staphylococcus species. Conventional methods included the Kloos and Schleifer simplified scheme and DNA-DNA hybridization. The API STAPH-IDENT strip utilizes a battery of 10 miniaturized biochemical tests, including alkaline phosphatase, urease, beta-glucosidase, beta-glucuronidase, and beta-galactosidase activity, aerobic acid formation from D-(+)-mannose, D-mannitol, D-(+)-trehalose, and salicin, and utilization of arginine. Reactions of cultures were determined after 5 h of incubation at 35 degrees C. Results indicated a high degree of congruence (greater than 90%) between the expedient API system and conventional methods for most species. The addition of a test for novobiocin susceptibility to the API system increased the accuracy of identification of S. saprophyticus, S. cohnii, and S. hominis, significantly. Several strains of S. hominis, S. haemolyticus, and S. warneri which were difficult to separate with the Kloos and Schleifer simplified scheme were accurately resolved by the API system. PMID:6752190

  4. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    Science.gov (United States)

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  5. Fatty acid production by four strains of Mucor hiemalis grown in plant ...

    African Journals Online (AJOL)

    Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and ...

  6. Aspergillus nidulans α-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B. O.

    2010-01-01

    xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β-linked lactose, lactulose and cellobiose in 28...

  7. Enhancement production of qinlingmycin by a soil- derived ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... 24, mutant Ms-24, qinlingmycin, antibacterial activity. INTRODUCTION β-Lactam ... the presence of fusion inducing agents (Gallmetzer,. 1999). In protoplast ... ml mycelium medium (soluble starch 4 g, maltose 10 g, yeast extract 5 g, distilled .... German) maintained at 25°C with UV detector at 340 nm, using.

  8. Mycelia Biomass Yield of Ganoderma lucidum Mushroom by ...

    African Journals Online (AJOL)

    Biomass yield of G. lucidum in submerged culture was investigated on account of its requirements for sources of carbon, nitrogen and the carbon : nitrogen (C:N) ratio. The study was carried out with the culture medium of potato dextrose broth enriched with the different carbon (glucose, maltose, starch) and nitrogen ...

  9. Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp and some properties of the enzymatic activity Efeito das condições de cultivo sobre a produção de proteases extracelulares pelo termofílico Bacillus sp e algumas propriedades da atividade enzimática

    Directory of Open Access Journals (Sweden)

    Camila Rocha da Silva

    2007-06-01

    Full Text Available Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing 1% maltose as a carbon source and supplemented with whey protein (0.1% and corn steep liquor (0.3% reached a maximum at 14 h, with levels of 42 U/mg protein. The microorganism was capable of utilizing a wide range of carbon sources, but protease activity varied according the carbon source. Starch and maltose were the best carbon sources in the present study for protease secretion, while lactose and sucrose were less effective. Increasing maltose concentration in the medium until 1%, improved the growth of the organism and the enzyme activity. Regarding the amounts of corn steep liquor and whey protein in the medium, the concentrations of 0.2% and 0.1% respectively, were considered the most effective for protease secretion by the organism. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 70ºC. Thermostability profile indicated that the enzyme retained 80% of the original activity after 2 h heat treatment at 60ºC. At 70ºC, 70% of the original activity was retained after 15 min heat treatment. The optimum pH of the enzyme was found to be 8.5. After incubation of crude enzyme solution at room temperature for 2 h at pH 6.0-10.0, a decreased of about 15% of its original activity at pH 8.5 was observed. At pH 10.0, the decrease was 24%. In the presence of 1.0 M and 5.0 M NaCl, 76% and 37% of protease activity was retained after 2 h incubating at 45ºC respectively.A produção de proteases pelo termofílico Bacillus sp cepa SMIA-2 cultivado em culturas líquidas contendo maltose (1% e suplementada com proteínas de soro (0,1% e água de maceração de milho (0,3% alcançou o máximo em 14 h, com níveis de 42 U/mg proteína. O microrganismo foi capaz de utilizar várias fontes de carbono, mas a atividade da protease variou com cada fonte. Amido e maltose foram as melhores fontes para a secreção da

  10. Discovery, characterization, and kinetic analysis of an alditol oxidase from streptomyces coelicolor

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; van Hellemond, Erik W.; Janssen, Dick B.; Fraaije, Marco W.

    2007-01-01

    A gene encoding an alditol oxidase was found in the genome of Streptomyces coelicolor A3(2). This newly identified oxidase, AldO, was expressed at extremely high levels in Escherichia coli when fused to maltose-binding protein. AldO is a soluble monomeric flavoprotein with subunits of 45.1 kDa, each

  11. Chewing bread: impact on alpha-amylase secretion and oral digestion.

    Science.gov (United States)

    Joubert, Marianne; Septier, Chantal; Brignot, Hélène; Salles, Christian; Panouillé, Maud; Feron, Gilles; Tournier, Carole

    2017-02-22

    During chewing, saliva helps in preparing the food bolus by agglomerating the formed particles, and it initiates enzymatic food breakdown. However, limited information is actually available on the adaptation of saliva composition during the oral processing of complex foods, especially for foods that are sensitive to salivary enzymes. We addressed this question in the context of starch-based products and salivary alpha-amylase. The objectives were two-fold: (1) to determine if salivary alpha-amylase secretion can be modulated by the bread type and (2) to evaluate the contribution of the oral phase in bread enzymatic breakdown. Mouthfuls of three different wheat breads (industrial, artisan and whole-meal breads) were chewed by twelve subjects. Saliva samples were collected at rest and at different times corresponding to 33, 66 and 100% of the individual's chewing sequence. Alpha-amylase activity and total protein content were determined for all saliva samples that were collected. Additionally, the salivary maltose concentration was measured as a marker of bread enzymatic digestion. Boluses were collected at the swallowing time to evaluate the saliva uptake. Chewing industrial bread induced higher saliva uptake than the other breads despite a similar chewing duration. The evolution of salivary amylase activity tended to depend on the type of bread and was highly influenced by a large degree of inter- and intra-subject variability. The protein and maltose concentration steadily increased during chewing as a result of bread breakdown. The salivary protein concentration was mainly affected by the release of the water-soluble proteins of the bread. The salivary maltose concentration was found to be significantly lower for the whole-meal bread. When considering the weight of the mouthful, enzymatic breakdown was found to be most efficient for the breads ranking from industrial > artisan > whole-meal.

  12. Deteriorated glucose metabolism with a high-protein, low-carbohydrate diet in db mice, an animal model of type 2 diabetes, might be caused by insufficient insulin secretion.

    Science.gov (United States)

    Arimura, Emi; Pulong, Wijang Pralampita; Marchianti, Ancah Caesarina Novi; Nakakuma, Miwa; Abe, Masaharu; Ushikai, Miharu; Horiuchi, Masahisa

    2017-02-01

    We previously showed the deleterious effects of increased dietary protein on renal manifestations and glucose metabolism in leptin receptor-deficient (db) mice. Here, we further examined its effects on glucose metabolism, including urinary C-peptide. We also orally administered mixtures corresponding to low- or high-protein diets to diabetic mice. In diet experiments, under pair-feeding (equivalent energy and fat) conditions using a metabolic cage, mice were fed diets with different protein content (L diet: 12 % protein, 71 % carbohydrate, 17 % fat; H diet: 24 % protein, 59 % carbohydrate, 17 % fat) for 15 days. In oral administration experiments, the respective mixtures (L mixture: 12 % proline, 71 % maltose or starch, 17 % linoleic acid; H mixture: 24 % proline, 59 % maltose or starch, 17 % linoleic acid) were supplied to mice. Biochemical parameters related to glucose metabolism were measured. The db-H diet mice showed significantly higher water intake, urinary volume, and glucose levels than db-L diet mice but similar levels of excreted urinary C-peptide. In contrast, control-H diet mice showed significantly higher C-peptide excretion than control-L diet mice. Both types of mice fed H diet excreted high levels of urinary albumin. When maltose mixtures were administered, db-L mixture mice showed significantly higher blood glucose after 30 min than db-H mixture mice. However, db mice administered starch-H mixture showed significantly higher blood glucose 120-300 min post-administration than db-L mixture mice, although both groups exhibited similar insulin levels. High-protein, low-carbohydrate diets deteriorated diabetic conditions and were associated with insufficient insulin secretion in db mice. Our findings may have implications for dietary management of diabetic symptoms in human patients.

  13. Utilization of carbon and nitrogen sources by Streptomyces ...

    African Journals Online (AJOL)

    We tested a number of carbon and nitrogen compounds for their effect on the production of an antibacterial antibiotic by Streptomyces kananmyceticus M27. Dextrose was found to be the most suitable carbon source, though maltose, sucrose, and soluble starch gave moderate yields. (NH4)H2PO4 and yeast extract were ...

  14. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Krusell, L; Rasmussen, I; Gausing, K

    1997-01-01

    of knotted1 from maize was isolated from barley seedlings and expressed as a maltose binding protein fusion in E. coli. The purified HvH21-fusion protein selected DNA fragments with 1-3 copies of the sequence TGAC. Gel shift experiments showed that the TGAC element was required for binding and the results...

  15. Activity of secreted amylases in Aspergillus

    Energy Technology Data Exchange (ETDEWEB)

    Bocheva, S.S.; Kurnitskaya, L.N.

    1981-01-01

    When A. oryzae was cultivated in a synthetic liquid medium containing maltose as a sole source of C, the activity of extracellular amylase was 8.43-11.92 units/100 mL. Addition of 1.0% and 2.0% NaCl to the medium increased the amylase activity approximately 5- and 10-fold, respectively.

  16. Characterization of Physical and Mechanical Properties of Miscible Lactose-Sugars Systems.

    Science.gov (United States)

    Li, Runjing; Roos, Yrjö H; Miao, Song

    2017-09-01

    Lactose-sugars systems were produced by spray drying. They were lactose, lactose-glucose (4:1) mixtures, lactose-maltose (4:1) mixtures, lactose-sucrose (4:1) mixtures, lactose-trehalose (4:1) mixtures, and lactose-corn syrup solids (CSS) (4:1) mixtures. The physical characteristics, water sorption behavior, glass transition, and mechanical properties of miscible lactose-sugars systems were investigated. Lactose-glucose mixtures had larger particle size than other lactose-sugars systems after spray drying. The presence of glucose or sucrose in lactose-sugars mixtures decreased the glass transition temperatures of amorphous systems, while the presence of maltose and trehalose had only minor impact on the glass transition temperatures. Moreover, glucose accelerated the crystallization of amorphous system at 0.44 a w , but its presence delayed the loss of sorbed water at higher water activities (≥0.54 a w ). Mechanical property study indicated that glucose and sucrose in amorphous system could result in an increase of molecular mobility, while the presence of CSS could decrease the free volume and maintain the stiffness of the miscible systems. © 2017 Institute of Food Technologists®.

  17. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].

    Science.gov (United States)

    Han, J; Xu, J

    1999-04-01

    A preliminary study on solid-state fermentation (SSF) with Penicillium sp PT95 for carotenoid production was performed. The results showed that the production of carotenoid in sclerotia of PT95 was more efficient in corn meal medium than in either wheat bran medium or cottonseed hull medium. Addition of nitrogen and carbon sources as well as vegetable oil to media was required for increasing the dry weight of sclerotia and carotenoid yield. Among several tested compounds for nitrogen and carbon sources, sodium nitrate and maltose were the best. Through orthogonal experiments, the optimum culture medium was obtained by supplement of NaNO3 3g, maltose 10 g, soybean oil 2.5 g to per liter of salt solution. Under the optimum culture conditions, the sclerotia dry weight increased from 5.36 g to 9.70 g per 100 g dry substrate, the carotenoid yield from 2149 micrograms to 5260 micrograms per 100 g dry substrate, the proportion of beta-carotene in carotenoids from 61.4% to 71.3%.

  18. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  19. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.

    Science.gov (United States)

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.

  20. Change in chemical constituents and free radical-scavenging activity during Pear (Pyrus pyrifolia) cultivar fruit development.

    Science.gov (United States)

    Cho, Jeong-Yong; Lee, Sang-Hyun; Kim, Eun Hee; Yun, Hae Rim; Jeong, Hang Yeon; Lee, Yu Geon; Kim, Wol-Soo; Moon, Jae-Hak

    2015-01-01

    Changes in chemical constituent contents and DPPH radical-scavenging activity in fruits of pear (Pyrus pyrifolia) cultivars during the development were investigated. The fruits of seven cultivars (cv. Niitaka, Chuhwangbae, Wonhwang, Hwangkeumbae, Hwasan, Manpungbae, and Imamuraaki) were collected at 15-day intervals after day 20 of florescence. Vitamins (ascorbic acid and α-tocopherol), arbutin, chlorogenic acid, malaxinic acid, total caffeic acid, total flavonoids, and total phenolics were the highest in immature pear fruit on day 20 after florescence among samples at different growth stages. All of these compounds decreased gradually in the fruit during the development. Immature pear fruit on day 35 or 50 after florescence exhibited higher free radical-scavenging activity than that at other times, although activities were slightly different among cultivars. The chemical constituent contents and free radical-scavenging activity were largely different among immature fruits of the pear cultivars, but small differences were observed when they matured.

  1. Phenolics of Arbutus unedo L. (Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives.

    Science.gov (United States)

    Pawlowska, Agata Maria; De Leo, Marinella; Braca, Alessandra

    2006-12-27

    Arbutus unedo L., the strawberry tree (Ericaceae family), is an evergreen shrub or small tree, typical of the Mediterranean fringe and climate. The aim of the present study was to evaluate the profile of the phenolic constituents of A. unedo fruits. Seven compounds were purified by Sephadex LH-20 column chromatography of the MeOH extract followed by HPLC and were characterized as arbutin, beta-D-glucogalline, gallic acid 4-O-beta-D-glucopyranoside, 3-O-galloylquinic acid, 5-O-galloylquinic acid, 3-O-galloylshikimic acid, and 5-O-galloylshikimic acid, by means of NMR and ESI-MS analyses. Moreover, LC-PDA-MS analysis of the red pigment of A. unedo fruits revealed the presence of three anthocyanins recognized as cyanidin 3-O-beta-D-galactopyranoside, delphinidin 3-O-beta-D-glucopyranoside, and cyanidin 3-O-beta-D-arabinopyranoside. These pigments were also quantified.

  2. Mechanistic Study of Utilization of Water-Insoluble Saccharomyces cerevisiae Glucans by Bifidobacterium breve Strain JCM1192.

    Science.gov (United States)

    Keung, Hoi Yee; Li, Tsz Kai; Sham, Lok To; Cheung, Man Kit; Cheung, Peter Chi Keung; Kwan, Hoi Shan

    2017-04-01

    Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast ( Saccharomyces cerevisiae ) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1 H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter ( malEFG1 ) and pullulanase ( aapA ) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. IMPORTANCE In general, Bifidobacterium strains are genetically intractable

  3. Hemifluorinated maltose-neopentyl glycol (HF-MNG) amphiphiles for membrane protein stabilisation.

    Science.gov (United States)

    Cho, Kyung Ho; Byrne, Bernadette; Chae, Pil Seok

    2013-03-04

    SOAP OPERA: Fluorinated amphiphile F4-MNG confers greater stability on Rhodobacter capsulatus superassembly relative to conventional detergents and nonfluorinated MNGs. Such amphiphiles are attractive as tools for membrane science because of their ease of preparation and structure variation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of a thermostable Bacillus subtilis β-amylase

    African Journals Online (AJOL)

    ... 70 0C respectively, and the thermal stability curve gave a maximum activity of 9.75 U at 70oC for 60 min of incubation. Bacillus subtilis â-amylase is valuable for maltose production, which can be hydrolyzed further by other groups of amylase for the production of high cassava glucose syrup used as sweeteners in the food ...

  5. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.

    1994-01-01

    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  6. Comparison of four techniques for the confirmatory identification of Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Jacobs, P.F.

    1980-01-01

    The authors have compared four assay techniques for the confirmatory identification of Neisseria gonorrhoeae. On of these is a radiometric assay, based on the measurement of liberated radiolabelled CO 2 from metabolized carbohydrates which have been tagged with 14 C. The assay uses glucose, maltose and fructose as its differentiating sugars, plus the ONPG reaction, and can be read in three hours. (Auth.)

  7. The Study of Interactions between Active Compounds of Coffee and Willow (Salix sp. Bark Water Extract

    Directory of Open Access Journals (Sweden)

    Agata Durak

    2014-01-01

    Full Text Available Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia. Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study.

  8. Bearberry identification by a multidisciplinary study on commercial raw materials.

    Science.gov (United States)

    Gallo, Francesca Romana; Multari, Giuseppina; Pagliuca, Giordana; Panusa, Alessia; Palazzino, Giovanna; Giambenedetti, Massimo; Petitto, Valentina; Nicoletti, Marcello

    2013-04-01

    Herbal species different from the official bearberry, Arctostaphylos uva-ursi, are sold through conventional markets and also through non-controlled Internet websites, putting consumer safety at risk owing to the lack of quality control. Recently, Arctostaphylos pungens has become one of the most used species as a raw material for herbal medicines and dietary supplements in the place of official bearberry, a plant used for the treatment of various urinary disorders. A fingerprint identification based on an integrated application of different analytical techniques (HPTLC, NMR, HPLC-DAD and LC-ESI-MS) is here described to distinguish A. uva-ursi from A. pungens. The HPTLC and HPLC-DAD fingerprints resulted the simplest methods to differentiate the two species, whereas LC-ESI-MS was more useful to quantify arbutin, the main component of bearberry, and to evaluate its different content in the two species. This multidisciplinary study showed for the first time a specific phytochemical fingerprint of the new species A. pungens.

  9. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities.

    Science.gov (United States)

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-05-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products.

  10. Cariogenicity features of Streptococcus mutans in presence of rubusoside.

    Science.gov (United States)

    Chu, Jinpu; Zhang, Tieting; He, Kexin

    2016-05-11

    One promising way of reducing caries is by using sucrose substitutes in food. rubusoside is a prototype sweet substance isolated from the leaves of the plant Rubrus suavissimus S. Lee. (Rosaceae), and is rated sweeter than sucrose. The purpose of this study was to investigate the effects of rubusoside on Streptococcus mutans growth, acidogenicity, and adherence to glass in vitro. The effects of rubusoside on the growth and glass surface adhering of Streptococcus mutans were investigated by measuring the optical density of the culture at 540 nm with a spectrophotometer. Rubusoside influence on Streptococcus mutans acidogenicity was determined by measuring the pH of the culture. Sucrose, glucose, maltose, fructose and xylitol were designed to compare with rubusoside. S. mutans growth in the rubusoside-treated group was significantly lower than that in the sucrose, glucose, maltose and fructose groups (p  0.05). Sucrose-treated S. mutans exhibited the highest adherence to glass, and rubusoside-treated S. mutans exhibited the lowest. S. mutans adherence to a glass surface and acidogenicity with sucrose were significantly reduced by rubusoside. Rubusoside may have some potential as a non-cariogenic, non-caloric sweetener.

  11. Effect of Carbon and Nitrogen Sources on Polygalacturonase Production by Trichoderma viride (BITRS-1001 Isolated from Tar Sand in Ondo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ogunmolu, F. E.

    2011-01-01

    Full Text Available The effects of the various carbon and nitrogen substrates on the growth and polygalacturonase activity of Trichoderma viride (BITRS-1001 isolated from the tar sand deposit in Gbelejuloda-Irele Ondo State, Nigeria were investigated in submerged cultivation at 30 °C ± 2 °C. The commercial carbon and nitrogen substrates included sucrose, fructose, starch, maltose, lactose and peptone, sodium nitrate, urea and casein respectively. All the carbon substrates used supported the growth of T. viride (0.566 to 0.156 g/50 mL of culture medium with starch supporting the highest biomass yield and sucrose the least biomass yield. Maximum polygalacturonase activity of 3033 U/mL was recorded in maltose medium. Maximum biomass yield on the nitrogen sources was observed in the organic nitrogen namely peptone and casein with values not significantly different from each other at p ≤ 0.05. In the determination of the crude enzyme activity on the nitrogen sources, maximum polygalacturonase activity of 12,400 U/mL was recorded in peptone medium. Hence, a careful manipulation of these nutrient substrates could help to optimise the production of this enzyme on a large scale.

  12. Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India.

    Science.gov (United States)

    Kulkarni, S O; Kanekar, P P; Nilegaonkar, S S; Sarnaik, S S; Jog, J P

    2010-12-01

    Several microorganisms produce polyhydroxyalkanoates (PHA). They are accumulated intracellularly as energy storage compounds. The PHAs are of interest because of their potential in biomedical applications. Halophilic bacteria and archaea are known to produce polyhydroxybutyrate (PHB). This paper describes production of a biodegradable copolymer, PHB-co-PHV by a moderately haloalkalitolerant Halomonas campisalis, isolated from Lonar Lake, India. The production of PHA was in the range of 45-81% on dry cell weight basis when the organism was grown in a production medium containing 1% (w/v) maltose and 0.1% (w/v) yeast extract, at pH ranging from 6 to 9 with an inoculum density of 10(5)-10(7) cells/ml of medium, for incubation period of 15-30 h and at 37 degrees C. The polymer produced by the organism is a hydroxyester with molecular weight of 1.3014 x 10(6). Its melting temperature was 171 degrees C. The (1)H NMR analysis revealed that the polymer was a copolymer of PHB-co-PHV. This could be achieved by providing simple carbon source viz. maltose. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Characterization Of A Novel Hydrolytic Enzyme Producing Thermophilic Bacterium Isolated From The Hot Spring Of Azad Kashmir-Pakistan

    Directory of Open Access Journals (Sweden)

    Sana Zahoor

    Full Text Available ABSTRACT A thermophilic bacterium (TP-2 was isolated from the Tatta Pani hot spring in Azad Kashmir and was characterized using phenotypic and genotypic characters. The strain developed cream colored, round, smooth, flat and slimy colonies while the cells were Gram positive rods that ranged in size from about 2.1-3.6 μm to 0.2-0.3 μm in width. Sequence analysis of its 16S rRNA gene showed that isolate TP-2 had 89% homology with Geobacillus debilis. It grew within pH range of 5.5 to 8.5 with optimum growth at pH 7.0. The isolate showed optimum growth at 65ºC and gave positive results for gelatin hydrolysis (GEL, ortho nitrophenyl-β-D-galactopyranosidase (ONPG, and nitrate production and produced acid from sucrose, glucose and maltose. It utilized glucose, fructose, maltose, lactose, sucrose, xylan, starch, filter paper and carboxymethylcellulose as sole carbon source. Isolate TP-2 produced significant amount of industrially important enzymes i.e. extracellular α-amylase, CMCase, FPase, Xylanase, Protease and Lipase and intracellular CMCase and FPase.

