WorldWideScience

Sample records for salen-type ligands derived

  1. Synthesis and characterization of Mn(III) chloro complexes with salen-type ligands

    International Nuclear Information System (INIS)

    Byun, Jong Chul; Han, Chung Hun; Lee, Nam Ho; Baik, Jong Seok; Park, Yu Chul

    2002-01-01

    A series of novel salen-type complexes ((Mn(III)(L acn )Cl): n=1∼11) containing Cl - ion were obtained by reactions of the Mn(CH 3 COO) 2 ·4H 2 O with the potentially tetradentate compartmental ligand (H 2 L acn ), prepared by condensation the of one mole of diamine (ethylenediamine, 1,3-propanediamine, o-phenylenediamine, and 2,2-dimethyl-1,3-propanediamine) with two moles of aldehyde (salicylaldehyde, 5-chloro- salicylaldehyde, 3,5-dichlorosalicylal-dehyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde) in a methanol solution . The resulting salen-type ligands and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, thermogravimetry and UV-VIS, IR, and NMR spectroscopy

  2. Effects of axial coordination on immobilized Mn(salen) catalysts.

    Science.gov (United States)

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-11-13

    The consequences of anchoring Mn(salen) catalysts onto a supporting material using one of the vacant positions of the metal center are tackled by studying several Mn(salen) complexes with different axial ligands attached. This is accomplished using Density Functional Theory at the X3LYP/Triple-ζ level of theory and the Atom In Molecules formalism. The results suggest that both Mn(salen) complexes and their oxo derivatives should lie in a triplet ground state. Also, the choice of the axial ligand bears a moderate effect on the energy involved in the oxidation of the former to oxo-Mn(salen) complexes, as well as in the stability of such complexes toward ligand removal by HCl. AIM analysis further suggests that the salen ligand acts as a "charge reservoir" for the metal center, with strong correlations being obtained between the charge of salen and the electron population donated by the axial ligand to the metal center. Moreover, the results suggest that the Mn atom in Mn(salen) complexes holds different hybridization of its valence orbitals depending on the type of axial ligand present in the system.

  3. The preparation and use of metal salen complexes derived from cyclobutane diamine

    Science.gov (United States)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  4. MAGNEŢI MOLECULARI – TRECEREA DE LA LIGANZI DE TIP SALEN SPRE TIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Mihail SECU

    2016-02-01

    Full Text Available Au fost scoşi în evidenţă compuşi coordinativi ai manganului(III cu liganzi tip Salen ce posedă proprietăţi de magneţi moleculari (SMM sau lanţuri magnetice (SCM. A fost relatat principiul de asamblare a bis(salicilidenizotiosemi­car­ba­zi­da­ţilor similari liganzilor de tip Salen, pentru identificarea şi descrierea unor noi metode raţionale de sinteză a mole­culelor magnetice şi a lanţurilor magnetice, având în calitate de building block aceşti complecşi de mangan(III. SINGLE MOLECULE MAGNETS– Switching from SALEN type ligands to thiosemicarbazonesThere were highlighted manganese(III coordination compounds with Salen type ligands, which exhibit single molecule magnet (SMM and single chain magnet (SCM behaviour. It was narrated the principle of assembly bis(salicylideneisothio­semicarbazide similar with Salen type ligands, for identify and describe the new methods of rational synthesis of single molecule magnets and single chain magnets, which have as building blocks these manganese(III complexes. 

  5. Cationic rare-earth metal SALEN complexes.

    Science.gov (United States)

    Liu, Qiancai; Meermann, Christian; Görlitzer, Hans W; Runte, Oliver; Herdtweck, Eberhardt; Sirsch, Peter; Törnroos, Karl W; Anwander, Reiner

    2008-11-28

    Complexes (Salpren(tBu,tBu))Y[N(SiHMe2)2](thf) and (SALEN(tBu,tBu))La[N(SiHMe2)2](thf) (SALEN(tBu,tBu) = Salcyc(tBu,tBu) and Salpren(tBu,tBu)) were prepared from Ln[N(SiHMe2)2]3(thf)2 and H2SALEN(tBu,tBu). The yttrium complex was characterized by X-ray crystallography revealing intrinsic solid-state structural features: the metal centre is displaced by 1.05 angstroms from the [N2O2] least squares plane of a highly bent Salpren(tBu,tBu) ligand (angle(Ph,Ph) dihedral angle of 80.4(1) degrees ) and is coordinated asymmetrically by the silylamide ligand exhibiting one significant Y---(HSi) beta-agostic interaction (Y-N1-Si1, 106.90(9) degrees; Y---Si1, 3.2317(6) angstroms). Complexes (SALEN(tBu,tBu))Ln[N(SiHMe2)2](thf)n (n = 1, Sc; n = 2, Y, La) react with ammonium tetraphenylborate to form the ion pairs [(SALEN(tBu,tBu))Ln(thf)n][BPh4]. The cationisation was proven by X-ray crystal structure analyses of [(Salpren(tBu,tBu))Sc(thf)2][B(C6H5)4].2(thf) and [(Salpren(tBu,tBu))Ln(thf)3][B(C6H5)4].4(thf) (Ln = Y, La), showing an octahedral and pentagonal-bipyramidal coordination geometry, respectively.

  6. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  7. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    Science.gov (United States)

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Styrene Oxidation by Copper(II Complexes Salen-Type Encapsulated into Nay Zeolite

    Directory of Open Access Journals (Sweden)

    Kuźniarska-Biernacka I.

    2013-12-01

    Full Text Available Osadzenie kompleksu miedzi(II z zasadą Schitta typu salen na zeolicie typu NaY zostało prze powadzone za pomocą dwóch metod „flexible ligand" i „in situ”. Katalityczne właściwości otrzymanego kompleksu oraz jego heterogenizowanych analogów badano w reakcji utleniania styrenu w obecności TBHP. Jako rozpuszczalnik stosowano acetonitryl. Testowane katalizatory wykazują średnią aktywność katalityczną z tendencją wytwarzania aldehy du benzoesowego. Oba heterogenizowane katalizatory mogą być wykorzystywane ponownie bez utraty aktywności katalitycznych.

  9. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  10. General synthesis of (salen)ruthenium(III) complexes via N...N coupling of (salen)ruthenium(VI) nitrides.

    Science.gov (United States)

    Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Xiang, Jing; Wong, Tsz-Wing; Lam, Wing-Hong; Wong, Wing-Tak; Peng, Shie-Ming; Lau, Tai-Chu

    2008-07-07

    Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.

  11. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    Science.gov (United States)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  12. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    Science.gov (United States)

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  14. Mechanistic basis for high stereoselectivity and broad substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic resolution.

    Science.gov (United States)

    Ford, David D; Nielsen, Lars P C; Zuend, Stephan J; Musgrave, Charles B; Jacobsen, Eric N

    2013-10-16

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR.

  15. Induction of apoptosis by Fe(salenCl through caspase-dependent pathway specifically in tumor cells

    Directory of Open Access Journals (Sweden)

    Nitika Pradhan

    2017-10-01

    Full Text Available Iron-based compounds possess the capability of inducing cell death due to their reactivity with oxidant molecules, but their specificity towards cancer cells and the mechanism of action are hitherto less investigated. A Fe(salenCl derivative has been synthesized that remains active in monomer form. The efficacy of this compound as an anti-tumor agent has been investigated in mouse and human leukemia cell lines. Fe(salenCl induces cell death specifically in tumor cells and not in primary cells. Mouse and human T-cell leukemia cell lines, EL4 and Jurkat cells are found to be susceptible to Fe(salenCl and undergo apoptosis, but normal mouse spleen cells and human peripheral blood mononuclear cells (PBMC remain largely unaffected by Fe(salenCl. Fe(salenCl treated tumor cells show significantly higher expression level of cytochrome c that might have triggered the cascade of reactions leading to apoptosis in cancer cells. A significant loss of mitochondrial membrane potential upon Fe(salenCl treatment suggests that Fe(salenCl induces apoptosis by disrupting mitochondrial membrane potential and homeostasis, leading to cytotoxity. We also established that apoptosis in the Fe(salenCl-treated tumor cells is mediated through caspase-dependent pathway. This is the first report demonstrating that Fe(salenCl can specifically target the tumor cells, leaving the primary cells least affected, indicating an excellent potential for this compound to emerge as a next-generation anti-tumor drug.

  16. Induction of apoptosis by Fe(salen)Cl through caspase-dependent pathway specifically in tumor cells.

    Science.gov (United States)

    Pradhan, Nitika; Pratheek, B M; Garai, Antara; Kumar, Ashutosh; Meena, Vikram S; Ghosh, Shyamasree; Singh, Sujay; Kumari, Shikha; Chandrashekar, T K; Goswami, Chandan; Chattopadhyay, Subhasis; Kar, Sanjib; Maiti, Prasanta K

    2014-10-01

    Iron-based compounds possess the capability of inducing cell death due to their reactivity with oxidant molecules, but their specificity towards cancer cells and the mechanism of action are hitherto less investigated. A Fe(salen)Cl derivative has been synthesized that remains active in monomer form. The efficacy of this compound as an anti-tumor agent has been investigated in mouse and human leukemia cell lines. Fe(salen)Cl induces cell death specifically in tumor cells and not in primary cells. Mouse and human T-cell leukemia cell lines, EL4 and Jurkat cells are found to be susceptible to Fe(salen)Cl and undergo apoptosis, but normal mouse spleen cells and human peripheral blood mononuclear cells (PBMC) remain largely unaffected by Fe(salen)Cl. Fe(salen)Cl treated tumor cells show significantly higher expression level of cytochrome c that might have triggered the cascade of reactions leading to apoptosis in cancer cells. A significant loss of mitochondrial membrane potential upon Fe(salen)Cl treatment suggests that Fe(salen)Cl induces apoptosis by disrupting mitochondrial membrane potential and homeostasis, leading to cytotoxity. We also established that apoptosis in the Fe(salen)Cl-treated tumor cells is mediated through caspase-dependent pathway. This is the first report demonstrating that Fe(salen)Cl can specifically target the tumor cells, leaving the primary cells least affected, indicating an excellent potential for this compound to emerge as a next-generation anti-tumor drug. © 2014 International Federation for Cell Biology.

  17. Synthesis, characterization and interaction of N,N'-dipyridoxyl (1,4-butanediamine) Co(III) salen complex with DNA and HSA

    Science.gov (United States)

    Janati Fard, F.; Mashhadi Khoshkhoo, Z.; Mirtabatabaei, H.; Housaindokht, M. R.; Jalal, R.; Eshtiagh Hosseini, H.; Bozorgmehr, M. R.; Esmaeili, A. A.; Javan Khoshkholgh, M.

    2012-11-01

    Co(III) salen complex with N,N'-dipyridoxyl (1,4-butanediamine) Schiff-base ligand as tetradentate ligand was synthesized and characterized by the elemental and spectroscopic analysis. The interaction of this complex with calf thymus DNA (ct DNA) has been investigated in vitro using UV absorption, fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The binding constant has been estimated to be 1 × 104 M-1 using UV absorption. The addition of ct DNA to Co(III) salen solution resulted in a fluorescence quenching. The binding constant and site size binding have been calculated in connection with other experimental observations show that the interactive model between Co(III) salen and ct DNA is an intercalative one. The interaction between plasmid DNA (pTZ57R DNA) and this complex is confirmed by gel electrophoresis studies. Furthermore, the interaction between HSA and Co(III) salen complex was investigated by UV absorption, fluorescence spectroscopy and molecular modeling. The binding constant for the interaction of this complex with HSA were found to be 3.854 × 104 M-1 using UV absorption, which was in good agreement with the binding constant obtained from fluorescence method (3.866 × 104 M-1). The binding distance between HSA and this complex was estimated to be 2.48 nm according to Förster theory of non-radioactive energy transfer. Molecular modeling studies suggested that hydrophobic interaction was the predominant intermolecular forces stabilizing Co(III) complex-HSA system.

  18. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk

    2013-01-01

    The oxidation of phenol, cychohexanol and hydroquinone has been screened in the presence of copper(II) complexes with the Schiff‐base salen ligand, 1,5‐bis[(E)‐5‐chloro‐2‐hydroxybenzylideneamino]‐1H‐imidazole‐4‐carbonitrile, and encapsulated into NaY zeolite by using two different methods. The new...

  19. Reaction of a (Salen)ruthenium(VI) nitrido complex with thiols. C-H bond activation by (Salen)ruthenium(IV) sulfilamido species.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Peng, Shie-Ming; Wong, Wing-Tak; Lau, Tai-Chu

    2010-01-04

    The reaction of [Ru(VI)(N)(L)(MeOH)](PF(6)) [1; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion] with a stoichiometric amount of RSH in CH(3)CN gives the corresponding (salen)ruthenium(IV) sulfilamido species [Ru(IV){N(H)SR}(L)(NCCH(3))](PF(6)) (2a, R = (t)Bu; 2b, R = Ph). Metathesis of 2a with NaN(3) in methanol affords [Ru(IV){N(H)S(t)Bu}(L)(N(3))] (2c). 2a undergoes further reaction with 1 equiv of RSH to afford a (salen)ruthenium(III) sulfilamine species, [Ru(III){N(H)(2)S(t)Bu}(L)(NCCH(3))](PF(6)) (3). On the other hand, 2b reacts with 2 equiv of PhSH to give a (salen)ruthenium(III) ammine species [Ru(III)(NH(3))(L)(NCCH(3))](PF(6)) (4); this species can also be prepared by treatment of 1 with 3 equiv of PhSH. The X-ray structures of 2c and 4 have been determined. Kinetic studies of the reaction of 1 with excess RSH indicate the following schemes: 1 --> 2a --> 3 (R = (t)Bu), 1 --> 2b --> 4 (R = Ph). The conversion of 1 to 2 probably involves nucleophilic attack of RSH at the nitrido ligand, followed by a proton shift. The conversions of 2a to 3 and 2b to 4 are proposed to involve rate-limiting H-atom abstraction from RSH by 2a or 2b. 2a and 2b are also able to abstract H atoms from hydrocarbons with weak C-H bonds. These reactions occur with large deuterium isotope effects; the kinetic isotope effect values for the oxidation of 9,10-dihydroanthracene, 1,4-cyclohexadiene, and fluorene by 2a are 51, 56, and 11, respectively.

  20. Tailoring the Structure of Two-Dimensional Self-Assembled Nanoarchitectures Based on NiIISalen Building Blocks

    DEFF Research Database (Denmark)

    Viciano-Chumillas, Marta; Li, Dongzhe; Smogunov, Alexander

    2014-01-01

    -butyl) is presented. Their electronic structure and self-assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self-assembly through hydrogen bonding. In addition, other substituents, that is, tert-butyl and diamine bridges (2...

  1. In situ XAS study of the Mn(III)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2

    DEFF Research Database (Denmark)

    Jutz, Fabian; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    In situ X-ray absorption spectroscopy at the Mn K- and Br K-edge was employed to study the cycloaddition of carbon dioxide to propylene oxide and styrene oxide, catalyzed by Mn(III) salen bromide complexes. Three homogeneous complexes with varying salen ligand structure and one complex immobilized...... coordination of the bromine neighbors to the Mn central atom was also evidenced by EXAFS spectra, e.g. loss of Br backscattering in the Mn K-EXAFS spectra and the Mn-backscattering in the Br K-edge spectra. In the catalytic studies it was observed that propylene oxide usually reacted much faster than styrene...

  2. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  3. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  4. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    Science.gov (United States)

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  6. Ni(salen): a system that forms many solvates with interacting Ni atoms

    NARCIS (Netherlands)

    Siegler, M.A.M.; Lutz, M.

    2009-01-01

    Recrystallization of [N,N’-Ethylene-bis(salicylideneiminato)]-nickel(II) [Ni(salen)] has been carried out from a large selection of solvents. Crystals can be either solvent free or solvates. This study is based on X-ray crystal structure determinations, which include the redetermination of Ni(salen)

  7. The expression of the beta cell-derived autoimmune ligand for the killer receptor nkp46 is attenuated in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Chamutal Gur

    Full Text Available NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice is prominent. We have recently demonstrated that in type 1 diabetes (T1D NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype. In addition, we found that NKp46 recognizes an unknown ligand expressed by beta cells derived from humans and mice and that blocking of NKp46 activity prevented diabetes development. Here we investigated the properties of the unknown NKp46 ligand. We show that the NKp46 ligand is mainly located in insulin granules and that it is constitutively secreted. Following glucose stimulation the NKp46 ligand translocates to the cell membrane and its secretion decreases. We further demonstrate by using several modalities that the unknown NKp46 ligand is not insulin. Finally, we studied the expression of the NKp46 ligand in type 2 diabetes (T2D using 3 different in vivo models and 2 species; mice and gerbils. We demonstrate that the expression of the NKp46 ligand is decreased in all models of T2D studied, suggesting that NKp46 is not involved in T2D.

  8. (Salen)Ti(Ⅳ)-Catalyzed Asymmetric Ring-opening of meso Epoxides Using Dithiophosphorus Acid as the Nucleophile

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong ZHOU; Zhao Ming LI; Bing LIU; Kang Ying LI; Li Xin WANG; Guo Feng ZHAO; Qi Lin ZHOU; Chu Chi TANG

    2006-01-01

    The asymmetric ring-opening of epoxides with dithiophosphorus acids catalyzed by a (salen)Ti(Ⅳ) complex formed in situ from the reaction of Ti(OPr-i)4 and the chiral Schiff base derived from (1R,2R)-(+)-diaminocyclohexane was realized. The resulting products were obtained with low to good enantioselectivity (up to 73% ee).

  9. Ion-exchange voltammetry of tris(2,2'-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes

    International Nuclear Information System (INIS)

    Buriez, Olivier; Moretto, Ligia M.; Ugo, Paolo

    2006-01-01

    The electrochemical behaviour of [Ni(bpy) 3 (BF 4 ) 2 ], [Co(bpy) 3 (BF 4 ) 2 ], and Co(salen) (where bpy = 2,2'-bipyridine, and salen N,N'-bis(salicylidene)ethylenediamine) is studied at a glassy carbon electrode modified with the poly(estersulfonate) ionomer Eastman AQ 55 in acetonitrile (MeCN). It is shown that the nickel complex is strongly incorporated into the polymer. The reduction of the divalent nickel compound features a two-electron process leading to a nickel(0) species which is released from the coating because of the lack of electrostatic attraction with the ionomer. Yet, the neutral zerovalent nickel-bipyridine complex is reactive towards ethyl 4-iodobenzoate and di-bromocyclohexane despite the presence of the polymer. The activation of the aryl halide occurs through an oxidative addition, whereas, an electron transfer is involved in the presence of the alkyl halide making the catalyst regeneration much faster in the latter case. The electrochemical study of [Co(bpy) 3 (BF 4 ) 2 ] shows that incorporation of the cobalt complex into the polymer is efficient, provided excess bpy is used. This excess bpy does not interfere with the electrocatalytic activity of the cobalt complex incorporated in the AQ coating and efficient electrocatalysis is observed towards di-bromocyclohexane and benzyl-bromide as substrates. Finally, replacement of the bpy ligand with the macrocycle N,N'-bis(salicylidene)ethylenediamine, salen, leads to the incorporation of the non-charged Co II (salen) complex into the AQ 55 polymer showing the relevancy of hydrophobic interactions. The reaction between the electrogenerated [Co I (salen)] - with 1,2-dibromocyclohexane exhibits a fast inner sphere electron transfer

  10. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei

    2015-02-05

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  11. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei; Salmeia, Khalifah A.; Vagin, Sergei I.; Rieger, Bernhard

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  12. Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands

    Directory of Open Access Journals (Sweden)

    Chriselle D. Braganza

    2018-01-01

    Full Text Available The macrophage inducible C-type lectin (Mincle is a pattern recognition receptor able to recognize both damage-associated and pathogen-associated molecular patterns, and in this respect, there has been much interest in determining the scope of ligands that bind Mincle and how structural modifications to these ligands influence ensuing immune responses. In this review, we will present Mincle ligands of known chemical structure, with a focus on ligands that have been synthetically prepared, such as trehalose glycolipids, glycerol-based ligands, and 6-acylated glucose and mannose derivatives. The ability of the different classes of ligands to influence the innate, and consequently, the adaptive, immune response will be described, and where appropriate, structure–activity relationships within each class of Mincle ligands will be presented.

  13. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  14. Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand. Theoretical calculations

    International Nuclear Information System (INIS)

    Takayama, T.; Sekine, T.; Kudo, H.

    2003-01-01

    Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)

  15. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  16. Xanthene and Xanthone Derivatives as G-Quadruplex Stabilizing Ligands

    Directory of Open Access Journals (Sweden)

    Alessandro Altieri

    2013-10-01

    Full Text Available Following previous studies on anthraquinone and acridine-based G-quadruplex ligands, here we present a study of similar aromatic cores, with the specific aim of increasing G-quadruplex binding and selectivity with respect to duplex DNA. Synthesized compounds include two and three-side chain xanthone and xanthene derivatives, as well as a dimeric “bridged” form. ESI and FRET measurements suggest that all the studied molecules are good G-quadruplex ligands, both at telomeres and on G-quadruplex forming sequences of oncogene promoters. The dimeric compound and the three-side chain xanthone derivative have been shown to represent the best compounds emerging from the different series of ligands presented here, having also high selectivity for G-quadruplex structures with respect to duplex DNA. Molecular modeling simulations are in broad agreement with the experimental data.

  17. Kontserthuset Göteborg. Fredag 7. mars 1997 Stora salen

    Index Scriptorium Estoniae

    1997-01-01

    Kontserthuset Göteborg. Göteborgs Symfoniker. Chefdirigent: Neeme Järvi. Dirigent: Neeme Järvi. Kontsertmästare: Per Enoksson, Christer Thorvaldsson. Fredag 7. mars 1997 Stora salen (orange serie). Kavas: Ingvar Lidholm "Toccata e canto", Eduard Tubin Sümfoonia N 5 h-moll, Igor Stravinski "Püha kevad" Lk. 3-4: Kruckenberg, Sven: Tubin - Symfoni nr 5. Lk. 7 Neeme Järvi dirigenditööst

  18. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion

    International Nuclear Information System (INIS)

    Serenjeh, Fariba Nazari; Hashemi, Payman; Ghiasvand, Ali Reza; Naeimi, Hossein; Zakerzadeh, Elham

    2016-01-01

    The authors describe a method for magnetic solid phase extraction of uranyl ions from water samples. It is based on the use of spherical agarose-coated magnetic nanoparticles along with magnetic field agitation. The salen type Schiff base N,N’-bis(4-hydroxysalicylidene)-1,2-phenylenediamine was synthesized from resorcinol in two steps and characterized by infrared and nucleic magnetic resonance spectroscopies. The particles were then activated by an epichlorohydrin method and functionalized with the Schiff base which acts as a selective ligand for the extraction of UO 2 (II). Following preconcentration and elution with HCl, the ions were quantified by spectrophotometry using Arsenazo III as the indicator. The effects of pH value, ionic strength and amount of the adsorbent on the extraction of UO 2 (II) were optimized by a multivariate central composite design method. Six replicate analyses under optimized conditions resulted in a recovery of 96.6 % with a relative standard deviation of 3.4 % for UO 2 (II). The detection limit of the method (at a signal-to-noise ratio of 3σ) is 10 μg L -1 . The method was successfully applied to the determination of UO 2 (II) in spiked water samples. (author)

  19. Kontserthuset Göteborg. Lördag 15. mars 1997 Stora salen

    Index Scriptorium Estoniae

    1997-01-01

    Kontserdi kavas juttu: Eduard Tubina "Balalaikakontsert" ning Wilhelm Stenhammari ja Sergei Prokofjevi teosed Lk. 3-4: Kruckenberg, Sven: Tubin - Balalajkakontsert. Kontserthuset Göteborg. Göteborgs Symfoniker, chefdirigent: Neeme Järvi. Dirigent: Neeme Järvi, solist: Gennady Zut, balalajka. Kontsertmästare: Per Enoksson, Christer Thorvaldsson. Lördag 15. mars 1997 Stora salen (grön serie)

  20. A Sustainable Nanocomposite Au(Salen)@CC for Catalytic Degradation of Eosin Y and Chromotrope 2R Dyes.

    Science.gov (United States)

    Mayani, Vishal J; Mayani, Suranjana V; Kim, Sang Wook

    2017-08-03

    Up to now, a very few catalysts have been developed approaching the heterogeneous catalytic degradation of Eosin Y and Chromotrope 2R dyes (Acid Red 29). The present study provides a complete perspective of recyclable nanocomposite Au(Salen)@CC for catalytic degradation of hazardous water pollutant dyes viz., Eosin Y & Chromotrope 2R using mild reaction conditions. New gold Salen complex doped carbon nanocomposite Au(Salen)@CC was developed by easy methodology using nano carbon cage (CC) prepared from low-priced Pyrolysis fuel oil (PFO) residue based Pitch. The UV-Vis adsorption spectroscopy results of Eosin Y and Chromotrope 2R dyes indicated complete degradation into acidic compounds which can be further mineralized to CO 2 and H 2 O under mild reaction conditions. The heterogeneous catalyst recycled and reused successfully for four repeated experiments without loss in its adequate performance. This new sustainable and eco-friendly catalyst delivered significant degradation activity compared to existing reports and it can be further utilized for new multifunctional applications such as, radiopharmaceutical activities, heterogeneous catalysis and chiral resolution.

  1. Cu(II) salen complex with propylene linkage: An efficient catalyst in the formation of Csbnd X bonds (X = N, O, S) and biological investigations

    Science.gov (United States)

    Azam, Mohammad; Dwivedi, Sourabh; Al-Resayes, Saud I.; Adil, S. F.; Islam, Mohammad Shahidul; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Lee, Dong-Ung

    2017-02-01

    The catalytic property of a mononuclear Cu(II) salen complex in Chan-Lam coupling reaction with phenyl boronic acid at room temperature is reported. The studied complex is found to be potential catalyst in the preparation of carbon-heteroatom bonds with excellent yields. The studied Cu(II) salen complex is monoclinic with cell parameters, a = 9.6807(5) (α 90°), (b = 17.2504(8) (β 112.429 (2), c = 11.1403 (6) (γ = 90°), and has distorted square planar environment around Cu(II) ion. Furthermore, there is no π⋯π interactions in the reported complex due to large distance between the centroid of aromatic rings. In addition, DNA binding study of Cu(II) salen complex by fluorescence and absorption spectroscopy is also reported. Moreover, the reported Cu(II) salen complex exhibits significant anticancer activity against MCF-7 cancer cell lines, and displays potential antimicrobial biofilm activity against P. aeruginosa, suggesting antimicrobial biofilm an important tool for suppression of resistant infections caused by P. aeruginosa.

  2. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  3. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  4. PLASS: Protein-ligand affinity statistical score a knowledge-based force-field model of interaction derived from the PDB

    Science.gov (United States)

    Ozrin, V. D.; Subbotin, M. V.; Nikitin, S. M.

    2004-04-01

    We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.

  5. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante

    2007-07-07

    The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.

  6. Epibatidine-derivatives: ligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Westera, G.; Patt, J.T.; Jankowski, K.; Bertrand, D.; Spang, J.; Schubiger, P.A.

    1997-01-01

    Epibatidine, isolated from the Ecuadorian frog Epipedobates tricolar, has been synthesized. 11 C-N-methyl derivate is investigated as useful nicotinergic receptor ligand by electrophysiological methods and in vivo mice experiments. (author) 2 figs., 7 refs

  7. Kinetics and Mechanism of the Ligand Exchange Reaction Between ...

    African Journals Online (AJOL)

    NICO

    11 Y. Fan, W. You, W. Huang, J.L. Liu and Y.N. Wang, Salen-type nickel(II) ... 16 R. Vafazadeh, B. Khaledi and A.C. Willis, Synthesis and crystal struc- ture of a new ... 24 M.K. Taylor, J. Reglinski and D. Wallace, Coordination geometry.