  14. Near-infrared analysis of hydrogen-bonding in glass- and rubber-state amorphous saccharide solids.

    Science.gov (United States)

    Izutsu, Ken-ichi; Hiyama, Yukio; Yomota, Chikako; Kawanishi, Toru

    2009-01-01

    Near-infrared (NIR) spectroscopic analysis of noncrystalline polyols and saccharides (e.g., glycerol, sorbitol, maltitol, glucose, sucrose, maltose) was performed at different temperatures (30-80 degrees C) to elucidate the effect of glass transition on molecular interaction. Transmission NIR spectra (4,000-12,000 cm(-1)) of the liquids and cooled-melt amorphous solids showed broad absorption bands that indicate random configuration of molecules. Heating of the samples decreased an intermolecular hydrogen-bonding OH vibration band intensity (6,200-6,500 cm(-1)) with a concomitant increase in a free and intramolecular hydrogen-bonding OH group band (6,600-7,100 cm(-1)). Large reduction of the intermolecular hydrogen-bonding band intensity at temperatures above the glass transition (T(g)) of the individual solids should explain the higher molecular mobility and lower viscosity in the rubber state. Mixing of the polyols with a high T(g) saccharide (maltose) or an inorganic salt (sodium tetraborate) shifted both the glass transition and the inflection point of the hydrogen-bonding band intensity to higher temperatures. The implications of these results for pharmaceutical formulation design and process monitoring (PAT) are discussed.

  15. Evaluation of anti-hyperglycemic effect of Actinidia kolomikta (Maxim. etRur.) Maxim. root extract.

    Science.gov (United States)

    Hu, Xuansheng; Cheng, Delin; Wang, Linbo; Li, Shuhong; Wang, Yuepeng; Li, Kejuan; Yang, Yingnan; Zhang, Zhenya

    2015-05-01

    This study aimed to evaluate the anti-hyperglycemic effect of ethanol extract from Actinidia kolomikta (Maxim. etRur.) Maxim. root (AKE).An in vitro evaluation was performed by using rat intestinal α-glucosidase (maltase and sucrase), the key enzymes linked with type 2 diabetes. And an in vivo evaluation was also performed by loading maltose, sucrose, glucose to normal rats. As a result, AKE showed concentration-dependent inhibition effects on rat intestinal maltase and rat intestinal sucrase with IC(50) values of 1.83 and 1.03mg/mL, respectively. In normal rats, after loaded with maltose, sucrose and glucose, administration of AKE significantly reduced postprandial hyperglycemia, which is similar to acarbose used as an anti-diabetic drug. High contents of total phenolics (80.49 ± 0.05mg GAE/g extract) and total flavonoids (430.69 ± 0.91mg RE/g extract) were detected in AKE. In conclusion, AKE possessed anti-hyperglycemic effects and the possible mechanisms were associated with its inhibition on α-glucosidase and the improvement on insulin release and/or insulin sensitivity as well. The anti-hyperglycemic activity possessed by AKE maybe attributable to its high contents of phenolic and flavonoid compounds.

  16. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    Science.gov (United States)

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Stable carbon isotope discrimination in the smut fungus Ustilago violacea

    International Nuclear Information System (INIS)

    Will, O.H. III; Tieszen, L.L.; Kellen, M.; Gerlach, T.

    1986-01-01

    Haploid strains 15.10, I.C429, and I.C2y and diploid strain JK2 of Ustilago Piolacea were grown on one or more of the following carbon sources: glucose, sucrose, maltose, inulin, starch, inositol, glycerol, casein, and yeast extract. The media, both before and after fungal growth, and the fungal cells were analyzed for 13 C/ 12 C content (δ 13 values) using an isotope ratio mass spectrometer after combustion to CO 2 . In all cases, the used and unused media had identical δ 13 C values. Strain 15.10 had significantly less 13 C than the media when grown on glucose, sucrose, maltose, and inositol; significantly more 13 C when grown on inulin, starch, and glycerol; and no significant difference in δ 13 C values when grown on casein and yeast extract media. Other haploid strains responded similarly to 15.10. Diploid strain JK2 was also depleted in 13 C when grown on glucose and enriched in 13 C when grown on glycerol; however, JK2 was slightly depleted in 13 C when grown on casein, whereas all the tested haploid strains were enriched in 13 C

  18. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  19. Development and testing of a fluorescence biosensor for glucose sensing

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  20. Stochasticity in the Expression of LamB and its Affect on λ phage Infection

    Science.gov (United States)

    Chapman, Emily; Wu, Xiao-Lun

    2006-03-01

    λ phage binds to E. Coli's lamB protein and injects its DNA into the cell. The phage quickly replicates and after a latent period the bacteria bursts, emitting mature phages. We developed a mathematical model based on the known physical events that occur when a λ phage infects an E.Coli cell. The results of these models predict that the bacteria and phage populations become extinct unless the parameters of the model are very finely tuned, which is untrue in the nature. The lamB protein is part of the maltose regulon and can be repressed to minimal levels when grown in the absence of inducer. Therefore, a cell that is not expressing any lamB protein at that moment is resistant against phage infection. We studied the dynamic relationship between λ phage and E. Coli when the concentration of phage greatly outnumbers the concentration of bacteria. We study how the stochasticity of the expression of lamB affects the percentage of cells that the λ phage infects. We show that even in the case when the maltose regulon is fully induced a percentage of cells continue to persist against phage infection.

  1. Navy Nutrition and Weight Control Guide

    Science.gov (United States)

    1989-04-10

    Sugars Used in Foods: sugar sucrose lactose mannitol glucose honey corn syrup dextrose sorbitol fructose maltose maple syrup molasses high- fructose corn...such as glucose , fructose , and sucrose. Another sugar, lactose, is found in milk and milk products. Legumes and cereals contain small amounts of...weeks. Weighing and measuring more frequently will only reflect water weight gains and losses, not true progress. Perform measurements mid-week if

  2. Time to Stop Holding the Elevator: A New Piece of the Transport Protein Mechanism Puzzle.

    Science.gov (United States)

    Vastermark, Ake; Saier, Milton H

    2016-06-07

    In this issue of Structure, McCoy et al. (2016) describe the 2.55-Å X-ray structure of the outward-facing occluded conformation of the Bacillus cereus maltose transporter MalT. This structure represents the penultimate piece needed to complete the picture of the transport cycle of the glucose superfamily of membrane-spanning EIIC components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Estudos de alguns aspectos da alimentação em Ascia monuste Godart (Lepidoptera, Pieridae Estudies on some aspects of the alimentation of Ascia monuste Godart (Lepidoptera, Pieridae

    Directory of Open Access Journals (Sweden)

    Maria Cecília Felipe

    1993-01-01

    Full Text Available Six kinds of crucifer (broccoli, cabbage, califlower, kale, mustard and rugula were tested, as food, for larvae od Ascia monuste. The best results were obtained eith califlower, broccoli, rugula and kale. Four sugars (glucose, fructose, sucrose and maltose were tested to know their influence on the number of oviposition in female of Ascia monuste. The best results were obtained with fructose, glucose and sucrose.

  4. Screening of physiologically active strain of the filamentous fungi - a producer of a complex of lytic enzymes

    International Nuclear Information System (INIS)

    Kurbatova, E.I.; Sokolova, E.N.; Borshcheva, Yu.A.; Alsivar, S.K.A.; Rimareva, L.V.

    2014-01-01

    Filamentous Aspergillus fungi were studied to obtain a producer of a complex of the enzymes specific to biodegradation of polymers of cellular walls of vegetable and microbic biomass. Strains were selected by the increased biosynthetic ability in relation to the beta-glucanase (BG), chitinase (CT), mannanase (MN), proteases and pectinases. It was estimated during deep cultivation in the environment containing wheat bran. The fullest complex of hydrolytic enzymes (glucanase, MN, CT, protease and a polygalacturonase (PG)), and also the level of enzymatic activities was in the culture liquid obtained as a result of biosynthesis of Aspergillus foetidus 37-4 (S 37-4) strain. For its cultivation the medium containing salts like potassium dihydrogen phosphate, magnesium sulfate and ammonium sulfate in optimum concentration, and also dioses (maltose, sucrose) and polysaccharides (starch, chitin, pectin) was chosen. The greatest zones of hydrolysis are traced during planting S 37-4 in agar medium containing maltose and low methoxyl citrus pectin. As the synthesis inductor of hemicellulase, MN and CT malt sprouts were used, and of PG - not clarified beet bin fibers. Cultivation was carried out on a thermostatically controlled shaker at 30 deg. C for 120 h. Increase of activity of synthesizable enzymes when using low methoxyl citrus pectin as a media part equaled for BG 5-19%, for PG - 25%, when using a maltose for CT - 100%, MN - 29%. To increase biosynthetic ability of S 37-4 as a mutagen 3-staged ultra-violet radiation (wavelength is 265 nanometers) was applied. The obtained 379-K-5 strain surpassed in activity level a parental strain BG - by 84.8%, CT - by 45.0%, MN - by 62.9%, PG - by 89.0%. The following (4th) stage of radiation led to death of the strain. In comparison with a parental S 37-4 the colony of a mutant strain possessed the bigger size and plentiful formation of an air mycelium, ability to sporogenesis was less expressed

  5. Effect of growth media on cell envelope composition and nitrile hydratase stability in Rhodococcus rhodochrous strain DAP 96253.

    Science.gov (United States)

    Tucker, Trudy-Ann; Crow, Sidney A; Pierce, George E

    2012-11-01

    Rhodococcus is an important industrial microorganism that possesses diverse metabolic capabilities; it also has a cell envelope, composed of an outer layer of mycolic acids and glycolipids. Selected Rhodococcus species when induced are capable of transforming nitriles to the corresponding amide by the enzyme nitrile hydratase (NHase), and subsequently to the corresponding acid via an amidase. This nitrile biochemistry has generated interest in using the rhodococci as biocatalysts. It was hypothesized that altering sugars in the growth medium might impact cell envelope components and have effects on NHase. When the primary carbon source in growth media was changed from glucose to fructose, maltose, or maltodextrin, the NHase activity increased. Cells grown in the presence of maltose and maltodextrin showed the highest activities against propionitrile, 197 and 202 units/mg cdw, respectively. Stability of NHase was also affected as cells grown in the presence of maltose and maltodextrin retained more NHase activity at 55 °C (45 and 23 %, respectively) than cells grown in the presence of glucose or fructose (19 and 10 %, respectively). Supplementation of trehalose in the growth media resulted in increased NHase stability at 55 °C, as cells grown in the presence of glucose retained 40 % NHase activity as opposed to 19 % without the presence of trehalose. Changes in cell envelope components, such mycolic acids and glycolipids, were evaluated by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), respectively. Changing sugars and the addition of inducing components for NHase, such as cobalt and urea in growth media, resulted in changes in mycolic acid profiles. Mycolic acid content increased 5 times when cobalt and urea were added to media with glucose. Glycolipids levels were also affected by the changes in sugars and addition of inducing components. This research demonstrates that carbohydrate selection impacts NHase activity and

  6. Effects of in ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings.

    Science.gov (United States)

    Zhai, W; Gerard, P D; Pulikanti, R; Peebles, E D

    2011-10-01

    The effects of the in ovo injection of different carbohydrate solutions on the internal egg temperature (IT), hatchability, and time of hatch of embryonated Ross × Ross 708 broiler hatching eggs were determined. In addition, the BW, liver weight, yolk sac weight (YSW), and yolk-free BW (YFBW) of the embryos on d 19.5 of incubation and of the chicks on day of hatch were determined. Eggs containing live embryos were injected in the amnion on d 18.5 of incubation using an automated multiple-egg injector. Solution injections delivered 1.2 mL of physiological saline (0.85%) alone or with a supplemental carbohydrate. The following supplemental carbohydrates were separately dissolved in saline at a concentration of 0.3 g/mL: glucose, fructose, sucrose, maltose, and dextrin. Temperature transponders were implanted in the air cells of embryonated and nonembryonated eggs after in ovo injection for the detection of IT at 6, 14, and 22 h after injection. The IT of embryonated eggs was significantly greater than that of nonembryonated eggs at all 3 times after the treatment period. Eggs that were injected with saline with or without supplemental carbohydrates experienced a reduction in IT when compared with control eggs whose shells were perforated without solution delivery, and the decrease in IT was associated with a delay in hatch time. Liver weight was negatively related to YSW and positively related to YFBW, and YSW was negatively related to YFBW. Although the saline and carbohydrate solution injections increased chick BW compared with noninjected controls, chick YFBW was decreased in the maltose- and sucrose-injected groups. In conclusion, the injection of 1.2 mL of saline with or without supplemental carbohydrates lowered embryonic metabolism, as reflected by a lower IT and a delay in time of hatch. However, effects of the different carbohydrate solutions on yolk absorption and tissue deposition in yolk-free embryos varied. These results suggest that lower volumes for

  7. Wood decay by brown-rot fungi : changes in pore structure and cell wall volume

    Science.gov (United States)

    Douglas S. Flournoy; T. Kent Kirk; T.L. Highley

    1991-01-01

    Sweetgum (Liquidambar styraciflua L.) wood blocks were decayed by Postia (= Poria) placenta in soilblock cultures. Decay was terminated at various weight losses, and the pore volumes available to four low molecular weight molecules, (water, 4 Å,; glucose, 8 Å,; maltose, 10 Å; and raffinose, 128,) and three dextrans (Mr 6,000, 38 Å; 11,200, 51 Å; nd 17,500, 61 Å) were...

  8. Labelling by deuteration and nitroxide radicals of mono-, oligo- and polysaccharides (cellulose and amylose)

    Energy Technology Data Exchange (ETDEWEB)

    Odier, L

    1975-01-01

    The application of NMR and deuteration labelling to the investigation of polysaccharides has led to considerable progress in recent years in the knowledge of these compounds. Although far more recent, the introduction of spin labelling techniques in the investigation of polymers, has given rise to interesting EPR studies of synthetic and natural macromolecules, but nothing appears to have been accomplished in the area of spin labelling of polysaccharides. This work was aimed at applying these two techniques to the study of glucose derivatives and of some of its oligomers (low molecular weight polymers): cellobiose, maltose and cyclodextrins; and its polymers: cellulose and amylose. Irrespective of the technique employed, the complexity of the polymers and problems connected with handling them always require the same procedure: an initial study of a model compound generally prepared from the monomer or an oligomer (dimer), followed by the oligomers, and finally the polymer. Part 1 is devoted to the deuteration labelling of mono- and oligosaccharides. Part 2 concerns spin labelling of cellulose acetate. In part 3, an attempt is made to apply the spin labelling technique to the determination of conformations of two disaccharides of different glycosidic configurations: cellobiose and maltose. Part 4 is devoted to spin and deuteration labelling of ..cap alpha.. and ..beta.. cyclodextrins.

  9. Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse.

    Science.gov (United States)

    Del Moral, S; Barradas-Dermitz, D M; Aguilar-Uscanga, M G

    2018-01-01

    Aspergillus niger ITV-01 presents amylolytic activity, identified as α-glucosidase, an enzyme that only produces α-d-glucose from soluble starch and that presents transglucosylase activity on α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose) (200 gL -1 ). Biochemical characterization was performed on A. niger ITV-01 α-glucosidase; its optimum parameters were pH 4.3, temperature 80 °C but stable at 40 °C, with an energy of activation (Ea) 176.25 kJ mol -1 . Using soluble starch as the substrate, K m and V max were 5 mg mL -1 and 1000 U mg -1 , respectively. As α-glucosidase is not a metalloenzyme, calcium and EDTA did not have any effect on its activity. The molecular weight was estimated by SDS-PAGE to be about 75 kDa. It was also active in methanol and ethanol. When ammonium sulfate (AS) and yeast extract (YE) nitrogen sources and calcium effect were evaluated, the greatest activity occurred using YE and calcium, as opposed to AS media where no activity was detected. The results obtained showed that this enzyme has industrial application potential in the processes to produce either ethanol or malto-oligosaccharides from α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose).

  10. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Science.gov (United States)

    Ignatova-Ivanova, Tsveteslava; Ivanov, Radoslav

    2016-03-01

    Bacterial EPSs (exopolysaccharides) are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy) JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  11. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    Science.gov (United States)

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  13. Effects of in ovo feeding of carbohydrates and arginine on hatchability, body weight, energy metabolism and perinatal growth in duck embryos and neonates.

    Science.gov (United States)

    Tangara, M; Chen, W; Xu, J; Huang, F R; Peng, J

    2010-10-01

    1. The objective of this study was to test the hypothesis that in ovo feeding of carbohydrates and arginine into the duck amnion may improve the glycogen store and perinatal growth. At 23 d of incubation, fertile eggs were injected with 1·2 ml of sodium chloride (NaCl), sucrose + maltose (CHO), arginine (Arg) or sucrose + maltose + arginine (CHO + Arg), with controls not injected. Body weight, liver and muscle glycogen levels, and hepatic glucose-6-phosphatase activity were determined at 25 d of incubation, at hatch, and at 3 and 7 d posthatch. 2. At hatch and 7 d of age, the body weights were greater in the in ovo-feeding treatments than the controls. Arg and CHO + Arg significantly enhanced liver glycogen level at hatch compared with controls. CHO and CHO + Arg significantly increased muscle glycogen level at 25 d of incubation over controls. CHO and Arg decreased glucose-6-phosphatase at 25 d of incubation, whereas NaCl and CHO + Arg increased glucose-6-phosphatase at hatch relative to controls. 3. In ovo feeding of carbohydrates and arginine at 23 d of incubation may improve glycogen reserves, which may, in turn, provide the energy needed for perinatal growth.

  14. Isolamento e caracterização de Pseudomonas maltophilia (Hugh & Ryschenkow, 1960 de material clínico humano, na cidade do Rio de Janeiro Isolating and characterization of Pseudomonas maltophilia (Hugh & Ryschenkow, 1960 from human clinical specimens, in Rio de Janeiro, Guanabara, Brazil

    Directory of Open Access Journals (Sweden)

    Altair A. Zebral

    1973-01-01

    Full Text Available Os autores estudaram as propriedades morfo-bioquímicas e a sensibilidade às substâncias antimicrobianas, de uma nova e rara espécie de Pseudomonas, a Pseudomonas maltophilia (Hugh & Ryschenkow, 1960, isolada de secração vaginal. Como características marcantes, dentre mais de 65 testadas, as amostras estudadas mostraram ser: oxidase negativa e lisina descarboxilase positiva; produziram desoxiribonuclease e um pigmento escuro que se difunde no meio; atacaram oxidativamente a maltose tanto em meio complexo nitrogenado como em meio de Hugh & Leifson e hidrolisaram a esculina. As amostras foram sensíveis ao cloranfenicol, gentamicina, kanamicina, colistin e gabromicina.The authors have studied the morpho-biochemical properties and the sensibility at antimicrobial drugs, of specie of Pseudomonas, the Pseudomonas maltophilia, (Hugh & Ryschenkow, 1960, isolated from vaginal secretion. Since important characteristics among more of sixty-five tested, the strains studied show to be: oxidase negative and lysine decarboxylase positive; to present deoxyrononuclease activity and produced a diffusible brown pigment: acid was produced by oxidation of maltose as much in nitrogenous complex medium as in Hugh & Leifson medium and they hydrolise the esculin. the strains was sensible, for the colistin chloranfenicol, gabromycin, gentamycin and nalidix acid.

  15. Avaliação da farinha de mandioca e do fubá de milho como substratos para a obtenção de bebida fermento-destilada

    Directory of Open Access Journals (Sweden)

    I. M. Demiate

    1997-08-01

    Full Text Available A farinha de mandioca e o fubá de milho foram avaliados como matérias-primas alternativas na obtenção de uma bebida fermento-destilada, visando gerar informações úteis à aplicação industrial. Os substratos foram caracterizados e comparou-se a eficiência da mosturação, o perfil de açúcares no mosto, bem como as curvas de fermentação dos substratos. Os resultados demonstraram que o conteúdo de amido foi de 78,1 % para o fubá de milho e 92,7 % para a farinha de mandioca. Quanto ao rendimento da mosturação foi de 57, 4 % para o milho e 66,4 % para a mandioca, sendo que o perfil de açúcares no mosto demonstrou que 95 % dos açúcares presentes no mosto de mandioca foi glicose e o restante pequenas porcentagens de dextrinas e maltose. Já o perfil do mosto de milho apresentou cerca de 85 % de glicose , 10 % de dextrinas e cerca de 4 % de maltose. Para o processo fermentativo, observou -se que o consumo de açúcares no mosto de mandioca foi mais rápido que no mosto de milho.

  16. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.

    Science.gov (United States)

    Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N

    2018-02-01

    Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis

    Science.gov (United States)

    Bakalov, Veli; Amathieu, Roland; Triba, Mohamed N.; Clément, Marie-Jeanne; Reyes Uribe, Laura; Le Moyec, Laurence; Kaynar, Ata Murat

    2016-01-01

    Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate. PMID:28009836

  18. Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    OpenAIRE

    Araújo, Cecília Alves; Pacheco, A.; Almeida, M. J.; Martins, I. Spencer; Leão, Cecília; Sousa, M. J.

    2007-01-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields...