  8. The Evaluation of Novel Camphor-derived Ligands as Catalysts in ...

    African Journals Online (AJOL)

    The evaluation of a series of camphor-derived ligands as catalysts in the asymmetric Henry reaction is reported. The synthesis of two novel derivatives is detailed and these molecules are also screened as catalysts in this reaction. The single crystal X-ray structure of one of the novel compounds is reported. The reaction is ...

  9. Alternating ring-opening copolymerization of cyclohexene oxide with phthalic anhydride catalyzed by iron(III) salen complexes

    Czech Academy of Sciences Publication Activity Database

    Mundil, R.; Hošťálek, Z.; Šeděnková, Ivana; Merna, J.

    2015-01-01

    Roč. 23, č. 2 (2015), s. 161-166 ISSN 1598-5032 Institutional support: RVO:61389013 Keywords : polyesters * iron salen complexes * catalysis Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.357, year: 2015

  10. The ligand-to-metal energy transfer and the role of Lewis base ligands and silver plasmons in emission of new type of lanthanide phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawryszewska, Paula [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Amirkhanov, Vladimir M.; Trush, Victor A. [Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Street 64, Kyiv 01601 (Ukraine); Kulesza, Dagmara [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Legendziewicz, Janina, E-mail: janina.legendziewicz@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland)

    2016-02-15

    Two types of new Ln{sup 3+} chelates, phosphoro- and sulfono-derivatives of beta-diketones and Lewis base ligands were obtained and characterized by the high resolution photoluminescence spectroscopy at 293 and 77 as well as by luminescence decay times. The new type of phosphors shows very strong emission after excitation in the UV range within the ligand bands. The dynamics of the excited state will be discussed. The paths of the energy transfer (ET) are analyzed and mechanism of this process is proposed. The silica gels containing investigated complexes with silver particles were obtained and the role of silver plasmons on spectroscopic properties is displayed. - Highlights: • Spectral characteristic of new type of lanthanide chelates: Na[Ln(SP){sub 4}] and [Ln(SP){sub 3}L]. • Preparation of the energy-transfer (E-T) diagram. • Analysis of the possible pathways of energy transfer and their mechanism. • Application of chelates incorporated in sol–gel codoped by Ag particles.

  11. Organic carbonates as solvents in macrocyclic Mn(III) salen catalyzed asymmetric epoxidation of non-functionalized olefins

    Czech Academy of Sciences Publication Activity Database

    Maity, N. Ch.; Rao, G. V. S.; Prathap, Kaniraj Jeya; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. H.; Bajaj, H. C.

    2013-01-01

    Roč. 366, January (2013), s. 380-389 ISSN 1381-1169 Institutional support: RVO:61388963 Keywords : asymmetric epoxidation * organic carbonate * macrocyclic Mn(III) salen complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2013

  12. ICT based molecular recognition of 2,5-dinitrophenol in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soumi [Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 (India); Chaudhuri, Tandrima, E-mail: tanchem_bu@yahoo.co.in [Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, West Bengal (India); Banerjee, Manas [Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 (India)

    2015-02-15

    The first report of wavelength ratiometric sensing of electron deficient nitroaromatic explosive, 2,5-dinitrophenol (N4) with photoluminescent electron rich Schiff base H{sub 2}salen (A1) derived from 1,2-ethanediamine and salicyldehyde and related complexes [Zn(salen)]·H{sub 2}O (A2) and [Ni(salen)]·H{sub 2}O (A3) in methanol is presented. DFT based optimization reveals that NACs (N1–N5) induce the formation of 1:2 donor–acceptor complexes with the salen based compounds. - Highlights: • Ratiometric sensing of nitroaromatics, especially 2,5-dinitrophenol (N4), is demonstrated. • H{sub 2}salen (A1) exhibit equilibrium with nitroaromatics except 2,5-dinitrophenol in excited state. • [Ni(salen)]·H{sub 2}O (A3) exhibits both ground and excited state equilibrium with only 2,5-dinitrophenol among five NACs. • Nitroaromatics form 1:2 donor–acceptor complexes with salen type compounds.

  13. Expanding the Library of Uranyl Amide Derivatives: New Complexes Featuring the tert-Butyldimethylsilylamide Ligand.

    Science.gov (United States)

    Pattenaude, Scott A; Coughlin, Ezra J; Collins, Tyler S; Zeller, Matthias; Bart, Suzanne C

    2018-04-16

    New uranyl derivatives featuring the amide ligand, -N(SiHMe 2 ) t Bu, were synthesized and characterized by X-ray crystallography, multinuclear NMR spectroscopy, and absorption spectroscopies. Steric properties of these complexes were also quantified using the computational program Solid-G. The increased basicity of the free ligand -N(SiHMe 2 ) t Bu was demonstrated by direct comparison to -N(SiMe 3 ) 2 , a popular supporting ligand for uranyl. Substitutional lability on a uranyl center was also demonstrated by exchange with the -N(SiMe 3 ) 2 ligand. The increased basicity of this ligand and diverse characterization handles discussed here will make these compounds useful synthons for future reactivity.

  14. Designer ligands. Part 15. Synthesis and characterisation of novel Mn(lI), Ni(II) and Zn(II) complexes of 1,10-phenanthroline-derived ligands

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2009-01-01

    Full Text Available Series of manganese(II), nickel(II) and zinc(II) complexes have been prepared using 1,10-phenanthroline-derived ligands, and their coordination geometries have been assigned using infrared data. It is apparent that, depending on the ligand...

  15. Designer ligands. Part 14. Novel Mn(lI), Ni(II) and Zn(II) complexes of benzamide- and biphenyl-derived ligands

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2009-01-01

    Full Text Available . Results and Discussion The ligands 1a-c (Scheme 1) were prepared by treating benzoic acid with carbonyl diimidazole (CDI)13 in dimethylformamide (DMF), followed by the respective primary amines, histamine, 2- (2-aminoethyl)benzimidazole and 2...-(2-aminoethyl)pyridine. [Histamine had to be released from its dihydrochloride salt by treatment with sodium methoxide, while 2-(2- aminoethyl)benzimidazole was prepared from 1,2-diaminobenzene and β-alanine.16] The synthesis of the biphenyl-derived ligand 2...

  16. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  18. The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study

    International Nuclear Information System (INIS)

    Fremy, S; Schwarz, A; Laemmle, K; Wiesendanger, R; Prosenc, M

    2009-01-01

    Molecules of Co-salen, a paramagnetic metal-organic Schiff base complex, self-assemble into two different well ordered morphologies on a NaCl(001) substrate: nanowires, which form networks, and compact nanocrystallites. Their growth can be controlled by adjusting the deposition parameters. It turns out that the nanowires are metastable. Molecular resolution images suggest that the packing in both morphologies is the same as in bulk Co-salen single crystals. Only the orientation of the c-axis with respect to the substrate is different. The origin of this intriguing bimodal growth is associated with a monomer-to-dimer transition, which probably takes place during initial nucleation at step edges.

  19. The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Fremy, S; Schwarz, A; Laemmle, K; Wiesendanger, R [Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Prosenc, M, E-mail: aschwarz@physnet.uni-hamburg.d [Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)

    2009-10-07

    Molecules of Co-salen, a paramagnetic metal-organic Schiff base complex, self-assemble into two different well ordered morphologies on a NaCl(001) substrate: nanowires, which form networks, and compact nanocrystallites. Their growth can be controlled by adjusting the deposition parameters. It turns out that the nanowires are metastable. Molecular resolution images suggest that the packing in both morphologies is the same as in bulk Co-salen single crystals. Only the orientation of the c-axis with respect to the substrate is different. The origin of this intriguing bimodal growth is associated with a monomer-to-dimer transition, which probably takes place during initial nucleation at step edges.

  20. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    Science.gov (United States)

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. (SalenMn(III Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Ballistreri

    2016-07-01

    Full Text Available Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14 as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%.

  2. Synthesis of Phthalimide Derivatives as Potential PPAR-γ Ligands

    Directory of Open Access Journals (Sweden)

    So Hyeon Eom

    2016-06-01

    Full Text Available Paecilocin A, a phthalide derivative isolated from the jellyfish-derived fungus Paecilomyces variotii, activates PPAR-γ (Peroxisome proliferator-activated receptor gamma in rat liver Ac2F cells. Based on a SAR (Structure-activity relationships study and in silico analysis of paecilocin A-mimetic derivatives, additional N-substituted phthalimide derivatives were synthesized and evaluated for PPAR-γ agonistic activity in both murine liver Ac2F cells and in human liver HepG2 cells by luciferase assay, and for adipogenic activity in 3T3-L1 cells. Docking simulation indicated PD6 was likely to bind most strongly to the ligand binding domain of PPAR-γ by establishing crucial H-bonds with key amino acid residues. However, in in vitro assays, PD1 and PD2 consistently displayed significant PPAR-γ activation in Ac2F and HepG2 cells, and adipogenic activity in 3T3-L1 preadipocytes.

  3. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  4. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    Science.gov (United States)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  5. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations.

    Science.gov (United States)

    Xu, Zheng; Xu, Li-Wen

    2015-10-01

    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Histamine H3 receptor ligands in the group of (homo)piperazine derivatives.

    Science.gov (United States)

    Szczepanska, Katarzyna; Kuder, Kamil; Kiec-Kononowicz, Katarzyna

    2017-11-23

    Since its' discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications make H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One of such replacements is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R's and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  8. Synthesis and characterization of thorium(IV) and uranium(IV) complexes with Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Radoske, Thomas; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    We report herein the synthesis and characterization of several imine complexes of tetravalent thorium (Th(IV)) and uranium (U(IV)). The ligands investigated in this study are a Schiff base type, including the well-known salen ligand (H{sub 2}Le, Fig. 1). The complexation in solution was investigated by NMR measurements indicating paramagnetic effects of unpaired f-electrons of U(IV) on the ligand molecule. We also determined the solid-state molecular structures of the synthesized complexes by single crystal X-ray diffraction. The synthesized complexes show an eight-fold coordination geometry around the actinide center surrounded by two tetradentate ligands with 2N- and 2O-donor atoms.

  9. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    Science.gov (United States)

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  10. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  11. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics.

    Science.gov (United States)

    Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena

    2012-08-15

    The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and

  12. New pinene-derived pyridines as bidentate chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stewart-Liddon, A.; Teplý, Filip; Kobr, L.; Muir, K. W.; Haigh, D.; Kočovský, P.

    2008-01-01

    Roč. 64, č. 18 (2008), s. 4011-4025 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : chiral ligands * transition metal catalysis * asymmetric catalysis * pyridine ligands * oxazoline ligands Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  13. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  14. New Hybrid Properties of TiO2 Nanoparticles Surface Modified With Catecholate Type Ligands

    Directory of Open Access Journals (Sweden)

    Džunuzović Enis

    2009-01-01

    Full Text Available Abstract Surface modification of nanocrystalline TiO2 particles (45 Å with bidentate benzene derivatives (catechol, pyrogallol, and gallic acid was found to alter optical properties of nanoparticles. The formation of the inner-sphere charge–transfer complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites. The binding structures were investigated by using FTIR spectroscopy. The investigated ligands have the optimal geometry for chelating surface Ti atoms, resulting in ring coordination complexes (catecholate type of binuclear bidentate binding–bridging thus restoring in six-coordinated octahedral geometry of surface Ti atoms. From the Benesi–Hildebrand plot, the stability constants at pH 2 of the order 103 M−1 have been determined.

  15. Physico-chemical characterization of mixed-ligand complexes of Mn(III based on the acetylacetonate and maleic acid and its hydroxylamine derivative

    Directory of Open Access Journals (Sweden)

    Cakić Suzana M.

    2005-01-01

    Full Text Available Two new Mn(III mixed-ligand complexes with two acetylacetonate (acac ligands and one maleate ligand and its hydroxylamine derivative of the general formula [Mn(C5H7O22L] were prepared. Their structure was established by using elemental analysis, FTIR and UV/VIS spectroscopic methods, as well as magnetic measurement. Replacement of the acetylacetonate ligand by the corresponding acid ligand has been confirmed in Mn(III acetylacetonate. Based on the obtained experimental data and literature indications, structural formulae to these compounds were assigned.

  16. Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes.

    Science.gov (United States)

    Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E

    2016-04-21

    The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Maike Bublitz

    2015-07-01

    Full Text Available Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  18. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  19. Synthesis of new oxovanadium (IV) complexes of potential insulinmimetic activity with coumarin-3-carboxylic acid ligands and substituted derivatives

    International Nuclear Information System (INIS)

    Salas Fernandez, Paloma; Alvino de la Sota, Nora; Galli Rigo-Righi, Carla

    2013-01-01

    This work comprises the design and synthesis of four new oxovanadium (IV) complexes, a metal which possesses insulin-mimetic action. Coumarin-3-carboxylic acid and three of its 6 -and 6,8- derivatives were used as ligands. Coumarins are of interest due to their well-known biological properties and pharmacological applications; these include the insulino-sensibilizing effect of certain alcoxy-hydroxy-derivatives which might lead to the eventual existence of a synergetic effect with the active metal center. The synthesis of the vanadyl complexes was preceded by the synthesis of the coumarin-3-carboxylic acid and its 6-bromo- derivative, as well as the syntheses of three derivatives not previously reported: 6-bromo-8-metoxi-, 6-bromo-8-nitro-, and 6-bromo-8-hydroxy-, which were prepared by a Knoevenagel condensation reaction. The complexes, on their part, were prepared by a metathesis reaction between VOSO 4 and the corresponding ligands, on the basis of methods reported for other vanadyl complexes and under strict pH control. The coumarin-3-carboxylic ligands and the derivatives were characterized by 1 H-NMR-, FTIR- and UV-Vis-spectroscopy. In the case of the complexes, their paramagnetic character did not allow for NMR characterization, being thus identified by FT-IR-spectroscopy and by the quantitative determination of their vanadium contents. (author)

  20. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis.

    Science.gov (United States)

    García-Vallejo, Juan J; van Kooyk, Yvette

    2009-07-01

    C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.

  1. Chiral ligands derived from monoterpenes: application in the synthesis of optically pure secondary alcohols via asymmetric catalysis.

    Science.gov (United States)

    El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André

    2015-01-19

    The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. (+)-camphor-derived tri- and tetradentate amino alcohols; synthesis and application as ligands in the nickel catalyzed enantioselective conjugate addition of diethylzinc

    NARCIS (Netherlands)

    Vries, André H.M. de; Imbos, Rosalinde; Feringa, Bernard

    1997-01-01

    Several novel tri- and tetradentate amino alcohol ligands, all derived from (+)-camphor, have been synthesized by using specific N-alkylation procedures. The amino alcohols were employed as chiral ligands in the nickel catalyzed conjugate additions of diethylzine to chalcone and cyclohexenone as

  3. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  4. Framework for Derivation of Water Quality Criteria Using the Biotic Ligand Model: Copper as a Case Study.

    Science.gov (United States)

    Gondek, John C; Gensemer, Robert W; Claytor, Carrie A; Canton, Steven P; Gorsuch, Joseph W

    2018-06-01

    Acceptance of the Biotic Ligand Model (BLM) to derive aquatic life criteria, for metals in general and copper in particular, is growing amongst regulatory agencies worldwide. Thus, it is important to ensure that water quality data are used appropriately and consistently in deriving such criteria. Here we present a suggested BLM implementation framework (hereafter referred to as "the Framework") to help guide the decision-making process when designing sampling and analysis programs for use of the BLM to derive water quality criteria applied on a site-specific basis. Such a framework will help inform stakeholders on the requirements needed to derive BLM-based criteria, and thus, ensure the appropriate types and amount of data are being collected and interpreted. The Framework was developed for calculating BLM-based criteria when data are available from multiple sampling locations on a stream. The Framework aspires to promote consistency when applying the BLM across datasets of disparate water quality, data quantity, and spatial and temporal representativeness, and is meant to be flexible to maximize applicability over a wide range of scenarios. Therefore, the Framework allows for a certain level of interpretation and adjustment to address the issues unique to each dataset. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cell: A combined electrochemical and density functional theory study

    Science.gov (United States)

    Sheng, Xia; Alvarez-Gallego, Yolanda; Dominguez-Benetton, Xochitl; Baert, Kitty; Hubin, Annick; Zhao, Hailiang; Mihaylov, Tzvetan T.; Pierloot, Kristine; Vankelecom, Ivo F. J.; Pescarmona, Paolo P.

    2018-06-01

    Carbon-supported iron complexes were investigated as electrocatalysts for the reduction of nitric oxide (NO) in a H2-NO fuel cell conceived for the production of hydroxylamine (NH2OH) with concomitant generation of electricity. Two types of iron complexes with tetradentate ligands, namely bis(salicylidene)ethylenediimine (Salen) and phthalocyanine (Pc), supported on activated carbon or graphite were prepared and evaluated as electrocatalysts, either without further treatment or after pyrolysis at 700 °C. The performance in the reduction of NO of gas diffusion cathodes based on these electrocatalysts was investigated in an electrochemical half cell (3-electrode configuration) using linear sweep voltammetry (LSV). The most promising electrocatalysts were studied further by chronoamperometric experiments in a H2-NO fuel cell, which allowed comparison in terms of power output and hydroxylamine production. Depending on the concentration of the NO feed (6 or 18%), the best electrocatalytic performance was delivered either by FePc or FeSalen. The gas diffusion electrode based on FeSalen supported on activated carbon with 0.3 wt% Fe-loading provided the highest current density (86 A/m2) and the best current efficiency (43%) towards the desired NH2OH when operating at the higher NO concentration (18%). Moreover, FeSalen offers the advantage of being cheaper than FePc. The experimental work was complemented by density functional theory (DFT) calculations, which allowed to shed more light on the reaction mechanism for the reduction of nitric oxide at the atomistic level.

  6. Identification of naturally processed hepatitis C virus-derived major histocompatibility complex class I ligands.

    Directory of Open Access Journals (Sweden)

    Benno Wölk

    Full Text Available Fine mapping of human cytotoxic T lymphocyte (CTL responses against hepatitis C virus (HCV is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS 3 and 5B (NS3₁₄₀₆₋₁₄₁₅ and NS5B₂₅₉₄₋₂₆₀₂. In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.

  7. Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Mohammad

    2010-01-01

    The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-l,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base, giving excellent ynones under aerobic conditions.

  8. The Evaluation of Novel Camphor-derived Pyridyl Ligands as ...

    African Journals Online (AJOL)

    The structures of the copper (II) complexes of the ligands were calculated using ONIOM density functional theory and the results suggest that chiral induction to the alkene functional group is indeed lacking. This explains the moderate experimental selectivities obtained. Keywords: Camphor ligands, asymmetric catalysis, ...

  9. The Evaluation of Novel Camphor-derived Pyridyl Ligands as ...

    African Journals Online (AJOL)

    NJD

    2009-03-03

    Mar 3, 2009 ... The structures of the copper (II) complexes of the ligands were calculated using ONIOM density functional theory and the results suggest that chiral induction to the alkene functional group is indeed lacking. This explains the moderate experimental selectivities obtained. KEYWORDS. Camphor ligands ...

  10. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions.

    Science.gov (United States)

    Yang, Haixia; Xiao, Lei; Wang, Nanping

    2017-04-01

    Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  12. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  13. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  14. Palladium-catalyzed Asymmetric Hydrosilylation of Styrene and Its Derivatives with Chiral Phosphoramidite Ligands Containing Chiral Ferrocenyl Amine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sub; Kim, Min Young; Ahn, Hyo Jin; Han, Jin Wook [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Asymmetric hydrosilylation was one of the most effective methods, which provided optically active organosilanes as a synthetically useful intermediate in organic synthesis. One useful transformation is the Tamao-Fleming oxidation, which is an oxidation reaction of carbon[BOND]silicone bond to afford optically active alcohols with retention of configuration. It is demonstrated that a palladium catalyst coordinating with phosphoramidite ligand (S {sub a},R {sub c},R {sub c,})-L3a from (S)-BINOL and chiral bis((R)-1-ferrocenylethyl) amine shows a high catalytic activity and enantioselectivity up to 97% ee in asymmetric hydrosilylation of styrene and its derivatives. The hydrosilylation of various olefin substrates using these ligands is in progress.

  15. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  16. Preparations and crystal structures of 8 coordinate uranyl(VI) complexes having macrocyclic ligands derived from pyrroledicarboxialdehydes and diamines

    International Nuclear Information System (INIS)

    Komagine, J.; Takeda, M.; Takahashi, M.

    2006-01-01

    Six 8-coordinate uranyl(VI) complexes with macrocyclic Schiff base ligands derived from 2,6-pyrroledicarboxialdehyde and diamines are prepared and the crystal structures for two of them are determined focusing on the relation between the size of the ligands and U-N bond distances. No difference in average uranyl bond distances and bond angles are observed between [UO 2 (bipytn)](a) and [UO 2 (bipydmtn)](b). U-N bonds of these complexes are, however, not equal; the U-N(pyrrole) bonds [2.45(a), 2.44(b) A] are much shorter than the U-N(imine) bonds [2.67(a), 2.67(b) A]. (author)

  17. A tetrapyridine ligand with a rigid tetrahedral core forms metal-organic frameworks with PtS type architecture.

    Science.gov (United States)

    Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J

    2011-08-14

    A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011

  18. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    Science.gov (United States)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  19. The use of phosphite-type ligands in the Ir-catalyzed asymmetric hydrogenation of heterocyclic compounds.

    Science.gov (United States)

    Lyubimov, Sergey E; Ozolin, Dmitry V; Ivanov, Pavel Yu; Melman, Artem; Velezheva, Valeriya S; Davankov, Vadim A

    2014-01-01

    A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole yielding the antidepressant drug, pirlindole. © 2013 Wiley Periodicals, Inc.

  20. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  1. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  2. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  3. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine.

    Science.gov (United States)

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3 ·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, (1)H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (K b ) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 10(5) L mol(-1) and 1.71 to 17.3 × 10(5) L mol(-1) for the ligand L and La (III) complex, respectively, in the temperature range of 298-310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex.

  4. Rational construction of an ssa-type of MOF through pre-organizing the ligand's conformation and its exceptional gas adsorption properties.

    Science.gov (United States)

    Wang, Yao; He, Minghui; Tian, Zhi; Zhong, Haoyan; Zhu, Lisha; Zhang, Yingying; Zhang, Xiaoping; Chen, De-Li; He, Yabing

    2018-02-13

    Ssa-type MOFs constructed from dicopper paddlewheels and bent diisophthalate ligands exhibit a promising potential for gas adsorption which benefits from their rich open copper sites and polyhedron-based cages with suitable sizes. However, the rational construction of such types of MOFs is exceedingly challenging because the bent diisophthalate ligands employed are inclined to exhibit various conformations and thus are prone to form MOFs with varied topologies. In this work, by pre-organizing the ligand's conformation, we successfully targeted an ssa-type MOF ZJNU-57 from a bent diisophthalate ligand. More significantly, ZJNU-57 exhibits excellent hydrolytic stability and high C 2 H 2 and CO 2 uptake capacities as well as impressive C 2 H 2 /CH 4 and CO 2 /CH 4 adsorption selectivities, indicating its promising potential for C 2 H 2 /CH 4 and CO 2 /CH 4 separation, which are relevant to acetylene production and natural gas purification. This work not only provides a rare water-stable MOF based on the Cu 2 (COO) 4 cluster for highly selective adsorption of C 2 H 2 and CO 2 from CH 4 , but also demonstrates that the ligand conformation-controlled assembly strategy may be an efficient approach toward the construction of MOF materials with definite topologies for specific applications.

  5. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity.

    Science.gov (United States)

    Maazi, Hadi; Patel, Nisheel; Sankaranarayanan, Ishwarya; Suzuki, Yuzo; Rigas, Diamanda; Soroosh, Pejman; Freeman, Gordon J; Sharpe, Arlene H; Akbari, Omid

    2015-03-17

    Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. NeoPHOX – a structurally tunable ligand system for asymmetric catalysis

    Directory of Open Access Journals (Sweden)

    Jaroslav Padevět

    2016-06-01

    Full Text Available A synthesis of new NeoPHOX ligands derived from serine or threonine has been developed. The central intermediate is a NeoPHOX derivative bearing a methoxycarbonyl group at the stereogenic center next to the oxazoline N atom. The addition of methylmagnesium chloride leads to a tertiary alcohol, which can be acylated or silylated to produce NeoPHOX ligands with different sterical demand. The new NeoPHOX ligands were tested in the iridium-catalyzed asymmetric hydrogenation and palladium-catalyzed allylic substitution. In both reactions high enantioselectivities were achieved, that were comparable to the enantioselectivities obtained with the up to now best NeoPHOX ligand derived from expensive tert-leucine.

  7. Epithelium-Derived Wnt Ligands Are Essential for Maintenance of Underlying Digit Bone.

    Science.gov (United States)

    Takeo, Makoto; Hale, Christopher S; Ito, Mayumi

    2016-07-01

    Clinically, many nail disorders accompany bone deformities, but whether the two defects are causally related is under debate. To investigate the potential interactions between the two tissue types, we analyzed epithelial-specific β-catenin-deficient mice, in which nail differentiation is abrogated. These mice showed regression of not only the nail plate but also of the underlying digit bone. Characterization of these bone defects revealed active bone resorption, which is suppressed by Wnt activation in osteoblast and osteoclast precursors. Furthermore, we found that Wntless expression, essential for Wnt ligand secretion, was lacking in the β-catenin-deficient nail epithelium and that genetic deletion of Wntless (Wls) in the nail epithelium led to the lack of Wnt activation in osteoblast and osteoclast precursors and subsequently led to defective regression of the underlying digit bone. Together, these data show that epithelial Wnt ligands can ultimately regulate Wnt signaling in osteoblast and osteoclast precursors, known to regulate bone homeostasis. These results reveal a critical role for the nail epithelium on the digit bone during homeostatic regeneration and show that Wnt/β-catenin signaling is critical for this interaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  9. Synthesis, structure and luminescence properties of zinc (II) complexes with terpyridine derivatives as ligands

    International Nuclear Information System (INIS)

    Chen Xuegang; Zhou Quanguo; Cheng Yanxiang; Geng Yanhou; Ma Dongge; Xie Zhiyuan; Wang Lixiang

    2007-01-01

    Five zinc (II) complexes (1-5) with 4'-phenyl-2,2':6',2''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively

  10. Modulation of the unpaired spin localization in Pentavalent Uranyl Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vetere, V.; Maldivi, P.; Mazzanti, M. [CEA Grenoble, INAC, SCIB, laboratoire de reconnaissance ionique et chimie de coordination, 38 (France); Vetere, V. [UMR5626, laboratoire de chimie et physique quantique, universite de Toulouse, 31 - Toulouse (France)

    2010-06-15

    The electronic structure of various complexes of pentavalent uranyl species, namely UO{sub 2}{sup +}, is described, using DFT methods, with the aim of understanding how the structure of the ligands may influence the localisation of the unpaired 5f electron of uranium (V) and, finally, the stability of such complexes towards oxidation. Six complexes have been inspected: [UO{sub 2}py{sub 5}]{sup +} (1), [(UO{sub 2}py{sub 5})KI{sub 2}] (2), [UO{sub 2}(salan-{sup t}Bu{sub 2})(py)K] (3), [UO{sub 2}(salophen-{sup t}Bu{sub 2})(thf)K] (4), [UO{sub 2}(salen-{sup t}Bu{sub 2})(py)K] (5), [and UO{sub 2}-cyclo[6]pyrrole]{sup 1-} (6), chosen to explore various ligands. In the five first complexes, the UO{sub 2}{sup +} species is well identified with the unpaired electron localized on the 5f uranium orbital. Additionally, for the salan, salen and salophen ligands, some covalent interactions have been observed, resulting from the presence of both donor and acceptor binding sites. In contrast, the last complex is best described by a UO{sub 2}{sup 2+} uranyl (VI) coordinated by the anionic radical cyclo-pyrrole, the highly delocalized p orbitals set stabilizing the radical behaviour of this ligand. (authors)

  11. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium - small business creating base type (Control of gene expression by ligands for nuclear receptors and its application to medicine manufacture - 2nd year); 1998 nendo kakunai juyotai ligand ni yoru iden joho hatsugen no seigyo to iyaku seizo process eno oyo seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Studies are made about ascochlorin and its derivatives which are expected to be effective in the treatment and prevention of lifestyle diseases such as arteriosclerosis, diabetes, hypertension, etc. The current goal is to definitely prove at the cell culture stage that ascochlorin and its derivatives act as ligands for nuclear receptors. As the result of the effort to prove their activation of nuclear receptors, it is clarified that they activate not only PPARr, which is the initial target of the research, but also PPARa, PXR, and ER. A computer simulation of interaction between ascochlorin derivatives and PPARr is conducted, and now it is predicted that the helix 10 cubic structure is transformed so that co-activators may connect to the structure. It is also found that AS-6 inhibits almost completely the appearance of type II diabetes in the db/db mouse lacking leptin receptors and type I diabetes in the NOD (non-obese diabetes) mouse. (NEDO)

  12. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  13. Synthesis and characterization of divalent metal complexes with ligand derived from the reaction of 3-aminopyridine and biacetyl

    Directory of Open Access Journals (Sweden)

    RAMESH KUMAR

    2006-09-01

    Full Text Available Divalent cobalt, nickel and copper salts reacted in situ with 3-aminopyridine and biacetyl to form complexes of the type: [M(Ap2biac2X2], where Ap2biac is the ligand and X=Cl, Br, NO3 or NCS. The complexes were analysed and characterized as distorted octahedral by conductance, molecular weight, magnetic, electronic and IR spectral studies. The electronic spectra were interpreted and tentative aassignments made. The infrared spectral studies revealed that two molecules of 3-aminopyridine were joined by molecules of biacetyl through a two carbon atom bridge and that the ligand coordinated through azomethine nitrogen atoms, whereas the pyridine nitrogen does not participate in the coordination. In the far infrared spectra, various metal–ligand vibrations were observed and are discussed.

  14. Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation

    Directory of Open Access Journals (Sweden)

    Willem K. Offermans

    2015-07-01

    Full Text Available Exploiting carbon dioxide as co-monomer with epoxides in the production of polycarbonates is economically highly attractive. More effective catalysts for this reaction are intensively being sought. To promote better understanding of the catalytic pathways, this study uses density functional theory calculations to elucidate the reaction step of CO2 insertion into cobalt(III–alkoxide bonds, which is also the central step of metal catalysed carboxylation reactions. It was found that CO2 insertion into the cobalt(III–alkoxide bond of [(2-hydroxyethoxyCoIII(salen(L] complexes (salen = N,N”-bis(salicyliden-1,6-diaminophenyl is exothermic, whereby the exothermicity depends on the trans-ligand L. The more electron-donating this ligand is, the more exothermic the insertion step is. Interestingly, we found that the activation barrier decreases with increasing exothermicity of the CO2 insertion. Hereby, a linear Brønsted–Evans–Polanyi relationship was found between the activation energy and the reaction energy.

  15. Organo-gallium and indium complexes with dithiolate and oxo ligands

    Indian Academy of Sciences (India)

    Page 1 ... of several of these com- plexes have been established by single crystal X-ray diffraction analyses. Complexes derived from oxo ligands ... diode) applications.8. Organometallic complexes derived from chelating ligands, such as substituted. 8-hydroxyqunoline and azomethine linkages, are emerging as potential ...

  16. Synthesis and Characterization of a Triphos Ligand Derivative and the Corresponding Pd II Complexes: Triphos Ligand Derivative and Corresponding Pd II Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Deanna L.; Boro, Brian J.; Grubel, Katarzyna; Helm, Monte L.; Appel, Aaron M.

    2015-11-16

    The synthesis of the new bis(2-(diphenylphosphino)ethyl)methylhydroxyphosphine tridentate phosphine ligand, LCH2OH/Ph, is reported. The ligand reacts with [Pd(Cl)2(PhCN)2 to form [Pd(LCH2OH/Ph)Cl]Cl. Exchange of the chloride ions for triflate (OTf–) using AgOTf yielded pure [Pd(LCH2OH/Ph)OTf]OTf. In addition to spectral characterization the free ligand, LCH2OH/Ph, and Pd(II) complex, [Pd(LCH2OH/Ph)OTf]OTf, are structurally characterized. This research was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for DOE.

  17. Diversity of natural self-derived ligands presented by different HLA class I molecules in transporter antigen processing-deficient cells.

    Directory of Open Access Journals (Sweden)

    Elena Lorente

    Full Text Available The transporter associated with antigen processing (TAP translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P(1 position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.

  18. New synthetic routes toward enantiopure nitrogen donor ligands.

    Science.gov (United States)

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  19. Synthesis, structural characterization, electrochemical and biological studies on divalent metal chelates of a new ligand derived from pharmaceutical preservative, dehydroacetic acid, with 1,4-diaminobenzene

    Directory of Open Access Journals (Sweden)

    Sanaa M. Emam

    2017-05-01

    Full Text Available Cobalt(II, nickel(II, copper(II, zinc(II and cadmium(II complexes of new 3-acetyl-4-[(4-aminophenylamino]-6-methyl-2H-pyran-2-one (HL1 derived from dehydroacetic acid and 1,4-diaminobenzene were prepared and characterized. The structural features were determined from their elemental analyses, 1H, and 13C-NMR spectra, molar conductivities, magnetic moments, IR, UVvis. spectra, thermal analyses (D.T.A. and T.G.A. and E.S.R. measurements. Their magnetic susceptibility measurements and low conductance data provide evidence for the mono- or dimeric and non-electrolytic nature of the solid complexes. The E.S.R. spectra of copper(II complexes show axial type symmetry with covalent or ionic bond character. The electrochemical behavior of the complexes in DMF (dimethylformamide solvent at 298 K was studied. The biological activity of the ligand and its metal(II complexes was also studied. The obtained complexes showed higher activities than the free ligand in protecting the Egyptian cotton fields from Spodoptera littoralis larvae.

  20. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.

    2011-07-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  1. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.; Materia, Luisa; Modica, Maria Nunziata; Pittal, Valeria; Salerno, Loredana; Siracusa, Maria Angela; Manetti, Fabrizio; Botta, Maurizio; Minneman, Kenneth P.

    2011-01-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  2. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    Science.gov (United States)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  3. Effect of the methionine ligand on the reorganization energy of the type-1 copper site of nitrite Reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Wijma, Hein J.; MacPherson, Iain

    2007-01-01

    Copper-containing nitrite reductase harbors a type-1 and a type-2 Cu site. The former acts as the electron acceptor site of the enzyme, and the latter is the site of catalytic action. The effect of the methionine ligand on the reorganization energy of the type-1 site was explored by studying...

  4. Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo

    Science.gov (United States)

    Thomas, Grace M.; Panicot-Dubois, Laurence; Lacroix, Romaric; Dignat-George, Françoise; Lombardo, Dominique

    2009-01-01

    Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients. PMID:19667060

  5. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  6. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  7. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma

    2010-03-01

    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  8. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.

    Science.gov (United States)

    Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi

    2011-12-01

    The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.

  9. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  10. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  11. Selective extraction of trivalent actinides with hard-soft mixed donor ligands: role of intra-ligand synergism

    International Nuclear Information System (INIS)

    Ghanty, Tapan K.

    2016-01-01

    In recent years, considerable attention has been given to understand the coordination chemistry of trivalent lanthanide (Ln) and actinide (An) with various ligands because of its close link with the nuclear waste management processes. It is well known that lanthanide-actinide separation is a challenging and difficult task because of very similar chemical properties of these two series of ions, which are associated with similar ionic radii and coordination numbers. Recently, we have introduced a new concept, 'intra-ligand synergism', where hard donor atom, such as, oxygen preferentially binds to trivalent actinides (An(III)) as compared to the valence iso-electronic trivalent lanthanides (Ln(III)) in presence of another soft donor centre. In the present work, the conventional concept of selective complexation of actinides with soft donor ligands (either S or N donor) has been modified through exploiting this concept, and thereby the higher selectivity of 1,10-phenanthroline-2,9-dicarboxylamide (PDAM) based ligands, namely PDAM and its isobutyl and decyl derivatives towards Am(III) ion has been predicted theoretically through density functional calculations. Subsequently, several such amide derivatives have been synthesized to optimize the solubility of the ligands in organic phase. Finally, solvent extraction experiments have been carried out to validate the theoretical prediction on the selectivity of oxygen donor ligands towards Am(III) as compared to Eu(III), and a maximum separation factor of about 51 has been achieved experimentally using 2,9-bis(N-decylaminocarbonyl)-1,10-phenanthroline ligand. The separation factor is increased with the decrease in pH, which is very interesting since extraction of the Am 3+ ion is considered to be important under highly acidic conditions from the nuclear waste management point of view. (author)

  12. Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sofield, Chadwick Dean [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Sterically demanding 1,3-disubstituted cyclopentadienyl ligands were used to modify the physical properties of the corresponding metallocenes. Sterically demanding ligands provided kinetic stabilization for trivalent cerium compounds. Tris(di-t-butylcyclopentadienyl)cerium was prepared and anion competition between halides and cyclopentadienyl groups which had complicated synthesis of the tris(cyclopentadienyl)compound was qualitatively examined. Bis(di-t-butylcyclopentadienyl)cerium methyl was prepared and its rate of decomposition, by ligand redistribution, to tris(di-t-butylcyclopentadienyl)cerium was shown to be slower than the corresponding rate for less sterically demanding ligands. Asymmetrically substituted ligands provided a symmetry label for examination of chemical exchange processes. Tris[trimethylsilyl(t-butyl)cyclopentadienyl]cerium was prepared and the rate of interconversion between the C1 and C3 isomers was examined. The enthalpy difference between the two distereomers is 7.0 kJ/mol. The sterically demanding cyclopentadienyl ligands ansa-di-t-butylcyclopentadiene (Me2Si[(Me3C)2C5H3]2), ansa-bis(trimethylsilyl)cyclopentadiene (Me2Si[(Me3Si)2C5H3]2) and tetra-t-butylfulvalene and metallocene derivatives of the ligands were prepared and their structures were examined by single crystal X-ray crystallography. The effect that substituents on the cyclopentadienyl ring have on the pi-electron system of the ligand was examined through interaction between ligand and metal orbitals. A series of 1,3-disubstituted manganocenes was prepared and their electronic states were determined by solid-state magnetic susceptibility, electron paramagnetic resonance, X-ray crystallography, and variable temperature UV-vis spectroscopy. Spin-equilibria in [(Me3C)2C5H3]2Mn and [(Me3

  13. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-01-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  14. New chiral ligands in asymmetric catalysis. Application in stabilization of metal nanoparticles

    OpenAIRE

    Axet Martí, M. Rosa

    2006-01-01

    Thesis M. Rosa AxetThis thesis deals with the development and application of diphosphite ligands derived from carbohydrates to rhodium-catalysed asymmetric hydroformylation and hydrogenation reactions. The use of various carbohydrate derivative ligands as stabilisers of metal nanoparticles is also studied. The synthesis and the characterisation of the series of diphosphite ligands are described in Chapter 2. The results of the asymmetric hydroformylation of styrene and related vinyl arenes ar...

  15. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    Science.gov (United States)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  16. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  17. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  18. Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands.

    Science.gov (United States)

    Ji, Guipeng; Yang, Zhenzhen; Zhao, Yanfei; Zhang, Hongye; Yu, Bo; Xu, Jilei; Xu, Huanjun; Liu, Zhimin

    2015-04-30

    Zinc porphyrin (TP-Zn)-based conjugated microporous polymer (Zn-CMP) spheres were obtained via Sonagashira-Hagihara cross coupling reactions between 5,10,15,20-tetrakis(4-ethynylphenyl)porphyrin-Zn(II) and brominated monomers directed by bidentate bipyridine (BP)-type ligands for the first time, and the sphere diameters could be adjusted from 320 to 740 nm. The coordination between BP and TP-Zn was proved to be the key to forming spheres.

  19. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  20. New synthetic routes toward enantiopure nitrogen donor ligands

    OpenAIRE

    Sala, Xavier; Rodríguez, Anna M.; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; Zelewsky, Alexander von; Llobet, Antoni; Benet-Buchholz, Jordi

    2008-01-01

    New polypyridylic chiral ligands, having either C₃ or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-α-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has...

  1. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  2. Supramolecular Isomers of Metal-Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs

    KAUST Repository

    Abdul Halim, Racha Ghassan

    2016-01-04

    Three novel metal-organic frameworks (MOFs) were isolated upon reacting a heterofunctional ligand 4 (pyrimidin-5 yl)benzoic acid (4,5-pmbc) with mixed valence Cu(I,II) under solvothermal conditions. X-ray crystal structural analysis reveals that the first compound is a layered structure composed of one type of inorganic building block, dinuclear paddlewheel [Cu2(O2C–)4], which are linked through 4,5-pmbc ligands. The two other supramolecular isomers are composed of the same Cu(II) dinuclear paddlewheel and a dinuclear Cu2I2 cluster, which are linked via the 4,5-pmbc linkers to yield two different 3-periodic frameworks with underlying topologies related to lvt and nbo. The observed structural diversity in these structures is due to the distinct coordination modes of the two coordinating moieties (the carboxylate group on the phenyl ring and the N-donor atoms from the pyrimidine moiety).

  3. Supramolecular Isomers of Metal-Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs

    KAUST Repository

    AbdulHalim, Rasha; Shkurenko, Aleksander; Al Kordi, Mohamed; Eddaoudi, Mohamed

    2016-01-01

    Three novel metal-organic frameworks (MOFs) were isolated upon reacting a heterofunctional ligand 4 (pyrimidin-5 yl)benzoic acid (4,5-pmbc) with mixed valence Cu(I,II) under solvothermal conditions. X-ray crystal structural analysis reveals that the first compound is a layered structure composed of one type of inorganic building block, dinuclear paddlewheel [Cu2(O2C–)4], which are linked through 4,5-pmbc ligands. The two other supramolecular isomers are composed of the same Cu(II) dinuclear paddlewheel and a dinuclear Cu2I2 cluster, which are linked via the 4,5-pmbc linkers to yield two different 3-periodic frameworks with underlying topologies related to lvt and nbo. The observed structural diversity in these structures is due to the distinct coordination modes of the two coordinating moieties (the carboxylate group on the phenyl ring and the N-donor atoms from the pyrimidine moiety).

  4. Heart Failure Therapeutics on the Basis of a Biased Ligand of the Angiotensin-2 Type 1 Receptor Rationale and Design of the BLAST-AHF Study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure)

    NARCIS (Netherlands)

    Felker, G. Michael; Butler, Javed; Collins, Sean P.; Cotter, Gad; Davison, Beth A.; Ezekowitz, Justin A.; Filippatos, Gerasimos; Levy, Phillip D.; Metra, Marco; Ponikowski, Piotr; Soergel, David G.; Teerlink, John R.; Violin, Jonathan D.; Voors, Adriaan A.; Pang, Peter S.

    The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and

  5. Mixed-Ligand Complexes Of Nickel (II) With 2-Acetylpyridine ...

    African Journals Online (AJOL)

    The preparation and spectral properties of five nickel (II) mixed-ligands complexes (Ni [2-Actsc.Y]CI2), derived from 2-acetylpyridinethiosermicarbazones and some nitrogen/sulphur monodentate ligands such as thiophene, ammonia, picoline, pyridine and aniline are described. The complexes have been characterized on ...

  6. Copper(II Complexes with Ligands Derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Raluca Cernat

    2006-11-01

    Full Text Available The synthesis of Cu(II complexes derived from Schiff base ligands obtainedby the condensation of 2-hydroxybenzaldehyde or terephtalic aldehyde with 4-amino-antipyrine (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one is presented. The newlyprepared compounds were characterized by 1H-NMR, UV-VIS, IR and ESRspectroscopy. The determination of the antimicrobial activity of the ligands and of thecomplexes was carried out on samples of Escherichia coli, Klebsiella pneumoniae,Acinetobacter boumanii, Pseudomonas aeruginosa, Staphylococcus aureus and Candidasp. The qualitative and quantitative antimicrobial activity test results proved that all theprepared complexes are very active, especially against samples of Ps. aeruginosa, A.Boumanii, E. coli and S. aureus.

  7. Hexacoordinated mixed-ligand complexes of vanadium(IV) and copper(II)

    International Nuclear Information System (INIS)

    Islam, M.S.; Motahera Begum; Roy, H.N.; Haroon, S.A.Q.M.

    1996-01-01

    The literature reports simple complexes of metal ions with Schiff bases derived from amino acids. But their mixed-ligand complexes are very rare. Keeping this fact in mind, some new mixed ligand complexes of V IV and Cu II with tridentate Schiff bases derived from glycine, salicylaldehyde and amino bases, e.g. quinoline (Q), isoquinoline (IQ), 2-picoline (2-pic), 4-picoline (4-pic) and pyridine (Py) were prepared and studied. 6 refs., 1 tab

  8. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  9. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  10. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  11. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd 0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  12. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  13. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    Directory of Open Access Journals (Sweden)

    Hüseyin Ilgü

    2018-03-01

    Full Text Available The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg, agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5, an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  14. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  15. Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands.

    Science.gov (United States)

    Sadeghzadeh, Masoud; Sheibani, Shahab; Ghandi, Mehdi; Daha, Fariba Johari; Amanlou, Massoud; Arjmand, Mohammad; Hasani Bozcheloie, Abolfazl

    2013-06-01

    This study presents the synthesis and biological evaluation of a new series of arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as sigma receptor ligands. It was found that a number of halogen substituted sulfonamides display relatively high and low affinities to σ1 and σ2 receptors, respectively. The σ1 affinities and subtype selectivities of four piperidine derivatives were also found to be generally comparable to those of piperazine analogues. Compared to σ1-Rs compounds with n = 0 and 2, those with n = 1 proved to have optimal length of carbon chain by exhibiting higher affinities. Within this series, the 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine sigma ligand was identified with 96-fold σ1/σ2 selectivity ratio (Kiσ1 = 0.96 ± 0.05 nM and Kiσ2 = 91.8 ± 8.1 nM). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    Science.gov (United States)

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  18. Synthesis, Thermal, Electrical and Catalytic Studies of Some Transition Metal Polychelates of Bis-bidentate Schiff Base

    Institute of Scientific and Technical Information of China (English)

    BANSOD Ashish; ASWAR Anand

    2007-01-01

    Polychelates of Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ), Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ) and Cd(Ⅱ) with the bis salen-type ligand derivedfrom 4,4'-bis[(salicylaldehyde-5)azo]biphenyl and 1,4-diaminobutane have been synthesized.All the polychelates have been characterized by elemental analysis,magnetic susceptibility measurements,IR,electronic spectra and thermogravimetric studies.All the complexes isolated in solid state are dark coloured and insoluble in water and common organic solvents.The ligand behaves as a bis-bidentate molecule coordinating through the phenolic oxygen and azomethine nitrogen atoms.The thermal decomposition of these metal complexes was investigated by thermogravimetric analysis and data have been analyzed for kinetic parameters using Broido equation.The solid-state electrical conductivity of the ligand and its polychelates in the form of compressed pellet was studied in the temperature range from 313 to 413 K.All the polychelates were found to show semiconducting nature.The Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ) and Ni(Ⅱ) polychelates have been assessed for the catalytic epoxidation of styrene.

  19. Dynamic ligand-based pharmacophore modeling and virtual ...

    Indian Academy of Sciences (India)

    Five ligand-based pharmacophore models were generated from 40 different .... the Phase module of the Schrodinger program.35 Each model consisted of six types of ... ligand preparation included the OPLS_2005 force field and to retain the ...

  20. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    Science.gov (United States)

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  1. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C.; Kaas, A.; Hansen, L.

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/7...

  2. Targeting interleukin-11 receptor in leukemia and lymphoma: A functional ligand-directed study and hematopathology analysis of patient-derived specimens

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E.; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H. P.; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J.; O’Brien, Susan; Kantarjian, Hagop M.; Cortes, Jorge E.; Calin, George A.; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Purpose The interleukin-11 receptor (IL-11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here we evaluated the IL-11R as a candidate therapeutic target in human leukemia and lymphoma. Experimental Design and Results First, we show that the IL-11R protein is expressed in a variety of human leukemia- and lymphoma derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, while expression is absent from non-malignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11) specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL-11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analog with an apparent improved anti-leukemia cell profile. Conclusion These results indicate (i) that the IL-11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. PMID:25779950

  3. Targeting IL11 Receptor in Leukemia and Lymphoma: A Functional Ligand-Directed Study and Hematopathology Analysis of Patient-Derived Specimens.

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H P; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Calin, George A; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-07-01

    The IL11 receptor (IL11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors, such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here, we evaluated the IL11R as a candidate therapeutic target in human leukemia and lymphoma. First, we show that the IL11R protein is expressed in a variety of human leukemia- and lymphoma-derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, whereas expression is absent from nonmalignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11), specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analogue with an apparent improved antileukemia cell profile. These results indicate (i) that the IL11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. ©2015 American Association for Cancer Research.

  4. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    Science.gov (United States)

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  5. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity.

    Science.gov (United States)

    Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2016-04-01

    Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

  6. Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3 and inhibits TNF-like ligand 1A (TL1A activity.

    Directory of Open Access Journals (Sweden)

    Cui Liu

    Full Text Available Atsttrin, a progranulin (PGRN-derived molecule composed of three TNFR-binding domains of PGRN, binds to TNF receptors (TNFR and is therapeutic against inflammatory arthritis. Here we screened the associations of Atsttrin and other members in TNFR subfamily, which led to the discovery of TNFRSF25 (DR3 as an additional Atsttrin-interacting member in TNFR family. Similar to TNFR1 and TNFR2, DR3 also directly bound to Atsttrin. The first three cysteine-rich domains (CRD in the extracellular portion of DR3 were required for this interaction. Atsttrin inhibited the interaction between DR3 and its TNF-Like Ligand 1A (TL1A. In addition, Atsttrin inhibited TL1A-stimulated target gene expressions and neutralized TL1A-enhanced osteoclastogenesis in vitro. Furthermore, Atsttrin ameliorated the pathology in dextran sulfate sodium induced colitis. Taken together, these findings not only provide the new insights into Atsttrin's therapeutic action in inflammatory arthritis, but may also present Atsttrin as a novel biological agent for treating various types of diseases associated with TL1A/DR3 pathway.

  7. Simple knowledge-based descriptors to predict protein-ligand interactions. Methodology and validation

    Science.gov (United States)

    Nissink, J. Willem M.; Verdonk, Marcel L.; Klebe, Gerhard

    2000-11-01

    A new type of shape descriptor is proposed to describe the spatial orientation for non-covalent interactions. It is built from simple, anisotropic Gaussian contributions that are parameterised by 10 adjustable values. The descriptors have been used to fit propensity distributions derived from scatter data stored in the IsoStar database. This database holds composite pictures of possible interaction geometries between a common central group and various interacting moieties, as extracted from small-molecule crystal structures. These distributions can be related to probabilities for the occurrence of certain interaction geometries among different functional groups. A fitting procedure is described that generates the descriptors in a fully automated way. For this purpose, we apply a similarity index that is tailored to the problem, the Split Hodgkin Index. It accounts for the similarity in regions of either high or low propensity in a separate way. Although dependent on the division into these two subregions, the index is robust and performs better than the regular Hodgkin index. The reliability and coverage of the fitted descriptors was assessed using SuperStar. SuperStar usually operates on the raw IsoStar data to calculate propensity distributions, e.g., for a binding site in a protein. For our purpose we modified the code to have it operate on our descriptors instead. This resulted in a substantial reduction in calculation time (factor of five to eight) compared to the original implementation. A validation procedure was performed on a set of 130 protein-ligand complexes, using four representative interacting probes to map the properties of the various binding sites: ammonium nitrogen, alcohol oxygen, carbonyl oxygen, and methyl carbon. The predicted `hot spots' for the binding of these probes were compared to the actual arrangement of ligand atoms in experimentally determined protein-ligand complexes. Results indicate that the version of SuperStar that applies to

  8. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN⁻ ligands derive from tyrosine.

    Directory of Open Access Journals (Sweden)

    Jon M Kuchenreuther

    Full Text Available [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO and two cyanide (CN⁻ ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN⁻ ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation.

  9. Synthesis and binding studies of Alzheimer ligands on solid support.

    Science.gov (United States)

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  10. Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    International Nuclear Information System (INIS)

    Tang, Meng; Dong, Bao-Xia; Wu, Yi-Chen; Yang, Fang; Liu, Wen-Long; Teng, Yun-Lei

    2016-01-01

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H 2 ip) have been investigated in a series of Cd II -based frameworks. Hydrothermal reactions of Cd II salts and 4-Br-H 2 ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: (Cd(bix) 0.5 (bix) 0.5 (4-Br-ip)]·H 2 O) n (1), [Cd(bbi) 0.5 (bbi) 0.5 (4-Br-ip)] n (2), ([Cd(btx) 0.5 (4-Br-ip)(H 2 O)]·0.5CH 3 OH·H 2 O) n (3) and ([Cd(bbt) 0.5 (4-Br-ip)(H 2 O)]·3·5H 2 O) n (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H 2 ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 6 6 topology and compound 2 has a 4 12 topology. Compounds 3–4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·3 8 ). The thermal stabilities and photoluminescence properties of them were discussed in detail. - Graphical abstract: Four 3D Cd II coordination complexes on the basis of 4-bromoisophthalic acid (4-Br-H 2 ip) and two types of flexible (bbi, bbt) and semiflexible (bix, btx) N-donor ligands are prepared. They displayed diverse topology structures of 6 6 (1), 4 12 (2) and 4·3 8 (3−4), depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H 2 ip, the coordination ability and conformationally flexibility of the N-donor auxiliary ligand. - Highlights: • Four 3D Cd II coordination complexes based on 4-Br-H 2 ip and flexible/semiflexible N-donor ligands have been synthesized. • They displayed diverse topology structures of 6 6 for 1, 4 12 for 2 and 4·3 8 for 3–4. • The structural diversity depends on the configuration of 4-Br

  11. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  12. Recent development in clusters of rare earths and actinides. Chemistry and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhiping (ed.) [Arizona Univ., Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2017-02-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  13. Recent development in clusters of rare earths and actinides. Chemistry and materials

    International Nuclear Information System (INIS)

    Zheng, Zhiping

    2017-01-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  14. Automated identification of crystallographic ligands using sparse-density representations

    International Nuclear Information System (INIS)

    Carolan, C. G.; Lamzin, V. S.

    2014-01-01

    A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination

  15. A new class of pyrazolo[5,1-c][1,2,4]triazines as γ-aminobutyric type A (GABAA) receptor subtype ligand: synthesis and pharmacological evaluation.

    Science.gov (United States)

    Guerrini, Gabriella; Ciciani, Giovanna; Daniele, Simona; Martini, Claudia; Costagli, Camilla; Guarino, Chiara; Selleri, Silvia

    2018-05-15

    A comparison between compounds with pyrazolo[1,5-a]pyrimidine structure (series 4-6) and pyrazolo[5,1-c][1,2,4]triazine core (series 9) as ligands at GABA A -receptor subtype, was evaluated. Moreover, for pyrazolotriazine derivatives having binding recognition, the interaction on recombinant rat α(1-3,5) GABA A receptor subtypes, was performed. Among these latter, emerge compounds 9c, 9k, 9l, 9m and 9n as α1-selective and 9h as α2-selective ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification

    Science.gov (United States)

    Armstrong, Craig G.; Toghill, Kathryn E.

    2017-05-01

    A single species redox flow battery employing a new class of cobalt(II) complexes with 'tunable' tridentate azole-pyridine type ligands is reported. Four structures were synthesised and their electrochemical, physical and battery characteristics were investigated as a function of successive substitution of the ligand terminal pyridyl donors. The Co(II/I) and Co(III/II) couples are stable and quasi-reversible on gold and glassy carbon electrodes, however redox potentials are tunable allowing the cobalt potential difference to be preferentially increased from 1.07 to 1.91 V via pyridine substitution with weaker σ-donating/π-accepting 3,5-dimethylpyrazole groups. The charge-discharge properties of the system were evaluated using an H-type glass cell and graphite rod electrodes. The complexes delivered high Coulombic efficiencies of 89.7-99.8% and very good voltaic efficiencies of 70.3-81.0%. Consequently, energy efficiencies are high at 63.1-80.8%, marking an improvement on other similar non-aqueous systems. Modification of the ligands also improved solubility from 0.18 M to 0.50 M via pyridyl substitution with 3,5-dimethylpyrazole, though the low solubility of the complexes limits the overall energy capacity to between 2.58 and 12.80 W h L-1. Preliminary flow cell studies in a prototype flow cell are also demonstrated.