  19. Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters

    OpenAIRE

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities fo...

  20. Effect of nutrient components for phytase production by Aspergillus niger

    OpenAIRE

    KALIYEVA AIGUL; SULEIMENOVA ZHANARA; AKHMETSADYKOV NURLAN; SADUYEVA ZHAZIRA

    2015-01-01

    In present study the effect of carbon sources, glucose, sucrose, lactose, maltose, fructose, xylose and nitrogen sources such as ammonium sulfate, ammonium phosphate, ammonium nitrate, potassium nitrate, yeast extract, peptone on the phytase production has been studied. Maximal phytase activity of Aspergillus niger was detected in media with 1.0% sucrose as a carbon source. All other monosaccharides and disaccharides used had less effect on phytase production. Among the inorganic and organic ...

  1. Does SO{sub 2} fumigation change the chemical defense of woody plants: the effect of short-term SO{sub 2} fumigation on the metabolism of deciduous Salix Myrsinifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Julkunen-Tiitto, R.; Lavola, A.; Kainulainen, P. [University of Joensuu, Joensuu (Finland). Dept. of Biology

    1995-08-01

    The effect of a moderate increase in atmospheric sulfur dioxide on the production of phenolic secondary chemicals, soluble sugars and phytomass distribution within plants was investigated in six willow ({ital Salix myrsinifolia Salisb}) clones. The plants were cultivated for 3 weeks under 0.11 ppm of SO{sub 2} (300{mu}g m{sup -3}). The production of salicin and chlorogenic acid was significantly reduced under increased SO{sub 2}. However, salicortin, 2{prime}-O-acetylsalicortin, (+)-catechin and two unknown phenolics did not show any clear trend. The increase in SO{sub 2} did not affect the glucose, fructose and sucrose contents. The final weight of the SO{sub 2}-treatment plants was significantly greater than that of the control plants: the leaf, stem and root phytomass was from 14 to 48% greater under increased SO{sub 2}. All the clones showed the same trend, although there was a significant variation in phytomass production. Results indicate, although not consistently, that even a short-term exposure of enhanced atmospheric SO{sub 2} may change moderately the accumulation pattern of willow phenolics. 20 refs., 2 tabs.

  2. Inhibitory effect of corn silk on skin pigmentation.

    Science.gov (United States)

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  3. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Sang Yoon Choi

    2014-03-01

    Full Text Available In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  4. Innovations in natural ingredients and their use in skin care.

    Science.gov (United States)

    Fowler, Joseph F; Woolery-Lloyd, Heather; Waldorf, Heidi; Saini, Ritu

    2010-06-01

    Natural ingredients have been used traditionally for millennia and their application in topical creams, lotions and preparations within the traditional medicines and healing traditions of many cultures has been observed. Over the last 20 years, clinical and laboratory studies have identified the benefits of an array of natural ingredients for skin care. Consequently, a number of these ingredients and compounds are today being developed, used or considered not only for anti-aging effects, but also for use in dermatologic disorders. Certain ingredients, such as colloidal oatmeal and aloe vera, have been identified as beneficial in the treatment of psoriasis and atopic dermatitis, respectively, due to their anti-inflammatory properties. For combating acne and rosacea, green tea, niacinamide and feverfew are considered efficacious. As to hyperpigmentation and antioxidative capabilities, licorice, green tea, arbutin, soy, acai berry, turmeric and pomegranate are among those plants and compounds found to be most beneficial. Additional research is needed to determine to confirm and elucidate the benefits of these ingredients in the prevention and management of skin disease.

  5. Studium lisovatelnosti přímo lisovatelné maltosy

    OpenAIRE

    Balhárková, Eva

    2007-01-01

    In the work is studied mechanical strength and disintegration time of tablets prepared by direct compression of the spray dried maltose product - AdvantoseTM 100 and its mixture with Vivapur 102 in the ratio of 1:1 according to the compression force (6, 8, 10 kN), addition of lubricants (magnesium stearate, Pruv) and addition of model active substances (acetylsalicylic acid and ascorbic acid). Used concentration of lubricants was 1 %, of model active substance 50 %. Tablet strength and disint...

  6. A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    Vapor pressures above aqueous solutions of glucose and maltose at both 298.06 K and 317.99 K and vapor pressures above aqueous solutions of cellobiose, maltotriose, maltotetraose, and maltopentaose at 317.99 K have been measured. The excess enthalpies have been recorded for all of the above-menti...... in aqueous solution. This so-called transference principle is found to be of interest in furthering the discussion concerning the applicability of lattice-based models for solution theory....

  7. THE DYNAMICS OF TOTAL AMYLASE\\'S ACTIVITY IN PANICUM MILIACEUM AND SETARIA GLAUCA DURING THE GERMINATION PERIOD

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2006-08-01

    Full Text Available : It was studied the dynamics of total amylase\\'s activity in millet (Panicum miliaceum and bristle grass (Setaria glauca during the germination period. The enzymatic activity was determined by the Noelting - Brenfeld method, the results obtained being expressed in M maltose / g. In both millet and bristle grass, it was evidenced that both parameters taken into study (the species and the germination time do influence the enzymatic activity, although to a different extent.

  8. Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles

    OpenAIRE

    Holden, Megan S.; Nick, Kevin E.; Hall, Mia; Milligan, Jamie R.; Chen, Qiao; Perry, Christopher C.

    2014-01-01

    In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO100PO65EO100 (Pluronic F127) prior to HAuCl4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with ...

  9. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  10. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  11. Stabilization of liophilized liposomal products

    Directory of Open Access Journals (Sweden)

    2001-08-01

    Full Text Available Liposomes as a drug carrier have numerous dominancy. Liophilization is the most propr form of these products for long-term maintenance, but this procedure is affected by unstabilizing agent that results in destruction of membrane, release of content and change in size and microbial contamination; hence for prevention of the adverse effects, the protective role of sugars such as: Maltose, Fructose, Glucose, Galactose, Saccharose and Lactose were studied. For this purpose, after preparation of liposomal suspention, categorized in for duplicate groups and concentrations of 25, 50, 100 percent of these sugars were added to those. On the basis of color and consistency of products, the best method of freezing is as application of absolute alcohol and then chilling in-70 oc for 16 h. In survey of protective substances concentrations 0.7, 1.4, 2.8, and 5.6 percent of the mentioned sugars were used for calculating of leakage percent (Upon on the ratio of optical density of treated samples to untreated. In this study, released maltose had highest effect. Level of fusion and aggregation had any significant difference between pre and post lyophilized samples in centrifugation with 10000 rpm. Microbial state of recent samples were studied by culturing in SCD and SCDA media that indicated microbial growth in both samples.     

  12. Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection.

    Science.gov (United States)

    Hop, Huynh Tan; Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-01-01

    In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

  13. Synthèses enzymatiques de néoglucoconjugués catalysées par l'alpha-glucosidase purifiée de la blatte Periplaneta americana (Linnaeus

    Directory of Open Access Journals (Sweden)

    Kamenan A.

    2005-01-01

    Full Text Available Enzymatic synthesis of neoglucoconjugates by purified α-glucosidase from cockroach Periplaneta americana (Linnaeus. Cockroach Periplaneta americana (Linnaeus contains in his digestive tract an acid (pH 5,0 and mesophile (50°C α-glucosidase. This enzyme, purified to homogeneity, hydrolyses highly maltose, sucrose and p-nitrophenyl-α-Dglucopyranoside. The ability of α-glucosidase from cockroach purified to homogeneity to catalyse transglucosylation reactions was tested using maltose and saccharose as glucosyl donors and 2-phenylethanol and phenol as acceptors. The experimental conditions were optimized in relation to the time course of the reaction, pH and concentrations of glucosyl donors and acceptors. The yields in transglucosylation reactions at 37 °C were very high and could attain 67% and 48% with 2-phenylethanol and phenol respectively as glucosyl acceptors. This α-glucosidase hydrolyzed the products formed. It seems that the products formed were the phenylethyl-α-D-glucoside and phenyl-α-D-glucoside. These results suggest that α- glucosidase from cockroach is an exoglucosidase which catalyse the splitting of the α-glucosyl residue from the non reducing terminal of the substrate to liberate α-glucose. This comportment indicates that this enzyme operated by a mechanism involving the retention of the anomeric configuration. On the basis of this work, α-glucosidase from P. americana appears to be a valuable tool for the preparation of α-neoglucoconjugates.

  14. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Ignatova-Ivanova Tsveteslava

    2016-03-01

    Full Text Available Bacterial EPSs (exopolysaccharides are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  15. An investigation into the fructose block associated with the brewing process

    International Nuclear Information System (INIS)

    Cason, D.T.

    1986-01-01

    The uptake of fructose in Saccharomyces cerevisiae 2036 is via a biphasic transport system, in which the first component is a high affinity, low capacity, dry weight, proton symport which does not transport glucose and is independant of the maltose proton symport. The presence of glucose has no effect on the uptake of fructose via the symport. The stoichiometry of uptake is one proton per molecule of fructose. Maltose and ethanol non-competitively inhibit fructose uptake via the proton symport. The second component is a lower affinity, higher capacity facilitated diffusion system which transports both glucose and fructose. Glucose uptake is monophasic and has the highest affinity, Km = 1.3 mM, of all sugars for this transport system. In the fermentations containing glucose and fructose together, glucose competitively inhibits fructose uptake causing preferential utilization of glucose over fructose. The methods of experimentation then include the use of tritium-labelled glucose and 14 C-labelled fructose. Ethanol non-competitively inhibits glucose uptake of the facilitated diffusion system. A consequence of slower fructose utilization results in residual fructose concentrations remaining at the end of fermentation when sucrose adjuncts are used, hence causing the 'fructose block'. Amelioration of the 'fructose block' is multifaceted. The residual fructose concentrations in wort for the last three days of fermentation are inversely proportional to the pitching rate

  16. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters.

    Science.gov (United States)

    Ghys, Timothy; Goedhuys, Wim; Spincemaille, Katrien; Gorus, Frans; Gerlo, Erik

    2007-01-01

    Glucose testing at the bedside has become an integral part of the management strategy in diabetes and of the careful maintenance of normoglycemia in all patients in intensive care units. We evaluated two point-of-care glucometers for the determination of plasma-equivalent blood glucose. The Precision PCx and the Accu-Chek Inform glucometers were evaluated. Imprecision and bias relative to the Vitros 950 system were determined using protocols of the Clinical Laboratory Standards Institute (CLSI). The effects of low, normal, and high hematocrit levels were investigated. Interference by maltose was also studied. Within-run precision for both instruments ranged from 2-5%. Total imprecision was less than 5% except for the Accu-Chek Inform at the low level (2.9 mmol/L). Both instruments correlated well with the comparison instrument and showed excellent recovery and linearity. Both systems reported at least 95% of their values within zone A of the Clarke Error Grid, and both fulfilled the CLSI quality criteria. The more stringent goals of the American Diabetes Association, however, were not reached. Both systems showed negative bias at high hematocrit levels. Maltose interfered with the glucose measurements on the Accu-Chek Inform but not on the Precision PCx. Both systems showed satisfactory imprecision and were reliable in reporting plasma-equivalent glucose concentrations. The most stringent performance goals were however not met.

  17. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.

    Science.gov (United States)

    de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I

    2013-12-11

    Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake.

  18. α--AMYLASES OF Aspergillus flavus var. oryzae AND Bacillus subtilis: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    K. V. Avdiyuk

    2013-06-01

    Full Text Available The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 α-amylases to split different carbohydrate-containing substrates, such as maltose, sucrose, trehalose, dextrin, α- and β-cyclodextrin, amylose, amylopectin, glycogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. α-Amylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato and wheat starch, while the α-amylase of B. subtilis 147 — only wheat starch. Both enzymes don’t cleave maltose, α-cyclodextrin and dextran 500. A. flavus var. oryzae 80428 α-amylase display very small ability to hydrolyze pullulan, while α-amylase of B. subtilis 147 it does not act in general. The lowest values of Michaelis constant for both enzymes at splitting of glycogen have been obtained, indicating that enzymes have the greatest affinity to this substrate. The studies of influence of chemically active substances on activity of A. flavus var. oryzae 80428 and B. subtilis 147 ?-amylases show there are resistant to urea, deoxycholic acid, Tween-80, Triton X-100 and hydrogen peroxide. It’s indicate the enzymes tested may be competitive in compare with earlier described in literature enzymes. The obtained results give a possibility to propose in future usage these enzymes in different fields of industry, foremost in detergent industry.

  19. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    OpenAIRE

    Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan

    2010-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from...

  20. Role of Intravenous Ferric Carboxy-maltose in Pregnant Women with Iron Deficiency Anaemia.

    Science.gov (United States)

    Mishra, Vineet; Gandhi, Khusaili; Roy, Priyankur; Hokabaj, Shaheen; Shah, Kunur N

    2017-09-08

    Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia is associated with significant maternal, foetal and infant morbidity. Current options for treatment include oral iron, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a modern treatment option. The study was designed to assess the safety and efficacy of intravenous ferric carboxymaltose for correction of iron deficiency anaemia in pregnant women. A prospective study was conducted at Institute of Kidney Disease and Research Centre, Ahmedabad from January 2014 to December 2016. Antenatal women (108) with iron deficiency anaemia were the study subjects. Socio-demographic profile was recorded and anaemia was assessed based on recent haemoglobin reports. Iron deficiency was diagnosed on basis of serum ferritin value. Intravenous ferric carboxymaltose as per total correction dose (maximum 1500mg) was administered to all women; the improvement in haemoglobin levels were assessed after 3 weeks of total dose infusion. Most of the women(n= 45, 41.7%), were in the age group of 27-30 years. Most of the women (n = 64, 59.3%) had moderate anaemia as per WHO guidelines. Mean haemoglobin levels significantly increased over a period of 3 weeks after Ferric carboxymaltose administrationand no serious life threatening adverse events were observed. Intravenous ferric carboxymaltose was safe and effective in pregnent women with iron deficiency anaemia.

  1. Production of alpha-amylase in batch and chemostat culture by bacillus stearothermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P E; Cohen, D L; Whitaker, A

    1980-01-01

    The production of alpha-amylase by a strain of B.stearothermophilus isolated from leaf litter was investigated in a tryptone-maltose medium at 55 degrees in batch and chemostat culture. Amylase production was growth-limited and restricted to the exponential phase in batch culture. The enzyme yield was reduced by 40% when the culture pH was maintained at pH 7.2. Amylase production in chemostat culture was influenced by the growth rate throughout the dilution rate range used.

  2. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    Science.gov (United States)

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  3. Production of fibrinolytic protease from Streptomyces lusitanus isolated from marine sediments

    Science.gov (United States)

    SudeshWarma, S.; Merlyn keziah, S.; Subathra Devi, C.

    2017-11-01

    This study aim was to isolate, screen, characterize and optimize marine Streptomyces for fibrinolytic enzyme production. The potent actinomycete isolate was subjected to optimization. The parameters for optimization included pH, temperature, carbon, nitrogen sources. The crude supernatant produced was purified using size exclusion gel filtration chromatography. The optimized parameters for maximum productivity were found to be pH 7, 37°C, maltose and peptone respectively. The molecular weight of the purified enzyme was found to be 21kDa.

  4. Polyhydroxyalkanoate production by a novel bacterium Massilia sp UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene

    OpenAIRE

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-01-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after ...

  5. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  6. Response of the grass-cutting ant Atta capiguara Gonçalves, 1944 (Hymenoptera: Formicidae to sugars and artificial sweeteners Resposta da saúva Atta capiguara Gonçalves, 1944 (Hymenoptera: Formicidae a açúcares e edulcorantes artificiais

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Castellani Boaretto

    2003-01-01

    Full Text Available Using of toxic baits made of dehydrated citric pulp to control grass-cutting ants can lead to unsatisfactory results because of the low attractiveness of the substrate to worker ants. This work aimed to identify attractive substances, with potential for incorporation in a matrix of granulated baits for grass-cutting ants, among several kinds of sugars and substances used in artificial sweeteners. Experiments were carried out in mature nests of Atta capiguara (Hym.: Formicidae set in pasture. Studied substances were sucrose, fructose, soluble starch, raffinose, maltose, lactose, sorbose, cellobiose, arabinose, xylose, glucose, galactose, rhamnose, arabinose, melezitose, saccharine and cyclamate (at 5.0% w/v. Later, on maltose, xylose, sucrose, fructose and glucose solutions were included at 5.0%, 7.5%, 10.0% and 20.0% w/v, respectively. Cellulose rectangles were used as vehicle and number of rectangles carried into the colonies was evaluated. Carrying rates were very low with maximum means of 9.6% for lactose and 6.0% for arabinose and cyclamate, at the 5.0% concentration. No differences (P > 0.05 were observed relatively to the control (distilled water. No effects were detected for solution, concentration and for the interaction of these factors. Sugars and artificial sweeteners studied were not attractive to Atta capiguara workers, turning their inclusion as attractants in toxic ant baits not viable.O uso de iscas tóxicas, formuladas à base de polpa cítrica desidratada, para o controle de formigas cortadeiras de gramíneas pode levar a resultados insatisfatórios devido à baixa atratividade do substrato às operárias. Este trabalho foi realizado com o objetivo de identificar substâncias atrativas e com potencial para incorporação em matrizes de iscas granuladas para formigas cortadeiras de gramíneas, dentre diversos tipos de açúcares e edulcorantes artificiais. Os experimentos foram realizados em ninhos adultos de Atta capiguara Gon

  7. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  8. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China.

    Science.gov (United States)

    Zhu, Yueming; Zhang, Jun; Wei, Dongsheng; Wang, Yufan; Chen, Xiaoyun; Xing, Laijun; Li, Mingchun

    2008-08-01

    A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose.

  9. Variations on metabolic activities of legume tissues through radiation in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany

    1977-12-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.

  10. Efeitos de meio de cultura, fontes de carbono e nitrogênio, pH e regime luminoso no crescimento de Mycosphaerella musicola Effects of medium, carbon and nitrogen source, pH and light on the growth of Mycosphaerella musicola

    Directory of Open Access Journals (Sweden)

    Angélica Virgínia Valois Montarroyos

    2007-03-01

    Full Text Available Este trabalho objetivou o estabelecimento de condições favoráveis ao crescimento micelial de M. musicola in vitro, pela avaliação em quatro experimentos, da influência de diferentes meios de cultura (BDA, BDA/IFB, V8, V8/IFB, V8/CaCO3 e V8/CaCO3/IFB; combinações de fontes de carbono (dextrose, maltose, sacarose e xilose e nitrogênio (peptona, glicina, nitrato de potássio e de sódio; valores de pH (6,8; 6,4; 5,7 e 4,9 e regimes luminosos (escuro contínuo, alternância luminosa e claro contínuo. Observou-se um maior crescimento de M. musicola quando cultivado nos meios de cultura BDA/IFB, V8/IFB e BDA. As fontes de carbono sacarose, maltose e dextrose quando combinadas com a peptona como fonte de nitrogênio, promoveram um maior crescimento micelial de M. musicola. O meio de cultura BDA/IFB, com o valor final de pH ajustado para 5,7, em regime de escuro contínuo, apresentou-se como o melhor para o crescimento de M. musicola.This work aimed the establishment of the best growth conditions of M. musicola mycelia in vitro through the analysis of the influence of different culture media (BDA, BDA/IFB, V8, V8/IFB, V8/CaCO3 and V8/CaCO3/IFB, combinations of carbon (dextrose, maltose, sucrose and xylose and nitrogen (peptone, glycine, potassium nitrate and sodium nitrate sources, medium pH values (6.8, 6.4, 5.7 and 4.9 and photoperiods (continuous darkness, alternating darkness/lightness and continuous lightness. At the end of the evaluation period, cultural parameters and the dry weights of colonies were annotated. BDA/IFB, V8/IFB and BDA culture media promoted the best mycelial growth. The experiments also demonstrated that dextrose and sucrose when combined with peptose as a nitrogen source, are the best carbon sources as they promoted the most vigorous mycelial growth. The use of BDA/IFB culture medium, with its final pH adjusted to 5.7, and a photoperiod of continuous darkness was the best condition for the growth of M. musicola.

  11. Identification of Characteristic Phenolic Constituents in Mousouchiku Extract Used as Food Additives.

    Science.gov (United States)

    Yoshimura, Morio; Ochi, Keisuke; Sekiya, Hiroshi; Tamai, Eiji; Maki, Jun; Tada, Atsuko; Sugimoto, Naoki; Akiyama, Hiroshi; Amakura, Yoshiaki

    2017-01-01

    Mousouchiku extract is prepared from the bamboo-sheath of Phyllostachys heterocycla MITF. (Poaceae), and is registered as a food manufacturing agent in the List of Existing Food Additives in Japan. This study describes the chromatographic evaluation of characteristic components of this extract to obtain the chemical data needed for standardized specifications. We isolated 12 known compounds from this extract: 5-hydroxymethyl-2-furfural, 4-hydroxybenzoic acid, trans-p-coumaric acid, trans-ferulic acid, N,N'-diferuloylputrescine, 4'-hydroxypropiophenone, β-arbutin, tachioside, isotachioside, 3,4'-dihydroxypropiophenone 3-O-glucoside, koaburaside, and (+)-lyoniresinol 9'-O-glucoside. Moreover, a new propiophenone glycoside, propiophenone 4'-O-(6-β-D-xylosyl)-β-D-glucoside (propiophenone 4'-O-primeveroside), was isolated. The structure of each isolated compound was elucidated based on NMR and MS data or direct HPLC comparisons with authentic samples. Among the isolates, (+)-lyoniresinol 9'-O-glucoside was found to be the major ingredients of the extract as observed using HPLC analysis. However, 2,6-dimethoxy-1,4-benzoquinone, which is considered the main constituent of mousouchiku extract, was only detected as a trace constituent and not isolated in this study.

  12. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent.