  17. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2007-07-01

    Full Text Available Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation.The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists.This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights into cannabinoid system involvement in ES cell

  18. N6-Benzyladenosine Derivatives as Novel N-Donor Ligands of Platinum(II Dichlorido Complexes

    Directory of Open Access Journals (Sweden)

    Ján Vančo

    2013-06-01

    Full Text Available The platinum(II complexes trans-[PtCl2(Ln2]∙xSolv 1–13 (Solv = H2O or CH3OH, involving N6-benzyladenosine-based N-donor ligands, were synthesized; Ln stands for N6-(2-methoxybenzyladenosine (L1, involved in complex 1, N6-(4-methoxy-benzyladenosine (L2, 2, N6-(2-chlorobenzyladenosine (L3, 3, N6-(4-chlorobenzyl-adenosine (L4, 4, N6-(2-hydroxybenzyladenosine (L5, 5, N6-(3-hydroxybenzyl-adenosine (L6, 6, N6-(2-hydroxy-3-methoxybenzyladenosine (L7, 7, N6-(4-fluoro-benzyladenosine (L8, 8, N6-(4-methylbenzyladenosine (L9, 9, 2-chloro-N6-(3-hydroxy-benzyladenosine (L10, 10, 2-chloro-N6-(4-hydroxybenzyladenosine (L11, 11, 2-chloro-N6-(2-hydroxy-3-methoxybenzyladenosine (L12, 12 and 2-chloro-N6-(2-hydroxy-5-methylbenzyladenosine (L13, 13. The compounds were characterized by elemental analysis, mass spectrometry, IR and multinuclear (1H-, 13C-, 195Pt- and 15N- and two-dimensional NMR spectroscopy, which proved the N7-coordination mode of the appropriate N6-benzyladenosine derivative and trans-geometry of the title complexes. The complexes 1–13 were found to be non-toxic in vitro against two selected human cancer cell lines (HOS and MCF7; with IC50 > 50.0 µM. However, they were found (by ESI-MS study to be able to interact with the physiological levels of the sulfur-containing biogenic biomolecule L-methionine by a relatively simple 1:1 exchange mechanism (one Ln molecule was replaced by one L-methionine molecule, thus forming a mixed-nitrogen/sulfur-ligand dichlorido-platinum(II coordination species.

  19. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands

    International Nuclear Information System (INIS)

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S.; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-01-01

    Crystals of the wild-type haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 and of its catalytically inactive variant DhaA13 were grown in the presence of various ligands and diffraction data were collected to high and atomic resolution. Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon–halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2 1 2 1 2 1 as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively

  20. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.

    Science.gov (United States)

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M

    2017-07-24

    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.

  1. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  2. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  3. Second derivative parallel block backward differentiation type ...

    African Journals Online (AJOL)

    Second derivative parallel block backward differentiation type formulas for Stiff ODEs. ... Log in or Register to get access to full text downloads. ... and the methods are inherently parallel and can be distributed over parallel processors. They are ...

  4. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  5. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  6. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  8. Redox non-innocent ligands: versatile new tools to control catalytic reactions

    NARCIS (Netherlands)

    Lyaskovskyy, V.; de Bruin, B.

    2012-01-01

    In this (tutorial overview) perspective we highlight the use of "redox non-innocent" ligands in catalysis. Two main types of reactivity in which the redox non-innocent ligand is involved can be specified: (A) The redox active ligand participates in the catalytic cycle only by accepting/donating

  9. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  10. Derivatized Pentadentate Macrocyclic Ligands and Their Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Muhammad S. Khan

    2002-06-01

    Full Text Available The reaction of the pendant hydroxyethyl group in the planar pentadentate macrocyclic ligand,1,11-bis(2’-hydroxyethyl-4,8;12,16;17,21-trinitrilo-1,2,10,11-tetraazacyclohenicosa- 2,4,6,9,12,14,18,20-octaene (L2, derived from the condensation of 2,6-pyridinedialdehyde with 6,6’-bis(2’ hydroxyethylhydrazino -2,2’-bipyridine (L1, has been investigated. Esterification reactions are facile, and the reaction of the hydroxyethyl-substituted macrocycle with thionyl chloride yields a chloroethyl derivative. Metal complexes of the new derivatized macrocyclic ligands L3-6having general formula ML3-6X2.nH2O (M = Mn, Fe, Co, Ni, Cu, Zn are readily prepared.

  11. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    International Nuclear Information System (INIS)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-01-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for [ 3 H]diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with [ 3 H]flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines

  12. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  13. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  14. A new class of modular chiral ligands with fluxional groups.

    Science.gov (United States)

    Sibi, Mukund P; Zhang, Ruzhou; Manyem, Shankar

    2003-08-06

    In ligand design for asymmetric catalysis, the usual norm is to derive the face shielding elements from a chiral source. New ligands in which the face shielding is determined by fluxional groups are introduced. Their design, modular synthesis, and experiments to demonstrate the significance of the fluxional groups are discussed. The advantage is that the fluxional groups, introduced at a later stage, allow for simple tuning of the face shielding group.

  15. C-type lectins on dendritic cells and their interaction with pathogen-derived and endogenous glycoconjugates.

    NARCIS (Netherlands)

    Gijzen, K.; Cambi, A.; Torensma, R.; Figdor, C.G.

    2006-01-01

    Human C-type lectin receptors (CLRs) characteristically bind glycosylated ligands in a Ca(2+)-dependent way via their carbohydrate recognition domain (CRD). Their carbohydrate preference is dependent on the amino acid sequence in the CRD domain and on the ability and flexibility of the CRD domain to

  16. Synthesis, characterization, crystal structure and HSA binding of two new N,O,O-donor Schiff-base ligands derived from dihydroxybenzaldehyde and tert-butylamine

    Science.gov (United States)

    Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri

    2016-09-01

    Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.

  17. The Ligand Substitution Reactions of Hydrophobic Vitamin B ...

    African Journals Online (AJOL)

    NJD

    Vitamin B. 12. Derivatives. Reaction of Cobyric Acid. Heptapropyl Ester with Heterocyclic N-donor Ligands. Mohamed S.A. .... RESEARCH ARTICLE. M.S.A. Hamza ..... neutralized with NaHCO3 and treated with excess KCN to give. DCCbs-Pr.

  18. Long ligands reinforce biological adhesion under shear flow

    Science.gov (United States)

    Belyaev, Aleksey V.

    2018-04-01

    In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.

  19. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  20. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  1. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  2. Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV Derivative Having a TSPO Ligand in the Axial Position

    Directory of Open Access Journals (Sweden)

    Salvatore Savino

    2016-06-01

    Full Text Available The first Pt(IV derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV complex, cis,trans,cis-[Pt(ethanedioatoCl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino-2-oxoethylimidazo[1,2-a]pyridin-2-ylphenoxyacetate-ethanolato}(1R,2R-DACH] (DACH = diaminocyclohexane, has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM, cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment, and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 μM after 72 h treatment.

  3. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors.

    Science.gov (United States)

    Haviv, H; Wong, D M; Silman, I; Sussman, J L

    2007-01-01

    The naturally occurring alkaloid Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor that has been used for centuries as a Chinese folk medicine in the context of its source plant Huperzia Serrata. The potency and relative safety of HupA rendered it a promising drug for the ameliorative treatment of Alzheimer's disease (AD) vis-à-vis the "cholinergic hypothesis" that attributes the cognitive decrements associated with AD to acetylcholine deficiency in the brain. However, recent evidence supports a neuroprotective role for HupA, suggesting that it could act as more than a mere palliative. Biochemical and crystallographic studies of AChE revealed two potential binding sites in the active-site gorge of AChE, one of which, the "peripheral anionic site" at the mouth of the gorge, was implicated in promoting aggregation of the beta amyloid (Abeta) peptide responsible for the neurodegenerative process in AD. This feature of AChE facilitated the development of dual-site binding HupA-based bivalent ligands, in hopes of concomitantly increasing AChE inhibition potency by utilizing the "chelate effect", and protecting neurons from Abeta toxicity. Crystal structures of AChE allowed detailed modeling and docking studies that were instrumental in enhancing the understanding of underlying principles of bivalent inhibitor-enzyme dynamics. This monograph reviews two categories of HupA-based bivalent ligands, in which HupA and HupA fragments serve as building blocks, with a focus on the recently solved crystallographic structures of Torpedo californica AChE in complex with such bifunctional agents. The advantages and drawbacks of such structured-based drug design, as well as species differences, are highlighted and discussed.

  4. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Self-assembly of heteroleptic dinuclear metallosupramolecular kites from multivalent ligands via social self-sorting

    Directory of Open Access Journals (Sweden)

    Christian Benkhäuser

    2015-05-01

    Full Text Available A Tröger's base-derived racemic bis(1,10-phenanthroline ligand (rac-1 and a bis(2,2'-bipyridine ligand with a central 1,3-diethynylbenzene unit 2 were synthesized. Each of these ligands acts as a multivalent entity for the binding of two copper(I ions. Upon coordination to the metal ions these two ligands undergo selective self-assembly into heteroleptic dinuclear metallosupramolecular kites in a high-fidelity social self-sorting manner as evidenced by NMR spectroscopy and mass spectrometry.

  6. Virtual screening using the ligand ZINC database for novel lipoxygenase-3 inhibitors.

    Science.gov (United States)

    Monika; Kour, Janmeet; Singh, Kulwinder

    2013-01-01

    The leukotrienes constitute a group of arachidonic acid-derived compounds with biologic activities suggesting important roles in inflammation and immediate hypersensitivity. Epidermis-type lipoxygenase-3 (ALOXE3), a distinct subclass within the multigene family of mammalian lipoxygenases, is a novel isoenzyme involved in the metabolism of leukotrienes and plays a very important role in skin barrier functions. Lipoxygenase selective inhibitors such as azelastine and zileuton are currently used to reduce inflammatory response. Nausea, pharyngolaryngeal pain, headache, nasal burning and somnolence are the most frequently reported adverse effects of these drugs. Therefore, there is still a need to develop more potent lipoxygenase inhibitors. In this paper, we report the screening of various compounds from the ZINC database (contains over 21 million compounds) using the Molegro Virtual Docker software against the ALOXE3 protein. Screening was performed using molecular constraints tool to filter compounds with physico-chemical properties similar to the 1N8Q bound ligand protocatechuic acid. The analysis resulted in 4319 Lipinski compliant hits which are docked and scored to identify structurally novel ligands that make similar interactions to those of known ligands or may have different interactions with other parts of the binding site. Our screening approach identified four molecules ZINC84299674; ZINC76643455; ZINC84299122 & ZINC75626957 with MolDock score of -128.901, -120.22, -116.873 & - 102.116 kcal/mol, respectively. Their energy scores were better than the 1N8Q bound co-crystallized ligand protocatechuic acid (with MolDock score of -77.225 kcal/mol). All the ligands were docked within the binding pocket forming interactions with amino acid residues.

  7. Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor

    DEFF Research Database (Denmark)

    Hansen, Stine; Li, Shizhong; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) responds to cues in the external environment and transmits signals to the cell through extracellular and intracellular interactions with a number of other signal transduction molecules. One such NCAM interaction partner is the fibroblast growth factor...... various FN3 module loop regions, have been identified as FGFR ligands. All four peptides activate FGFR and differentially modulate a number of neuronal functions, such as differentiation, survival, and synaptic changes that are important for learning, memory, and neuronal regeneration....

  8. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes

    OpenAIRE

    Bon?ina, Matja?; Podlipnik, ?rtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-01-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolini...

  9. Supporting Information Palladium Complexes of a New Type of N ...

    Indian Academy of Sciences (India)

    Prasenjit Ghosh

    Palladium Complexes of a New Type of N-heterocyclic Carbene. Ligand Derived From a Tricyclic Triazolooxazine Framework. Manoj Kumar Gangwar, Alok Ch. Kalita and Prasenjit Ghosh*. Department of Chemistry,. Indian Institute of Technology Bombay, ... 2. Figure S1. 1. H NMR spectrum of the compound 1a in CDCl3.

  10. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  11. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  12. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  13. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  14. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study.

    Science.gov (United States)

    Sun, Yong; Chen, Kexian; Jia, Lu; Li, Haoran

    2011-08-14

    In an effort to examine the interaction between dioxygen and iron-macrocyclic complexes, and to understand how this interaction was affected by those different macrocyclic ligands, dioxygen binding with iron-porphyrin, iron-phthalocyanine, iron-dibenzotetraaza[14]annulene, and iron-salen complexes is investigated by means of quantum chemical calculations utilizing Density Functional Theory (DFT). Based on the analysis of factors influencing the corresponding dioxygen binding process, it showed that different macrocyclic ligands possess different O-O bond distances, and different electronic configurations for the bound O(2) and non-aromatic macrocyclic ligands favor dioxygen activation. Furthermore, the smaller the energy gap between the HOMO of iron-macrocyclic complexes and the LUMO of dioxygen, the more active the bound O(2) becomes, with a longer O-O bond distance and a shorter Fe-O bond length.

  15. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Science.gov (United States)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  16. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Reactions of Cp2MCl2 (M=Ti or Zr with Imine-Oxime Ligands. Formation of Metallacycles

    Directory of Open Access Journals (Sweden)

    C. Tripathi

    2005-07-01

    Full Text Available The reactions of bis(cyclopentadienyltitanium(IV/zirconium(IV dichloridewith a series of imine-oxime ligands (LH2, derived by condensing benzil-α-monoxime and2-phenylenediamine, 4-phenylenediamine, 4-methyl-2-phenylenediamine, 2,6-diamino-pyridine, have been studied in anhydrous tetrahydrofuran in the presence of base andmetallocycles of the [Cp2M(L] (M=Ti or Zr type have been isolated. Tentative structureshave been proposed for the products based on elemental analysis, electrical conductance andspectral (electronic, IR and 1H-NMR data. Proton NMR spectra indicate that on the NMRtime scale there is rapid rotation of the cyclopentadienyl ring around the metal-ring axis at25oC. Studies were conducted to assess the growth inhibiting potential of the complexessynthesized and the ligands against various bacterial strains.

  18. Molecular-weight-enlarged multiple-pincer ligands: synthesis and application in palladium-catalyzed allylic substitution reactions

    NARCIS (Netherlands)

    Ronde, N.J.; Totev, D.; Müller, Christian; Lutz, M.; Spek, A.L.; Vogt, D.

    2009-01-01

    Three different pincer ligand systems are synthesized via nucleophilic substitution reactions of polyaromatic benzyl bromides as support molecules and phenol derivatives as ligand precursors. Retention tests using a polymeric nanofiltration membrane show moderate to good retention in THF and CH2Cl2.

  19. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining

    Science.gov (United States)

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M.

    2016-10-01

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain “SYTO RNA-Select”. Here, a new multifunctional salen type ligand (L1) and its Al3+ complex (1) are designed and synthesized. L1 acts as a chemosensor for Al3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining.

  20. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  1. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  2. Probing Ligand Exchange in the P450 Enzyme CYP121 from Mycobacterium tuberculosis: Dynamic Equilibrium of the Distal Heme Ligand as a Function of pH and Temperature.

    Science.gov (United States)

    Fielding, Andrew J; Dornevil, Kednerlin; Ma, Li; Davis, Ian; Liu, Aimin

    2017-12-06

    CYP121 is a cytochrome P450 enzyme from Mycobacterium tuberculosis that catalyzes the formation of a C-C bond between the aromatic groups of its cyclodityrosine substrate (cYY). The crystal structure of CYP121 in complex with cYY reveals that the solvent-derived ligand remains bound to the ferric ion in the enzyme-substrate complex. Whereas in the generally accepted P450 mechanism, binding of the primary substrate in the active-site triggers the release of the solvent-derived ligand, priming the metal center for reduction and subsequent O 2 binding. Here we employed sodium cyanide to probe the metal-ligand exchange of the enzyme and the enzyme-substrate complex. The cyano adducts were characterized by UV-vis, EPR, and ENDOR spectroscopies and X-ray crystallography. A 100-fold increase in the affinity of cyanide binding to the enzyme-substrate complex over the ligand-free enzyme was observed. The crystal structure of the [CYP121(cYY)CN] ternary complex showed a rearrangement of the substrate in the active-site, when compared to the structure of the binary [CYP121(cYY)] complex. Transient kinetic studies showed that cYY binding resulted in a lower second-order rate constant (k on (CN) ) but a much more stable cyanide adduct with 3 orders of magnitude slower k off (CN) rate. A dynamic equilibrium between multiple high- and low-spin species for both the enzyme and enzyme-substrate complex was also observed, which is sensitive to changes in both pH and temperature. Our data reveal the chemical and physical properties of the solvent-derived ligand of the enzyme, which will help to understand the initial steps of the catalytic mechanism.

  3. Interaction between alkaline earth cations and oxo-ligands. DFT study of the affinity of the Ca2+ cation for carbonyl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho

    2011-02-01

    The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).

  4. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    Science.gov (United States)

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  5. Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Zandi-Atashbar, N.; Ghiaci, M.; Taghizadeh, M.; Rezaei, B.

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO{sub 2}–pro–NH{sub 2} (compound I) and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2} (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13–37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H{sub 2}O{sub 2}). To evaluate the abilities of the modified electrodes for H{sub 2}O{sub 2} detection, the electrochemical signals were compared in the absence and presence of H{sub 2}O{sub 2}. From them, two modified electrodes showed significant responses vs. H{sub 2}O{sub 2} addition. The amperograms illustrated that the sensors were selective for H{sub 2}O{sub 2} sensing with linear ranges of 5.14–1250 μmol L{sup −1} and 1.14–1120 μmol L{sup −1} with detection limits of 0.85 and 0.27 μmol L{sup −1} H{sub 2}O{sub 2}, sensitivities of 3545 and 11,293 μA mmol{sup −1} L and with response times less than 5 s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H{sub 2}O{sub 2} contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. - Highlights: • Copper nanoparticles decorating on two new anchored type ligands were prepared. • Ligands are bonding to silica support as SiO{sub 2}–pro–NH{sub 2} and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2}. • These materials were used as electrochemical sensors for H

  6. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  7. New air-stable planar chiral ferrocenyl monophosphine ligands: Suzuki cross-coupling of aryl chlorides and bromides

    DEFF Research Database (Denmark)

    Jensen, Jakob Feldthusen; Johannsen, Mogens

    2003-01-01

    GraphicA novel class of planar chiral electron-rich monophosphine ligands has been developed. The modular design allows a short and efficient synthesis of an array of aryl-ferrocenyl derivatives carrying the donating bis(dicyclohexyl)phosphino moiety. These new ligands have successfully been...

  8. Theoretical Analysis of Fas Ligand-Induced Apoptosis with an Ordinary Differential Equation Model.

    Science.gov (United States)

    Shi, Zhimin; Li, Yan; Liu, Zhihai; Mi, Jun; Wang, Renxiao

    2012-12-01

    Upon the treatment of Fas ligand, different types of cells exhibit different apoptotic mechanisms, which are determined by a complex network of biological pathways. In order to derive a quantitative interpretation of the cell sensitivity and apoptosis pathways, we have developed an ordinary differential equation model. Our model is intended to include all of the known major components in apoptosis pathways mediated by Fas receptor. It is composed of 29 equations using a total of 49 rate constants and 13 protein concentrations. All parameters used in our model were derived through nonlinear fitting to experimentally measured concentrations of four selected proteins in Jurkat T-cells, including caspase-3, caspase-8, caspase-9, and Bid. Our model is able to correctly interpret the role of kinetic parameters and protein concentrations in cell sensitivity to FasL. It reveals the possible reasons for the transition between type-I and type-II pathways and also provides some interesting predictions, such as the more decisive role of Fas over Bax in apoptosis pathway and a possible feedback mechanism between type-I and type-II pathways. But our model failed in predicting FasL-induced apoptotic mechanism of NCI-60 cells from their gene-expression levels. Limitations in our model are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. On-column ligand exchange for structure-based drug design: a case study with human 11β-hydroxysteroid dehydrogenase type 1

    International Nuclear Information System (INIS)

    Qin, Wenying; Judge, Russell A.; Longenecker, Kenton L.; Solomon, Larry R.; Harlan, John E.

    2012-01-01

    An on-column ligand- and detergent-exchange method was developed to obtain ligand–protein complexes for an adamantane series of compounds with 11β-HSD1 after a variety of other complexation methods had failed. An interesting byproduct of the method was the observation of artificial trimers in the crystal structures. Successfully forming ligand–protein complexes with specific compounds can be a significant challenge in supporting structure-based drug design for a given protein target. In this respect, an on-column ligand- and detergent-exchange method was developed to obtain ligand–protein complexes of an adamantane series of compounds with 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) after a variety of other complexation methods had failed. This report describes the on-column exchange method and an unexpected byproduct of the method in which artificial trimers were observed in the structures

  10. Polymerization of 1,3-butadiene catalyzed by pincer cobalt(II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands

    KAUST Repository

    Gong, Dirong; Jia, Weiguo; Chen, Tao; Huang, Kuo-Wei

    2013-01-01

    A new class of air stable and structurally well-defined cobalt complexes with unsymmetrical pincer type ligands ([2-(ArNCMe)-6-(Py)C5H 3N]CoCl2) (Ar = C6H5, Py = pyrazol-1-yl, 5a; Ar = 2,4,6-Me3C6H2, Py = pyrazol-1-yl, 5b; Ar = 2,6-iPr2C6H3, Py

  11. Enzymatic Synthesis of N-Acetyllactosamine (LacNAc Type 1 Oligomers and Characterization as Multivalent Galectin Ligands

    Directory of Open Access Journals (Sweden)

    Thomas Fischöder

    2017-08-01

    Full Text Available Repeats of the disaccharide unit N-acetyllactosamine (LacNAc occur as type 1 (Galβ1, 3GlcNAc and type 2 (Galβ1, 4GlcNAc glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant β1,3-galactosyltransferase from Escherichia coli and β1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3 and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA. We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.

  12. High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction

    Directory of Open Access Journals (Sweden)

    Henning S. G. Beckmann

    2012-06-01

    Full Text Available A series of six mono-, di-, and trivalent N,N’-diacetylchitobiose derivatives was conveniently prepared by employing a one-pot procedure for Cu(II-catalyzed diazo transfer and Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC starting from commercially available amines. These glycoclusters were probed for their binding potencies to the plant lectin wheat germ agglutinin (WGA from Triticum vulgaris by an enzyme-linked lectin assay (ELLA employing covalently immobilized N-acetylglucosamine (GlcNAc as a reference ligand. IC50 values were in the low micromolar/high nanomolar range, depending on the linker between the two disaccharides. Binding enhancements β up to 1000 for the divalent ligands and 2800 for a trivalent WGA ligand, compared to N,N’-diacetylchitobiose as the corresponding monovalent ligand, were observed. Molecular modeling studies, in which the chitobiose moieties were fitted into crystallographically determined binding sites of WGA, correlate the binding enhancements of the multivalent ligands with their ability to bind to the protein in a chelating mode. The best WGA ligand is a trivalent cluster with an IC50 value of 220 nM. Calculated per mol of contained chitobiose, this is the best WGA ligand known so far.

  13. Structural determinants for selective recognition of peptide ligands for endothelin receptor subtypes ETA and ETB.

    Science.gov (United States)

    Lättig, Jens; Oksche, Alexander; Beyermann, Michael; Rosenthal, Walter; Krause, Gerd

    2009-07-01

    The molecular basis for recognition of peptide ligands endothelin-1, -2 and -3 in endothelin receptors is poorly understood. Especially the origin of ligand selectivity for ET(A) or ET(B) is not clearly resolved. We derived sequence-structure-function relationships of peptides and receptors from mutational data and homology modeling. Our major findings are the dissection of peptide ligands into four epitopes and the delineation of four complementary structural portions on receptor side explaining ligand recognition in both endothelin receptor subtypes. In addition, structural determinants for ligand selectivity could be described. As a result, we could improve the selectivity of BQ3020 about 10-fold by a single amino acid substitution, validating our hypothesis for ligand selectivity caused by different entrances to the receptors' transmembrane binding sites. A narrow tunnel shape in ET(A) is restrictive for a selected group of peptide ligands' N-termini, whereas a broad funnel-shaped entrance in ET(B) accepts a variety of different shapes and properties of ligands.

  14. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  15. Ligand-controlled, tunable silver-catalyzed C-H amination.

    Science.gov (United States)

    Alderson, Juliet M; Phelps, Alicia M; Scamp, Ryan J; Dolan, Nicholas S; Schomaker, Jennifer M

    2014-12-03

    The development of readily tunable and regioselective C-H functionalization reactions that operate solely through catalyst control remains a challenge in modern organic synthesis. Herein, we report that simple silver catalysts supported by common nitrogenated ligands can be used to tune a nitrene transfer reaction between two different types of C-H bonds. The results reported herein represent the first example of ligand-controlled and site-selective silver-promoted C-H amination.

  16. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  18. Push-pull effect on the geometrical, optical and charge transfer properties of disubstituted derivatives of mer-tris(4-hydroxy-1,5-naphthyridinato aluminum (mer-AlND3

    Directory of Open Access Journals (Sweden)

    Rao Joshi Laxmikanth

    2016-01-01

    Full Text Available To design innovative and novel optical materials with high mobility, two kinds of disubstituted derivatives for mer-tris(4-hydroxy-1,5-naphthyridinato aluminum (mer-AlND3 with push (EDG–pull (EWG substituents have been designed. The structures of mer-tris(8-EDG-2-EWG-4-hydroxy-1,5-naphthyridinato aluminum (type I and mer-tris(8-EWG-2-EDG-4-hydroxy-1,5-naphthyridinato aluminum (type II in the ground and first excited states have been optimized at the B3LYP/6-31G(D and CIS/6-31G(D level of theory, respectively. It can be seen from frontier molecular orbitals analysis, in all these complexes, the highest occupied molecular orbital (HOMO is localized on the pyridine-4-ol ring of A-ligand while lowest unoccupied molecular orbital (LUMO is on the pyridyl ring of B-ligand in ground state irrespective of electron donor/acceptor substitution present on the ligands similar to that of mer-tris(8-hydroxyquinoline aluminum (mer-Alq3 and parent mer-AlND3.The absorption and emission wavelengths have been evaluated at the TD-PBE0/6-31G(D level and it can be see that all the type I derivatives show blue shift while most of the type II derivatives show red shift compared to mer-AlND3. All the disubstituted complexes have showed hypsochromic shifts in both the absorption and emission spectra when compared with the calculated absorption and emission spectra respectively of mer-Alq3. It can be seen that the reorganization energies of some of the disubstituted derivatives are comparable with mer-Alq3 and these derivatives might be good candidates for emitting materials in OLED.

  19. Unusual metal coordination chemistry from an amino-amide derivative of 4-nitrophenol, a surprising ligand

    DEFF Research Database (Denmark)

    McGinley, John; McKee, Vickie; Toftlund, Hans

    2009-01-01

    The simple ligand N-(2-aminoethyl)-2-hydroxy-5-nitrobenzamide () exhibits several coordination modes depending on the reaction conditions, acting as a zwitterion on its own or being ionic in the presence of acid and depending on the concentration of metal present in a reaction, it can coordinate...... to the metal in either a 1:1 or a 1:2 metal:ligand mode. Furthermore, the role of solvent plays an important role in these complexation reactions with both four and six coordinate copper complexes being obtained using water as solvent but only six coordinate copper complexes obtained using acetonitrile...

  20. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  1. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  2. In Silico Modeling of Novel Drug Ligands for Treatment of Concussion Associated Tauopathy.

    Science.gov (United States)

    Zhao, Wei; Ho, Lap; Wang, Jun; Bi, Weina; Yemul, Shrishailam; Ward, Libby; Freire, Daniel; Mazzola, Paolo; Brathwaite, Justin; Mezei, Mihaly; Sanchez, Roberto; Elder, Gregory A; Pasinetti, Giulio Maria

    2016-10-01

    The objective of this study was to develop an in silico screening model for characterization of potential novel ligands from commercial drug libraries able to functionally activate certain olfactory receptors (ORs), which are members of the class A rhodopsin-like family of G protein couple receptors (GPCRs), in the brain of murine models of concussion. We previously found that concussions may significantly influence expression of certain ORs, for example, OR4M1 in subjects with a history of concussion/traumatic brain injury (TBI). In this study, we built a 3-D OR4M1 model and used it in in silico screening of potential novel ligands from commercial drug libraries. We report that in vitro activation of OR4M1 with the commercially available ZINC library compound 10915775 led to a significant attenuation of abnormal tau phosphorylation in embryonic cortico-hippocampal neuronal cultures derived from NSE-OR4M1 transgenic mice, possibly through modulation of the JNK signaling pathway. The attenuation of abnormal tau phosphorylation was rather selective since ZINC10915775 significantly decreased tau phosphorylation on tau Ser202/T205 (AT8 epitope) and tau Thr212/Ser214 (AT100 epitope), but not on tau Ser396/404 (PHF-1 epitope). Moreover, no response of ZINC10915775 was found in control hippocampal neuronal cultures derived from wild type littermates. Our in silico model provides novel means to pharmacologically modulate select ubiquitously expressed ORs in the brain through high affinity ligand activation to prevent and eventually to treat concussion induced down regulation of ORs and subsequent cascade of tau pathology. J. Cell. Biochem. 117: 2241-2248, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Synthesis of Two Potentially Heptadentate (N4O3 Schiff-base Ligands Derived from Condensation of Tris(3-aminopropyl-amine and Salicylaldehyde or 4-Hydroxysalicylaldehyde. Nickel(II and Copper(II Complexes of the Former Ligand

    Directory of Open Access Journals (Sweden)

    R. V. Parish

    2002-02-01

    Full Text Available Two potentially heptadentate (N4O3 tripodal Schiff-base ligands: tris(3-(salicylideneiminopropylamine (H3L1 and tris(3-(4’-hydroxysalicylideneimino-propylamine (H3L2 have been prepared and characterized by various spectroscopic methods (IR, FAB-MS, NMR. They are derived from the condensation reactions of tris(3-aminopropylamine (tpt, with 3 equivalents of either salicylaldehyde or the ringsubstituted salicylaldehyde, 4-hydroxysalicylaldehyde. The nickel(II and copper(II complexes of H3L1 were obtained from the its reactions Ni(II and Cu(II salts in absolute methanol. These complexes were studied by IR and FAB-Mass spectrometry.

  4. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  5. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    Energy Technology Data Exchange (ETDEWEB)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y. [Gulbarga University (India). Dept. of Chemistry]. E-mail: bhmmswamy53@rediffmail.com

    2005-07-15

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  6. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  7. Triazole-pyridine ligands: a novel approach to chromophoric iridium arrays

    NARCIS (Netherlands)

    Juríček, M.; Felici, M.; Contreras-Carballada, P.; Lauko, J.; Bou, S.R.; Kouwer, P.H.J.; Brouwer, A.M.; Rowan, A.E.

    2011-01-01

    We describe a novel modular approach to a series of luminescent iridium complexes bearing triazole-pyridine-derived ligands that were conveniently prepared by using "click" chemistry. One, two or three triazole-pyridine units were effectively built into the heteroaromatic macromolecule using

  8. Novel types of tripodal CMPO ligands: synthesis and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Inst. of Materials Research and Engineering, Research Link (Singapore); Rawdanowicz, M.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Hill, C.; Martinez, I. [Commissariat a l' Energie Atomique, CEA-Valrho, DRCP/SCPS/LCSE, Bagnols-sur-Ceze (France)

    2008-07-01

    Novel tripodal CMPO ligands having either aryl groups at the N-atom or alkyl groups at the CMPO methylene bridge were prepared in good yields. In the latter case one alkyl group per CMPO moiety was selectively introduced. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that there is an influence of the electronic character of the aryl groups on the extraction. Alkylation of the CMPO methylene group gives rise to a considerable decrease of the D-values (about 100-1000 times), dependent on the bulkiness of the alkyl substituent. (orig.)

  9. Higher derivatives in Type II and M-theory on Calabi-Yau threefolds

    Science.gov (United States)

    Grimm, Thomas W.; Mayer, Kilian; Weissenbacher, Matthias

    2018-02-01

    The four- and five-dimensional effective actions of Calabi-Yau threefold compactifications are derived with a focus on terms involving up to four space-time derivatives. The starting points for these reductions are the ten- and eleven-dimensional supergravity actions supplemented with the known eight-derivative corrections that have been inferred from Type II string amplitudes. The corrected background solutions are determined and the fluctuations of the Kähler structure of the compact space and the form-field back-ground are discussed. It is concluded that the two-derivative effective actions for these fluctuations only takes the expected supergravity form if certain additional ten- and eleven-dimensional higher-derivative terms for the form-fields are included. The main results on the four-derivative terms include a detailed treatment of higher-derivative gravity coupled to Kähler structure deformations. This is supplemented by a derivation of the vector sector in reductions to five dimensions. While the general result is only given as an expansion in the fluctuations, a complete treatment of the one-Kähler modulus case is presented for both Type II theories and M-theory.

  10. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  11. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  12. Wnt ligands signal in a cooperative manner to promote foregut organogenesis

    OpenAIRE

    Miller, Mayumi F.; Cohen, Ethan David; Baggs, Julie E.; Lu, Min Min; Hogenesch, John B.; Morrisey, Edward E.

    2012-01-01

    Endoderm-mesenchyme cross-talk is a central process in the development of foregut-derived organs. How signaling pathways integrate the activity of multiple ligands to guide organ development is poorly understood. We show that two Wnt ligands, Wnt2 and Wnt7b, cooperatively induce Wnt signaling without affecting the stabilization of the Wnt canonical effector β-catenin despite it being necessary for Wnt2–Wnt7b cooperativity. Wnt2–Wnt7b cooperation is specific for mesenchymal cell lineages and t...

  13. Chemoenzymatic synthesis of chiral 2,2'-bipyridine ligands and their N-oxide derivatives: applications in the asymmetric aminolysis of epoxides and asymmetric allylation of aldehydes.

    Science.gov (United States)

    Boyd, D R; Sharma, N D; Sbircea, L; Murphy, D; Malone, J F; James, S L; Allen, C C R; Hamilton, J T G

    2010-03-07

    A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-->84% ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-->86% ee).

  14. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    Science.gov (United States)

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  15. Regioselective Rh-Catalyzed Hydroformylation of 1,1,3-Trisubstituted Allenes Using BisDiazaPhos Ligand.

    Science.gov (United States)

    Eshon, Josephine; Landis, Clark R; Schomaker, Jennifer M

    2017-09-15

    The efficient hydroformylation of 1,1,3-trisubstituted allenes is accomplished with low loadings of a Rh catalyst supported by a BisDiazaPhos (BDP) ligand. The ligand identity is key to achieving high regioselectivity, while the mild reaction conditions minimize competing isomerization and hydrogenation to produce β,γ-unsaturated aldehydes and their derivatives in excellent yields.

  16. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  17. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  18. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  19. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...... expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila....

  20. 1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate ONNO Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs.

    Science.gov (United States)

    Pander, Piotr; Bulmer, Rachel; Martinscroft, Ross; Thompson, Stuart; Lewis, Frank W; Penfold, Thomas J; Dias, Fernando B; Kozhevnikov, Valery N

    2018-04-02

    This article describes a convenient method for the synthesis of ONNO-type tetradentate 6,6'-bis(2-phenoxy)-2,2'-bipyridine (bipyridine bisphenolate, BpyBph) ligands and their platinum(II) complexes. The methodology includes the synthesis of 1,2,4-triazine precursors followed by their transformation to functionalized pyridines by the Boger reaction. Two complementary routes employing 3,3'- and 5,5'-bis-triazines allow a modification of the central pyridine rings in different positions, which was exemplified by the introduction of cyclopentene rings. The new ligands were used to prepare highly luminescent ONNO-type Pt(II) complexes. The position of the cyclopentene rings significantly influences the solubility and photophysical properties of these complexes. Derivatives with closely positioned cyclopentene rings are soluble in organic solvents and proved to be the best candidate for solution-processable organic light-emitting devices (OLEDs), showing efficient single-dopant candlelight electroluminescence.

  1. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  2. Zr (IV COMPLEXES OF SOME NITROGEN-OXYGEN DONOR LIGANDS (SEMICARBAZONES & SALICYLALDAZINE

    Directory of Open Access Journals (Sweden)

    Z F DAWOOD

    2002-06-01

    Full Text Available Complexes containing mixed ligands of zirconium (IV have been synthesized by the reaction of zirconium (IV nitrate (Zr(NO34, 5H2O with salicylaldazine (SAH2 and semicarbazone ligands benzaldehyde semicarbazone (BSCH, 4-methoxybenzaldehyde semicarbzone (MBSCH, 2-chlorobenzaldehyde semicrbazone (CISCH and cinnamaldehyde semicarbazone (CinSCH forming complexes of the type [Zr2(SAH2(SCH2](NO38 and [Zr2(SA2 (SC2](NO32 in neutral and basic medium respectively. The ligands and their complexes are characterized physico-chemically.

  3. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  4. Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer.

    Science.gov (United States)

    Yokoyama, Yoshihito; Xin, Bing; Shigeto, Tatsuhiko; Umemoto, Mika; Kasai-Sakamoto, Akiko; Futagami, Masayuki; Tsuchida, Shigeki; Al-Mulla, Fahd; Mizunuma, Hideki

    2007-04-01

    Recent reports have shown that peroxisome proliferator-activated receptor (PPAR)alpha ligands reduce growth of some types of malignant tumors and prevent carcinogenesis. In this study, we investigated the inhibitory effect of clofibric acid (CA), a ligand for PPARalpha on growth of ovarian malignancy, in in vivo and in vitro experiments using OVCAR-3 and DISS cells derived from human ovarian cancer and aimed to elucidate the molecular mechanism of its antitumor effect. CA treatment significantly suppressed the growth of OVCAR-3 tumors xenotransplanted s.c. and significantly prolonged the survival of mice with malignant ascites derived from DISS cells as compared with control. CA also dose-dependently inhibited cell proliferation of cultured cell lines. CA treatment increased the expression of carbonyl reductase (CR), which promotes the conversion of prostaglandin E(2) (PGE(2)) to PGF(2alpha), in implanted OVCAR-3 tumors as well as cultured cells. CA treatment decreased PGE(2) level as well as vascular endothelial growth factor (VEGF) amount in both of OVCAR-3-tumor and DISS-derived ascites. Reduced microvessel density and induced apoptosis were found in solid OVCAR-3 tumors treated by CA. Transfection of CR expression vector into mouse ovarian cancer cells showed significant reduction of PGE(2) level as well as VEGF expression. These results indicate that CA produces potent antitumor effects against ovarian cancer in conjunction with a reduction of angiogenesis and induction of apoptosis. We conclude that CA could be an effective agent in ovarian cancer and should be tested alone and in combination with other anticancer drugs.

  5. A modular approach to neutral P,N-ligands: synthesis and coordination chemistry

    Directory of Open Access Journals (Sweden)

    Vladislav Vasilenko

    2016-04-01

    Full Text Available We report the modular synthesis of three different types of neutral κ2-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors.

  6. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.

    Science.gov (United States)

    Lew, Erin D; Oh, Jennifer; Burrola, Patrick G; Lax, Irit; Zagórska, Anna; Través, Paqui G; Schlessinger, Joseph; Lemke, Greg

    2014-09-29

    The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

  7. 1,3-Oxazin-6-one Derivatives and Bohemamine-Type Pyrrolizidine Alkaloids from a Marine-Derived Streptomyces spinoverrucosus.

    Science.gov (United States)

    Fu, Peng; La, Scott; MacMillan, John B

    2016-03-25

    Two new 1,3-oxazin-6-one derivatives (1 and 2) and six new bohemamine-type pyrrolizidine alkaloids (3-8) were isolated from the marine-derived Streptomyces spinoverrucosus strain SNB-048. Their structures including the absolute configurations were fully elucidated on the basis of spectroscopic analysis, ECD spectra, quantum chemical calculations, and chemical methods. Compounds 1 and 2 possess a γ-lactam moiety and a 1,3-oxazin-6-one system.

  8. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  9. Fragment-based discovery of novel pentacyclic triterpenoid derivatives as cholesteryl ester transfer protein inhibitors.

    Science.gov (United States)

    Chang, Yongzhi; Zhou, Shuxi; Li, Enqin; Zhao, Wenfeng; Ji, Yanpeng; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang

    2017-01-27

    Cholesteryl Ester Transfer Protein (CETP) is an important therapeutic target for the treatment of atherosclerotic cardiovascular disease. Our molecular modeling study revealed that pentacyclic triterpenoid compounds could mimic the protein-ligand interactions of the endogenous ligand cholesteryl ester (CE) by occupying its binding site. Alignment of the docking conformations of oleanolic acid (OA), ursolic acid (UA) and the crystal conformations of known CETP inhibitor Torcetrapib in the active site proposed the applicability of fragment-based drug design (FBDD) approaches in this study. Accordingly, a series of pentacyclic triterpenoid derivatives have been designed and synthesized as novel CETP inhibitors. The most potent compound 12e (IC 50 :0.28 μM) validated our strategy for molecular design. Molecular dynamics simulations illustrated that the more stable hydrogen bond interaction of the UA derivative 12e with Ser191 and stronger hydrophobic interactions with Val198, Phe463 than those of OA derivative 12b mainly led to their significantly different CETP inhibitory activity. These novel potent CETP inhibitors based on ursane-type scaffold should deserve further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA Via an RNA Motif-Ligand Database & Chemical Similarity Searching

    Science.gov (United States)

    Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, Sarco(endo)plasmic reticulum Ca2+ ATPase 1 (Serca1/Atp2a1), and cardiac troponin T (cTNT). Based on these observations, the development of small molecule ligands that target specifically expanded DM1 repeats could serve as therapeutics. In the present study, computational screening was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of inhibitors of the RNA-protein complex with low micromolar IC50’s, which are >20-fold more potent than the query compounds, were identified. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with virtual screening. PMID:22300544

  11. Synthesis and characterization of complexes of early actinides with tridentate Schiff base ligands

    International Nuclear Information System (INIS)

    Mansingh, P.S.; Dash, K.C.

    1995-01-01

    A series of thorium(IV) and dioxouranium(VI) complexes have been synthesised with tridentate Schiff base ligands (N 2 O donor set) obtained by in-situ condensation of N, N-dimethylethylenediamine with o-hydroxy aromatic aldehydes such as salicylaldehyde (HL) or o-hydroxy naphthaldehyde (HL'). While with dioxouranium(VI), the ligands are coordinated in a neutral manner and act as tridentate donors forming complexes of the type UO 2 (HL)X 2 or UO 2 (HL')X 2 (X=Cl,I,NCS,NO 3 ,CH 3 COO) with thorium(IV) they are coordinated as deprotonated tridentate ligands yielding complexes of the type Th(L') 2 X 2 (X=I,NCS,NO 3 ). The IR spectra show that the thiocyanate group is actually N-bonded unidentate isothiocyanate and both the nitrate and the acetate groups are bonded in bidentate manner while the ligands are bonded in tridentate manner in these complexes. The PMR spectra confirm the mode of bonding of the ligands either as neutral or as deprotonated species. The thermogravimetric analyses indicate the stability of the complexes. (author). 22 refs., 1 tab

  12. Removal of boron(III) by N-methylglucamine-type cellulose derivatives with higher adsorption rate

    International Nuclear Information System (INIS)

    Inukai, Yoshinari; Tanaka, Yoshiharu; Matsuda, Toshio; Mihara, Nobutake; Yamada, Kouji; Nambu, Nobuyoshi; Itoh, Osamu; Doi, Takao; Kaida, Yasuhiko; Yasuda, Seiji

    2004-01-01

    To obtain adsorbents for boron(III) derived from a natural polymer, two forms (powder and fiber) of N-methylglucamine-type cellulose derivatives were newly synthesized. After the graft polymerization of two forms of cellulose with vinyl monomer having epoxy groups, the N-methylglucamine-type cellulose derivatives were obtained by the reaction of the grafted cellulose with N-methylglucamine. The adsorption capacities of the cellulose derivatives for boron(III) were the same levels as that of a commercially available N-methylglucamine-type polystyrene resin. However, the cellulose derivatives adsorbed boron(III) more quickly than the polystyrene resin. The adsorption and desorption of boron(III) with a column method using the cellulose fiber were achieved at a higher flow rate than that using the polystyrene resin. In addition, the boron(III), adsorbed on the cellulose fiber column, was quantitatively recovered with dilute hydrochloric acid in 20- and 200-fold increased concentrations. Consequently, it was found that the cellulose derivatives were superior to the polystyrene resin as adsorbents for boron(III) for treatment of a large quantity of wastewater

  13. Hydroformylation catalyst comprising a complex with ligands having a structure derived from bisphenol A

    NARCIS (Netherlands)

    2002-01-01

    Ethylenically unsaturated compounds are hydroformylated in the presence of a hydroformylation catalyst comprising at least one complex of a metal of transition group VIII with at least one phosphorus-containing compound as ligand, where this compound contains two groups which contain P atoms and are

  14. The synthesis, structures and characterisation of new mixed-ligand manganese and iron complexes with tripodal, tetradentate ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Mills, A.M.; Kooijman, H.; Tooke, D.M.; Spek, A.L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.; Bouwman, E.

    2008-01-01

    The preparation of new manganese and iron complexes with the general formula [M(tripod)(anion)] is described, where M = FeIII or MnIII, “tripod” is a dianionic tetradentate tripodal ligand and the anion is a chelating β-diketonate, 8-oxyquinoline or acetate. The synthesis of this type of complexes

  15. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

    Science.gov (United States)

    Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.

    2018-05-01

    Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

  16. An enantiomerically pure siderophore type ligand for the diastereoselective 1 : 1 complexation of lanthanide(III ions

    Directory of Open Access Journals (Sweden)

    Markus Albrecht

    2009-12-01

    Full Text Available A facile synthesis of a highly preorganized tripodal enterobactine-type ligand 1a-H3 consisting of a chiral C3-symmetric macrocyclic peptide and three tridentate 2-amido-8-hydroxyquinoline coordinating units is presented. Complex formation with various metal ions (Al3+, Ga3+, Fe3+, La3+ and Eu3+ was investigated by spectrophotometric methods. Only in the case of La3+ and Eu3+ were well defined 1 : 1 complexes formed. On the basis of CD spectroscopy and DFT calculations the configuration at the metal centre of the La3+ complex was determined to show Λ helicity. The coordination compounds [(1aLn] presented should be prototypes for further lanthanide(III complexes with an enterobactine analogue binding situation.

  17. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  18. N-alylated mercaptoacetyl glycine derivatives as multipurpose ligands in radio tracer design. Pt. 2

    International Nuclear Information System (INIS)

    Noll, B.; Semmler, W.

    1994-01-01

    N 1 -alkylated mercaptoacetyl glycine ligands were labelled with technetium-99m and the formed products analyzed by chromatographic methods. Biodistribution patterns of the resulting species were determined in Wistar rats. The compounds were tested with regard to their ability to be accumulated in arterioclerotic plaques. (orig.)

  19. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  20. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  1. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment

    Science.gov (United States)

    Finkernagel, Florian; Lieber, Sonja; Schnitzer, Evelyn; Legrand, Nathalie; Schober, Yvonne; Nockher, W. Andreas; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Wagner, Uwe; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma. PMID:25968567

  2. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  3. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  4. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  5. Carbon-11-labelling of a novel, trishomocubane-derived, high affinity and selectivity DAT ligand

    International Nuclear Information System (INIS)

    Dolle, F.; Le Helleix, St.; Peyronneau, M.A.; Saba, W.; Tournier, N.; Valette, H.; Banister, S.; Kassiou, M.

    2011-01-01

    Complete text of publication follows: Objectives: Parkinson's disease, schizophrenia, attention deficit disorder and drug abuse are related to abnormalities within the brain's dopaminergic system. The neuronal dopamine transporter (DAT) plays a key role in regulating the synaptic concentration of dopamine and thus dopamine neurotransmission in the brain. Since the DAT can be considered as a marker of the integrity and number of the presynaptic striatal dopamine-producing neurons, considerable efforts have been spent in recent years on the design and development of DAT-selective radioligands for use in Positron Emission Tomography (PET) studies. Notably, the tropane PE2I and its fluorinated analogue LBT-999 were identified as having high affinity and selectivity for the DAT over the norepinephrine transporter (NET) and the serotonin transporter (SERT). Besides tropanes, only a few bicyclic frameworks, e.g. bicyclo[2.2.2]octanes, have delivered compounds with high affinity for the DAT. Recently, novel poly-carbocyclic DAT ligands with selectivity over the NET and the SERT were reported. The lead compound of this series (1, N-methyl-N-(3-fluoro) benzyl-pentacyclo[5.4.0.0 2, 6 .0 3, 10 .0 5, 9 ] undec-8-ylamine, Ki = 1.2 nM, ≥ 8300-fold selectivity over NET and SERT) was selected as a potential candidate for imaging the DAT with PET and isotopically labelled with carbon-11 using [ 11 C]methyl triflate. Methods: The trishomocubane derivatives 1 (reference) and 2 (precursor for labelling with carbon-11) were prepared from commercially available Cookson's diketone in 6 and 7 steps, respectively. Carbon-11 labelling of 1 was performed using a TRACERLab FX-C Pro synthesizer (GEMS) and comprises (1) trapping at -10 C of [ 11 C]MeOTf in acetone (0.4 mL) containing the nor-derivative 2 (0.6-0.9 mg, free base) and aq. 3N NaOH (8 μL); (2) heating at 110 C for 2 min; (3) concentration to dryness and taking up the residue in 1.0 mL of the HPLC mobile phase; (4) purification

  6. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  7. The discovery of tropane-derived CCR5 receptor antagonists.

    Science.gov (United States)

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  8. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models.

    Directory of Open Access Journals (Sweden)

    Hakime Öztürk

    Full Text Available β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs, which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.

  9. Synthesis and characterization of a uranium(III) complex containing a redox-active 2,2'-bipyridine ligand.

    Science.gov (United States)

    Kraft, Steven J; Fanwick, Phillip E; Bart, Suzanne C

    2010-02-01

    Hydrotris(3,5-dimethylpyrazolyl)borate uranium(III) diiodide derivatives have been prepared as an entry into low-valent uranium chemistry with these ligands. The bis(tetrahydrofuran) adduct, Tp*UI(2)(THF)(2) (1) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by addition of sodium hydrotris(3,5-dimethylpyrazolyl)borate (NaTp*) to an equivalent of UI(3)(THF)(4). Addition of 2,2'-bipyridine (2,2'-bpy) to 1 displaced the THF molecules producing Tp*UI(2)(2,2'-bpy) (2). Both derivatives were characterized by (1)H NMR and IR spectroscopies, magnetic measurements, and X-ray crystallography. Reduction of both species was attempted with two equivalents of potassium graphite. The reduction of 1 did not result in a clean product, but rather decomposition and ligand redistribution. However, compound 2 was reduced to form Tp*(2)U(2,2'-bpy), 3, which is composed of a uranium(III) ion with a radical monoanionic bipyridine ligand. This was confirmed by X-ray crystallography, which revealed distortions in the bond lengths of the bipyridine consistent with reduction. Further support was obtained by (1)H NMR spectroscopy, which showed resonances shifted far upfield, consistent with radical character on the 2,2'-bipyridine ligand. Future studies will explore the reactivity of this compound as well as the consequences for redox-activity in the bipyridine ligand.

  10. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    Science.gov (United States)

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  11. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    Prat-Lepesant, M.

    2005-06-01

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  12. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  13. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  14. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  15. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    Science.gov (United States)

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  16. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study

    Directory of Open Access Journals (Sweden)

    Kimia Hirbod

    2017-06-01

    Full Text Available Objective(s: To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole using dibromoalkanes 3a-m. Final compounds were evaluated against acetylcholinesterase (AChE and butyrylcholinesterase (BuChE by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 µM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms.

  17. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery

    Science.gov (United States)

    Fischer, Marcus; Coleman, Ryan G.; Fraser, James S.; Shoichet, Brian K.

    2014-07-01

    Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.

  18. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  19. Slow relaxation of the magnetization observed in an antiferromagnetically ordered phase for SCM-based two-dimensional layered compounds.

    Science.gov (United States)

    Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi

    2017-03-07

    Two-dimensional layered compounds with different counteranions, [{Mn(salen)} 4 C6](BF 4 ) 2 ·2(CH 3 OH) (1) and [{Mn(salen)} 4 C6](PF 6 ) 2 ·2(CH 3 OH) (2) (salen 2- = N,N'-bis(salicylideneiminato), C6 2- = C 6 H 12 (COO) 2 2- ), were synthesized by assembling [Mn(salen)(H 2 O)]X (X - = BF 4 - and PF 6 - ) and C 6 H 12 (CO 2 - ) 2 (C6 2- ) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ 4 -type C6 2- ions, forming a brick-wall-type network of [-{Mn 2 }-OCO-] chains alternately connected via C 6 H 12 linkers of C6 2- moieties. The counteranions for 1 and 2, i.e., BF 4 - and PF 6 - , respectively, are located between layers. Since the size of BF 4 - is smaller than that of PF 6 - , intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn 2 }-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn III out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn III ion, the [-{Mn 2 }-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of T N = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.

  20. Monochloro non-bridged half-metallocene-type zirconium complexes containing phosphine oxide-(thio)phenolate chelating ligands as efficient ethylene polymerization catalysts.

    Science.gov (United States)

    Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng

    2013-01-14

    A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.

  1. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Schrøder, Tenna Juul; Christensen, Søren [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Strandbygård, Dorthe [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Pallesen, Lone Tjener [Aarhus University, Ole Worms Allé 3, 8000 Aarhus C (Denmark); García-Alai, Maria Marta [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep [GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076 (India); Watson, Steven P., E-mail: jla@mb.au.dk [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Thirup, Søren, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark)

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  2. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    International Nuclear Information System (INIS)

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Strandbygård, Dorthe; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep; Watson, Steven P.; Thirup, Søren

    2014-01-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine

  3. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  4. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  5. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  6. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  7. Comparisons Between Tridentate Bis(benzazoles-pyridine and Bis(benzazolestriazine Ligands: a Theoretical Study

    Directory of Open Access Journals (Sweden)

    Mihaiela Andoni

    2015-12-01

    Full Text Available Twelve bis(benzazole structures with potential ligand character were investigated by means of computational chemistry. Global and local reactivity descriptors within DFT (Density Functional Theory theory (Fukui functions, chemical potential, hardness, electrophilicity index have been computed at B3LYP/6-31G(d,p level of theory. NICS(0 (Nucleus Independent Chemical Shift index computations were employed for the evaluation of the local aromatic character of each heterocyclic moiety. Best results have been reported for the bis(benzimidazole derivatives. Copper and zinc complexes of the investigated tridentate ligands have been proposed.

  8. Luminescent properties of europium different-ligand complexes with cyclic. beta. -diketones and diantipyrylalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Ul' yanova, T M; Gerasimenko, G N; Tishchenko, M A; Vitkun, R A [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1983-03-01

    Using luminescence method different-ligand complexing of europium ions with diantipyrylalkanes and cyclic ..beta..-diketones: 2-acetyl- and 2-benzoyl-1.3-indandions, has been studied. The optimum conditions of the formation of different-ligand complexes and the ratio of components in it are determined. Effect of alien lanthanides and diantipyrylmethane derivatives on the luminescence intensity of europium complexes is clarified. A correlation between the ratio of the luminescence intensity bands of europium complexes and the values of oscillator strengths of supersensitive transitions of neodymium and erbium absorption bands is established.