    Science.gov (United States)

    Nam, Seung-Hee; Park, Jeongjin; Jun, Woojin; Kim, Doman; Ko, Jin-A; Abd El-Aty, A M; Choi, Jin Young; Kim, Do-Ik; Yang, Kwang-Yeol

    2017-12-22

    Gallic acid glycoside was enzymatically synthesized by using dextransucrase and sucrose from gallic acid. After purification by butanol partitioning and preparative HPLC, gallic acid glucoside was detected at m/z 355 (C 13 , H 16 , O 10 , Na) + by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The yield of gallic acid glucoside was found to be 35.7% (114 mM) by response surface methodology using a reaction mixture of 319 mM gallic acid, 355 mM sucrose, and 930 mU/mL dextransucrase. The gallic acid glucoside obtained showed 31% higher anti-lipid peroxidation and stronger inhibition (Ki = 1.23 mM) against tyrosinase than that shown by gallic acid (Ki = 1.98 mM). In UVB-irradiated human fibroblast cells, gallic acid glucoside lowered matrix metalloproteinase-1 levels and increased the collagen content, which was indicative of a stronger anti-aging effect than that of gallic acid or arbutin. These results indicated that gallic acid glucoside is likely a superior cosmetic ingredient with skin-whitening and anti-aging functions.

  13. 4-(Phenylsulfanylbutan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shing-Yi Sean Wu

    2015-08-01

    Full Text Available In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanylbutan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU. Also, we discovered that 4-(phenylsulfanylbutan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF, tyrosinase-related protein-1 (Trp-1, dopachrome tautomerase (DCT, Trp-2, and glycoprotein 100 (GP100. In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanylbutan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology.

  14. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    Science.gov (United States)

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts. 2009 Elsevier Ltd. All rights reserved.

  15. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    Science.gov (United States)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  16. Effect of continued oral feeding on clinical and nutritional outcomes of acute diarrhea in children.

    Science.gov (United States)

    Brown, K H; Gastañaduy, A S; Saavedra, J M; Lembcke, J; Rivas, D; Robertson, A D; Yolken, R; Sack, R B

    1988-02-01

    One hundred twenty-eight nonmalnourished male patients between 3 and 36 months of age were randomly assigned to receive one of four lactose-free dietary treatments to determine the effect of dietary therapy on the severity and nutritional outcome of diarrheal illness. Group 1 received a formula diet composed of casein, sucrose, dextrin with maltose (Dextri-Maltose), and vegetable oil to provide 110 kcal/kg body weight/d (CSO-110). Group 2 received CSO to provide 55 kcal/kg/d (CSO-55) for 2 days and then CSO-110. Group 3 received only oral glucose-electrolyte solution (GES) for 2 days, CSO-55 for the next 2 days, and then CSO-110. Group 4 received the same diets as Group 3 except that only intravenous GES was used for the first 2 days. The GES maintenance solutions provided 24 to 30 kcal/kg/d. Therapeutic success rates were similar among dietary groups, ranging from 90% to 97%. Fecal excretion was initially lower in group 4 (P less than 0.05) but was similar initially among groups treated orally and among all four groups beginning on day 3. Net apparent absorption of nitrogen, fat, carbohydrate, and total energy; retention of nitrogen; and increments in body weight, arm circumference, and skin-fold thickness were positively related to the amounts of dietary energy consumed. Thus continued oral feeding with the CSO diets during the early phase of therapy yielded improved nutritional results.

  17. Neutron scattering studies on dUTPase complex in the presence of bioprotectant systems

    Energy Technology Data Exchange (ETDEWEB)

    Varga, B. [Institute of Enzymology, Hungarian Academy of Sciences, POB 7, H-1518, Budapest (Hungary); Migliardo, F. [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Takacs, E.; Vertessy, B. [Institute of Enzymology, Hungarian Academy of Sciences, POB 7, H-1518, Budapest (Hungary); Magazu, S. [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)], E-mail: smagazu@unime.it; Mondelli, C. [CNR-INFM OGG and CRS-SOFT, c/o ILL, BP 156, 38042 Grenoble Cedex 9 (France)

    2008-04-18

    The aim of the present work is to investigate the chemical physics mechanisms of protein stabilization by homologous disaccharides (trehalose, maltose and sucrose). On this purpose the structural and dynamical properties of dUTPase-inhibitor candidate and dUTPase-inhibitor candidate/disaccharide mixtures have been investigated by elastic neutron scattering (ENS), quasi-elastic neutron scattering (QENS) and photon correlation spectroscopy (PCS). The decrease in the ENS intensity profiles vs temperature for the disaccharide-water mixtures is less marked in the case of trehalose/water mixture. This indicates that trehalose shows a larger structural resistance to temperature changes and a higher 'rigidity' in comparison with maltose/H{sub 2}O and sucrose/H{sub 2}O mixtures. In addition the protein/hydrated-disaccharide mixtures show a linear dependence between the solvent viscosity and the local mean-square displacement of hydrated dUTpase/disaccharide systems. This result shows that the protein dynamics is coupled with that of the surrounding matrix. Furthermore, QENS results on the binary disaccharide-H{sub 2}O/D{sub 2}O mixtures indicate that the water dynamics is affected by all the disaccharides and particularly by trehalose. Finally, PCS findings indicate that the protein hydrodynamic radius in solution does not change at low disaccharide concentrations, while reveal, at high disaccharide concentration, a breakdown of the Stokes-Einstein law. The experimental findings are discussed and interpreted in the frame of the current theories.

  18. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    Science.gov (United States)

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  19. Investigation of callogenesis and indirect regeneration of Freesia × hybrida Bailey ‘Argenta’

    Directory of Open Access Journals (Sweden)

    Pourkhaloee Ali

    2015-12-01

    Full Text Available An investigation was conducted to study the effects of explant sources, plant growth regulators, carbohydrates and light conditions on indirect cormlet regeneration and the induction of embryogenic callus of freesia (Freesia × hybrida Bailey ‘Argenta’. Sections of two different types of explants, corms and pupae (cold storage-produced corms, were placed on Murashige and Skoog (MS media containing different concentrations of plant growth regulators. The results showed that the highest percentage of callus induction (100%, the highest callus growth (15 mm diameter and the best type of calli were achieved for pupa explants grown on the medium that contained 4 mg L−1 1-naphthaleneacetic acid (NAA and 2 mg L−1 6-benzylaminopurine (BAP in the dark. Increasing BAP up to 3 to 4.5 mg L−1 resulted in the maximum number of regenerated cormlets from 1 cm2 calli (2 cormlets under light conditions. Overall, the best rooting of regenerated cormlets was achieved on MS media supplemented with 1 mg L−1 indole-3-butyric acid (IBA. In the next stage, high quality calli were subcultured on MS media containing sorbitol, sucrose, maltose and mannitol (0, 5, 10 and 15 g L−1. The results indicated that 15 g L−1 maltose was able to induce the highest percentage of embryogenic callus, with an average of 88.9% on media containing 2 mg L−1 BAP and 1 mg L−1 NAA.

  20. Ecophysiology of Uncultured Filamentous Anaerobes Belonging to the Phylum KSB3 That Cause Bulking in Methanogenic Granular Sludge▿ †

    Science.gov (United States)

    Yamada, Takeshi; Kikuchi, Kae; Yamauchi, Toshihiro; Shiraishi, Koji; Ito, Tsukasa; Okabe, Satoshi; Hiraishi, Akira; Ohashi, Akiyoshi; Harada, Hideki; Kamagata, Yoichi; Nakamura, Kazunori; Sekiguchi, Yuji

    2011-01-01

    A filamentous bulking of a methanogenic granular sludge caused by uncultured filamentous bacteria of the candidate phylum KSB3 in an upflow anaerobic sludge blanket (UASB) system has been reported. To characterize the physiological traits of the filaments, a polyphasic approach consisting of rRNA-based activity monitoring of the KSB3 filaments using the RNase H method and substrate uptake profiling using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was conducted. On the basis of rRNA-based activity, the monitoring of a full-scale UASB reactor operated continuously revealed that KSB3 cells became active and predominant (up to 54% of the total 16S rRNA) in the sludge when the carbohydrate loading to the system increased. Batch experiments with a short incubation of the sludge with maltose, glucose, fructose, and maltotriose at relatively low concentrations (approximately 0.1 mM) in the presence of yeast extract also showed an increase in KSB3 rRNA levels under anaerobic conditions. MAR-FISH confirmed that the KSB3 cells took up radioisotopic carbons from [14C]maltose and [14C]glucose under the same incubation conditions in the batch experiments. These results suggest that one of the important ecophysiological characteristics of KSB3 cells in the sludge is carbohydrate degradation in wastewater and that high carbohydrate loadings may trigger an outbreak of KSB3 bacteria, causing sludge bulking in UASB systems. PMID:21257808

  1. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  2. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky.

    Science.gov (United States)

    Chen, Chih-Ming; Lin, Hsien-Tang

    2017-12-01

    This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.

  3. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky

    Directory of Open Access Journals (Sweden)

    Chih-Ming Chen

    2017-12-01

    Full Text Available Objective This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ. Methods CSPJ samples were prepared by marinating sliced ham (4 mm with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. Results The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Conclusion Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80, enhanced quality characteristics, increased processing yield, and reduced production cost.

  4. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under contr...... nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants. (c) 2005 Elsevier Inc. All rights reserved....

  5. [Clonage of the "malA" region of "Escherichia coli" K12: nucleotide sequence of the regulatory region and the promoters, identification and purification of the MalT-activator protein (author's transl)].

    Science.gov (United States)

    Raibaud, O; Débarbouillé, M; Cossart, P

    1982-01-01

    A 5,800-bp (base pair) HindIII-EcoRI DNA fragment containing malT, the positive regulator gene of the maltose regulon, and most of malP, the structural gene for maltodextrin phosphorylase, was cloned into pBR322. A sequence of 802 bp was established in a DNA segment containing the promotor for malPQ and the promoter for malT. A total of 611 bp separates the initiation codons for these two genes, which are transcribed in opposite directions. The malT product was identified as a 94,000 dalton polypeptide.

  6. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; Goosen, Theo; Hondel, Cees A M J J van den

    2009-01-01

    BACKGROUND: The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger...... the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h(-1)) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources...

  7. Immobilization of oxidases and their analytical applications

    International Nuclear Information System (INIS)

    Yasinzai, M.

    2007-01-01

    Immobilized enzymes are replacing their soluble counter-parts in nearly every field of application. These enzyme modifications have evolved from a research curiosity into an entire branch of Biotechnology. An immobilization method for flavin containing oxidases and their use in flow injection system is described. An electrochemical detector for H/sub 2/O/sub 2/ is assembled which is used effectively for the determination of glucose using more common glucose oxidase and the simultaneous determination of sugars. The combination of oxidases with hydrolases have been used for the determination of maltose and starch. (author)

  8. Properties of Ag nanoparticles prepared by modified Tollens' process with the use of different saccharide types

    Science.gov (United States)

    Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor

    2018-02-01

    Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.

  9. Enzymatic properties and primary structures of two α-amylase isozymes from the Pacific abalone Haliotis discus hannai

    OpenAIRE

    Kumagai, Yuya; Satoh, Takuya; Inoue, Akira; Ojima, Takao

    2013-01-01

    Two α-amylase (EC 3.2.1.1) isozymes, HdAmy58 and HdAmy82, with approximate molecular masses of 58 kDa and 82 kDa, respectively, were isolated from the digestive fluid of the Pacific abalone Haliotis discus hannai. Optimal temperatures and pHs for HdAmy58 and HdAmy82 were at 30℃ and 6.7, and 30℃ and 6.1, respectively. Both enzymes similarly degraded starch, glycogen, and maltooligosaccharides larger than maltotriose producing maltose and maltotriose as the major degradation products. However, ...

  10. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  11. Исследование возможности применения амаранта багряного в технологии изделий из дрожжевого теста

    OpenAIRE

    Simakova, Olga; Korenets, Yurii; Yudina, Tatiana; Nazarenko, Iryna; Goriainova, Iuliia

    2018-01-01

    It was experimentally found that additives of purple amaranth (APA) have high enzyme activity, which is proved by high activity of the amylase complex: maltose number of 5 % water extract from dry foliage of purple amaranth is 12.31±0.36 %, with addition of CaCl2 (Са2+=0.01 g/l), it is 16.0±0.35 %. The obtained results indicate the prospects of using APA for enhancing baking properties of wheat flour.We determined the required concentration of the additive of flour from dry foliage of purple ...

  12. Estudo da fermentação alcoólica de soluções diluídas de diferentes açucares utilizando microcalorimetria de fluxo Study of the alcoholic fermentation of sugars diluted solutions through flow microcalorimetry

    Directory of Open Access Journals (Sweden)

    Pedro L. O. Volpe

    1997-10-01

    Full Text Available The present study shows that with liquid nitrogen stored inocula of Saccharomyces cerevisiae, and standardized experimental procedure, flow microcalorimetry can be a valuable tool for monitoring in real time the alcoholic fermentation processes on line. The avaliation of cultural conditions contained different carbon sources for alcohol fermentation (sucrose, glucose, fructose, manose, maltose, galactose, molasses, honey and sugar cane and their effects on the heat output recording is discussed. Some examples of diauxic growth is given, where the microcalorimeters serves to detect the temporal order of succession of alternating metabolic pathways.

  13. Estudo da sintese enzimatica de dextrana na presença de maltose como aceptor

    OpenAIRE

    Sueli Rodrigues

    2003-01-01

    Resumo: O principal objetivo do trabalho foi o estudo de um processo para obtenção de dextrana de massa molar controlada, via síntese enzimática, para com isso reduzir os custos da obtenção de dextrana clínica. Para isso foi considerada a modelagem de um reator contínuo com re-aproveitamento da enzima através da adsorção em resinas trocadoras de íons. Entretanto, os ensaios de adsorção demonstraram que a presença de dextrana impede a adsorção da enzima e seu re-aproveitamento a...

  14. Engineering of Class II Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    The front cover artwork is provided by Prof. Lo Gorton from Lund University (Sweden) and his co-workers. The image shows mutated cellobiose dehydrogenase (CDH) immobilized on a graphite electrode and how preferentially glucose is oxidized by this enzyme. Read the full text of the Article at 10.1002...

  15. Influence of source and concentration of carbohydrate on shoot growth and rooting of Oncidium varicosum Lindl. (Orchidaceae / Influência da fonte e concentração de carboidrato no crescimento vegetativo e enraizamento in vitro de Oncidium varicosum Lindl. (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Charlen Saconato

    2003-05-01

    Full Text Available Oncidium varicosum is a native Brazilian orchid popularly known as ‘Golden Shower´ because of its very ramified inflorescence and many yellow flowers. The carboydrate type and concentration are important in promoting plantlet development of in vitro orchids. The present study was carried out to asses the effect of different carbohydrate sources and concentrations on the in vitro growth of O. varicosum plantlets. Murashige e Skoog culture medium was used modified with half concentration of the macronutrients. The plantlets, derived from seeds that were already established in vitro and 0.8 + 0.2 cm in height, were inoculated in the culture media containing the following carbohydrate sources: saccharine, maltose and glucose, at concentrations of 0, 10, 20, 30, 60 and 90 g.L-1. The following variables were analyzed 8 months later: canopy height, number of roots, greatest root length, pseudobulb diameter and fresh weight. A completely randomized block experimental design was used with five replications per treatment. Analysis of variance and the Tukey test (5% were performed to compare the means. It was concluded that 60 g.L-1 saccharose was the best treatment for all the parameters assessed. The sugars 30 g.L-1 glucose and 60 g.L-1 maltose were also suitable, but presented lower pseudobulb diameter and lower fresh weight when compared to 60 g.L-1saccharose.Oncidium varicosum é uma orquídea nativa do Brasil conhecida popularmente como “chuva de ouro”, devido a sua inflorescência muito ramificada e com inúmeras flores amarelas. O tipo e a concentração dos carboidratos são importantes para promover o desenvolvimento das plântulas das orquídeas in vitro. O presente trabalho teve como objetivo avaliar os efeitos de diferentes fontes e concentrações de carboidratos no crescimento in vitro de plântulas de O. varicosum. Foi utilizado o meio de cultura Murashige e Skoog, modificado pela redução à metade da concentração dos

  16. Lactobacillus pentosus B231 Isolated from a Portuguese PDO Cheese: Production and Partial Characterization of Its Bacteriocin.

    Science.gov (United States)

    Guerreiro, Joana; Monteiro, Vitor; Ramos, Carla; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Todorov, Svetoslav Dimitrov; Fernandes, Paulo

    2014-06-01

    Bacteriocin B231 produced by Lactobacillus pentosus, isolated from an artisanal raw cow's milk protected designation of origin Portuguese cheese, is a small protein with an apparent relative mass of about 5 kDa and active against a large number of Listeria monocytogenes wild-type strains, Listeria ivanovii and Listeria innocua. Bacteriocin B231 production is highly dependent on the type of the culture media used for growth of Lact. pentosus B231. Replacement of glucose with maltose yielded the highest bacteriocin production from eight different carbon sources. Similar results were recorded in the presence of combination of glucose and maltose or galactose. Production of bacteriocin B231 reached maximal levels of 800 AU/ml during the stationary phase of growth of Lact. pentosus B231 in MRS broth at 30 °C. Bacteriocin B231 (in cell-free supernatant) was sensitive to treatment with trypsin and proteinase K, but not affected by the thermal treatment in range of 55-121 °C, or freezing (-20 °C). Bacteriocin production and inhibitory spectrum were evaluated. Gene encoding plantaricin S has been detected in the genomic DNA. Virulence potential and safety of Lact. pentosus B231 were assessed by PCR targeted the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc. The Lact. pentosus B231 strains harbored plantaricin S gene, while the occurrence of virulence, antibiotic resistance and biogenic amine genes was limited to cytolysin, hyaluronidase, aggregation substance, adhesion of collagen protein, gelatinase, tyrosine decarboxylase and vancomycin B genes.

  17. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    Science.gov (United States)

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  18. Effect of dietary sugars on dual-species biofilms of Streptococcus mutans and Streptococcus sobrinus – a pilot study

    Directory of Open Access Journals (Sweden)

    Rosa Virginia Dutra de OLIVEIRA

    Full Text Available Abstract Introduction Frequent consumption of sugars and the presence of Streptococcus mutans and Streptococcus sobrinus are correlated with higher caries experience. Objective The aim of this pilot study was to elucidate the effect of different fermentable carbohydrates on biomass formation and acidogenicity of S. mutans and S. sobrinus biofilms. Material and method Single and dual-species biofilms of S. mutans ATCC 25175 and S. sobrinus ATCC 27607 were grown at the bottom of microtiter plates at equal concentrations for 24 h at 37 °C under micro-aerobic atmosphere. Carbohydrates were added at 2% concentration: maltose, sucrose, glucose and lactose. BHI Broth (0.2% glucose was used as negative control. Acidogenicity was assessed by measuring the pH of spent culture medium after 24 h, immediately after refreshing the culture medium and for the next 1 h and 2 h. Crystal violet staining was used as an indicator of the total attached biofilm biomass after 24 h incubation. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc test. Significance level was set at 5%. Result All carbohydrates resulted in higher biomass formation in single- and dual-species biofilms when compared to the control group. Sucrose, lactose and maltose showed higher acidogenicity than the control group in both single- and dual-species biofilms after 24 h. Conclusion These findings indicate that the type of biofilm (single- or dual-species and the carbohydrate used may influence the amount of biomass formed and rate of pH reduction.

  19. Free Sugar Profile in Cycads

    Directory of Open Access Journals (Sweden)

    Thomas Edward Marler

    2014-10-01

    Full Text Available The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date.

  20. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    Science.gov (United States)

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  1. Delineation of pulmonary airway fluid protein fractions with HRPO binding-avidity by far-Western ligand blot and mass spectrometry analyses: a model methodology for detecting mannose-binding protein expression profiles.

    Science.gov (United States)

    Coyne, Cody P; Rashmir-Raven, Ann; Jones, Toni; Mochal, Cathleen; Linford, Robert L; Brashier, Michael; Eddy, Alison

    2009-01-01

    Limited research to date has characterized the potential for HRPO to function as a primary molecular probe. Pulmonary airway fluid was developed by non-reducing far-Western (ligand) blot analyses utilizing conjugated HRPO-strepavidin or non-conjugated HRPO without the presence of primary immunoglobulin. Endogenous esterase-like biochemical activity of fractions within pulmonary airway fluid was inactivated to determine if they were capable of biochemically converting HRPO chemiluminescent substrate. Complementary analyses modified pulmonary fluid and HRPO with beta-galactosidase and alpha-mannosidase respectively, in addition to determining the influence of mannose and maltose competitive binding on HRPO far-Western (ligand) blot analyses. Identification of pulmonary fluid fractions detected by HRPO far-Western blot analyses was determined by mass spectrometry. Modification of pulmonary fluid with beta-galactosidase, and HRPO with alpha-mannosidase in concert with maltose and mannose competitive binding analyses altered the intensity and spectrum of pulmonary fluid fractions detected by HRPO far-Western blot analysis. Identity of pulmonary airway fluid fractions detected by HRPO far-Western (ligand) blot analysis were transferrin, dynein, albumin precursor, and two 156 kDa equine peptide fragments. HRPO can function as a partially-selective primary molecular probe when applied in either a conjugated or non-conjugated form. Some protein fractions can form complexes with HRPO through molecular mechanisms that involve physical interactions at the terminal alpha-mannose-rich regions of HRPO glycan side-chains. Based on its known molecular composition and structure, HRPO provides an opportunity for the development of diagnostics methodologies relevant to disease biomarkers that possess mannose-binding avidity.

  2. Amino acids composition of mycelial protein of penicillium expansum grown in acid treated rice husk mineral medium

    International Nuclear Information System (INIS)

    Khan, M.Y.; Dahot, M.U.