  9. Cyclometalated Iridium(III) Complexes Containing 4,4'-π-Conjugated 2,2'-Bipyridine Derivatives as the Ancillary Ligands: Synthesis, Photophysics, and Computational Studies.

    Science.gov (United States)

    Sarma, Monima; Chatterjee, Tanmay; Bodapati, Ramakrishna; Krishnakanth, Katturi Naga; Hamad, Syed; Rao, S Venugopal; Das, Samar K

    2016-04-04

    This article demonstrates a series of cyclometalated Ir(III) complexes of the type [Ir(III)(C^N)2(N^N)](PF6), where C^N is 2-phenylpyridine, and N^N corresponds to the 4,4'-π-conjugated 2,2'-bipyridine ancillary ligands. All these compounds were synthesized through splitting of the binuclear dichloro-bridged complex precursor, [Ir(C^N)2(μ-Cl)]2, with the appropriate bipyridine ligands followed by the anion exchange reaction. The linear and nonlinear absorption properties of the synthesized complexes were investigated. The absorption spectra of all the title complexes exhibit a broad structureless feature in the spectral region of 350-700 nm with two bands being well-resolved in most of the cases. The structures of all the compounds were modeled in dichloromethane using the density functional theory (DFT) algorithm. The nature of electronic transitions was further comprehended on the basis of time-dependent DFT analysis, which indicates that the origins of various bands are primarily due to intraligand charge transfer transitions along with mixed-metal and ligand-centered transitions. The synthesized compounds are found to be nonemissive at room temperature because of probable nonradiative deactivation pathways of the T1 state that compete with the radiative (phosphorescence) decay modes. However, the frozen solutions of compounds Ir(MS 3) and Ir(MS 5) phosphoresce at the near-IR region, the other complexes remaining nonemissive up to 800 nm wavelength window. The two-photon absorption studies on the synthesized complexes reveal that values of the absorption cross-section are quite notable and lie in the range of 300-1000 GM in the picosecond case and 45-186 GM in the femtosecond case.

  10. Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

    International Nuclear Information System (INIS)

    Lee, Eunji; Ryu, Hyunsoo; Park, Kimin

    2013-01-01

    Three Ag(I) coordination polymers with the formula [Ag(L)]·(X)·(DMSO) n (X = ClO 4 (1), BF 4 (2), and PF 6 (3), and L = dipyridyl ligand) were prepared and characterized fully their structures. All three compounds are isostructures and stable 2-D honeycomb type coordination polymers, in which 1-D zigzag chains with -(Ag-L)- motif are linked by the argentophilic interactions and the π···π stacking interactions between pyridine rings. The investigation on photophysical properties of all compounds shows that the nature of emission can be attributed to the metal-to-ligand charge transfer as well as the formation of the polymeric structures with restriction of the flexibility of the free ligand. Based on the present solid state results, further investigation on the development and characterization of new coordination polymers using flexible unsymmetrical ligand is in progress. During last two decades, silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the various intriguing architectures caused by a variety of coordination geometry of Ag(I) ion as well as their potential applications as functional materials

  11. Simple Ligand-Receptor Interaction Descriptor (SILIRID) for alignment-free binding site comparison.

    Science.gov (United States)

    Chupakhin, Vladimir; Marcou, Gilles; Gaspar, Helena; Varnek, Alexandre

    2014-06-01

    We describe SILIRID (Simple Ligand-Receptor Interaction Descriptor), a novel fixed size descriptor characterizing protein-ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs) by summing up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding to the product of the number of entries (20 amino acids and one cofactor) and 8 interaction types per amino acid (hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion). Efficiency of SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database, a druggable portion of the Protein Data Bank, using various protein-ligand complexes as queries. The performance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-of-the-art approaches (ROC AUC ≈ 0.91). SILIRID can efficiently be used to visualize chemogenomic space covered by sc-PDB using Generative Topographic Mapping (GTM): sc-PDB SILIRID data form clusters corresponding to different protein types.

  12. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

    International Nuclear Information System (INIS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-01-01

    Three new coordination polymers, namely, {[Ni(H 2 L)(bix)(H 2 O) 2 ]·2h 2 O} n (1), {[Ni(HL)(Hdpa)(H 2 O) 2 ]·H 2 O} n (2), {[Ni(L) 0.5 (bpp)(H 2 O)]·H 2 O} n (3) (H 4 L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H 4 L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6 6 -dia-type framework with H 4 L ligand adopts a μ 2 -bridging mode with two symmetry-related carboxylate groups in μ 1 -η 1 :η 0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)] n ribbon chains motif, in which the H 4 L ligand adopts a μ 2 -bridging mode with two carboxylate groups in μ 1 -η 1 :η 1 and μ 1 -η 1 :η 0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H 4 L ligand displays a μ 4 -bridging coordination mode. The H 4 L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6 6 -dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)] n ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.

  13. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    Science.gov (United States)

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D’Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  14. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    Science.gov (United States)

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.

    Science.gov (United States)

    Montalvo-Acosta, Joel José; Cecchini, Marco

    2016-12-01

    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Labelling of penicillin-binding proteins from Escherichia coli with photoreactive derivatives of #betta#-lactam antibiotics

    International Nuclear Information System (INIS)

    Aran, V.; Rodriguez-Tebar, A.; Vazquez, D.

    1983-01-01

    The authors have synthesized a number of photoreactive radiolabelled #betta#-lactams that react and form permanent covalent bonds with the penicillin-binding proteins (PBPs), since photoreactive ligand derivatives have been used to some extent for structural studies on membranes and other biological structures. Chemical and photochemical labelling of a receptor by its ligand are important techniques to elucidate the nature of the ligand-receptor interaction, and for identification and characterization of receptors. They have synthesized two #betta#-lactam derivatives each containing two different photoreactive moieties. One of them is an aryl azido compound, widely known as a photoreactive reagent for labelling studies, whereas the other one contains a nitroguaiacol derived group used in photochemical studies with other biological materials. (Auth.)

  17. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  18. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  19. Salen- Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions

    Science.gov (United States)

    Hassan, Hassan M. A.; Betiha, Mohamed A.; Mohamed, Shaimaa K.; El-Sharkawy, E. A.; Ahmed, Emad A.

    2017-08-01

    The synthesis of metal-organic frameworks (MOFs), porous coordination polymers with functional groups has received immense interest due to the functional groups can offer desirable properties and allow post-synthetic modification. Herein, for the first time, Zr(IV)-Sal Schiff base complex incorporated into amino-functionalized MIL-101(Cr) framework by salicylaldehyde condensing to amino group, and coordinating Zr(IV) ion have been successfully synthesized. The worthiness of the synthesized material as a catalyst has been examined for the esterification of oleic acid (free fatty acid) with methanol producing biodiesel (methyl oleate), Knoveonagel condensation reaction of aldehydes and Friedel-Crafts acylation of anisole. Our findings demonstrated that Salen-Zr(IV) grafted to framework of NH2-MIL-101(Cr) as a solid acid catalyst exhibited distinct catalytic performance for the production of biodiesel by esterification of oleic acid with methanol, Knoveonagel condensation and Friedel-Crafts acylation. These could be attributed to high surface area which allow high distribution of Zr(IV) species lead to a sufficient contact with the reactants species. Furthermore, the catalyst showed excellent recycling efficiency due to the strong interaction between the Zr(IV) ions and chelating groups in the NH2-MIL-101(Cr)-Sal.

  20. Consistent two-dimensional visualization of protein-ligand complex series

    Directory of Open Access Journals (Sweden)

    Stierand Katrin

    2011-06-01

    Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.

  1. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    Science.gov (United States)

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  2. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    Science.gov (United States)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  3. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C; Kaas, A; Hansen, L

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated lo...

  4. Synthesis of biotinyl derivatives of peptide hormones and other biological materials

    International Nuclear Information System (INIS)

    Finn, F.M.; Hofmann, K.H.

    1985-01-01

    Methods for the preparation of biotinylated ligands for the avidin-biotin system are described. Also described are procedures for modifying and labelling avidin and for assessing the rate of dissociation of biotin derivatives from avidin. The most widely used procedure for introducing biotin into other molecules involves acylation with N-hydroxysuccinimido-biotinate. Experimental details are given for the synthesis of dethiobiotin, iminobiotin, and biotinylated ligands in which a 6-aminohexanoic acid spacer is interposed between the biotin or biotin derivative and the insulin molecule. The syntheses of biotinylated corticotropins are presented only in principle

  5. Homoleptic mono- and dinuclear cationic alkoxydiphosphazane derivatives of rhodium

    International Nuclear Information System (INIS)

    Edwards, K.J.; Haines, R.J.; Meintjies, E.; Sigwarth, B.

    1990-01-01

    Treatment of the solvento species [Rh(C 8 H 12 )(solvent) 2 ][SbF 6 ] (solvent = methanol, ethanol, or tetrahydrofuran) with a twice-molar amount of the diphosphazane ligands (RO) 2 PN(R') P(OR) 2 (R' = Me or Et; R = Me, Et, or Pr i ) in the appropriate solvent leads to the ready formation of monocationic [Rh{(RO) 2 PN(R')P(OR) 2 } 2 ] + and/or dicationic [Rh 2 {μ-(RO) 2 PN(R')P(OR) 2 } 2 {(RO) 2 PN(R')P(OR) 2 } 2 ] 2+ hexafluoroantimonate salts, with the tendency to afford dinuclear derivatives decreasing along the series Me>Et>Pr i . Carbon monoxide readily forms addition products with these ionic species, giving rise to five-coordinate derivatives of the type [Rh(CO){(RO) 2 PN(R')P (OR) 2 } 2 ][SbF 6 ] in the case of the mononuclear derivatives, and inserting across the two rhodium atoms to afford [Rh 2 (μ-CO){μ-(MeO) 2 PN(Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] 2 in the case of [Rh 2 {μ-(MeO) 2 PN (Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] 2 . These mono- and dicationic derivatives also react readily with iodine affording [RhI 2 {(RO) 2 PN(R')P(OR) 2 } 2 ][SbF 6 ] and [Rh 2 (μ-I){μ-(MeO) 2 PN(Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] n (n = 2 or 3) respectively. The coordination behaviour of the diphosphorus ligands (MeO) 2 PCH 2 P(OMe) 2 and Me 2 PCH 2 PMe 2 towards [Rh(C 8 H 12 )(solvent) 2 ][SbF 6 ] has also been investigated. 1 fig., 1 tab., 19 refs

  6. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    Science.gov (United States)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  7. Asymmetric aminolytic kinetic resolution of racemic epoxides using recyclable chiral polymeric Co(III)-salen complexes: a protocol for total utilization of racemic epoxide in the synthesis of (R)-Naftopidil and (S)-Propranolol.

    Science.gov (United States)

    Kumar, Manish; Kureshy, Rukhsana I; Shah, Arpan K; Das, Anjan; Khan, Noor-ul H; Abdi, Sayed H R; Bajaj, Hari C

    2013-09-20

    Chiral polymeric Co(III) salen complexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers with varying stereogenic centers were synthesized for the first time and used as catalysts for aminolytic kinetic resolution (AKR) of a variety of terminal epoxides and glycidyl ethers to get enantio-pure epoxides (ee, 99%) and N-protected β-amino alcohols (ee, 99%) with quantitative yield in 16 h at RT under optimized reaction conditions. This protocol was also used for the synthesis of two enantiomerically pure drug molecules (R)-Naftopidil (α1-blocker) and (S)-Propranolol (β-blocker) as a key step via AKR of single racemic naphthylglycidyl ether with Boc-protected isoproylamine with 100% epoxide utilization at 1 g level. The catalyst 1 was successfully recycled for a number of times.

  8. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  9. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  10. Synthesis, characterization, and reactivity of nickel hydride complexes containing 2,6-C6H3(CH2PR2)2 (R = tBu, cHex, and iPr) pincer ligands.

    Science.gov (United States)

    Boro, Brian J; Duesler, Eileen N; Goldberg, Karen I; Kemp, Richard A

    2009-06-15

    The syntheses and full characterization of nickel hydrides containing the PCP "pincer"-type ligand, where PCP = 2,6-C(6)H(3)(CH(2)PR(2))(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((R)PCP)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((R)PCP)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products. While NaBH(4) was effective in the preparation of pure ((tBu)PCP)NiH, Super-Hydride solution (LiEt(3)BH in THF) was required to prepare either ((cHex)PCP)NiH or ((iPr)PCP)NiH. Attempts to prepare a Ni-H from ((Ph)PCP)NiCl with a variety of hydride reagents yielded only the free ligand as an identifiable product. Two of the derivatives, tBu and cHex, have also been subjected to single crystal X-ray analysis. The solid-state structures each showed a classic, near-square planar arrangement for Ni in which the PCP ligand occupied three meridional ligand points with the Ni-H trans to the Ni-C bond. The resulting Ni-H bond lengths were 1.42(3) and 1.55(2) A for the tBu and cHex derivatives, respectively.

  11. Dynamic Memory De-allocation in Fortran 95/2003 Derived Type Calculus

    Directory of Open Access Journals (Sweden)

    Damian W.I. Rouson

    2005-01-01

    Full Text Available Abstract data types developed for computational science and engineering are frequently modeled after physical objects whose state variables must satisfy governing differential equations. Generalizing the associated algebraic and differential operators to operate on the abstract data types facilitates high-level program constructs that mimic standard mathematical notation. For non-trivial expressions, multiple object instantiations must occur to hold intermediate results during the expression's evaluation. When the dimension of each object's state space is not specified at compile-time, the programmer becomes responsible for dynamically allocating and de-allocating memory for each instantiation. With the advent of allocatable components in Fortran 2003 derived types, the potential exists for these intermediate results to occupy a substantial fraction of a program's footprint in memory. This issue becomes particularly acute at the highest levels of abstraction where coarse-grained data structures predominate. This paper proposes a set of rules for de-allocating memory that has been dynamically allocated for intermediate results in derived type calculus, while distinguishing that memory from more persistent objects. The new rules are applied to the design of a polymorphic time integrator for integrating evolution equations governing dynamical systems. Associated issues of efficiency and design robustness are discussed.

  12. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Mustapha C. Mandewale

    2018-02-01

    Full Text Available The quinoline hydrazone ligands were synthesized through multi-step reactions. The 2-hydroxy-3-formylquinoline derivatives (1a–1c were prepared from acetanilide derivatives as starting materials using Vilsmeier–Haack reaction. Then the condensation of 2-hydroxy-3-formylquinoline derivatives with hydrazide derivatives (2a–2c yielded quinoline hydrazone ligands (3a–3i. The synthesis of a new series of Zn(II complexes carried out by refluxing with these quinoline hydrazone ligands (3a–3i is reported. The molecular structures of the ligands (3a–3i and the Zn complexes were characterized by elemental analysis and spectral studies like FT-IR, 1H and 13C NMR, MS, UV–Visible and fluorescence. The preliminary results of antituberculosis study showed that most of the Zn(II complexes 4a–4i demonstrated very good antituberculosis activity while the ligands 3a–3i showed moderate activity. Among the tested compounds 4e and 4g were found to be most active with minimum inhibitory concentration (MIC of 8.00μM and 7.42 μM respectively against Mycobacterium tuberculosis (H37 RV strain ATCC No-27294 which is comparable to “first and second line” drugs used to treat tuberculosis.

  13. Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2013-10-15

    Extraction processes using poly(acrylamidoxime) resins are being developed to extract uranium from seawater. The main complexing agents in these resins are thought to be 2,6-dihydroxyiminopiperidine (DHIP) and N(1),N(5)-dihydroxypentanediimidamide (DHPD), which form strong complexes with uranyl(VI) at the pH of seawater. It is important to understand uranyl(VI) speciation in the presence of these and similar amidoxime ligands to understand factors affecting uranyl(VI) adsorption to the poly(acrylamidoxime) resins. Experiments were carried out in positive ion mode on a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The ligands investigated were DHIP, DHPD, and N(1),N(2)-dihydroxyethanediimidamide (DHED). DHED and DHPD differ only in the number of carbons separating the oxime groups. The effects on the mass spectra of changes in uranyl(VI):ligand ratio, pH, and ligand type were examined. DHIP binds uranyl(VI) more effectively than DHPD or DHED in the pH range investigated, forming ions derived from solution-phase species with uranyl(VI):DHIP stoichiometries of 1:1, 1:2, and 2:3. The 2:3 uranyl(VI):DHIP complex appears to be a previously undescribed solution species. Ions related to uranyl(VI):DHPD complexes were detected in very low abundance. DHED is a more effective complexing agent for uranyl(VI) than DHPD, forming ions having uranyl(VI):DHED stoichiometries of 1:1, 1:2, 1:3, and 2:3. This study presents a first look at the solution chemistry of uranyl(VI)-amidoxime complexes using electrospray ionization mass spectrometry. The appearance of previously undescribed solution species suggests that the uranyl-amidoxime system is a rich and relatively complex one, requiring a more in-depth investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Electrochemistry of oxo-technetium(V) complexes containing Schiff base and 8-quinolinol ligands

    International Nuclear Information System (INIS)

    Refosco, F.; Mazzi, U.; Deutsch, E.; Kirchhoff, J.R.; Heineman, W.R.; Seeber, R.

    1988-01-01

    The electrochemistry of six-coordinate, monooxo technetium(V) complexes containing Schiff base ligands has been studied in acetonitrile and N,N'-dimethylformamide solutions. The complexes have the general formula TcOCl(L B ) 2 or TcO(L T )(L B ), where L B represents a bidentate-N,O Schiff base ligand or a bidentate-N,O 8-quinolinol ligand and L T represents a tridentate-O,N,O Schiff base ligand. Cyclic voltammetry at a platinum-disk electrode, controlled-potential coulometry, and thin-layer spectroelectrochemistry were used to probe both the oxidation and the reduction of these complexes. The results of these studies, and previously reported results on the analogous Re(V) complexes, can be understood within a single general reaction scheme. The salient features of this scheme are (i) one-electron reduction of Tc(V) to Tc(IV), (ii) subsequent loss of a ligand situated cis to the Tc≡O linkage, and (iii) subsequent isomerization of this unstable Tc(IV) product to more stable complex in which the site trans to the Tc≡O linkage is vacant. The Tc(IV) complexes can also be reduced to analogous Tc(III) species, which appear to undergo the same ligand loss and isomerization reactions. The technetium complexes are 400-500 mV easier to reduce than are their rhenium analogues. The 8-quinolinol ligands, and especially the 5-nitro derivative, both thermodynamically and kinetically stabilize the Tc(IV) and Tc(III) oxidation states. These electrogenerated species are unusual in that they constitute the bulk of the known examples of monomeric Tc(IV) and Tc(III) complexes containing only N- and O-donating ligands. 34 refs., 9 figs., 1 tab

  15. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  16. Reduction of dinitrogen ligands

    International Nuclear Information System (INIS)

    Richards, R.L.

    1983-01-01

    Processes of dinitrogen ligand reduction in complexes of transition metals are considered. The basic character of the dinitrogen ligand is underlined. Data on X-ray photoelectronic spectroscopy and intensities of bands ν (N 2 ) in IR-spectra of nitrogen complexes are given. The mechanism of protonation of an edge dinitrogen ligand is discussed. Model systems and mechanism of nitrogenogenase are compared

  17. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  18. Experimental and theoretical investigations on Pd(II) host-guest compound: Deciphering the structural and electronic features of a potential bioactive complex

    Science.gov (United States)

    Sreejith, S. S.; Mohan, Nithya; Prathapachandra Kurup, M. R.

    2017-10-01

    A Pd(II) complex from N,N‧-bis(2-hydroxy-3-ethoxybenzylidene)butane-1,4-diamine salen-type ligand has been synthesized and characterised using single crystal XRD analysis, elemental analysis, IR and UV-Vis spectroscopic methods. Thermal profile of the compound is investigated using TG-DTG-DSC method. The quantification of intermolecular interactions and surface morphology has been done using Hirshfeld surface study mapped using various functions like dnorm, shape index and curvedness. ESP analysis is done to visualize the electrophilic and nucleophilic regions in the complex. Geometry optimization of the structure is done using DFT at B3LYP/def2-TZVP level of theory. Frontier orbital analysis reveals the kinetical stability and chemical inertness of the complex. A detailed charge distribution analysis is done using different analytical methods like Mulliken, Löwdin, NPA and AIM methods. Further bond order analysis and topological analysis are also done. Finally the bioactivity of the titled complex is checked using molecular docking method on both DNA and protein.

  19. Structural Diversity of Metallosupramolecular Assemblies Based on the Bent Bridging Ligand 4,4′-Dithiodipyridine

    Directory of Open Access Journals (Sweden)

    Rüdiger W. Seidel

    2013-05-01

    Full Text Available 4,4′-Dithiodipyridine (dtdp, also termed 4,4′-dipyridyldisulfide, is a bridging ligand of the 4,4′-bipyridine type. The introduction of the disulfide moiety inevitably leads to a relatively rigid angular structure, which exhibits axial chirality. More than 90 metal complexes containing the dtdp ligand have been crystallographically characterised until now. This review focuses on the preparation and structural diversity of discrete and polymeric metallosupramolecular assemblies constructed from dtdp as bridging ligands. These encompass metallamacrocycles with M2L2 topology and coordination polymers with periodicity in one or two dimensions. One-dimensional coordination polymers represent the vast majority of the metallosupramolecular structures obtained from dtdp. These include repeated rhomboids, zigzag, helical and arched chains among other types. In this contribution, we make an attempt to provide a comprehensive account of the structural data that are currently available for metallosupramolecular assemblies based on the bent bridging ligand dtdp.

  20. A highly selective fluorescent chemosensor for CN- based on a novel bis(salamo)-type tetraoxime ligand

    Science.gov (United States)

    Wang, Fei; Gao, Lei; Zhao, Qing; Zhang, Yang; Dong, Wen-Kui; Ding, Yu-Jie

    2018-02-01

    The optical properties of a novel chemosensor for cyanide anions based on a symmetric bis(salamo)-type ligand (H3L) were investigated by UV-Vis and fluorescence spectroscopy in MeOH/H2O (1:1 v/v) solution. Sensor H3L can selectively sense CN- based on prominent color changes among other anions. The chemosensor exhibits an apparent fluorescence enhancement at 482 nm to CN- which because cyanide ions interact with Cdbnd N bonds. Combining the corrected Benesi-Hildebrand formula, the binding constant of the formed host-guest complex was calculated as 2.42 × 105 M- 1. Meanwhile, the detection limit of the sensor toward CN- was 8.91 × 10- 7 M. It is worth noting that the designed sensor can be used for rapid detection of cyanide anions in basic pH range, and has great practical value.

  1. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... explored whether BDNF plays a role in human glucose metabolism. Subjects and methods  We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...

  2. Trapping of palindromic ligands within native transthyretin prevents amyloid formation

    Science.gov (United States)

    Kolstoe, Simon E.; Mangione, Palma P.; Bellotti, Vittorio; Taylor, Graham W.; Tennent, Glenys A.; Deroo, Stéphanie; Morrison, Angus J.; Cobb, Alexander J. A.; Coyne, Anthony; McCammon, Margaret G.; Warner, Timothy D.; Mitchell, Jane; Gill, Raj; Smith, Martin D.; Ley, Steven V.; Robinson, Carol V.; Wood, Stephen P.; Pepys, Mark B.

    2010-01-01

    Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis. PMID:21059958

  3. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.

    Directory of Open Access Journals (Sweden)

    Kasper Winther Jørgensen

    2010-12-01

    Full Text Available Major Histocompatibility class II (MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

  4. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    International Nuclear Information System (INIS)

    Xu, Zhong-Xuan; Ao, Ke-Hou; Zhang, Jian

    2016-01-01

    A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd 2.5 ((R)-CIA) 6 (1,4-DIB)(H 2 O) 2 ]·((CH 3 ) 2 NH 2 )·H 2 O (1-D), [Cd 2.5 ((S)-CIA) 6 (1,4-DIB)(H 2 O) 2 ]·((CH 3 ) 2 NH 2 )·H 2 O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H 3 CIA and (S)-H 3 CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligands ((R)-H 3 CIA and (S)-H 3 CIA) and 1,4-DIB to assemble with Cd 2+ ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers

  5. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  6. Synthesis in aqueous medium and organic praseodymium complexes with ligands derived from Schiff base quinolinic. Characterization and physicochemical study

    International Nuclear Information System (INIS)

    Garcia G, A.

    2015-01-01

    It was investigated the coordination ability of the quinolinic Schiff base organic tetradentate quinolinic ligand (Q Schiff-(OH) 2 ) towards the trivalent praseodymium by UV/Vis spectrophotometric titration (St). By St, was studied the formed species between the Q Schiff-(OH) 2 ligand and the praseodymium nitrate salt in equimolar concentrations (5.86 x 10 -4 M: 5.22 x 10 -4 M) in methanol. The statistical analysis of the experimental results suggested three complexed species with 1Pr:3L, 1Pr:2L y 1Pr:1L stoichiometries. The predominant stoichiometries were the second and the latter. Based on these results and data from the scientific literature, the methodology for the syntheses of the complexes Q Schiff-(OH) 2 -Pr in aqueous-organic and organic media was established and a molar ratio M:L= 1:2 of praseodymium nitrate and the ligand was used. The new complexes were characterized by UV/Vis, Infrared, X-ray Photoelectron Spectroscopy (XP S), Diffuse Reflectance (Dr) and Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC). Elemental analysis of C, N, O and Pr by XP S suggested 1Pr:2L:1Na (PrC 32 H 20 N 4 O 4 Na) stoichiometry of the complex synthesized by the aqueous-organic medium while for the complex synthesized by the organic medium it was 1Pr:3L (PrC 48 H 33 N 6 O 6 ). In the first case, the praseodymium ion charge was neutralized by the anionic ligands whose remaining charge was compensated by the sodium ion. In the second case, the ion charge was neutralized by the ligands. The minimum formula was Pr(Q Schiff) 2 Na for the pure coordination compound from the aqueous-organic medium and the minimum formula Pr(Q Schiff) 3 for that from the organic medium. XP S also indicated that the oxidation state of praseodymium ion was maintained. Both complexes were stable in methanol, ethanol and acetonitrile at least for 5 days. The photophysical properties of the studied complexes were evaluated by emission and excitation luminescence (fluorescence and

  7. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Zhao, Jun, E-mail: junzhao08@126.com [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Xia, Liang [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China)

    2016-06-15

    Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{sup 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled

  8. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun; Gibson, John K.

    2017-01-01

    Although the first organoactinide chloride Cp_3UCl (Cp = η"5-C_5H_5) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT)_2U_2X_n (COT = η"8-C_8H_8; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT)_2U_2X_n, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT)_2U_2X_n species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT)_2U_2X_4 might be accessible through the known (COT)_2U complex. The tetravalent derivatives (COT)_2U_2X_4 are more energetically favorable than the trivalent (COT)_2U_2X_2 analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  9. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  10. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  11. Part I. Naltrexone-derived conjugate addition ligands for opioid receptors. Part II. Chemical and enantioselective aspects of the metabolism of verapamil

    International Nuclear Information System (INIS)

    Olsen, L.D.