    2012-01-01

    The aim of the present study was to analyze the amino acids composition of single cell protein of Penicillium expansum . Mycelial biomass was produced when fungus was grown in 0.6N H/sub 2/SO/sub 4/ pretreated rice husk mineral medium incorporated with 0.5% and 1% of nitrogen sources like potassium nitrate, sodium nitrate, ammonium nitrate, peptone, yeast extract, urea, corn steep liquor and ammonium sulphate. It was observed that the growth rate of Penicillium expansum increased with 0.5% sodium nitrate produces 1.390 +- 0.084g/l of mycelial biomass. In the subsequent experiment, fermentation medium was supplemented with 0.5% and 1.0% different sugars (sucrose, glucose, fructose, maltose, galactose, lactose, carboxymethyl-cellulose, starch, mannose, and molasses) at pH 6.0 for 240 hours at 35 +- 2 deg. C in a fermenter. The highest amount of mycelial biomass (5.107 +- 0.169g/l) was obtained with 1% sucrose and followed by 4.953 +- 0.17g/l, 4.808 +- 0.14g/l and 4.844 +- 0.10g/l mycelial biomass using glucose, maltose and galactose, respectively. The mycelial biomass of Penicillium expansum contains essential and non essential amino acids like phospho-serine, serine, valine, aspartic acid, threonine, glutamic acid, glycine, isoleucine, leucine, phenylalanine, alo-lysine, halo-lysine, lysine and arginine. The glutamic acid (3355.0 +- 19.798 mu mol/g mycelia) and proline (785.0 +- 9.899 mu mol/g mycelia) were found in higher concentration than other amino acids produced by Penicillium expansum grown on rice husk supplemented with lactose. (author)

  3. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics.

    Science.gov (United States)

    Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun

    2012-07-01

    Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.

  4. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  5. Thermodynamic effects of proline introduction on protein stability.

    Science.gov (United States)

    Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan

    2007-02-01

    The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.

  6. Microbial production of glucose/fructose syrups

    Energy Technology Data Exchange (ETDEWEB)

    Matur, A.; Saglam, N.

    1982-04-01

    With the ever-increasing demand for sugar and the trend in rising price, rapid progress in research on new and/or alternative sweeteners has been inevitable during the past decade or so. Pure glucose, glucose/fructose, glucose/maltose syrups are often called isosyrups. Isosyrups have been recognized as a good alternative sources of sugar. These are used today in the manufacture of soft drinks, jams and jellies, confectionary, baking fermentation, dietetic and infant food, ice-cream, pharmaceutical processes, etc. Isosyrups are produced by hydrolysis of starch and cellulocis raw materials have been utilized for the production of isosyrups.

  7. Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Denshchikov, M T; Shashilova, V P

    1964-01-01

    Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.

  8. Determination of the alcohol-yielding capacity of cereals. A method for the determination of the alcohol-yielding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Frey, A; Hoppe, W

    1957-01-01

    A laboratory method is reported for the determination of the alcohol yielding capacity of starch-containing distillery raw materials. The starch is inverted with dilute HCl under pressure, after which the material is fermented with yeast at pH 5.4. After distillation, the alcohol is determined pyknometrically. The influence of such factors as amount of yeast was determined experimentally. Analysis of the time curves for the hydrolysis of starch (by paper-chromatographic techniques) in relation to pH showed glucose to be the principal reaction product, with only slight amounts of maltose and higher sugars being formed.

  9. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts

    DEFF Research Database (Denmark)

    Jespersen, Lene; Kühle, Alis Van der Aa; Petersen, Kamilla M.

    2000-01-01

    -amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could...... be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP...... in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment....

  10. Harmonic-anharmonic transition in disaccharides/H{sub 2}O mixtures by EINS

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, S.; Migliardo, F.; Mondelli, C

    2004-07-15

    This work furnishes new experimental findings on glass-forming systems, i.e. homologues disaccharides (trehalose, maltose, sucrose)/H{sub 2}O mixtures obtained by using elastic incoherent neutron scattering. Such a technique allows to characterize the different degree of 'strength' of the investigated systems by means of the analysis of both the elastic intensity and the mean square displacement behaviours as a function of temperature and Q. The better cryptoprotectant effectiveness of trehalose in comparison with the other disaccharides is ascribed to lower fragility of the matrix in which biostructures are immersed, i.e. of the trehalose/water mixture.

  11. [Pain management with herbal antirheumatic drugs].

    Science.gov (United States)

    Chrubasik, Sigrun; Pollak, S

    2002-01-01

    Herbal antirheumatics are indicated in painful inflammatory and degenerative rheumatic diseases. Their mechanism of action is broader than that of synthetic antirheumatics. Particular preparations from Devils's Claw with 50 to 100 mg of harpagoside in the daily dosage as well as a particular willow bark extract with 120 to 240 mg salicin in the daily dosage proved efficacy in a number of clinical studies including confirmatory ones. Exploratory studies indicate that these herbal antirheumatics were not inferior to the selective COX-2 inhibitor rofecoxib when treating acute exacerbations of chronic low back pain. For the proprietary nettle root extract IDS23 promising in vitro/in vivo results indicate an anti-inflammatory effect, however there are only 2 open uncontrolled clinical studies available and the proof of efficacy is still missing. Safety data in order to recommend use during pregnancy and lactation are only available for the herbal combination product Phytodolor prepared from aspen, ash and goldenrod. In principle, blackcurrent leaf with not less than 1.5% flavonoids may be an appropriate antirheumatic. Likewise, the seed oils of blackcurrent, evening primrose and borage offering at least 1 to 3 g gammalinolenic acid/day are recommendable. In case superiority versus placebo has been established, proprietary herbal antirheumatics should be administered before the conventional analgesics due to the lower incidence of adverse events.

  12. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways.

    Science.gov (United States)

    Singh, Anup Kumar; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Shasany, Ajit K; Nagegowda, Dinesh A

    2017-08-01

    Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  14. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  15. The Pasting and Gel Textural Properties of Corn Starch in Glucose, Fructose and Maltose Syrup

    OpenAIRE

    Sun, Qingjie; Xing, Yan; Qiu, Chao; Xiong, Liu

    2014-01-01

    The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA) and Texture profile analysis (TPA) tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order...

  16. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose

    NARCIS (Netherlands)

    Ferreira de Oliveira, J.M.P.; Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2011-01-01

    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these

  17. Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    OpenAIRE

    Ferreira de Oliveira, José Miguel P.; van Passel, Mark W. J.; Schaap, Peter J.; de Graaff, Leo H.

    2011-01-01

    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition....

  18. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  19. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Woo Byun, Myung [Radiation Food Science and Biotechnology Team, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Jeun An, Bong [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of)], E-mail: anbj@dhu.ac.kr

    2007-11-15

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  20. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  1. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    International Nuclear Information System (INIS)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun; Jo, Cheorun; Woo Byun, Myung; Jeun An, Bong

    2007-01-01

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry

  2. Effects of indigestible dextrin on glucose tolerance in rats.

    Science.gov (United States)

    Wakabayashi, S; Kishimoto, Y; Matsuoka, A

    1995-03-01

    A recently developed indigestible dextrin (IDex) was studied for its effects on glucose tolerance in male Sprague-Dawley rats. IDex is a low viscosity, water-soluble dietary fibre obtained by heating and enzyme treatment of potato starch. It has an average molecular weight of 1600. An oral glucose tolerance test was conducted with 8-week-old rats to evaluate the effects of IDex on the increase in plasma glucose and insulin levels after a single administration of various sugars (1.5 g/kg body weight). The increase in both plasma glucose and insulin levels following sucrose, maltose and maltodextrin loading was significantly reduced by IDex (0.15 g/kg body weight). This effect was not noted following glucose, high fructose syrup and lactose loading. To evaluate the effects of continual IDex ingestion on glucose tolerance, 5-week-old rats were kept for 8 weeks on a stock diet, a high sucrose diet or an IDex-supplemented high sucrose diet. An oral glucose (1.5 g/kg body weight) tolerance test was conducted in week 8. Increases in both plasma glucose and insulin levels following glucose loading were higher in the rats given a high sucrose diet than in the rats fed a stock diet. However, when IDex was included in the high sucrose diet, the impairment of glucose tolerance was alleviated. Moreover, IDex feeding also significantly reduced accumulation of body fat, regardless of changes in body weight. These findings suggest that IDex not only improves glucose tolerance following sucrose, maltose and maltodextrin loading but also stops progressive decrease in glucose tolerance by preventing a high sucrose diet from causing obesity.

  3. Factors interfering with the accuracy of five blood glucose meters used in Chinese hospitals.

    Science.gov (United States)

    Lv, Hong; Zhang, Guo-jun; Kang, Xi-xiong; Yuan, Hui; Lv, Yan-wei; Wang, Wen-wen; Randall, Rollins

    2013-09-01

    The prevalence of diabetes is increasing in China. Glucose control is very important in diabetic patients. The aim of this study was to compare the accuracy of five glucose meters used in Chinese hospitals with a reference method, in the absence and presence of various factors that may interfere with the meters. Within-run precision of the meters was evaluated include Roche Accu-Chek Inform®, Abbott Precision PCx FreeStyle®, Bayer Contour®, J&J LifeScan SureStep Flexx®, and Nova Biomedical StatStrip®. The interference of hematocrit level, maltose, ascorbic acid, acetaminophen, galactose, dopamine, and uric acid were tested in three levels of blood glucose, namely low, medium, and high concentrations. Accuracy (bias) of the meters and analytical interference by various factors were evaluated by comparing results obtained in whole blood specimens with those in plasma samples of the whole blood specimens run on the reference method. Impact of oxygen tension on above five blood glucose meters was detected. Precision was acceptable and slightly different between meters. There were no significant differences in the measurements between the meters and the reference method. The hematocrit level significantly interfered with all meters, except StatStrip. Measurements were affected to varying degrees by different substances at different glucose levels, e.g. acetaminophen and ascorbic acid (Freestyle), maltose and galactose (FreeStyle, Accu-Chek), uric acid (FreeStyle, Bayer Contour), and dopamine (Bayer Contour). The measurements with the five meters showed a good correlation with the plasma hexokinase reference method, but most were affected by the hematocrit level. Some meters also showed marked interference by other substances. © 2013 Wiley Periodicals, Inc.

  4. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.

    Science.gov (United States)

    Zhao, Xin; Gänzle, Michael G

    2018-05-02

    Lactobacilli derive metabolic energy mainly from carbohydrate fermentation. Homofermentative and heterofermentative lactobacilli exhibit characteristic differences in carbohydrate transport and regulation of metabolism, however, enzymes for carbohydrate transport in heterofermentative lactobacilli are poorly characterized. This study aimed to identify carbohydrate active enzymes in the L. reuteri strains LTH2584, LTH5448, TMW1.656, TMW1.112, 100-23, mlc3, and lpuph by phenotypic analysis and comparative genomics. Sourdough and intestinal isolates of L. reuteri displayed no difference in the number and type of carbohydrate-active enzymes encoded in the genome. Predicted sugar transporters encoded by genomes of L. reuteri strains were secondary carriers and most belong to the major facilitator superfamily. The quantification of gene expression during growth in sourdough and in chemically defined media corresponded to the predicted function of the transporters MalT, ScrT and LacS as carriers for maltose, sucrose, and lactose or raffinose, respectively. The genotype for sugar utilization matched the fermentation profile of 39 sugars for L. reuteri strains, and indicated preference for maltose, sucrose, raffinose and (iso)-malto-oligosaccharides, which are available in sourdough and in the upper intestine of rodents. Pentose utilization in L. reuteri species was strain-specific but independent of the origin or phylogenetic position of isolates. Two glycosyl hydrolases, licheninase (EC 3.2.1.73) and endo-1, 4-β-galactosidase (EC 3.2.1.89) were identified based on conserved domains. In conclusion, the study identified the lack of PTS systems, preference for secondary carriers for carbohydrate transport, and absence of carbon catabolite repression as characteristic features of the carbohydrate metabolism in the heterofermentative L. reuteri. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Storage performance of Taiwanese sweet potato cultivars.

    Science.gov (United States)

    Huang, Che-Lun; Liao, Wayne C; Chan, Chin-Feng; Lai, Yung-Chang

    2014-12-01

    Three sweet potato cultivars (TNG57, TNG66, and TNG73), provided by the Taiwanese Agricultural Research Institute (TARI), were stored at either 15 °C or under ambient conditions (23.8 ~ 28.4 °C and 77.1 ~ 81.0 % of relative humidity). Sweet potato roots were randomly chosen from each replicate and evaluated for measurement of weight loss, sugar content analysis, and sprouting after 0, 14, 24, 48, 56, 70, 84, and 98 days of storage. Fresh sweet potato roots were baked at 200 °C for 60 min then samples were taken for sugar analysis. After 14 days of ambient condition storage, the sprouting percentages for TNG57, TNG66, and TNG73 were 100, 85, and 95 % respectively. When sweet potatoes were stored at 15 °C, the weight loss became less and no sweet potato root sprouted after 14 days of storage. Because manufacturers can store sweet potatoes at 15 °C for almost 2 month without other treatments, the supply capacity shortage in July and September can be reduced. The total sugar content slowly increased along with increasing the storage time. After baking, the total sugar content of sweet potatoes significantly increased due to the formation of maltose. Maltose became the major sugar of baked sweet potatoes. Raw sweet potatoes stored at 15 °C had higher total sugar contents after baking than those stored under ambient conditions. Raw sweet potatoes were recommended to be stored at 15 °C before baking.

  6. Tritium enrichment from aqueous solutions using cryosublimation of mono- and polysaccharides

    International Nuclear Information System (INIS)

    Wierczinski, B.; Muellen, G.; Rosenhauer, S.

    2008-01-01

    Cryosublimation is one technique, which allows the accumulation of tritium from aqueous solutions using certain chemical compounds. After studying several inorganic compounds such as zeolites and metal salts, as well as some humic substances, we have now investigated several mono- and polysaccharides, such as glucose, maltose, galactose, starch, agar, and gelatine. Except for starch all of the above mentioned compounds showed a clear enrichment of tritium. The highest value was reached for Agartine, which gave an enrichment factor of 6.2. Since mono- and polysaccharides form weak hydrogen bonds, these results prove again our theory that tritium is preferably accumulated in exchangeable hydrogen bonds. (author)

  7. Effects of medium, carbon and nitrogen source, pH and light on the growth of Mycosphaerella musicola

    OpenAIRE

    Montarroyos, Angélica Virgínia Valois; Coelho, Rildo Sartori Barbosa; Ferraz, Gabriela de Morais Guerra; Santos, Rômulo dos; Santos, Venézio Felipe dos; Andrade, Paulo Paes de

    2007-01-01

    Este trabalho objetivou o estabelecimento de condições favoráveis ao crescimento micelial de M. musicola in vitro, pela avaliação em quatro experimentos, da influência de diferentes meios de cultura (BDA, BDA/IFB, V8, V8/IFB, V8/CaCO3 e V8/CaCO3/IFB); combinações de fontes de carbono (dextrose, maltose, sacarose e xilose) e nitrogênio (peptona, glicina, nitrato de potássio e de sódio); valores de pH (6,8; 6,4; 5,7 e 4,9) e regimes luminosos (escuro contínuo, alternância luminosa e claro contí...

  8. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  9. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  10. Purification, enzymatic characterization, and nucleotide sequence of a high-isoelectric-point alpha-glucosidase from barley malt

    DEFF Research Database (Denmark)

    Frandsen, T P; Lok, F; Mirgorodskaya, E

    2000-01-01

    in the transition state complex. Mass spectrometry of tryptic fragments assigned the 92-kD protein to a barley cDNA (GenBank accession no. U22450) that appears to encode an alpha-glucosidase. A corresponding sequence (HvAgl97; GenBank accession no. AF118226) was isolated from a genomic phage library using a c......High-isoelectric-point (pI) alpha-glucosidase was purified 7, 300-fold from an extract of barley (Hordeum vulgare) malt by ammonium sulfate fractionation, ion-exchange, and butyl-Sepharose chromatography. The enzyme had high activity toward maltose (k(cat) = 25 s(-1)), with an optimum at pH 4...

  11. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  12. Conditions of activation of yeast plasma membrane ATPase.

    Science.gov (United States)

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  13. Morphologic aspects of Tetratrichomonas didelphidis isolated from opossums Didelphis marsupialis and Lutreolina crassicaudata

    Directory of Open Access Journals (Sweden)

    Tiana Tasca

    2001-02-01

    Full Text Available Tetratrichomonas didelphidis (Hegner & Ratcliffe, 1927 Andersen & Reilly, 1965 is a flagellate protozoan found in the intestine, cecum, and colon of Didelphis marsupialis. The parasitic protozoa used in this study was found and isolated in the intestine of opossums in Pavlova starch-containing medium in Florianópolis, State of Santa Catarina, Brazil, from D. marsupialis and Lutreolina crassicaudata. The strains were cultivated in Diamond medium without maltose and with starch solution, pH 7.5 at 28°C. The specimens were stained by the Giemsa method and Heidenhain's iron hematoxylin. The light microscopy study of the trophozoites revealed the same morphologic characteristics as specimens previously described.

  14. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Petersen, B.O.; Westphal, Y.

    2010-01-01

    . LaMP has about 35 and 26% amino acid sequence identity with GH65 trehalose phosphorylase (TP) and kojibiose phosphorylase (KP) from Thermoanaerobacter brockii ATCC35047. The structure of L. brevis MP and multiple sequence alignment identified (alpha/alpha)(6)-barrel loop 3 that forms the rim...... group of the glucose moiety at subsite +1, by corresponding segments from Ser426-Ala431 in TP and Thr419-Phe427 in KP, thus conferred LaMP with phosphorolytic activity towards trehalose and kojibiose, respectively. Two different loop 3 LaMP variants catalysed the formation of trehalose and kojibiose...

  15. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits

    Directory of Open Access Journals (Sweden)

    Theerapong Krajaejun

    2018-06-01

    Full Text Available The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s. Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected

  16. Effect of pH on Cleavage of Glycogen by Vaginal Enzymes.

    Directory of Open Access Journals (Sweden)

    Greg T Spear

    Full Text Available Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota.

  17. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food.

    Science.gov (United States)

    Lim, Hee Seon; Cha, In-Tae; Roh, Seong Woon; Shin, Hae-Hun; Seo, Myung-Ji

    2017-03-28

    This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

  18. Combination of sugar analysis and stable isotope ratio mass spectrometry to detect the use of artificial sugars in royal jelly production.

    Science.gov (United States)

    Wytrychowski, Marine; Daniele, Gaëlle; Casabianca, Hervé

    2012-05-01

    The effects of feeding bees artificial sugars and/or proteins on the sugar compositions and (13)C isotopic measurements of royal jellies (RJs) were evaluated. The sugars fed to the bees were two C4 sugars (cane sugar and maize hydrolysate), two C3 sugars (sugar beet, cereal starch hydrolysate), and honey. The proteins fed to them were pollen, soybean, and yeast powder proteins. To evaluate the influence of the sugar and/or protein feeding over time, samples were collected during six consecutive harvests. (13)C isotopic ratio measurements of natural RJs gave values of around -25 ‰, which were also seen for RJs obtained when the bees were fed honey or C3 sugars. However, the RJs obtained when the bees were fed cane sugar or corn hydrolysate (regardless of whether they were also fed proteins) gave values of up to -17 ‰. Sugar content analysis revealed that the composition of maltose, maltotriose, sucrose, and erlose varied significantly over time in accordance with the composition of the syrup fed to the bees. When corn and cereal starch hydrolysates were fed to the bees, the maltose and maltotriose contents of the RJs increased up to 5.0 and 1.3 %, respectively, compared to the levels seen in authentic samples (i.e., samples obtained when the bees were fed natural food: honey and pollen) that were inferior to 0.2% and not detected, respectively. The sucrose and erlose contents of natural RJs were around 0.2 %, whereas those in RJs obtained when the bees were fed cane or beet sugar were as much as 4.0 and 1.3 %, respectively. The combination of sugar analysis and (13)C isotopic ratio measurements represents a very efficient analytical methodology for detecting (from early harvests onward) the use of C4 and C3 artificial sugars in the production of RJ.

  19. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    International Nuclear Information System (INIS)

    Hwa Park, K.; Jeong Kim, M.; Seob Lee, H.; Kim, D.; Soo Han, N.; Robyt, J.F.

    1998-01-01

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an α-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached α-(1-6) to d-glucose, d-mannose, d-galactose, and methyl α-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked α-(1-5) and α-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of α-(1-3) and/or α-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked α-(1-4) to the glucose residue. α,α-Trehalose gave two major products with PTS linked α-(1-6) and α-(1-4). Maltitol gave two major products with PTS linked α-(1-6) and α-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked α-(1-6) and α-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked α-(1-6) and α-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked α-(1-5) as the major product and d-glucitol gave PTS linked α-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13 C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xu Deng

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6 disaccharides isomaltose and palatinose, with Michaëlis–Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an α-(1,6 linkage, but also α-(1,2, α-(1,3 and α-(1,5 disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for α-(1,6 substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties.

  1. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    Science.gov (United States)

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  2. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation.

    Science.gov (United States)

    Ma, Min; Okuyama, Masayuki; Sato, Megumi; Tagami, Takayoshi; Klahan, Patcharapa; Kumagai, Yuya; Mori, Haruhide; Kimura, Atsuo

    2017-08-01

    Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1-4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1-4)Glc(α1-4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1-6)Glc(α1-4)Glc], isomaltose [Glc(α1-6)Glc], and isomaltotriose [Glc(α1-6)Glc(α1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).

  3. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Hwa Park, K; Jeong Kim, M; Seob Lee, H; Kim, D [Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University, Suwon (Korea, Republic of); Soo Han, N; Robyt, J F [Laboratory for Carbohydrate Chemistry and Enzymology, Department of Biochemistry and Biophysics, Iowa State University, Ames, IA (United States)

    1998-12-15

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an {alpha}-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached {alpha}-(1-6) to d-glucose, d-mannose, d-galactose, and methyl {alpha}-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked {alpha}-(1-5) and {alpha}-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of {alpha}-(1-3) and/or {alpha}-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked {alpha}-(1-4) to the glucose residue. {alpha},{alpha}-Trehalose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4). Maltitol gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked {alpha}-(1-5) as the major product and d-glucitol gave PTS linked {alpha}-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and {sup 13}C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Substrate utilisation by plant-cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M W

    1982-01-01

    Plant cell cultures have been grown on a wide range of carbon sources in addition to the traditional ones of sucrose and glucose. Biomass yields and growth rates vary greatly between the different carbon sources and there is a variation in response between different cell cultures to individual carbon sources. Some attempts have been made to grow cell cultures on 'waste' and related carbon sources, such as lactose, maltose, starch, molasses and milk whey. Only maltose was found to support growth to anything near the levels observed with glucose and sucrose. In the case of molasses carbon source cell growth was either non-existent or only just measurable. All the data point to glucose as being the most suitable carbon source, principally on the grounds of biomass yield and growth rate. It should be noted, however, that other carbon sources do appear to have a major (positive) influence on natural product synthesis. Uptake into the cell is an important aspect of carbohydrate utilisation. There is strong evidence that from disaccharides upwards, major degradation to smaller units occurs before uptake. In some cases the necessary enzymes appear to be excreted into the culture broth, in others they may be located within the cell wall; invertase that hydrolyses sucrose is a good example. Once the products of carbohydrate degradation and mobilisation enter the cell they may suffer one of two fates, oxidation or utilisation for biosynthesis. The precise split between these two varies depending on such factors as cell growth rate, cell size, nutrient broth composition and carbohydrate status of the cells. In general rapidly growing cells have a high rate of oxidation, whereas cells growing more slowly tend to be more directed towards biosynthesis. Carbohydrate utilisation is a key area of study, underpinning as it does both biomass yield and natural product synthesis. (Refs. 13).

  5. Molecular cloning and biochemical characterization of an α-amylase family from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Junying Wang

    2018-03-01

    Full Text Available Background: α-Amylase is widely used in the starch processing, food and paper industries, hydrolyzing starch, glycogen and other polysaccharides into glucose, maltose and oligosaccharides. An α-amylase gene family from Aspergillus niger CBS513.88 encode eight putative α-amylases. The differences and similarities, biochemical properties and functional diversity among these eight α-amylases remain unknown. Results: The eight genes were cloned and expressed in Pichia pastoris GS115 by shaking-flask fermentation under the induction of methanol. The sequence alignment, biochemical characterizations and product analysis of starch hydrolysis by these α-amylases were investigated. It is found that the eight α-amylases belonged to three different groups with the typical structure of fungal α-amylase. They exhibited maximal activities at 30–40°C except AmyG and were all stable at acidic pH. Ca2+ and EDTA had no effects on the activities of α-amylases except AmyF and AmyH, indicating that the six amylases were Ca2+ independent. Two novel α-amylases of AmyE and AmyF were found. AmyE hydrolyzed starch into maltose, maltotriose and a small amount of glucose, while AmyF hydrolyzed starch into mainly glucose. The excellent physical and chemical properties including high acidic stability, Ca2+-independent and high maltotriose-forming capacity make AmyE suitable in food and sugar syrup industries. Conclusions: This study illustrates that a gene family can encode multiple enzymes members having remarkable differences in biochemical properties. It provides not only new insights into evolution and functional divergence among different members of an α-amylase family, but the development of new enzymes for industrial application. Keywords: Biochemical properties, Food industry, Fungal α-amylase, Glycosyl hydrolase family, Glycosyl hydrolase family, Industrial application, Paper industry, Recombinant Pichia pastoris, Starch processing, α-amylase cloning

  6. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria

    Directory of Open Access Journals (Sweden)

    Looger Loren L

    2008-06-01

    Full Text Available Abstract Background Engineering microorganisms to improve metabolite flux requires detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. These sensors have been applied successfully in mammalian and plant cells but potentially could also be used to monitor steady-state levels of metabolites in microorganisms using fluorimetric assays. Sensors for hexose and pentose carbohydrates could help in the development of fermentative microorganisms, for example, for biofuels applications. Arabinose is one of the carbohydrates to be monitored during biofuels production from lignocellulose, while maltose is an important degradation product of starch that is relevant for starch-derived biofuels production. Results An Escherichia coli expression vector compatible with phage λ recombination technology was constructed to facilitate sensor construction and was used to generate a novel fluorescence resonance energy transfer sensor for arabinose. In parallel, a strategy for improving the sensor signal was applied to construct an improved maltose sensor. Both sensors were expressed in the cytosol of E. coli and sugar accumulation was monitored using a simple fluorimetric assay of E. coli cultures in microtiter plates. In the case of both nanosensors, the addition of the respective ligand led to concentration-dependent fluorescence resonance energy transfer responses allowing quantitative analysis of the intracellular sugar levels at given extracellular supply levels as well as accumulation rates. Conclusion The nanosensor destination vector combined with the optimization strategy for sensor responses should help to accelerate the development of metabolite sensors. The new carbohydrate fluorescence resonance energy transfer sensors can be used for in vivo

  7. The effects of chronic alcohol self-administration in nonhuman primate brain networks.

    Science.gov (United States)

    Telesford, Qawi K; Laurienti, Paul J; Davenport, April T; Friedman, David P; Kraft, Robert A; Daunais, James B

    2015-04-01

    Long-term alcohol abuse is associated with change in behavior, brain structure, and brain function. However, the nature of these changes is not well understood. In this study, we used network science to analyze a nonhuman primate model of ethanol self-administration to evaluate functional differences between animals with chronic alcohol use and animals with no exposure to alcohol. Of particular interest was how chronic alcohol exposure may affect the resting state network. Baseline resting state functional magnetic resonance imaging was acquired in a cohort of vervet monkeys. Animals underwent an induction period where they were exposed to an isocaloric maltose dextrin solution (control) or ethanol in escalating doses over three 30-day epochs. Following induction, animals were given ad libitum access to water and a maltose dextrin solution (control) or water and ethanol for 22 h/d over 12 months. Cross-sectional analyses examined region of interests in hubs and community structure across animals to determine differences between drinking and nondrinking animals after the 12-month free access period. Animals were classified as lighter (intake pattern during the 12-month ethanol free access period. Statistical analysis of hub connectivity showed significant differences in heavier drinkers for hubs in the precuneus, posterior parietal cortices, superior temporal gyrus, subgenual cingulate, and sensorimotor cortex. Heavier drinkers were also shown to have less consistent communities across the brain compared to lighter drinkers. The different level of consumption between the lighter and heavier drinking monkeys suggests that differences in connectivity may be intake dependent. Animals that consume alcohol show topological differences in brain network organization, particularly in animals that drink heavily. Differences in the resting state network were linked to areas that are associated with spatial association, working memory, and visuomotor processing. Copyright

  8. Influence of development, postharvest handling, and storage conditions on the carbohydrate components of sweetpotato (Ipomea batatas Lam.) roots.

    Science.gov (United States)

    Nabubuya, Agnes; Namutebi, Agnes; Byaruhanga, Yusuf; Narvhus, Judith; Wicklund, Trude

    2017-11-01

    Changes in total starch and reducing sugar content in five sweetpotato varieties were investigated weekly during root development and following subjection of the roots to different postharvest handling and storage conditions. Freshly harvested (noncured) roots and cured roots (spread under the sun for 4 days at 29-31°C and 63-65% relative humidity [RH]) were separately stored at ambient conditions (23°C-26°C and 70-80% RH) and in a semiunderground pit (19-21°C and 90-95% RH). Changes in pasting properties of flour from sweetpotato roots during storage were analyzed at 14-day intervals. Significant varietal differences ( p  < .05) in total starch, sucrose, glucose, maltose, and fructose concentrations were registered. The total starch and sucrose content of the roots did not change significantly ( p  < .05) during root development (72.4 and 7.4%, respectively), whereas the average concentrations of glucose, maltose, and fructose decreased markedly (0.46-0.18%, 0.55-0.28%, and 0.43-0.21%), respectively. Storage led to decrease in total starch content (73-47.7%) and increase in sucrose and glucose concentrations (8.1-11.2% and 0.22-1.57%, respectively). Storage also resulted in reduction in sweetpotato flour pasting viscosities. Curing resulted in increased sucrose and glucose concentrations (9.1-11.2% and 0.45-0.85%, respectively) and marked reduction ( p  < .05) in total starch content (72.9-47.6%). This resulted in low pasting viscosities compared to flour from storage of uncured roots. These findings show that significant changes occur in the carbohydrate components of sweetpotato roots during storage compared to development and present an opportunity for diverse utilization of flours from sweetpotato roots in the food industry.

  9. Identification and functional properties of dominant lactic acid bacteria isolated from Kahudi, a traditional rapeseed fermented food product of Assam, India

    Directory of Open Access Journals (Sweden)

    Gunajit Goswami

    2017-09-01

    Full Text Available Kahudi or Pani tenga is a very unique fermented mustard product of Assam that is prepared by mixing coarsely ground mustard with extracts of acidic Garcinia pedunculata (Thekera or tamarind. Kahudi is produced through a spontaneous and uncontrolled solid state fermentation and very little scientific effort has been directed to understand its microflora and their functional properties. In this paper, we report the microbial flora and their dynamics during Kahudi fermentation with special emphasis on lactic acid bacteria (LAB. LAB were found to be dominant (8 log CFU/g over other microbial flora (4 log CFU/g during the fermentation process leading to Kahudi formation. The microbial load in Kahudi did not include any mycelial molds or pathogenic enteric bacteria. Combination of phenotypic parameters, biochemical tests, and 16S rDNA gene sequencing revealed the dominant group of LAB as Enterococcus durans, Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus casei. The sugar fermentation and enzyme profile analysis revealed the ability of the microbial consortia to metabolize an array of indigestible sugars including D-mannose, mannitol, sorbitol, methyl-α-D-mannopyranoside, methyl-α-D-glucopyranoside, N-acetylglucosamine, amygdalin, and arbutin. Although the isolates showed good acid phosphatase activity they had weak extracellular phytase activity. This is the first report on the microbial dynamics and involvement of LAB during Kahudi fermentation.

  10. Schinus terebinthifolius Raddi extract and linoleic acid from Passiflora edulis synergistically decrease melanin synthesis in B16 cells and reconstituted epidermis.

    Science.gov (United States)

    Jorge, A T S; Arroteia, K F; Santos, I A; Andres, E; Medina, S P H; Ferrari, C R; Lourenço, C B; Biaggio, R M T T; Moreira, P L

    2012-10-01

    Several treatments for skin whitening are available today, but few of them are completely adequate, especially owing to the carcinogenic potential attributed to classical drugs like hydroquinone, arbutin and kojic acid. To provide an alternative and safer technology for whitening, we developed two botanical compounds originated from Brazilian biodiversity, an extract of Schinus terebinthifolius Raddi and a linoleic acid fraction isolated from Passiflora edulis oil. The whitening effect of these compounds was assessed using biochemical assays and in vitro models including cellular assays and equivalent skin. The results showed that S. terebinthifolius Raddi extract is able to reduce the tyrosinase activity in vitro, and the combination of this extract with linoleic acid is able to decrease the level of melanin produced by B16 cells cultured with melanocyte-stimulating hormone. Furthermore, melanin was also reduced in human reconstituted epidermis (containing melanocytes) treated with the compounds. The combination of the compounds may provide a synergistic positive whitening effect rather than their isolated use. Finally, we demonstrated that the performance of these mixed compounds is comparable to classical molecules used for skin whitening, as kojic acid. This new natural mixture could be considered an alternative therapeutic agent for treating hyperpigmentation and an effective component in whitening cosmetics. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...

  12. Fragility of complexity biophysical systems by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, Salvatore [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)]. E-mail: smagazu@unime.it; Migliardo, Federica [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Bellocco, Ersilia [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Lagana, Giuseppina [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Mondelli, Claudia [CNR-INFM OGG and CRS-SOFT, c/o ILL, 6 Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)

    2006-11-15

    Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions.

  13. Properties of Thermus ruber Strains Isolated from Icelandic Hot Springs and DNA:DNA Homology of Thermus ruber and Thermus aquaticus

    Science.gov (United States)

    Sharp, Richard J.; Williams, Ralph A. D.

    1988-01-01

    Seventeen pink-pigmented strains of the genus Thermus were isolated from samples collected from thermal areas of Iceland. The strains were examined by using phenotypic characterization and DNA:DNA homology and were compared with recognized strains. Visually, the strains could be divided into three groups based on their pigmentation; however, spectroscopic studies of the pigments indicated little difference among them. Most strains required a vitamin supplement for growth and used fructose, maltose, mannose, or sucrose as the sole carbon source. In the presence of nitrate, two strains were able to grow under anaerobic conditions. The optimum growth temperature was 60°C; growth did not occur at 30 or 70°C. PMID:16347714

  14. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon.

    Science.gov (United States)

    Wang, J W; Wu, J H; Huang, W Y; Tan, R X

    2006-03-01

    The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by the endophytic fungus Monotospora sp. were evaluated. The optimal temperature and initial pH for laccase production by Monotospora sp. in submerged culture were found to be 30 degrees C and 8.5, respectively. Maltose (2 g l(-1)) and ammonium tartrate (10 g l(-1)) were the most suitable carbon and nitrogen source for laccase production. Under optimal culture medium, the maximum laccase activity was determined to be 13.55 U ml(-1), which was approximately four times higher than that in basal medium. This is the first report on laccase production by an endophytic fungus.

  15. Improvement of Xylanase Production by Cochliobolus sativus in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2008-01-01

    Full Text Available The xylanase production by a new Cochliobolus sativus Cs5 strain was improved under submerged fermentation. The xylanase was induced by xylan and repressed by glucose, sucrose, maltose, xylose, starch and cellulose. Highest enzyme production (98.25 IU/mL was recorded when wheat straw (4 % by mass per volume was used as a carbon source after 120 h of incubation. NaNO3 increased xylanase production 5.4-fold as compared to the control. Optimum initial pH was found to be 4.5 to 5. The C. sativus Cs5 strain grown under submerged culture in a simple medium proved to be a promising microorganism for xylanase production.

  16. Recombinant expression and purification of an Oxysterol Binding Protein from Aspergillus oryzae 3.042

    Directory of Open Access Journals (Sweden)

    Zhang Xian

    2017-01-01

    Full Text Available A full-length cDNA encoding a candidate Oxysterol-binding protein(OSBP from Aspergillus oryzae (AoOSBP was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP fusion protein. The MBP-AoOSBP protein from the importantly industrial fungus A. oryzae was purified by amylose resin and chromatography column. SDS-PAGE showed that MBP-AoOSBP has an estimated molecular weight of 182 kDa. OSBP and its homologues (ORPs own the affinity for oxysterols, cholesterol and glycerophospholipids. According to the superiority of A. oryzae in the fermented foods and also in food-grade productions pharmaceutical enzyme manufacture, it is meaningful to identify the biochemical properties of OSBP in A. oryzae.

  17. Expression of an engineered granule-bound Escherichia coli maltose acetyltransferase in wild-type and amf potato plants

    NARCIS (Netherlands)

    Nazarian, F.; Vincken, J.P.; Qin, J.; Suurs, L.C.J.M.; Visser, R.G.F.

    2007-01-01

    Starch is used in many industrial applications, but often requires chemical derivatization to enhance its properties before use. In particular, the stability of starch polymers in solution is improved by acetylation. A drawback of this treatment is the use of pollutant chemicals. A biological

  18. Enthalpic characteristics of interactions occurring between an ascorbic acid and some saccharides in aqueous solutions

    International Nuclear Information System (INIS)

    Terekhova, Irina V.; Kulikov, Oleg V.; Titova, Elena S.

    2004-01-01

    The enthalpies of solution of mono- and disaccharides were measured in water and aqueous ascorbic acid solutions at 298.15 K using a calorimeter of solution. Enthalpies of transfer of saccharides from water to aqueous ascorbic acid solutions were derived, and enthalpic coefficients of pair interaction h xy were calculated according to MacMillan-Mayer theory. Interactions of ascorbic acid with D-fructose and sucrose are energetically favorable and characterized by negative h xy coefficients while h xy for the interactions occurring between ascorbic acid and α-D glucose, D-galactose and maltose are positive. The obtained results are interpreted in terms of the influence of structure and solvation of solutes on the thermodynamic parameters of their interaction in solutions

  19. Effect of active acidity on the stability of amylolytic enzymes in fermentation of corn mash

    Energy Technology Data Exchange (ETDEWEB)

    Zherebtsov, N A; Mal' tsev, P M

    1957-01-01

    The effect of pH between 6.5 and 3.5 on the activity of ..cap alpha..- and ..beta..-amylases, dextrinase, and on the yield of alcohol in the fermentation of corn mash were investigated. The minimum of unfermented maltose and maximum activity of amylolytic enzymes were found from fermentations between pH 5.5 and 4.9. Under these conditions ..beta..-amylase and dextrinase were unaffected, while ..cap alpha..-amylase activity was reduced to 59.1% initial activity. Considerable inactivation of ..beta..-amylase and dextrinase set in at pH 4.0 and ..cap alpha..-amylase at pH 4.5. The highest yield of alcohol was produced from mash with initial pH 6.0 obtained by addition of sodium hydroxide.

  20. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    Science.gov (United States)

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  1. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  2. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture.

    Science.gov (United States)

    Shepherd, M G; Sullivan, P A

    1976-04-01

    The growth characteristics of Candida albicans CM145,348 have been examined under aerobic conditions in continuous culture. At different steady states the environment was controlled with respect to the concentrations of dissolved oxygen, carbon and nitrogen, the pH, and the temperature. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release and respiration quotient were examined as a function of the dilution rate. The morphology depended on the carbon source. Maltose produced a mycelial morphology, whereas with lactate a yeast culture was obtained. With fructose or glucose as a carbon source a mixed morphology of yeast, pseudo-mycelial and mycelial forms was produced. A larger number of different growth conditions were examined in batch culture but a mixed morphology was always obtained.

  3. Production of xylanases and cellulases by aspergillus fumigatus ms16 using crude lignocellulosic substrates

    International Nuclear Information System (INIS)

    Naseeb, S.; Sohai, M.; Ahmad, A.; Khan, S.A.

    2015-01-01

    Xylanolytic and cellulolytic potential of a soil isolate, Aspergillus fumigatus (MS16) was studied by growing it on a variety of lignocellulosics, purified cellulose and xylan supplemented media. It was noted that carboxymethyl cellulose, salicin and xylan induce the -glucosidase and xylanase, respectively production of endoglucanase. The study revealed that Aspergillus fumigatus (MS16) co-secretes xylanase and cellulase in the presence of xylan; the ratio of the two enzymes was influenced by the initial pH of the medium. The maximum titers of xylanase and cellulase were noted at initial pH of 5.0. Relatively higher titers of both the enzymes were obtained when the fungus was cultivated at 35 degree C. Whereas, cellulase production was not detected when the fungus was cultivated at 40 degree C. The volumetric productivity (Qp) of xylanase was much higher than cellulases. The organism produced 2-3 folds higher titers of xylanase when grown on lignocellulosic materials in submerged cultivation than under solid-state cultivation, suggesting a different pattern of enzyme production in presence and in absence of free water. The partial characterization of enzymes showed that xylanase from this organism has -glucosidase. The higher melting temperature than endoglucanase and optimum temperature for activity was higher for xylanases than cellulases, whereas the optimum pH differed slightly i.e. in the range of 4.0-5.0. Enzyme preparation from this organism was loaded on some crude substrates and it showed that the enzyme preparation can be used to hydrolyze a variety of vegetable and agricultural waste materials. (author)

  4. REGULATION OF EXPRESSION OF MULTIPLE BETA- GLUCOSIDASES OF ASPERGILLUS TERREUS AND THEIR PURIFICATION AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Asiya Nazir

    2009-02-01

    Full Text Available This study reports the regulation and purification of -glucosidases from a thermotolerant Aspergillus terreus AN1 strain, previously reported for efficient deinking of composite paper waste. The differential expression of four -glucosidase isoforms, in response to carbon sources in production medium, was studied by electrophoretically resolving proteins by polyacrylamide gel electro-phoresis analysis (PAGE and developing zymograms using methylum-belliferyl -D glucoside as substrate. Three -glucosidases (GI, GII & GIII were purified using chromatographic techniques. SDS-PAGE revealed the respective molecular masses of GI, GII, and GIII, as 29, 43, and 98 KDa, and isoelectric point (pI to be 2.8, 3.7, and 3.0. The -glucosidases exhibited diverse pH and temperature optima as well as stability. -Glucosidase I (GI specifically recog-nized pNP--glucopyranoside (pNPG as a substrate, whereas, -glucosidase II (GII and III (GIII also showed activities against cellobiose and salicin. In contrast to GII and GIII, the activity of GI was positively influenced in the presence of hexoses/pentoses and alcohols. Km and Vmax for hydrolysis of pNPG by GI, GII, andGIII were found to be 14.2 mM and 166.9 µmol -1mg protein -1, 4.37 mM, and 34.7 µmol -1mg proteins -1, and 11.1 mM and 378.7µ mol -1 mg protein -1, respectively.

  5. Liquid chromatographic determination of caffeine and adrenergic stimulants in food supplements sold in Brazilian e-commerce for weight loss and physical fitness.