    1987-01-01

    Selective chemoaffinity ligands to aid in identification and purification of opioid receptor subtypes were prepared from 6α- and 6β-naltrexol, obtained stereoselectively from the μ-receptor antagonist naltrexone. The targets were the 6α- and 6β-methacrylate ethers and 6α- and 6β-methacrylate esters prepared from reaction of 6α- and 6β-naltrexol with methyl α-(bromomethyl)acrylate or methacryloyl chloride. Of three methacrylate derivatives, the 6α-ether was the most potent in an opioid receptor binding assay with [ 3 H]-naltrexone. In the presence of sodium ion, preincubation of the 6α-ether resulted in recovery of about 60% of original [ 3 H]-naltrexone binding suggesting some irreversible effects. The methacrylate esters precipitated withdrawal in morphine dependent monkeys. The enantiomers of verapamil, a calcium channel antagonist, have different pharmacological and pharmacokinetic properties. The oxidative metabolism of verapamil was studied in rat and human liver microsomes and in man after a single oral dose

  12. Determination of the stability constants for cobalt, nickel and palladium homogeneous catalyst complexes containing triphenylphosphine ligands

    NARCIS (Netherlands)

    Djekic, T.; Zivkovic, Z.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2006-01-01

    Homogeneous catalysts are complex compounds that are always in equilibrium with their free metal, free ligand and other forms of complexes. The ratios between different species are defined by the stability constants, which are influenced by different parameters such as the type of metal, ligand,

  13. New functionalized β-diketiminate ligands and f elements

    International Nuclear Information System (INIS)

    Dulong, Florian

    2013-01-01

    β-diketiminate ligands have received increased interest in coordination chemistry, especially for homogeneous catalysis. Their successful applications arise from an easy and fine tuning of the ligand electronic and geometric properties. However, these modifications are limited to the introduction of neutral donors (ethers or amines), on the nitrogen substituents of the β-diketiminate skeleton. The main focus of this research project is to overcome this limitation by synthesizing new β-diketiminate ligands functionalized by one or two anionic aryl-oxide groups, and to study their coordination chemistry with lanthanide and actinide ions. Access to these species relies on a fine understanding of the mechanism underlying their formation, and the sensitivity of the β-di-iminium skeleton towards nucleophiles (phenols) has been identified as the limiting side reaction in the synthetic route. Addition of reactants in well defined order allowed the formation of two new N-aryl-oxy-β-diketiminate dianions on a multi-gram scale. The two ligands differ by their steric bulk and exhibit different coordination behaviors towards lanthanides and actinide ions, which were rationalized on geometric considerations. The reactivity of three of these new complexes has been investigated. A Ce(III) N-aryl-oxy-β-diketiminate complex exhibits interesting reduction properties, due to the shift of its oxidation potential to negative values by its coordination environment. A Th(IV) complex presents a vacant coordination site, which has been probed with different Lewis bases, emphasizing two spatial arrangements ruled by inter-ligand repulsion. It has been compared to its U(IV) analogue, which can be oxidized to a rare terminal mono-oxo uranium(VI) species. The latter was reversibly reduced to its U(V) and U(IV) derivatives, creating the first series of terminal mono-oxo uranium complexes with three successive oxidation states. These compounds represent an opportunity to better understand

  14. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  15. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  16. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand.

    Science.gov (United States)

    Guan, Qing-Lin; Xing, Yong-Heng; Liu, Jing; Wei, Wen-Juan; Zhang, Rui; Wang, Xuan; Bai, Feng-Ying

    2013-11-01

    Three novel complexes, [La(phen)2(IAA)2]·NO3 (1), [Sm(phen)2(IAA)2]·NO3 (2) and [Sm(IBA)3(phen)]·phen·HNO3·H2O (3) (phen: 1,10-phenanthroline, IAA: indole-3-acetic acid, IBA: indole-3-butyric acid), were synthesized and characterized with spectroscopy (infrared and UV-visible), X-ray crystal diffraction and elemental analysis. Structural analysis revealed that each lanthanide atom in complexes 1-3 held a distorted tricapped trigonal prism geometry in a nine-coordinate mode. There were two types of coordination modes of the IAA ligand in complexes 1 and 2: a μ2-η(1):η(2) bridging mode linking two lanthanide atoms and a μ2-η(1):η(1) double monodentate bridging mode. There were three types of coordination modes of the IBA ligand: a μ2-η(1):η(1) double monodentate bridging mode, a μ1-η(2) bridging mode and a μ2-η(1):η(2) bridging mode linking two lanthanide atoms. Adjacent Sm atoms were linked via the μ2-bridging carboxylate groups of the IBA ligands to generate a binuclear building unit. The biological activity of the complexes was evaluated in human adipose tissue-derived stem cells (hADSCs) and Chang liver cells using a multiple parallel perfused microbioreactor. The results showed that cytotoxicity increased as the concentrations of complexes 1-3 increased. © 2013.

  17. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  19. 1,2- and 1,3-dihydroxylated and hydroxynitrogenated monoterpenes as chiral ligands in the asymmetric reformatsky reaction

    International Nuclear Information System (INIS)

    Ribeiro, Carlos Magno R.; Morita, Cristina M.; Maia, Monica P.

    2008-01-01

    This study describes the use of three (-)-α-pinene derivatives, one diol-1,2 [(-)- (1R, 2R, 3S, 5R)-2,6,6-trimethylbicyclo[3.1.1]heptane-2,3-diol 4] and two pyridine-hydroxy derivatives [(+)-(1R,2S,3R,5S)-2,6,6- trimethyl-3-(2-pyridinylmethyl)bicyclo[3.1.1]heptane-3-ol 7 and (-)-(1R,2S,3R,5S)-2,6,6-trimethyl-3-[2-(2-pyridinyl) ethyl]bicyclo[3.1.1]heptane-3-ol 8]; one diol-1,3 [(-)-(1S,2R,5S)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 5] derived from (+)-isopulegol 2 and one diol-1,3 [(+)-(1R,2R,5R)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 6] derived from (+)-neoisopulegol 3, as ligands in the asymmetric Reformatsky reaction. The best enantiomeric excess of β-hydroxy ester obtained in the Reformatsky asymmetric reaction was 18% using ligand 6, and the chemical yield of the reactions was 65% on average. (author)

  20. Coordination Networks Based on Boronate and Benzoxaborolate Ligands

    Directory of Open Access Journals (Sweden)

    Saad Sene

    2016-05-01

    Full Text Available Despite the extensive range of investigations on boronic acids (R-B(OH2, some aspects of their reactivity still need to be explored. This is the case for the coordination chemistry of boronate anions (R-B(OH3−, which has only recently been started to be studied. The purpose of this review is to summarize some of the key features of boronate ligands (and of their cyclic derivatives, benzoxaborolates in materials: (i coordination properties; (ii spectroscopic signatures; and (iii emerging applications.

  1. Conformational changes and allosteric communications in human serum albumin due to ligand binding.

    Science.gov (United States)

    Ahalawat, Navjeet; Murarka, Rajesh K

    2015-01-01

    It is well recognized that knowledge of structure alone is not sufficient to understand the fundamental mechanism of biomolecular recognition. Information of dynamics is necessary to describe motions involving relevant conformational states of functional importance. We carried out principal component analysis (PCA) of structural ensemble, derived from 84 crystal structures of human serum albumin (HSA) with different ligands and/or different conditions, to identify the functionally important collective motions, and compared with the motions along the low-frequency modes obtained from normal mode analysis of the elastic network model (ENM) of unliganded HSA. Significant overlap is observed in the collective motions derived from PCA and ENM. PCA and ENM analysis revealed that ligand selects the most favored conformation from accessible equilibrium structures of unliganded HSA. Further, we analyzed dynamic network obtained from molecular dynamics simulations of unliganded HSA and fatty acids- bound HSA. Our results show that fatty acids-bound HSA has more robust community network with several routes to communicate among different parts of the protein. Critical nodes (residues) identified from dynamic network analysis are in good agreement with allosteric residues obtained from sequence-based statistical coupling analysis method. This work underscores the importance of intrinsic structural dynamics of proteins in ligand recognition and can be utilized for the development of novel drugs with optimum activity.

  2. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  3. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...

  4. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  5. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology

    Directory of Open Access Journals (Sweden)

    Kotaro Sakamoto

    2017-09-01

    Full Text Available ActRIIB (activin receptor type-2B is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN, growth differentiation factor 11 (GDF11, and bone morphogenetic protein 9 (BMP9. Notably, the protein-protein interaction (PPI between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9, AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity.

  6. Introducing various ligands into superhalogen anions reduces their electronic stabilities

    Science.gov (United States)

    Smuczyńska, Sylwia; Skurski, Piotr

    2008-02-01

    The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.

  7. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  8. Can mixed ligand therapy completely remove plutonium from the body

    Energy Technology Data Exchange (ETDEWEB)

    Volf, V [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie von Spaltstoffen

    1980-08-01

    Results of experiments to determine the effects of mixed ligand chelate treatment on tissue levels of /sup 238/Pu in rats after injection of /sup 238/Pu citrate are presented and discussed. It is concluded that when attempting to remove Pu from the body there seems to be no reason for combining Ca-DTPA, the present chelate of choice, with catechol or Tiron, or with salicylate and its derivatives.

  9. WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease

    Science.gov (United States)

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0·05% WY14,643 or control food and immunized with the non-collagenous domain of the α3 chain of Type IV collagen [α3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARα ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80+ macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARα ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-γ mRNA expression in the WY14,643-fed mice, suggesting that the PPARα ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARα ligands may be a novel treatment for inflammatory renal disease. PMID:17888025

  10. WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease.

    Science.gov (United States)

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0.05% WY14,643 or control food and immunized with the non-collagenous domain of the alpha3 chain of Type IV collagen [alpha3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARalpha ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80(+) macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARalpha ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-gamma mRNA expression in the WY14,643-fed mice, suggesting that the PPARalpha ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARalpha ligands may be a novel treatment for inflammatory renal disease.

  11. Dinuclear ditertiary phosphite derivatives of rhodium

    International Nuclear Information System (INIS)

    Meintjies, E.

    1981-08-01

    The overall objective of the research described in this thesis was the design, synthesis, characterization and chemistry of dinuclear complexes of rhodium in which the metal atoms are held in close proximity to each other. Complexes of this nature are of considerable interest owing, in part, to their potential as models for multicentred metal catalysts, as well as to the highly novel and unusual chemistry already discovered for a number of them. A survey of dinuclear complexes of rhodium containing carbonyl and group V donor ligands has been presented as a background introduction to the research reported in this thesis. The coordination behaviour of the diphosphazane ligands, (RO) 2 PN(R')P(OR) 2 (R=Ph or Me, R' = Et; R = Et or Pr/i, R' = Me), and the ditertiary phosphite ligand, (EtO) 2 POP(OEt) 2 , towards certain rhodium precursors has been investigated. A number of highly unusual neutral dinuclear complexes of rhodium, in which these ligands bridge-bond the two rhodium atoms, have been synthesized. Two types of monocarbonyl decarbonylation products are observed for compounds of the type, [Rh 2 Cl 2 (CO) 2 (μ-diphosphazane) 2 ]. 1 H and 31 P[ 1 H] n.m.r. spectral studies have been carried out with the object of establishing the nature of the bridging halogen ligands in the tricarbonyl species. Asymetric zerovalent dinuclear species of the type, [Rh 2 (CO) 3 -[μ-(RO) 2 PN(R')P(OR) 2 ] 2 ] (R = Ph or Me, R' = Et; R = Pr/i, R' = Me), are obtained. A single crystal X-ray analysis has been carried out. Homoleptic cationic species are obtained by reaction of the alkoxydiphosphazane ligands with [Rh(C 8 H 12 )(solvent)(n)] + under the appropriate reaction conditions. The solution and solid-state infrared spectra and the 31 P[ 1 H] n.m.r. spectra of all new compounds synthesized in this study are discussed in terms of possible structures for these compounds. Where appropriate, the n.m.r. spectral data are also discussed in terms of fluxional behaviour

  12. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  13. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  14. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: a Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Sheyu Li

    2016-11-01

    Full Text Available Background/Aims: The aim of this study was to assess the association between circulating cell-derived microparticles (MPs and type 2 diabetes mellitus (T2DM. Methods: A literature search was performed systematically in PubMed and Embase to identify available case-control or cross-sectional studies that compared different types of cell-derived MPs in patients with T2DM and non-diabetic controls. Pooled standardized mean differences (SMDs of each MP type were pooled using meta-analysis. Results: Forty-eight studies involving 2,460 patients with T2DM and 1,880 non-diabetic controls were included for systematic review and 34 of which were included for quantitative study by meta-analysis. In the overall analysis, the levels of circulating total MPs (TMPs, platelet-derived MPs (PMPs, monocyte-derived MPs (MMPs and endothelium-derived MPs (EMPs were significantly higher in T2DM patients than those in controls (TMPs: SMD, 0.64; 95%CI, 0.12∼1.15; P=0.02; PMPs: SMD, 1.19; 95%CI, 0.88∼1.50; P Conclusions: The counts of TMPs, PMPs, MMPs and EMPs elevated in patients with T2DM. And cell-derived MPs may play a role in the pathogenesis of T2DM.

  15. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Gibson, John K. [Lawrence Berkeley National Laboratory, CA (United States). Chemical Sciences Division

    2017-03-01

    Although the first organoactinide chloride Cp{sub 3}UCl (Cp = η{sup 5}-C{sub 5}H{sub 5}) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT){sub 2}U{sub 2}X{sub n} (COT = η{sup 8}-C{sub 8}H{sub 8}; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT){sub 2}U{sub 2}X{sub n}, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT){sub 2}U{sub 2}X{sub n} species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT){sub 2}U{sub 2}X{sub 4} might be accessible through the known (COT){sub 2}U complex. The tetravalent derivatives (COT){sub 2}U{sub 2}X{sub 4} are more energetically favorable than the trivalent (COT){sub 2}U{sub 2}X{sub 2} analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  17. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan1974@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ao, Ke-Hou [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-09-15

    A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd{sub 2.5}((R)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-D), [Cd{sub 2.5}((S)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB to assemble with Cd{sup 2+} ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers.

  18. Synthesis and Antibacterial Evaluation of Novel 3-Substituted Ocotillol-Type Derivatives as Leads

    Directory of Open Access Journals (Sweden)

    Yi Bi

    2017-04-01

    Full Text Available Due to the rapidly growing bacterial antibiotic-resistance and the scarcity of novel agents in development, bacterial infection is still a global problem. Therefore, new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, are urgently needed. In this paper, a series of antibacterial ocotillol-type C-24 epimers modified from natural 20(S-protopanaxadiol were synthesized and evaluated for their antibacterial activity. According to the screening results of Gram-positive bacteria (B. subtilis 168 and MRSA USA300 and Gram-negative bacteria (P. aer PAO1 and A. baum ATCC19606 in vitro, the derivatives exhibited good antibacterial activity, particularly against Gram-positive bacteria with an minimum inhibitory concentrations (MIC value of 2–16 µg/mL. The subsequent synergistic antibacterial assay showed that derivatives 5c and 6c enhanced the susceptibility of B. subtilis 168 and MRSA USA300 to chloramphenicol (CHL and kanamycin (KAN (FICI < 0.5. Our data showed that ocotillol-type derivatives with long-chain amino acid substituents at C-3 were good leads against antibiotic-resistant pathogens MRSA USA300, which could improve the ability of KAN and CHL to exhibit antibacterial activity at much lower concentrations with reduced toxicity.

  19. Isotopic studies on ligand exchange between complex and simple cyanides in water medium and in liquid hydrogen cyanide. Part 2. Radiocyanide ligand exchange study between hydrogen cyanide and octacyanotungstate(4) in water solutions of mineral acids

    International Nuclear Information System (INIS)

    Zielinski, M.

    1979-01-01

    Radiocyanide ligand exchange between potassium octacyanotungstate(4) and hydrogen cyanide in aqueous solutions of sulfuric acid and between octacyanotungstic(4) acid and hydrogen cyanide in aqueous solutions have been investigated experimentally. The observed enhancement of the rate of ligand exchange in acidic medium has been rationalized in terms of the proposed new general reaction scheme taking into account the reversible decomposition of complex cyanide at low pH, and irreversible one at high pH. The discussion on the results obtained has been carried out within the framework of derived formal kinetic equations. (author)

  20. Laguerre-type derivatives: Dobinski relations and combinatorial identities

    International Nuclear Information System (INIS)

    Penson, K. A.; Blasiak, P.; Horzela, A.; Duchamp, G. H. E.; Solomon, A. I.

    2009-01-01

    We consider properties of the operators D(r,M)=a r (a † a) M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a † are boson annihilation and creation operators, respectively, satisfying [a,a † ]=1. We obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation that generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.

  1. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    International Nuclear Information System (INIS)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-01-01

    Five zinc(II) metal–organic frameworks, [Zn 3 (344-pytpy) 2 Cl 6 ] n ·n(H 2 O) (1), [Zn(344-pytpy)(ox)] n (2), [Zn 2 (344-pytpy)(bdc) 2 ] n ·1.5n(H 2 O) (3), [Zn 2 (344-pytpy) 2 (sfdb) 2 ] n ·1.5n(H 2 O) (4) and [Zn 3 (344-pytpy) 2 (btc) 2 ] n ·2n(H 2 O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H 2 ox=oxalic acid, H 2 bdc=1,4-benzenedi-carboxylic acid, H 2 sfdb=4,4′-sulfonyldibenzoic acid and H 3 btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn II centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6 6 . Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8 2 )(4.8 5 )(8 3 ). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4 4 .6 2 ). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8 2 ) 2 (6 2 .8 2 .10.12)(6 2 .8 3 .10) 2 (6 2 .8) 2 . The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to

  2. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    International Nuclear Information System (INIS)

    Haga, Masaaki; Tanaka, Toshio.

    1979-01-01

    Mixed-ligand ruthenium(II) complexes of the [Ru(bpy) 2 L]sup(n+) (ClO 4 )sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L. (author)

  3. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Haga, M [Mie Univ., Tsu (Japan); Tanaka, T

    1979-07-01

    Mixed-ligand ruthenium(II) complexes of the (Ru(bpy)/sub 2/L)sup(n+) (ClO/sub 4/)sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L.

  4. The putative Notch ligand HyJagged is a transmembrane protein present in all cell types of adult Hydra and upregulated at the boundary between bud and parent

    Directory of Open Access Journals (Sweden)

    Tischer Susanne

    2011-09-01

    Full Text Available Abstract Background The Notch signalling pathway is conserved in pre-bilaterian animals. In the Cnidarian Hydra it is involved in interstitial stem cell differentiation and in boundary formation during budding. Experimental evidence suggests that in Hydra Notch is activated by presenilin through proteolytic cleavage at the S3 site as in all animals. However, the endogenous ligand for HvNotch has not been described yet. Results We have cloned a cDNA from Hydra, which encodes a bona-fide Notch ligand with a conserved domain structure similar to that of Jagged-like Notch ligands from other animals. Hyjagged mRNA is undetectable in adult Hydra by in situ hybridisation but is strongly upregulated and easily visible at the border between bud and parent shortly before bud detachment. In contrast, HyJagged protein is found in all cell types of an adult hydra, where it localises to membranes and endosomes. Co-localisation experiments showed that it is present in the same cells as HvNotch, however not always in the same membrane structures. Conclusions The putative Notch ligand HyJagged is conserved in Cnidarians. Together with HvNotch it may be involved in the formation of the parent-bud boundary in Hydra. Moreover, protein distribution of both, HvNotch receptor and HyJagged indicate a more widespread function for these two transmembrane proteins in the adult hydra, which may be regulated by additional factors, possibly involving endocytic pathways.

  5. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential...

  6. The interactions between lipase and pyridinium ligands investigated by electrochemical and spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Simona Patriche

    2016-04-01

    Full Text Available The interaction between pyridinium ligands derived from 4,4’-bipyridine (N,N’-bis(p-bromophenacyl-4,4’-bipyridinium dibromide – Lr and (N,N’-bis(p-bromophenacyl-1,2-bis (4-pyridyl ethane dibromide – Lm with lipase enzyme was evaluated. The stability of the pyridinium ligands, having an essential role in biological systems, in 0.1 M KNO3 as supporting electrolyte is influenced by the lipase concentration added. The pH and conductometry measurements in aqueous solution suggest a rapid ionic exchange process. The behavior of pyridinium ligands in the presence of lipase is investigated by cyclic voltammetry and UV/Vis spectroscopy, which indicated bindings and changes from the interaction between them. The voltammograms recorded on the glassy carbon electrode showed a more intense electronic transfer for the Lr interaction with lipase compared to Lm, which is due to the absence of mobile ethylene groups from Lr structure.

  7. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  8. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  9. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    Science.gov (United States)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  10. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Makoto; Adachi, Yuka [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); ERATO, Japan Science and Technology Agency, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Totani, Kiichiro, E-mail: ktotani@st.seikei.ac.jp [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan)

    2015-10-23

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by the folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.

  11. Bis-Indole Derivatives for Polysaccharide Compositional Analysis and Chiral Resolution of D-, L-Monosaccharides by Ligand Exchange Capillary Electrophoresis Using Borate-Cyclodextrin as a Chiral Selector

    Directory of Open Access Journals (Sweden)

    Wen-Bin Yang

    2011-02-01

    Full Text Available A series of aldo-bis-indole derivatives (aldo-BINs was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM at high pH (pH 9.0. The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-β-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.

  12. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  14. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.

    Science.gov (United States)

    Li, Hong-Liang; Kanai, Motomu; Kuninobu, Yoichiro

    2017-11-03

    An iridium-catalyzed ortho-selective C-H borylation of phenol and aniline derivatives has been successfully developed. Iridium/bipyridine-catalyzed C-H borylation generally occurred at the meta- and para-positions of aromatic substrates. Introduction of an electron-withdrawing substituent on the bipyridine-type ligand and a methylthiomethyl group on the hydroxy and amino groups of the phenol and aniline substrates, however, dramatically altered the regioselectivity, affording exclusively ortho-borylated products. The reaction proceeded in good to excellent yields with good functional group tolerance. C-H borylation was applied to the synthesis of a calcium receptor modulator.

  15. Expanding the family of uranium(III) alkyls. Synthesis and characterization of mixed-ligand derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Ellen M.; Kiernicki, John J.; Fanwick, Phillip E.; Bart, Suzanne C. [Department of Chemistry, Purdue University, West Lafayette, IN (United States)

    2016-06-15

    The generation of uranium(III) alkyls supported by hydrotris(pyrazolyl)borate (Tp) and pentamethylcyclopentadienyl (Cp*) ligands is reported. Mixed ancillary ligand frameworks were synthesized by treating TpUI{sub 2}(THF){sub 3} (1) and Cp*UI{sub 2}(THF){sub 3} with potassium hydrotris(pyrazolyl)borate salts. Addition of one equivalent of potassium hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) generated TpTp*UI (2), while treatment of Cp*UI{sub 2}(THF){sub 3} with either KTp or KTp* resulted in the respective formation of Cp*TpUI(THF) (3) or Cp*Tp*UI(THF) (4). Alkylation of 2 with KCH{sub 2}Ph or NaCH{sub 2}SiMe{sub 3} furnished TpTp*UCH{sub 2}Ph (2-CH{sub 2}Ph) or TpTp*UCH{sub 2}SiMe{sub 3} (2-CH{sub 2}SiMe{sub 3}). Similarly, treatment of 3 with NaCH{sub 2}SiMe{sub 3} formed Cp*TpUCH{sub 2}SiMe{sub 3} (3-CH{sub 2}SiMe{sub 3}), whereas treatment of 4 with KCH{sub 2}Ph generated Cp*Tp*UCH{sub 2}Ph (4-CH{sub 2}Ph). All compounds were characterized by multinuclear NMR, IR, and electronic absorption spectroscopy. Compounds 2-CH{sub 2}Ph, 3, and 3-CH{sub 2}SiMe{sub 3} were structurally characterized using X-ray crystallography as well. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Formation, spectroscopic characterization, and solution stability of an [Fe4S4]2+ cluster derived from β-cyclodextrin dithiolate.

    Science.gov (United States)

    Lo, Wayne; Zhang, Ping; Ling, Chang-Chun; Huang, Shaw; Holm, R H

    2012-09-17

    The formation and solution properties, including stability in mixed aqueous-Me(2)SO media, have been investigated for an [Fe(4)S(4)](2+) cluster derived from β-cyclodextrin (CD) dithiolate. Clusters of the type [Fe(4)S(4)(SAr)(4)](2-) (Ar = Ph, C(6)H(4)-3-F) are generated in Me(2)SO by redox reactions of [Fe(4)S(4)(SEt)(4)](2-) with 2 equiv of ArSSAr. An analogous reaction with the intramolecular disulfide of 6(A),6(D)-(3-NHCOC(6)H(4)-1-SH)(2)-6(A),6(D)-dideoxy-β-cyclodextrin (14), whose synthesis is described, affords a completely substituted cluster formulated as [Fe(4)S(4){β-CD-(1,3-NHCOC(6)H(4)S)(2)}(2)](2-) (15). Ligand binding is indicated by a circular dichroism spectrum and also by UV-visible and isotropically shifted (1)H NMR spectra and redox behavior convincingly similar to [Fe(4)S(4)(SPh)(4)](2-). One formulation of 15 is a single cluster to which two dithiolates are bound, each in bidentate coordination. With there being no proven precedent for this binding mode, we show that the cluster [Fe(4)S(4)(S(2)-m-xyl)(2)](2-) is a single cubane whose m-xylyldithiolate ligands are bound in a bidentate arrangement. This same structure type was proposed for a cluster formulated as [Fe(4)S(4){β-CD-(1,3-SC(6)H(4)S)(2)}(2)](2-) (16; Kuroda et al. J. Am. Chem. Soc.1988, 110, 4049-4050) and reported to be water-stable. Clusters 15 and 16 are derived from similar ligands differing only in the spacer group between the thiolate binding site and the CD platform. In our search for clusters stable in aqueous or organic-aqueous mixed solvents that are potential candidates for the reconstitution of scaffold proteins implicated in cluster biogenesis, 15 is the most stable cluster that we have thus far encountered under anaerobic conditions in the absence of added ligand.

  18. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  19. Role of Quinone Reductase 2 in the Antimalarial Properties of Indolone-Type Derivatives

    Directory of Open Access Journals (Sweden)

    Laure-Estelle Cassagnes

    2017-01-01

    Full Text Available Indolone-N-oxides have antiplasmodial properties against Plasmodium falciparum at the erythrocytic stage, with IC50 values in the nanomolar range. The mechanism of action of indolone derivatives involves the production of free radicals, which follows their bioreduction by an unknown mechanism. In this study, we hypothesized that human quinone reductase 2 (hQR2, known to act as a flavin redox switch upon binding to the broadly used antimalarial chloroquine, could be involved in the activity of the redox-active indolone derivatives. Therefore, we investigated the role of hQR2 in the reduction of indolone derivatives. We analyzed the interaction between hQR2 and several indolone-type derivatives by examining enzymatic kinetics, the substrate/protein complex structure with X-ray diffraction analysis, and the production of free radicals with electron paramagnetic resonance. The reduction of each compound in cells overexpressing hQR2 was compared to its reduction in naïve cells. This process could be inhibited by the specific hQR2 inhibitor, S29434. These results confirmed that the anti-malarial activity of indolone-type derivatives was linked to their ability to serve as hQR2 substrates and not as hQR2 inhibitors as reported for chloroquine, leading to the possibility that substrate of hQR2 could be considered as a new avenue for the design of new antimalarial compounds.

  20. Synthesis of N-(6-(4-(Piperazin-1-ylphenoxypyridin-3-ylbenzenesulfonamide Derivatives for the Treatment of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Nabajyoti Deka

    2013-01-01

    Full Text Available Metabolic syndrome is a widely prevalent multifactorial disorder associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. High plasma levels of insulin and glucose due to insulin resistance are a major component of the metabolic disorder. Thiazolidinediones (TZDs are potent PPARγ ligand and used as insulin sensitizers in the treatment of type 2 diabetes mellitus. They are potent insulin-sensitizing agents but due to adverse effects like hepatotoxicity, a safer alternative of TZDs is highly demanded. Here we report synthesis of N-(6-(4-(piperazin-1-ylphenoxypyridin-3-ylbenzenesulfonamide derivatives as an alternate remedy for insulin resistance.

  1. Ligand-independent interaction of the type I interferon receptor complex is necessary to observe its biological activity.