    Science.gov (United States)

    Viana, Carine; Zemolin, Gabriela M; Müller, Larissa S; Dal Molin, Thaís R; Seiffert, Helena; de Carvalho, Leandro M

    2016-01-01

    Methyl-xanthines and adrenergic stimulants, such as caffeine and synephrine, are commonly added to food supplements due to their stimulating and thermogenic effects. In addition, the abusive consumption of food supplements with ergogenic and aesthetic purposes has been observed worldwide. This work describes the study of caffeine, p-synephrine, hordenine, octopamine, tyramine, ephedrine and salicin as stimulants in dietary supplements marketed in Brazil for weight loss and physical fitness claims. A total of 94 different products were acquired from 30 Brazilian websites. Thus, the sampling of marketed supplements was performed in virtual commerce (e-commerce) with claims of weight loss, appetite reduction, fat burning and metabolism acceleration. The developed analytical method involved the separation of the stimulants by HPLC with diode array detection (HPLC-DAD) by using a gradient elution of flow rate (0.7-2.5 ml min(-1)) and mobile phase composition (0.1% H3PO4/methanol). The validated method was applied to the study of 46 dietary supplements. Caffeine, p-synephrine and ephedrine were found to be present as stimulants in 52% of the studied samples marketed as encapsulated or bulk forms. Caffeine was found to be present in concentrations that represent doses from 25.0 to 1476.7 mg day(-1). Synephrine was found in concentrations that represent doses from 59.1 to 127.0 mg day(-1). Ephedrine was found to be associated with caffeine in one formulation at a concentration representing a 26.1 mg day(-1) dosage.

  6. The Italian contributions to the history of salicylates

    Directory of Open Access Journals (Sweden)

    Giampiero Pasero

    2011-09-01

    Full Text Available It is well-known that the modern history of salicylates began in 1899 when the compound acetylsalicylic acid was registered and introduced commercially as “aspirin” by the Bayer Company of Germany. As a matter of fact, however, remedies made from willow bark had been used to treat fever and rheumatic complaints at least since 1763, when Edward Stone described their efficacy against malarian fever. A number of Italian scientists made significant contributions during the long period of research leading up to the synthesis of acetylsalicylic acid and its widespread use in rheumatic diseases. In this paper we will review the contributions of some of these researchers, beginning with Bartolomeo Rigatelli, who in 1824 used a willow bark extract as a therapeutic agent, denominating it “salino amarissimo antifebbrile” (very bitter antipyretic salt. In the same year, Francesco Fontana described this natural compound, giving it the name “salicina” (salicin. Two other Italian chemists added considerably to current knowledge of the salicylates: Raffaele Piria in 1838, while working as a research fellow in Paris, extracted the chemical compound salicylic acid, and Cesare Bertagnini in 1855 published a detailed description of the classic adverse event associated with salicylate overdoses – tinnitus – which he studied by deliberately ingesting excessive doses himself. Bertagnini and above all Piria also played conspicuous roles in the history of Italy during the period of the Italian Risorgimento, participating as volunteers in the crucial battle of Curtatone and Montanara during the first Italian War of Independence.

  7. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2014-01-01

    Full Text Available [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1 and microphthalmia-associated transcriptional factor (MITF. In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126 or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor (LY294002. Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH- induced melanogenesis through the acceleration of extracellular responsive kinase (ERK and phosphatidylinositol-3-kinase- (PI3K/Akt- mediated MITF degradation.

  8. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan [Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (United States); Casjens, Sherwood [Department of Pathology, Division of Cell Biology and Immunology, University of Utah Medical School, Salt Lake City, UT 84112 (United States); Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (United States)

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  9. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    Science.gov (United States)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  10. Investigations to explore interactions in (polyhydroxy solute + L-ascorbic acid + H2O) solutions at different temperatures: Calorimetric and viscometric approach

    International Nuclear Information System (INIS)

    Banipal, Parampaul K.; Sharma, Mousmee; Aggarwal, Neha; Banipal, Tarlok S.

    2016-01-01

    Highlights: • The hydrophilic-hydrophilic interactions predominate at low temperatures. • Enthalpy change for polyol is less exothermic than its parent saccharide. • Δ dil C o p,2,m values suggest structural increase in presence of L-ascorbic acid. • Solutes act as kosmotropes in L-ascorbic acid (aq) solutions as indicated by dB/dT. - Abstract: Isothermal titration micro-calorimeter has been used to measure the enthalpy change (q) of polyhydroxy solutes [(+)-D-xylose, xylitol, (+)-D-glucose, 2-deoxy-D-glucose, (+)-methyl-α-D-glucopyranoside, and (+)-maltose monohydrate] in water and in (0.05, 0.15, and 0.25) mol·kg −1 L-ascorbic acid (aq) solutions at (288.15, 298.15, 308.15, and 318.15) K. Limiting enthalpies of dilution (Δ dil H°) of these solutes were calculated from heat evolved/absorbed during calorimetric experiments. Further thermodynamic quantities such as limiting enthalpies of dilution of transfer (Δ tr Δ dil H°), change in heat capacity (Δ dil C o p,2,m ), and pair (h AB ) and triplet (h ABB ) enthalpic interaction coefficients were also calculated and used to explore the nature of interactions of solutes with cosolute (L-ascorbic acid). The Jones-Dole viscosity B-coefficients for (+)-D-xylose, xylitol, (+)-D-galactose, galactitol, (+)-D-glucose, 2-deoxy-D-glucose, (+)-methyl-α-D-glucopyranoside, and (+)-maltose monohydrate in water and in (0.05, 0.15, 0.25, and 0.35) mol·kg −1 L-ascorbic acid (aq) solutions have been determined from viscosity (η) data measured over temperature range (288.15–318.15) K and at pressure, P = 101.3 kPa. The temperature dependence of B-coefficients (dB/dT), and viscosity B-coefficients of transfer (Δ tr B) of solutes from water to cosolute have also been estimated. These parameters have been discussed in terms of structure-making (kosmotropic) or -breaking (chaotropic) behavior of solutes.

  11. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Mukhtar, Salma; Shahid, Izzah; Mehnaz, Samina; Malik, Kauser A

    2017-12-01

    Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6μg/ml, 217.2μg/ml and 148.1μg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results

  12. Isolation, purification and characterization of β-amylase from Dioscorea hispida Dennst

    Science.gov (United States)

    Oktiarni, Dwita; Lusiana, Simamora, Febri Yanti; Gaol, Jusni M. Lumban

    2015-09-01

    β-amylase (E.C 3.2.1.2) is an enzyme commonly found in plants and bacteria. The enzyme is an exo-acting carbohydrolase which hydrolyzes α-1.4-glucosidic linkages of starch, removing maltose units from the non-reducing end of the polysaccharide chain, producing β-maltose and β-limit dextrin as the final product. β-amylase is widely distributed in the higher plants such as sweet potato. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-stalling agents in baking. This enzyme was extracted from Dioscorea hispida Dennst in 0.05 M acetate buffer pH 4.8 and followed by ammonium sulfate fractionation at cold temperature (10°C). Ammonium sulfate fractionation was shared into fraction of 0-60%, 60-70%, 70-80% and 80-100%. The fraction containing high of specific activity (determined by Somogyi-Nelson and Lowry methods) was futher purified by dialysis. Fraction with high enzyme activity of β-amylase were fraction 60-70% and 70-80%, with specific activity of Dioscorea hispida Dennst were 1.32 and 1.55 mg sugar.mg protein-1.minute-1, whereas specific activity of crude extract enzyme was 0.21 mg sugar.mg protein-1.minute-1. After purified with dialysis, fraction with high enzyme activity of β-amylase were fraction of 60-70% and 70-80%, with specific activity of Dioscorea hispida Dennst was 2.72 and 4.24 mg sugar.mg protein-1.minute-1. The purified Dioscorea hispida Dennst β-amylase from dialysis showed increasing in spesific activity the crude enzyme as much as 24 folds. The characterization of enzyme showed that Dioscorea hispida Dennst derived enzyme had optimum pH of 5.5 and temperature of 70°C. The kinetic parameters of purified Dioscorea hispida Dennst β-amylase showed that the KMapp, Vmaxapp value and Hill constant were 0.0211 mg/ml, 9.63 mg sugar.minute-1 and 1.34, respectively.

  13. Structure of the enzymatically synthesized fructan inulin

    International Nuclear Information System (INIS)

    Heyer, A.G.; Schroeer, B.; Radosta, S.; Wolff, D.; Czapla, S.; Springer, J.

    1998-01-01

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10 6 and 90x10 6 g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Effect of gamma irradiation, culture conditions and media composition on metallothionein production by Bacillus pantothenticus

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Swailam, H.M.; EL-Sonbaty, S.M.; Sayed, M.A.

    2010-01-01

    Metallothioneins (MTs) are cystine rich proteins found in all living organisms and play important roles as a radical scavenger and in metal homeostasis. Their optimum culture conditions and media composition of B. pantothenticuszn and B.pantothenticuscu were 1.5 g/L maltose and 1.5 g/l lactose as media carbon sources respectively, 48 hrs incubation period, 35 degree C, ph 8, 200 r.p.m. agitation speed, 26 g/L ammonium dihydrogen orthophosphate as nitrogen source, 0.5 g/L cysteine, 6% of 2.5x107 c.f.u./ml. inoculum size and exposure to a level dose of 4 kGy of gamma radiation. All the previous parameters increased the production of MT by B. pantothenticuszn and B.pantothenticuscu strains 12 and 10 times, respectively compared to the parent strains

  15. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent systems...... affinity supports created by direct attachment of glucose or maltose to amine-terminated iron oxide particles could bind concanavalin A at levels of up to approximate to 280 mg g(-1) support with high affinity (approximate to 1 muM dissociation constants). However, the best performance was delivered......-linked adsorbents supplied sufficient competition to dissolved sugars to selectively bind concanavalin A in an extract of jack beans. The dextran-linked supports were employed in a high-gradient magnetic fishing experiment, in which concanavalin A was purified to near homogeneity from a crude, unclarified extract...

  16. Thermostable amylolytic enzymes from a cellulolytic fungus Myceliophthora thermophila D14 (ATCC 48 104)

    Energy Technology Data Exchange (ETDEWEB)

    Sadhukhan, R K; Manna, S; Roy, S K; Chakrabarty, S L [Bose Research Inst., Calcutta (India). Dept. of Microbiology

    1990-09-01

    The production of amylolytic enzymes by a thermophilic cellulolytic fungus, Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45deg C. Among various nitrogenous compounds used, NaNO{sub 3} and KNO{sub 3} were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50deg C-60deg C) and displayed activity optima at 60deg C and pH 5.6. (orig.).

  17. Isolation and identification of yeasts in milk samples from cows' mammary glands

    Directory of Open Access Journals (Sweden)

    Vesna Jaki

    2007-06-01

    Full Text Available The purpose of this study was to isolate fungi from the milk of cow udder quarters with clinical mastitis. The samples were delivered in Veterinary laboratory in Križevci during a routine mastitis diagnostics. Milk samples were cultured on Columbia agar (Merck, KgaA, Darmstadt, Germany with 5 % ovine blood, Sabouraud 4 % maltose agar (Merck, KgaA, Darmstadt, Germany and Rice extract agar (Merck, KgaA, Darmstadt, Germany. The final diagnosis was established regarding to the results of the API 20 C AUX systems (bioMerieux, Lyon, France. All of the fungal isolates were yeasts, genera Candida spp. (76.2 % and Trichosporon spp. (23.8 %. The most prevalent species were: C. quilliermondi (21.4 %, C. krusei/inconspicua (11.9 % and Trichosporon mucoides (14.3 %.

  18. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  19. Structure of the enzymatically synthesized fructan inulin

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, A.G.; Schroeer, B. [Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, 14476 Golm (Germany); Radosta, S. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Postfach 126, 14504 Teltow (Germany); Wolff, D.; Czapla, S.; Springer, J. [Technische Universitaet Berlin, FG Makromolekulare Chemie, Str. des 17. Juni 135, 10623 Berlin (Germany)

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10{sup 6} and 90x10{sup 6} g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Interval ANOVA simultaneous component analysis (i-ASCA) applied to spectroscopic data to study the effect of fundamental fermentation variables in beer fermentation metabolites

    DEFF Research Database (Denmark)

    Grassi, Silvia; Lyndgaard, Christian Bøge; Rasmussen, Morten Arendt

    2017-01-01

    This study explores the effect of different settings on beer fermentation process applying an interval-based version of ASCA on FT-IR data. Three main factors (yeast type, temperature, fermentation time) are included in the experimental design, being high sources of variation in brewing...... and strictly interdependent; thus, difficult to be studied through a univariate approach. The three-factor full factorial design leads to a spectral multi-set data, with a total of 12 independent fermentations, which is explored combining ASCA and an interval adaptation of ASCA (interval-ASCA or i......-ASCA). The ASCA models calculated on two separate regions (2900–2250 cm−1 and 1500–980 cm−1) shows differences for average time levels and the interaction between yeast types and time linked to carbon dioxide, maltose consumption and ethanol production, respectively. To better investigate the punctual influence...

  1. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42.

    Science.gov (United States)

    Al-Ali, Ameen; Deravel, Jovana; Krier, François; Béchet, Max; Ongena, Marc; Jacques, Philippe

    2017-10-23

    In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS - ) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.

  2. Isolation of Pasteurella multocida subspec. Multocida from chronic periapical lesion: First isolation in ex-Yugoslavia

    Directory of Open Access Journals (Sweden)

    Suvajdžić Ljiljana Ð.

    2006-01-01

    Full Text Available This study presents five isolates of Pasteurella multocida subsp. multo-cida isolated from chronic periapical inflammatory lesion. We described the methods of sampling and cultivation as well as diagnostic criteria. Pasteurella multocida was diagnosed on the basis of characteristic cultural and tinctorial properties and the facts that all strains produced indole and induced ornithine decarboxilation, glucose, saccharose and manitole fermentation. Isolates produced neither urease, nor fermented lactose and maltose. Further classification to subspecies multocida was based on the fact that all investigated isolates fermented trechalose, xylose and sorbitol the traits which are diagnostically significant for the species. Patients deny any contact with farm animals or pets, which indicates a possible aerosol transport and animal-human as well as human-human infection. We consider that this organism should be paid more attention by dentist, oral surgeons and microbiologists.

  3. Attenuation Measurements in Solutions of Some Carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 .H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  4. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712

    International Nuclear Information System (INIS)

    Evers, Toon H.; Merkx, Maarten

    2005-01-01

    Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN - . This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization

  5. Mars - robust automatic backbone assignment of proteins

    International Nuclear Information System (INIS)

    Jung, Young-Sang; Zweckstetter, Markus

    2004-01-01

    MARS a program for robust automatic backbone assignment of 13 C/ 15 N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only 13 C α / 13 C β connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment

  6. Evaluation of enzymatic reactors for large-scale panose production.

    Science.gov (United States)

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  7. Comparison of three methods for identification of pathogenic Neisseria species

    Energy Technology Data Exchange (ETDEWEB)

    Appelbaum, P.C.; Lawrence, R.B.

    1979-05-01

    A radiometric procedure was compared with the Minitek and Cystine Trypticase Agar sugar degradation methods for identification of 113 Neisseria species (58 Neisseria meningitidis, 51 Neisseria gonorrhoeae, 2 Neisseria lactamica, 2 Neisseria sicca). Identification of meningococci and gonoccoi was confirmed by agglutination and fluorescent antibody techniques, respectively. The Minitek method identified 97% of meningococci, 92% of gonococci, and 100% of other Neisseria after 4 h of incubation. The radiometric (Bactec) procedure identified 100% of gonococci and 100% of miscellaneous Neisseria after 3 h, but problems were encountered with meningococci: 45% of the later strains yielded index values for fructose between 20 and 28 (recommended negative cut-off point, less than 20), with strongly positive (greater than 100) glucose and maltose and negative o-nitrophenyl-beta-0-galactopyranoside reactions in all 58 strains. The Cystine Trypticase Agar method identified 91% of meningococci, ases.

  8. A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method).

    Science.gov (United States)

    Visvanathan, Rizliya; Jayathilake, Chathuni; Liyanage, Ruvini

    2016-11-15

    For the first time, a reliable, simple, rapid and high-throughput analytical method for the detection and quantification of α-amylase inhibitory activity using the glucose assay kit was developed. The new method facilitates rapid screening of a large number of samples, reduces labor, time and reagents and is also suitable for kinetic studies. This method is based on the reaction of maltose with glucose oxidase (GOD) and the development of a red quinone. The test is done in microtitre plates with a total volume of 260μL and an assay time of 40min including the pre-incubation steps. The new method is tested for linearity, sensitivity, precision, reproducibility and applicability. The new method is also compared with the most commonly used 3,5-dinitrosalicylic acid (DNSA) method for determining α-amylase activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  10. Furane, Furanone und Pyranone – ihr Beitrag zur Farbe und den antioxidativen Eigenschaften in der Maillard-Reaktion der Maltose

    OpenAIRE

    Kanzler, Clemens

    2017-01-01

    Die Maillard-Reaktion ist dafür bekannt, bei der thermischen Behandlung von Lebensmitteln neben deren organoleptischen Eigenschaften, wie Geschmack, Geruch, Textur und Farbe, auch die oxidative Stabilität zu beeinflussen. Letzteres ist auf die Bildung von komplexierenden und reduzierenden Verbindungen zurückzuführen, die antioxidativ und prooxidativ wirken können. Im Rahmen der vorliegenden Arbeit werden die antioxidativen Kapazitäten von dreizehn Maillard-Reaktionsintermediaten mit Furan-...

  11. HIDROLISADO DE FÉCULA DE MANDIOCA COMO ADJUNTO DE MALTE NA FABRICAÇÃO DE CERVEJA: AVALIAÇÃO QUÍMICA E SENSORIAL

    Directory of Open Access Journals (Sweden)

    Waldemar G. VENTURINI FILHO

    1998-05-01

    Full Text Available Em virtude da progressiva substituição dos adjuntos amiláceos pelos xaropes com alta concentração de maltose nas cervejarias brasileiras, o presente trabalho teve por objetivo comparar hidrolisados de milho e de mandioca, como adjunto de malte, na fabricação de cerveja tipo Pilsen, em escala de laboratório. Os hidrolisados foram produzidos a partir de amido de milho e fécula de mandioca, sendo que na liqüefação e sacarificação da fração amilácea destes produtos foram utilizadas, respectivamente, as enzimas comerciais Termamil (alfa amilase bacteriana e Fungamil (alfa amilase fúngica. Na fabricação das cervejas, a proporção de malte e hidrolisado foi de 2 para 1, na base do extrato. O mosto foi produzido pelo processo de infusão e após resfriamento e clarificação foi inoculado com levedura cervejeira de baixa fermentação. A fermentação transcorreu a 10 °C até 90% de atenuação do extrato aparente fermentável. As cervejas foram engarrafadas e, em seguida, maturadas a 0 °C, por 14 dias. Terminado o processo de fabricação, as cervejas foram analisadas química e sensorialmente. A semelhança na composição química dos hidrolisados de milho e de mandioca refletiu na composição química dos mostos e das cervejas. Não houve diferença estatística entre os mostos e entre as cervejas testadas para todos os parâmetros químicos analisados. Também, não existiu diferença sensorial entre as cervejas produzidas com hidrolisado de milho e hidrolisado de mandioca. Concluiu-se que a fécula de mandioca apresenta potencial de uso como matéria prima para a fabricação de xarope de maltose de uso cervejeiro e que há elevada probabilidade de sucesso no uso desse xarope para a fabricação de cervejas.The brazilians breweries replace progressively starchy adjuncts by sugary liquid adjuncts made with maize. Thus, the objective of present work was saccharify cassava and maize and use them as malt adjunct on Pilsen beer

  12. Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings.

    Science.gov (United States)

    Zhai, W; Bennett, L W; Gerard, P D; Pulikanti, R; Peebles, E D

    2011-12-01

    Effects of the in ovo injection of commercial diluent supplemented with dextrin or with dextrin in combination with various other carbohydrates on the somatic characteristics and liver nutrient profiles of Ross × Ross 708 broiler embryos and chicks were investigated. Results include information concerning the gluconeogenic energy status of the liver before and after hatch. Eggs containing live embryos were injected in the amnion on d 18 of incubation using an automated multiple-egg injector for the delivery of the following carbohydrates dissolved in 0.4 mL of commercial diluent: 1) 6.25% glucose and 18.75% dextrin; 2) 6.25% sucrose and 18.75% dextrin; 3) 6.25% maltose and 18.75% dextrin; and 4) 25% dextrin. Also, a noninjected control and a 0.4-mL diluent-injected control were included. Body weight relative to set egg weight on d 19 of incubation (E19) was increased by the injection of all carbohydrate solutions, and on the day of hatch was increased by the injection of diluent, sucrose and dextrin, and maltose and dextrin solutions. Hatchability of the fertilized eggs, residual yolk sac weight, and liver weight were not affected by any injection treatment; however, as compared with the 0.4 mL diluent-injected group, all of the supplementary carbohydrates, except for the glucose and dextrin combination group, increased liver glycogen and glucose concentrations on E19. Furthermore, all carbohydrates, except for the 25% dextrin treatment, decreased liver fat concentration on E19. From E19 to the day of hatch, liver glycogen concentrations dropped dramatically from an average of 3.2 to 0.6%. Despite treatment differences observed on E19 for liver glycogen, glucose, and fat concentrations, these differences were lost by the day of hatch. Nevertheless, liver glycogen and glucose concentrations were positively correlated on the day of hatch. In conclusion, the in ovo injection of various supplemental carbohydrates dissolved in 0.4 mL of commercial diluent altered the

  13. A simple vector system to improve performance and utilisation of recombinant antibodies

    Directory of Open Access Journals (Sweden)

    Vincent Karen J

    2006-12-01

    Full Text Available Abstract Background Isolation of recombinant antibody fragments from antibody libraries is well established using technologies such as phage display. Phage display vectors are ideal for efficient display of antibody fragments on the surface of bacteriophage particles. However, they are often inefficient for expression of soluble antibody fragments, and sub-cloning of selected antibody populations into dedicated soluble antibody fragment expression vectors can enhance expression. Results We have developed a simple vector system for expression, dimerisation and detection of recombinant antibody fragments in the form of single chain Fvs (scFvs. Expression is driven by the T7 RNA polymerase promoter in conjunction with the inducible lysogen strain BL21 (DE3. The system is compatible with a simple auto-induction culture system for scFv production. As an alternative to periplasmic expression, expression directly in the cytoplasm of a mutant strain with a more oxidising cytoplasmic environment (Origami 2™ (DE3 was investigated and found to be inferior to periplasmic expression in BL21 (DE3 cells. The effect on yield and binding activity of fusing scFvs to the N terminus of maltose binding protein (a solubility enhancing partner, bacterial alkaline phosphatase (a naturally dimeric enzymatic reporter molecule, or the addition of a free C-terminal cysteine was determined. Fusion of scFvs to the N-terminus of maltose binding protein increased scFv yield but binding activity of the scFv was compromised. In contrast, fusion to the N-terminus of bacterial alkaline phosphatase led to an improved performance. Alkaline phosphatase provides a convenient tag allowing direct enzymatic detection of scFv fusions within crude extracts without the need for secondary reagents. Alkaline phosphatase also drives dimerisation of the scFv leading to an improvement in performance compared to monovalent constructs. This is illustrated by ELISA, western blot and

  14. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Science.gov (United States)

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  15. Lactobacillus brevis-based bioingredient inhibits Aspergillus niger growth on pan bread

    Directory of Open Access Journals (Sweden)

    Mariaelena Di Biase

    2014-11-01

    Full Text Available Bread shelf life is generally compromised by fungi mainly belonging to Aspergillus and Penicillium genera, which colonise the surface of the product within few days from the production. The aim of this study was to select a Lactobacillus brevis-based bioingredient (LbBio able to inhibit the growth of Aspergillus niger ITEM5132 on pan bread in order to prolong its shelf life. Four LbBio formulations, obtained by growing a selected L. brevis strain in a flour-based medium containing different carbon sources or acid precursors (fructose, LbBio1; fructose and maltose, LbBio2; α-chetoglutaric acid, LbBio3; short-chain fructooligosaccharides, LbBio4, were evaluated for their content of organic acids (lactic, acetic, propionic, phenyllactic, 4-hydroxy-phenyllactic, valeric, isovaleric acids. The LbBio formulations were applied in yeast-leavened bread during bread-making trials and the resulting products were inoculated after baking with A. niger spore’s suspension and the fungal growth was monitored during storage (25°C for 6 days. The formulation showing the highest inhibitory activity was separated by ultra-filtration method, and whole and fractions obtained were evaluated for their in vitro activity. The fraction showing the highest activity was further separated by gel-filtration and the resulting products were investigated for their protein content and in vitro inhibition. The results from the bread-making trials performed using different formulations of LbBio showed a delay in fungal growth (1 day respect to the bread not containing the bioingredient (control or including calcium propionate (0.3% w/w. The formulation LbBio2, prepared with fructose and maltose 1% (w/vol, contained the highest amount of total organic acids, including phenyllactic and hydroxyl-phenyllactic acids, and reduced the visual spoilage of bread. This formulation was separated by ultra-filtration and fractions containing metabolites with molecular weight higher than 30 k

  16. Psychrotolerant Anaerobes from Lake Podprudnoe, Antarctica and Penguin Spheniscus demersus Colony, South Africa

    Science.gov (United States)

    Guisler, Melissa; Pikuta, Elena V.; Townsend, Alisa; Hoover, Richard B.

    2009-01-01

    The study of a sample collected from a wind-made ice sculpture near Lake Podprudnoe, Antarctica led to the isolation of the psychrotolerant strain ISLP-3. Cells of the new isolate are vibrio-shaped that measure 0.5 x 1.0-3.0 micron in size. Growth occurs within the temperature range 5-35 C with the optimum at 22 C. Salinity range for growth is 0-2 % NaCl with the optimum at 0.25 %. The new isolate grows within a pH range from 6.0 to 9.5 with the optimum at 7.5. Strain ISLP-3 is saccharolytic, growing on the following substrates: D-glucose, D-ribose, D-fructose, D-arabinose, maltose, sucrose, D-trehalose, D-mannose, D-cellobiose, lactose, starch, chitin, triethylamine, N-acetylglucosamine, and urea. The best growth occurred on D-cellobiose. An environmental sample of pond water near a colony of the endemic species of African penguins, Spheniscus demersus, was collected in February 2008 and delivered directly to the Astrobiology laboratory at NSSTC. The microbiological study of this sample led to the isolation of two psychrotolerant strains ARHSd-7G and ARHSd-9G. Both strains are strictly anaerobic bacteria and are able to grow at high pH and low temperatures. The cells of strain ARHSd-7G are motile, vibrio-shaped, spore-forming cells. Optimal growth of this strain occurs at 30 C, 3 % NaCl, and pH 8.9. The isolate ARHSd-7G combines sugarlytic and proteolytic metabolisms, growing on some proteolysis products including peptone and yeast extract and a number of sugars. The second isolate, ARHSd-9G, exhibits thin, elongated rods that measure 0.4 x 3-5 micron. The cells are motile and spore-forming. Optimal growth of strain ARHSd-9G occurs at 30 C, 1.75 % NaCl, and pH 8.5. The strain ARHSd-9G is sugarlytic, growing well on substrates such as D-glucose, sucrose, D-cellobiose, maltose, fructose, D-mannose, and trehalose (the only exception is positive growth on yeast extract). In this report, the physiological and morphological characteristics of the novel psychrotolerant

  17. The role of mitochondria in carbon catabolite repression in yeast.

    Science.gov (United States)

    Haussmann, P; Zimmermann, F K

    1976-10-18

    The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains. The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both

  18. Separation of carbohydrates using hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2013-09-20

    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D

    DEFF Research Database (Denmark)

    Madsen, Jens; Tornøe, Ida; Nielsen, Ole

    2003-01-01

    CRP-ductin is a protein expressed mainly by mucosal epithelial cells in the mouse. Sequence homologies indicate that CRP-ductin is the mouse homologue of human gp-340, a glycoprotein that agglutinates microorganisms and binds the lung mucosal collectin surfactant protein-D (SP-D). Here we report...... that purified CRP-ductin binds human SP-D in a calcium-dependent manner and that the binding is not inhibited by maltose. The same properties have previously been observed for gp-340 binding of SP-D. CRP-ductin also showed calcium-dependent binding to both gram-positive and -negative bacteria. A polyclonal...... antibody raised against gp-340 reacted specifically with CRP-ductin in Western blots. Immunoreactivity to CRP-ductin was found in the exocrine pancreas, in epithelial cells throughout the gastrointestinal tract and in the parotid ducts. A panel of RNA preparations from mouse tissues was screened for CRP...

  20. [Anti-Candida activity of aroma candy and its protective activity against murine oral candidiasis].

    Science.gov (United States)

    Hayama, Kazumi; Takahashi, Miki; Suzuki, Motofumi; Ezawa, Kunio; Yamazaki, Masatoshi; Matsukawa, Taiji; Kishi, Akinobu; Sato, Nobuya; Abe, Shigeru

    2015-01-01

    A daily eatable candy that has possible protective activity against oral candidiasis was experimentally produced. The candy was made from reduced-maltose as main constituent and from several natural products, such as oligonol (depolymerized polyphenols derived from lychee), cinnamon (cassia), citral, and capric acid, which are known to have anti-Candida activity in vitro and in vivo. The candy effectively inhibited the mycelial growth of C. albicans, even when it was diluted 1,000 times with culture media. We assessed the protective activity of the candy against murine candidiasis. When 50μl of candy dissolved and diluted 4 times with water was administered 3 times into the oral cavity of Candida infected mice, the score of lesions on the Candida-infected tongues improved on day 2. These findings suggest that this candy has potential as food that provides protective activity against oral candidiasis.

  1. Attenuation measurements in solutions of some carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 ·H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  2. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  3. Hydrolysis of a mixture of saccharides by cellulase from Aspergillus niger and its application for visible-light-induced hydrogen gas production system using Mg chlorophyll-a and platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Amao, Yutaka; Hirakawa, Takamasa [Department of Applied Chemistry, Oita University, Dannoharu 700, Oita 870-1192 (Japan)

    2010-07-15

    Cellulase obtained from Aspergillus niger was used to hydrolyze a mixture of saccharides containing sucrose, maltose, and cellobiose; the reduced form of nicotinamide-adenine dinucleotide (NAD{sup +}), which is NADH, was produced during hydrolysis of the mixture of saccharides in the presence of NAD{sup +} and glucose dehydrogenase (GDH). We have developed a visible-light-induced enzymatic biohydrogen production system involving the combination of cellulase-mediated hydrolysis of the mixture of saccharides and hydrogen production by platinum nanoparticles using photosensitization of Mg chlorophyll-a (Mg Chl-a). Continuous production of hydrogen gas was observed when the reaction mixture containing saccharides, cellulase, GDH, NAD{sup +}, Mg Chl-a, methylviologen (MV{sup 2+}, an electron donor), and platinum nanoparticles was irradiated by visible light. After 120 min of irradiation, the amount of hydrogen produced from the mixture of saccharides was approximately 2.8 {mu}mol. (author)

  4. Brewing with 100 % unmalted grains: barley, wheat, oat and rye

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Shetty, Radhakrishna; Hansen, Mikkel

    2017-01-01

    of fermentable wort carbohydrates were observed in the worts (all at ca. 12°P), and in particular oat wort had lower concentration of maltose compared to the others, resulting in the lowest concentration of alcohol in final beer. Moreover, wort made from unmalted grains also showed lower free amino nitrogen......Whilst beers have been produced using various levels of unmalted grains as adjuncts along with malt, brewing with 100 % unmalted grains in combination with added mashing enzymes remains mostly unknown. The aim of this study was to investigate the brewing potential of 100 % unmalted barley, wheat......, oat and rye in comparison with 100 % malt. To address this, identical brewing methods were adopted at 10-L scale for each grain type by applying a commercial mashing enzyme blend (Ondea® Pro), and selected quality attributes were assessed for respective worts and beers. Different compositions...

  5. Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hedoux, A; Affouard, F; Descamps, M; Guinet, Y; Paccou, L [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR CNRS 8024, Universite de Lille 1, UFR de Physique, Batiment P5, 59 655 Villeneuve d' Ascq Cedex (France)

    2007-05-23

    The mechanisms of protein thermostabilization by sugar were analysed for three disaccharides (maltose, sucrose and trehalose) characterized by the same chemical formula (C{sub 12}H{sub 22}O{sub 11}). Raman scattering investigations simultaneously carried out in the low-frequency range and in the amide I band region provide a microscopic description of the process of protein thermal denaturation. From this detailed description, the influence of sugar on this process was analysed. The principal effect of sugars is to stabilize the tertiary structure, in which the biomolecule preserves its native conformation, through a strengthening of O-H interactions. This study shows that the bioprotective properties of sugars are mainly based on interactions between water and sugar. The exceptional properties of trehalose to preserve the native state of lysozyme by heating can be associated with its capability to distort the tetra-bonded hydrogen bond network of water.

  6. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of licorice extract

    International Nuclear Information System (INIS)

    Al-Adawi, M. A.; Al-Kaed, A.; Al-Bachir, M.

    2002-08-01

    Extract of licorice roots were exposed to doses of 0, 5, 10, 15 and 20 kGy in a 60 C package irradiator. Irradiated and unirradiated samples were stored at room temperatures. Microbial population on extract, chemical changes and sensory properties of produced juice of licorice were evaluated after 0 and 12 months or storage. The results indicated that gamma irradiation reduced the counts of microorganisms. D 10 of total count and klebsiella spp. were about 14 and 0.7 kGy respectively. The mineral ions (Na, Ca and K) concentration in juice produced from irradiated extract were lower than non-irradiated ones. Glycyrrhetinic acid and maltose concentration in juice produced from irradiated extract were higher than non-irradiated ones. Sensory evaluation indicated that no significant differences (P> 0.05) were fond between juice produced from irradiated and unirradiated extract in color, taste, or odor. (author)

  7. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-01-01

    Full Text Available Tissus cultures of Tecoma stans Juss. cultivated on modified Murashige-Skoog medium (RT-k were phytochemically analysed by means of chromatographical methods (PC, TLC. The following products were found as metabolites: phenolic acids - chlorogenics, caffeic, ferulic, vanillic, o-coumaric and sinapic; steroids - β-sitosterol; triterpenes - ursolic and oleanolic acids, α-amyrine; sugars - glucose, fructose, sucrose, xylose. Meso-inositol was isolated in 0.8% yield. In intact plant leaves, some differences concerning the content and/or number of individual compounds were observed, namely: lack of sinapic acid and occurrence of p-coumaric acid, lower content of β-sitosterol, lack of oleanolic acid, occurrence of β-amyrine and of one unidentified triterpenoid, lack of xylose, occurrence of maltose, raffinose, and stachiose. The level of mesoinositol inn leaves was distincly lower than in the callus tissues. Neither in callus tissues nor in leaves iridoid glycosides were found.

  8. Production of amylases by Aspergillus tamarii

    Directory of Open Access Journals (Sweden)

    Moreira Fabiana Guillen

    1999-01-01

    Full Text Available A strain of Aspergillus tamarii, a filamentous fungus isolated from soil, was able to produce both a-amylase and glucoamylase activities in mineral media supplemented with 1% (w/v starch or maltose as the carbon source. Static cultivation led to significantly higher yields than those obtained using shaking culture. The production of amylases was tolerant to a wide range of initial culture pH values (from 4 to 10 and temperature (from 25 to 42oC. Two amylases, one a-amylase and one glucoamylase, were separated by ion exchange chromatography. Both partially purified enzymes had optimal activities at pH values between 4.5 and 6.0 and were stable under acid conditions (pH 4.0-7.0. The enzymes exhibited optimal activities at temperatures between 50o and 60o C and were stable for more than ten hours at 55oC.

  9. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw. Roscoe

    Directory of Open Access Journals (Sweden)

    V. H. Sunitha.

    2012-09-01

    Full Text Available Amylases are among the most important enzymes used in modern biotechnology particularly in the process involving starch hydrolysis. Fungal amylase has large applications in food and pharmaceutical industries. Considering these facts, endophytic fungi isolated from the plant Alpinia calcarata (Haw. Roscoe were screened for amylolytic activity on glucose yeast extract peptone agar (GYP medium. Among thirty isolates of endophytic fungi, isolate number seven identified as Cylindrocephalum sp. (Ac-7 showed highest amylolytic activity and was taken for further study. Influence of various physical and chemical factors such as pH, temperature, carbon and nitrogen sources on amylase production in liquid media were studied. The maximal amylase production was found to be at 30ºC and at pH 7.0 of the growth medium. Among the various carbon and nitrogen sources tested, maltose at 1.5% and Sodium nitrate at 0.3% respectively gave optimum amylase production.

  10. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  12. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Science.gov (United States)

    Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788

  13. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE.

    Science.gov (United States)

    Jessica, Garcia Gonzalez; Mario, Garcia Lorenzana; Alejandro, Zamilpa; Cesar, Almanza Perez Julio; Ivan, Jasso Villagomez E; Ruben, Roman Ramos; Javier, Alarcon-Aguilar Francisco

    2017-01-01

    The aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia , the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit is due to accumulation of liver glycogen in diabetic mice. The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia : p -coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be

  14. Diversity of Melissococcus plutonius from Honeybee Larvae in Japan and Experimental Reproduction of European Foulbrood with Cultured Atypical Isolates

    Science.gov (United States)

    Arai, Rie; Tominaga, Kiyoshi; Wu, Meihua; Okura, Masatoshi; Ito, Kazutomo; Okamura, Naomi; Onishi, Hidetaka; Osaki, Makoto; Sugimura, Yuya; Yoshiyama, Mikio; Takamatsu, Daisuke

    2012-01-01

    European foulbrood (EFB) is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like organisms, with characteristics seemingly different from those of typical M. plutonius, have often been isolated from diseased larvae with clinical signs of EFB in Japan. Cultural and biochemical characterization of 14 M. plutonius and 19 M. plutonius-like strain/isolates revealed that, unlike typical M. plutonius strain/isolates, M. plutonius-like isolates were not fastidious, and the addition of potassium phosphate was not required for normal growth. Moreover, only M. plutonius-like isolates, but not typical M. plutonius strain/isolates, grew anaerobically on sodium phosphate-supplemented medium and aerobically on some potassium salt-supplemented media, were positive for β-glucosidase activity, hydrolyzed esculin, and produced acid from L-arabinose, D-cellobiose, and salicin. Despite the phenotypic differences, 16S rRNA gene sequence analysis and DNA-DNA hybridization demonstrated that M. plutonius-like organisms were taxonomically identical to M. plutonius. However, by pulsed-field gel electrophoresis analysis, these typical and atypical (M. plutonius-like) isolates were separately grouped into two genetically distinct clusters. Although M. plutonius is known to lose virulence quickly when cultured artificially, experimental infection of representative isolates showed that atypical M. plutonius maintained the ability to cause EFB in honeybee larvae even after cultured in vitro in laboratory media. Because the rapid decrease of virulence in cultured M. plutonius was a major

  15. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    Directory of Open Access Journals (Sweden)

    Anja S Strauss

    Full Text Available Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi.In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp. RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration.We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and

  16. Different biosynthesis patterns among flavonoid 3-glycosides with distinct effects on accumulation of other flavonoid metabolites in pears (Pyrus bretschneideri Rehd..

    Directory of Open Access Journals (Sweden)

    Rui Zhai

    Full Text Available Flavonoid biosynthesis profile was clarified by fruit bagging and re-exposure treatments in the green Chinese pear 'Zaosu' (Pyrus bretschneideri Rehd. and its red mutant 'Red Zaosu'. Two distinct biosynthesis patterns of flavonoid 3-glycosides were found in 'Zaosu' pear. By comparison with 'Red Zaosu', the biosynthesis of flavonoid 3-galactosides and flavonoid 3-arabinosides were inhibited by bagging and these compounds only re-accumulated to a small degree in the fruit peel of 'Zaosu' after the bags were removed. In contrast, the biosynthesis of flavonoid 3-gluctosides and flavonoid 3-rutinosides was reduced by bagging and then increased when the fruits were re-exposed to sunlight. A combination of correlation, multicollinearity test and partial-correlation analyses among major flavonoid metabolites indicated that biosynthesis of each phenolic compound was independent in 'Zaosu' pear, except for the positive correlation between flavonoid 3-rutincosides and flavanols. In contrast with the green pear cultivar, almost all phenolic compounds in the red mutant had similar biosynthesis patterns except for arbutin. However, only the biosynthesis of flavonoid 3-galactosides was relatively independent and strongly affected the synthesis of the other phenolic compounds. Therefore, we propose a hypothesis that the strong accumulation of flavonoid 3-galactosides stimulated the biosynthesis of other flavonoid compounds in the red mutant and, therefore, caused systemic variation of flavonoid biosynthesis profiles between 'Zaosu' and its red mutant. This hypothesis had been further demonstrated by the enzyme activity of UFGT, and transcript levels of flavonoid biosynthetic genes and been well tested by a stepwise linear regression forecasting model. The gene that encodes flavonoid 3-galacosyltransferase was also identified and isolated from the pear genome.

  17. Phytochemical study of phenolic compounds of labrador tea (Lédum palústre L.

    Directory of Open Access Journals (Sweden)

    Валентина Петровна Гапоненко

    2015-11-01

    Full Text Available Aim. This work is devoted a phytochemical study of biologically active substances in herb of Labrador Tea (Lédum palústre L., as well as investigation of the possibility of complex use of raw materials in order to create on its basis new herbal medicines.Methods. The object of the study served as the herb Labrador Tea. Separation of isolated substances was performed by adsorption and partition chromatography on various adsorbents. The structure of the isolated compounds was determined based on physicochemical methods: paper (PC and the thin layer (TLC chromatography, UV, IR and NMR spectroscopy in comparison with the original valid standards of flavonoids. Acid hydrolys was used for the determination of the flavonoid aglycone composition. The content of total flavonoids was determined by differential spectrophotometry at a wavelength of 412 nm from the reaction with aluminum chloride based on the hyperoside-standard (Ukrainian scientific Pharmacopoeial center for quality of medicines (Pharmacopoeial center, Kharkоv.Results. During this study we found more than 40 of phenolic compounds and identified 31compounds. The phytochemical analysis showed the presence of flavonols (11 compounds, catechins (5. Hydroxycinnamic acids represented by caffeic, ferulic, chlorogenic acids. Besides that, it were found phenolic glycoside arbutin, coumarins - coumarin, umbelliferon, scopoletin, esculetin and esculin, tannins – metyl gallate, pyrogallol.Conclusions. The following biologically active substances were defined for the first time: flavonoids – 5-methyl-kaempferol, avicularin, polistahozid, quercitrin; coumarins – esculetin, esculin; as well as hydroxycinnamic acids – ferulic, chlorogenic, neochlorogenic of Labrador Tea. The obtained data justify the prospectivefor creation of new and effective herbal medicines from Labrador Tea

  18. Heat damage and in vitro starch digestibility of puffed wheat kernels.

    Science.gov (United States)

    Cattaneo, Stefano; Hidalgo, Alyssa; Masotti, Fabio; Stuknytė, Milda; Brandolini, Andrea; De Noni, Ivano

    2015-12-01

    The effect of processing conditions on heat damage, starch digestibility, release of advanced glycation end products (AGEs) and antioxidant capacity of puffed cereals was studied. The determination of several markers arising from Maillard reaction proved pyrraline (PYR) and hydroxymethylfurfural (HMF) as the most reliable indices of heat load applied during puffing. The considerable heat load was evidenced by the high levels of both PYR (57.6-153.4 mg kg(-1) dry matter) and HMF (13-51.2 mg kg(-1) dry matter). For cost and simplicity, HMF looked like the most appropriate index in puffed cereals. Puffing influenced starch in vitro digestibility, being most of the starch (81-93%) hydrolyzed to maltotriose, maltose and glucose whereas only limited amounts of AGEs were released. The relevant antioxidant capacity revealed by digested puffed kernels can be ascribed to both the new formed Maillard reaction products and the conditions adopted during in vitro digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The elution of certain protein affinity tags with millimolar concentrations of diclofenac.

    Science.gov (United States)

    Baliova, Martina; Juhasova, Anna; Jursky, Frantisek

    2015-12-01

    Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.