    Science.gov (United States)

    Krause, Christopher D; Digioia, Gina; Izotova, Lara S; Xie, Junxia; Kim, Youngsun; Schwartz, Barbara J; Mirochnitchenko, Olga V; Pestka, Sidney

    2013-10-01

    Ectopic coexpression of the two chains of the Type I and Type III interferon (IFN) receptor complexes (IFN-αR1 and IFN-αR2c, or IFN-λR1 and IL-10R2) yielded sensitivity to IFN-alpha or IFN-lambda in only some cells. We found that IFN-αR1 and IFN-αR2c exhibit FRET only when expressed at equivalent and low levels. Expanded clonal cell lines expressing both IFN-αR1 and IFN-αR2c were sensitive to IFN-alpha only when IFN-αR1 and IFN-αR2c exhibited FRET in the absence of human IFN-alpha. Coexpression of RACK-1 or Jak1 enhanced the affinity of the interaction between IFN-αR1 and IFN-αR2c. Both IFN-αR1 and IFN-αR2c exhibited FRET with Jak1 and Tyk2. Together with data showing that disruption of the preassociation between the IFN-gamma receptor chains inhibited its biological activity, we propose that biologically active IFN receptors require ligand-independent juxtaposition of IFN receptor chains assisted by their associated cytosolic proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  3. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation

    NARCIS (Netherlands)

    Dzik, W.I.; Zhang, X.P.; de Bruin, B.

    2011-01-01

    In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand

  4. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands

    Science.gov (United States)

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong

    2016-06-01

    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1 ~ 4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.

  5. Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains

    Directory of Open Access Journals (Sweden)

    Donald R. Shaffer

    2014-01-01

    Full Text Available Chimeric antigen receptors (CARs are increasingly being used in clinical trials to treat a variety of malignant conditions and recent results with CD19-specific CARs showing complete tumor regressions has sparked the interest of researchers and the public alike. Traditional CARs have been generated using single-chain variable fragments (scFv, often derived from murine monoclonal antibodies, for antigen specificity. As the clinical experience with CAR T cells grows, so does the potential for unwanted immune responses against the foreign transgene. Strategies that may reduce the immunogenicity of CAR T cells are humanization of the scFv and the use of naturally occurring receptor ligands as antigen-binding domains. Herein, we review the experience with alternatively designed CARs that contain receptor ligands rather than scFv. While most of the experiences have been in the pre-clinical setting, clinical data is also emerging.

  6. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    Science.gov (United States)

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  8. Understanding the Selectivity Mechanism of the Human Asialoglycoprotein Receptor (ASGP-R toward Gal- and Man- type Ligands for Predicting Interactions with Exogenous Sugars

    Directory of Open Access Journals (Sweden)

    Emo Chiellini

    2007-01-01

    Full Text Available A practical approach for addressing the computer simulation of protein-carbohydrate interactions is described here. An articulated computational protocol was setup and validated by checking its ability to predict experimental data, available in theliterature, and concerning the selectivity shown by the Carbohydrate Recognition Domain(CRD of the human asialoglycoprotein receptor (ASGP-R toward Gal-type ligands. Somerequired features responsible for the interactions were identified. Subsequently the sameprotocol was applied to monomer sugar molecules that constitute the building blocks foralginates and ulvans. Such sugar polymers may supply a low-cost source of rare sugars witha potential impact on several industrial applications, from pharmaceutical to fine chemicalindustry. An example of their applicative exploitation could be given by their use indeveloping biomaterial with adhesion properties toward hepatocytes, through interactionwith the ASGP-R. Such a receptor has been already proposed as a target for exogenousmolecules, specifically in the case of hepatocytes, for diagnostic and therapeutic purposes.The DOCK5.2 program was used to search optimal locations of the above ligands of interestinto CRD binding site and to roughly estimate interaction energies. Finally, the binding ∆G oftheoretical protein-ligand complexes was estimated by using the DelPhi program in which thesolvation free energy is accounted for with a continuum solvent model, by solving the Poisson-Boltzmann equation. The structure analysis of the obtained complexes and their ∆G values suggest that one of the sugar monomers of interest shows the desired characteristics.

  9. Oxidation of cycloalkanes with molecular oxygen in the presence of salen metallocomplexes in thermomorphic conditions

    Czech Academy of Sciences Publication Activity Database

    Pamin, K.; Pozzi, G.; Tabor, Edyta; Bukowski, W.; Poltowicz, J.

    2013-01-01

    Roč. 39, SEP 2013 (2013), s. 102-105 ISSN 1566-7367 Institutional support: RVO:61388955 Keywords : Cycloalkanes oxidation * Schiff base * Fluorinated ligand Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.320, year: 2013

  10. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  11. Part I. Naltrexone-derived conjugate addition ligands for opioid receptors. Part II. Chemical and enantioselective aspects of the metabolism of verapamil

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.D.

    1987-01-01

    Selective chemoaffinity ligands to aid in identification and purification of opioid receptor subtypes were prepared from 6..cap alpha..- and 6..beta..-naltrexol, obtained stereoselectively from the ..mu..-receptor antagonist naltrexone. The targets were the 6..cap alpha..- and 6..beta..-methacrylate ethers and 6..cap alpha..- and 6..beta..-methacrylate esters prepared from reaction of 6..cap alpha..- and 6..beta..-naltrexol with methyl ..cap alpha..-(bromomethyl)acrylate or methacryloyl chloride. Of three methacrylate derivatives, the 6..cap alpha..-ether was the most potent in an opioid receptor binding assay with (/sup 3/H)-naltrexone. In the presence of sodium ion, preincubation of the 6..cap alpha..-ether resulted in recovery of about 60% of original (/sup 3/H)-naltrexone binding suggesting some irreversible effects. The methacrylate esters precipitated withdrawal in morphine dependent monkeys. The enantiomers of verapamil, a calcium channel antagonist, have different pharmacological and pharmacokinetic properties. The oxidative metabolism of verapamil was studied in rat and human liver microsomes and in man after a single oral dose.

  12. Deriving video content type from HEVC bitstream semantics

    Science.gov (United States)

    Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio R.

    2014-05-01

    As network service providers seek to improve customer satisfaction and retention levels, they are increasingly moving from traditional quality of service (QoS) driven delivery models to customer-centred quality of experience (QoE) delivery models. QoS models only consider metrics derived from the network however, QoE models also consider metrics derived from within the video sequence itself. Various spatial and temporal characteristics of a video sequence have been proposed, both individually and in combination, to derive methods of classifying video content either on a continuous scale or as a set of discrete classes. QoE models can be divided into three broad categories, full reference, reduced reference and no-reference models. Due to the need to have the original video available at the client for comparison, full reference metrics are of limited practical value in adaptive real-time video applications. Reduced reference metrics often require metadata to be transmitted with the bitstream, while no-reference metrics typically operate in the decompressed domain at the client side and require significant processing to extract spatial and temporal features. This paper proposes a heuristic, no-reference approach to video content classification which is specific to HEVC encoded bitstreams. The HEVC encoder already makes use of spatial characteristics to determine partitioning of coding units and temporal characteristics to determine the splitting of prediction units. We derive a function which approximates the spatio-temporal characteristics of the video sequence by using the weighted averages of the depth at which the coding unit quadtree is split and the prediction mode decision made by the encoder to estimate spatial and temporal characteristics respectively. Since the video content type of a sequence is determined by using high level information parsed from the video stream, spatio-temporal characteristics are identified without the need for full decoding and can

  13. Complexes of technetium, rhenium, and rhodium with sexidentate Schiff-base ligands

    International Nuclear Information System (INIS)

    Hunter, G.; Kilcullen, N.

    1989-01-01

    The monocationic technetium (IV) and rhenium (IV) complexes with the sexidentate Schiff-base ligands tris[2-(2'-hydroxybenzylideneethyl)]amine and its substituted derivatives have been prepared and their electrochemical properties studied. The variable-temperature 90.6 MHz 13 C-{ 1 H} n.m.r. spectrum of the rhodium (III) complex of tris[2-(2-hydroxy-5'-isopropylbenzylideneethyl)-amine] has been observed, indicating fluxionality at temperatures above 218 K. (author)

  14. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salenCo(III complex tethering four quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Jong Yeob Jeon

    2014-08-01

    Full Text Available The (salenCo(III complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalates were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalates because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1 and the number of chain-growing sites per 1 [anions in 1 (5 + water (present as impurity + ethanol (deliberately fed], and the molecular weight distributions were narrow (Mw/Mn, 1.05–1.5. Because of the extremely high activity of 1, high-molecular-weight polymers were generated (Mn up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively. The terpolymers bearing a substantial number of PA units (fPA, 0.23 showed a higher glass-transition temperature (48 °C than the CO2/PO alternating copolymer (40 °C.

  15. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    International Nuclear Information System (INIS)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin; Xiang Shengchang; Fu Ruibiao; Zhu Qilong; Wu Xintao

    2012-01-01

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H 2 O) 2 ] n (3), [Cu(cbop) 2 (4,4′-bipy)(H 2 O)] n (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4′-bipy=4,4′-bipyridine), {[Cu(nbop) 2 (4,4′-bipy)]·4H 2 O} n (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {[Cd(nbop) 2 (4,4′-bipy)]·2H 2 O} n (6), and [Ni(nbop) 2 (4,4′-bipy)(H 2 O) 2 ] n (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensional infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4–7, which may be due to the competition of 4,4′-bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: ► Two new chiral aminocarboxylate derivates were firstly synthesized. ► Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. ► Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. ► In situ amidation may be due to the impact of 4,4′-bipyridine. ► The homochiral complexes are nonlinear optical active.

  16. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  17. Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Savić, Tatjana D.; Čomor, Mirjana I.; Abazović, Nadica D.; Šaponjić, Zoran V.; Marinović-Cincović, Milena T. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Veljković, Dušan Ž.; Zarić, Snežana D. [Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11058 Belgrade (Serbia); Janković, Ivana A., E-mail: ivanaj@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2015-05-05

    Highlights: • Formation of the charge-transfer complexes results in a red shift of the TiO{sub 2} absorption. • Extended aromatic ring systems reduce the effective bang gap. • For the CT complexes formed stability constants in the order 10{sup 3} M{sup −1} were determined. • Binding was found to be through bidentate binuclear-bridging complexes. • Ligands interact with different active sites on the TiO{sub 2} surface that express energetic heterogeneity. - Abstract: Sensitization of TiO{sub 2} crystals and nanoparticles with appropriately chosen organic molecules can lead to a significant shift of their absorption threshold from the UV to the visible, thus improving the absorption of the solar spectrum as well as the efficiency of photocatalytic and photovoltaic devices. Herein, the surface modification of nanocrystalline TiO{sub 2} particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 1-hydroxy-2-naphthoic acid and 1,4-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. From both absorption measurements and steady-state quenching measurements of modifier fluorescence upon binding to TiO{sub 2} in methanol/water = 90/10 solutions, stability constants in the order of 10{sup 3} M{sup −1} have been determined at pH 2. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO{sub 2} nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent charge-transfer (CT) complex. The binding structures were investigated by using FTIR spectroscopy. Thermal stability of CT-complexes was investigated by using TPD analysis (TG/DTA/MS). Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were compared

  18. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  19. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2010-03-01

    Full Text Available Abstract Background GPR17 is a hybrid G-protein-coupled receptor (GPCR activated by two unrelated ligand families, extracellular nucleotides and cysteinyl-leukotrienes (cysteinyl-LTs, and involved in brain damage and repair. Its exploitment as a target for novel neuro-reparative strategies depends on the elucidation of the molecular determinants driving binding of purinergic and leukotrienic ligands. Here, we applied docking and molecular dynamics simulations (MD to analyse the binding and the forced unbinding of two GPR17 ligands (the endogenous purinergic agonist UDP and the leukotriene receptor antagonist pranlukast from both the wild-type (WT receptor and a mutant model, where a basic residue hypothesized to be crucial for nucleotide binding had been mutated (R255I to Ile. Results MD suggested that GPR17 nucleotide binding pocket is enclosed between the helical bundle and extracellular loop (EL 2. The driving interaction involves R255 and the UDP phosphate moiety. To support this hypothesis, steered MD experiments showed that the energy required to unbind UDP is higher for the WT receptor than for R255I. Three potential binding sites for pranlukast where instead found and analysed. In one of its preferential docking conformations, pranlukast tetrazole group is close to R255 and phenyl rings are placed into a subpocket highly conserved among GPCRs. Pulling forces developed to break polar and aromatic interactions of pranlukast were comparable. No differences between the WT receptor and the R255I receptor were found for the unbinding of pranlukast. Conclusions These data thus suggest that, in contrast to which has been hypothesized for nucleotides, the lack of the R255 residue doesn't affect the binding of pranlukast a crucial role for R255 in binding of nucleotides to GPR17. Aromatic interactions are instead likely to play a predominant role in the recognition of pranlukast, suggesting that two different binding subsites are present on GPR17.

  20. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  1. Formation of Mixed-Ligand Complexes of Pd2+ with Nucleoside 5'-Monophosphates and Some Metal-Ion-Binding Nucleoside Surrogates

    Directory of Open Access Journals (Sweden)

    Oleg Golubev

    2014-10-01

    Full Text Available Formation of mixed-ligand Pd2+ complexes between canonical nucleoside 5'-monophosphates and five metal-ion-binding nucleoside analogs has been studied by 1H-NMR spectroscopy to test the ability of these nucleoside surrogates to discriminate between unmodified nucleobases by Pd2+-mediated base pairing. The nucleoside analogs studied included 2,6-bis(3,5-dimethylpyrazol-1-yl-, 2,6-bis(1-methylhydrazinyl- and 6-(3,5-dimethylpyrazol-1-yl-substituted 9-(β-d-ribofuranosylpurines 1–3, and 2,4-bis(3,5-dimethylpyrazol-1-yl- and 2,4-bis(1-methylhydrazinyl-substituted 5-(β-d-ribofuranosyl-pyrimidines 4–5. Among these, the purine derivatives 1-3 bound Pd2+ much more tightly than the pyrimidine derivatives 4, 5 despite apparently similar structures of the potential coordination sites. Compounds 1 and 2 formed markedly stable mixed-ligand Pd2+ complexes with UMP and GMP, UMP binding favored by 1 and GMP by 2. With 3, formation of mixed-ligand complexes was retarded by binding of two molecules of 3 to Pd2+.

  2. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    International Nuclear Information System (INIS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-01-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H_2ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H_2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd_2(2,6-ndc)_2(bpp)(DMF)]·2DMF (1) and [Cd_3(hmdb)_3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  3. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei, E-mail: hanlei@nbu.edu.cn

    2015-12-15

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  4. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  5. Rational design of single-molecule magnets: a supramolecular approach.

    Science.gov (United States)

    Glaser, Thorsten

    2011-01-07

    Since the discovery that Mn(12)OAc acts as a single-molecule magnet (SMM), an increasing number of transition metal complexes have been demonstrated to behave as SMMs. The signature of a SMM is a slow relaxation of the magnetization at low temperatures accompanied by a magnetic hysteresis. The origin of SMM behaviour is the existence of an appreciable thermal barrier U for spin-reversal called magnetic anisotropy barrier which is related to the combination of a large total spin ground state (S(t)) and an easy-axis magnetic anisotropy. The extensive research on Mn(12)OAc and other SMMs has established more prerequisites for a rational development of new SMMs besides the high-spin ground state and the magnetic anisotropy: the symmetry should be at least C(3) to minimize the quantum tunneling of the magnetization through the anisotropy barrier but lower than cubic to avoid the cancellation of the local anisotropies upon projection onto the spin ground state. Based on these prerequisites, we have designed the ligand triplesalen which combines the phloroglucinol bridging unit for high spin ground states by the spin-polarization mechanism with a salen-like ligand environment for single-site magnetic anisotropies by a strong tetragonal ligand field. The C(3) symmetric, trinuclear complexes of the triplesalen ligand (talen(t-Bu(2)))(6-) exhibit a strong ligand folding resulting in an overall bowl-shaped molecular structure. This ligand folding preorganizes the axial coordination sites of the metal salen subunits for the complementary binding of three facial nitrogen atoms of a hexacyanometallate unit. This leads to a high driving force for the formation of heptanuclear complexes [M(t)(6)M(c)](n+) by the assembly of three molecular building blocks. Attractive van der Waals interactions of the tert-butyl phenyl units of two triplesalen trinuclear building blocks increase the driving force. In this respect, we have been able to synthesize the isostructural series [Mn(III)(6

  6. X irradiation combined with TNF alpha-related apoptosis-inducing ligand (TRAIL) reduces hypoxic regions of human gastric adenocarcinoma xenografts in SCID mice

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Yasui, Hironobu; Ogura, Aki; Asanuma, Taketoshi; Inanami, Osamu; Kubota, Nobuo; Tsujitani, Michihiko; Kuwabara, Mikinori

    2008-01-01

    Our previous study showed that X irradiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines under not only normoxia but also hypoxia. X irradiation combined with TNF α-related apoptosis-inducing ligand (TRAIL), which is the ligand of DR5, induced apoptosis in vitro (Takahashi et al., (2007) Journal of Radiation Research, 48: 461-468). In this report, we examined the in vivo antitumor efficacy of X irradiation combined with TRAIL treatment in tumor xenograft models derived from human gastric adenocarcinoma MKN45 and MKN28 cells in severe combined immunodeficiency (SCID) mice. X irradiation combined with TRAIL synergistically suppressed the tumor growth rates in the xenograft models derived from MKN45 and MKN28 cells, which have wild type Tp53 and mutated Tp53, respectively, indicating that the antitumor effects occurred in a Tp53-independent manner. Histological analysis showed that the combination of X irradiation and TRAIL induced caspase-3-dependent apoptotic cell death. Moreover, the immunohistochemical detection of hypoxic regions using the hypoxic marker pimonidazole revealed that caspase-3-dependent apoptosis occurred in the hypoxic regions in the tumors. These results indicated that X irradiation combined with TRAIL may be a useful treatment to reduce tumor growth in not only normoxic but also hypoxic regions. (author)

  7. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.

    Science.gov (United States)

    Kadam, Kiran; Prabhakar, Prashant; Jayaraman, V K

    2012-11-01

    Bacterial lipoproteins play critical roles in various physiological processes including the maintenance of pathogenicity and numbers of them are being considered as potential candidates for generating novel vaccines. In this work, we put forth an algorithm to identify and predict ligand-binding sites in bacterial lipoproteins. The method uses three types of pocket descriptors, namely fpocket descriptors, 3D Zernike descriptors and shell descriptors, and combines them with Support Vector Machine (SVM) method for the classification. The three types of descriptors represent shape-based properties of the pocket as well as its local physio-chemical features. All three types of descriptors, along with their hybrid combinations are evaluated with SVM and to improve classification performance, WEKA-InfoGain feature selection is applied. Results obtained in the study show that the classifier successfully differentiates between ligand-binding and non-binding pockets. For the combination of three types of descriptors, 10 fold cross-validation accuracy of 86.83% is obtained for training while the selected model achieved test Matthews Correlation Coefficient (MCC) of 0.534. Individually or in combination with new and existing methods, our model can be a very useful tool for the prediction of potential ligand-binding sites in bacterial lipoproteins.

  8. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  9. Fivebrane instantons and higher derivative couplings in type I theory

    International Nuclear Information System (INIS)

    Hammou, Amine B.; Morales, Jose F.

    2000-01-01

    We express the infinite sum of D5-brane instanton corrections to R 2 couplings in N=4 type I string vacua, in terms of an elliptic index counting 1/2-BPS excitations in the effective Sp(N) brane theory. We compute the index explicitly in the infrared, where the effective theory is argued to flow to an orbifold CFT. The form of the instanton sum agrees completely with the predicted formula from a dual one-loop computation in type IIA theory on K3xT 2 . The proposed CFT provides a proper description of the whole spectrum of masses, charges and multiplicities for 1/2- and 1/4-BPS states, associated to bound states of D5-branes and KK momenta. These results are applied to show how fivebrane instanton sums, entering higher derivative couplings which are sensitive to 1/4-BPS contributions, also match the perturbative results in the dual type IIA theory

  10. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  11. Magnetic levitation as a platform for competitive protein-ligand binding assays.

    Science.gov (United States)

    Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M

    2012-07-17

    This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater

  12. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    Science.gov (United States)

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  13. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    Science.gov (United States)

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  14. Can the causal pathologies of Goedel-type universes be avoided in higher-derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.; Goncalves, A.T.

    1986-10-01

    A completely causal rotating Goedel-type universe is obtained in the context of higher-derivative gravity. The solution is such that it has no similar in the framework of standard general relativity. The aforementioned solution presents the interesting feature of relating the mass of the nontachyonic spin-O particle, concerning the linearized higher-derivative theory, with the velocity of rigid rotation of matter. (Author) [pt

  15. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  16. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Li, Sheyu; Wei, Jia; Zhang, Chenghui; Li, Xiaodan; Meng, Wentong; Mo, Xianming; Zhang, Qianying; Liu, Qilin; Ren, Kaiyun; Du, Rong; Tian, Haoming; Li, Jianwei

    2016-01-01

    The aim of this study was to assess the association between circulating cell-derived microparticles (MPs) and type 2 diabetes mellitus (T2DM). A literature search was performed systematically in PubMed and Embase to identify available case-control or cross-sectional studies that compared different types of cell-derived MPs in patients with T2DM and non-diabetic controls. Pooled standardized mean differences (SMDs) of each MP type were pooled using meta-analysis. Forty-eight studies involving 2,460 patients with T2DM and 1,880 non-diabetic controls were included for systematic review and 34 of which were included for quantitative study by meta-analysis. In the overall analysis, the levels of circulating total MPs (TMPs), platelet-derived MPs (PMPs), monocyte-derived MPs (MMPs) and endothelium-derived MPs (EMPs) were significantly higher in T2DM patients than those in controls (TMPs: SMD, 0.64; 95%CI, 0.12∼1.15; P=0.02; PMPs: SMD, 1.19; 95%CI, 0.88∼1.50; P <0.00001; MMPs: SMD, 0.92; 95%CI, 0.66∼1.17; P <0.00001; EMPs: SMD, 0.73; 95%CI, 0.50∼0.96; P <0.00001). Meanwhile, no significant difference was shown in leukocyte-derived MPs (LMPs) level between diabetic and non-diabetic groups (SMD, 0.37; 95%CI, -0.15∼0.89; P=0.17). The counts of TMPs, PMPs, MMPs and EMPs elevated in patients with T2DM. And cell-derived MPs may play a role in the pathogenesis of T2DM. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Synthesis, structures, and dearomatization by deprotonation of iron complexes featuring bipyridine-based PNN pincer ligands.

    Science.gov (United States)

    Zell, Thomas; Langer, Robert; Iron, Mark A; Konstantinovski, Leonid; Shimon, Linda J W; Diskin-Posner, Yael; Leitus, Gregory; Balaraman, Ekambaram; Ben-David, Yehoshoa; Milstein, David

    2013-08-19

    The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in

  18. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  19. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  20. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain

    Science.gov (United States)

    Kakar, Mudit; Davis, James R.; Kern, Steve E.; Lim, Carol S.

    2007-01-01

    Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins. PMID:17574289

  1. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    Science.gov (United States)

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  2. Novel methylene bridged ethylenediamine-type ligands: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Mihajlović-Lalić Ljiljana E.

    2014-01-01

    Full Text Available Herein we report the synthesis of two new organic compounds, diisobutyl- and diisopentyl N,N′-methylene-(S,S-ethylenediamine-N,N′-di-2-(3-cyclohexylpropanoate. A one-pot procedure was carried out by adding the reducing agent and carbonyl compound into the methanol solution of the parent compounds (iso-butyl and iso-pentyl esters of (S,S-ethylenediamine-N,N′-di-2-(3-cyclohexylpropanoic acid in appropriate stoichiometric ratios. The compounds were fully characterized by infrared, ESI-MS, 1D (1H, 13C and 2D (COSY, HSQC, HMBC NMR spectroscopy and elemental analysis. The spectral data confirm the presence of -CH2- group introduced between nitrogen atoms of the ethylenediamine moiety revealing neutral form of potential bidentate ligand. [Projekat Ministarstva nauke Republike Srbije, br. 172035. The authors also acknowledge the support of the FP7 RegPot project FCUB ERA GA No. 256716. The EC does not share responsibility for the content of the article

  3. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  4. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  5. Dinuclear hexamethylbenzene ruthenium cations containing eta(1):eta(2)-2-(ferrocenyl)ethen-1-yl ligands: Synthesis, structure, electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Tschan, M. J.-L.; Therrien, B.; Ludvík, Jiří; Štěpnička, P.; Süss-Fink, G.

    2006-01-01

    Roč. 691, č. 20 (2006), s. 4304-4311 ISSN 0022-328X Institutional research plan: CEZ:AV0Z40400503 Keywords : arene ligands * electrochemistry * ferrocene derivatives Subject RIV: CG - Electrochemistry Impact factor: 2.332, year: 2006

  6. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  7. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  8. Homogeneous competitive assay of ligand affinities based on quenching fluorescence of tyrosine/tryptophan residues in a protein via Főrster-resonance-energy-transfer

    Science.gov (United States)

    Xie, Yanling; Yang, Xiaolan; Pu, Jun; Zhao, Yunsheng; Zhang, Ying; Xie, Guoming; Zheng, Jun; Yuan, Huidong; Liao, Fei

    2010-11-01

    A new homogeneous competitive assay of ligand affinities was proposed based on quenching the fluorescence of tryptophan/tyrosine residues in a protein via Főrster-resonance-energy-transfer using a fluorescent reference ligand as the acceptor. Under excitation around 280 nm, the fluorescence of a protein or a bound acceptor was monitored upon competitive binding against a nonfluorescent candidate ligand. Chemometrics for deriving the binding ratio of the acceptor with either fluorescence signal was discussed; the dissociation constant ( Kd) of a nonfluorescent candidate ligand was calculated from its concentration to displace 50% binding of the acceptor. N-biotinyl-N'-(1-naphthyl)-ethylenediamine (BNEDA) and N-biotinyl-N'-dansyl-ethylenediamine (BDEDA) were used as the reference ligands and acceptors to streptavidin to test this new homogeneous competitive assay. Upon binding of an acceptor to streptavidin, there were the quench of streptavidin fluorescence at 340 nm and the characteristic fluorescence at 430 nm for BNEDA or at 525 nm for BDEDA. Kd of BNEDA and BDEDA was obtained via competitive binding against biotin. By quantifying BNEDA fluorescence, Kd of each tested nonfluorescent biotin derivative was consistent with that by quantifying streptavidin fluorescence using BNEDA or BDEDA as the acceptor. The overall coefficients of variation were about 10%. Therefore, this homogeneous competitive assay was effective and promising to high-throughput-screening.

  9. Discovery of a novel selective PPARγ ligand with partial agonist binding properties by integrated in silico / in vitro work flow

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Petersen, Rasmus K.; Fratev, Filip Filipov

    2013-01-01

    that control glucose and lipid metabolism and is an important target for drugs against type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In an effort to identify novel PPARγ ligands with an improved pharmacological profile, emphasis has shifted to selective ligands with partial...

  10. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  11. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(iii) separation: a step further towards sustainable nuclear energy.

    Science.gov (United States)

    Edwards, Alyn C; Mocilac, Pavle; Geist, Andreas; Harwood, Laurence M; Sharrad, Clint A; Burton, Neil A; Whitehead, Roger C; Denecke, Melissa A

    2017-05-02

    The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

  12. Derivation of elastic stiffness formula for leaf type HDS and conceptual design of leaf type HDS of SMART FA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok

    1997-12-01

    Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.

  13. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor.

    Science.gov (United States)

    Grieco, Paolo; Brancaccio, Diego; Novellino, Ettore; Hruby, Victor J; Carotenuto, Alfonso

    2011-09-01

    The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets to treat obesity, sexual dysfunction, etc. Understanding the basis of the ligand-receptor interactions is crucial for the design of potent and selective ligands for these receptors. The conformational preferences of the cyclic melanocortin ligands MTII (Ac-Nle(4)-c[Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and SHU9119 (Ac-Nle(4)-c[Asp(5)-His(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), which show agonist and antagonist activity at the h-MC4R, respectively, were comprehensively investigated by solution NMR spectroscopy in different environments. In particular, water and water/DMSO (8:2) solutions were used as isotropic solutions and an aqueous solution of DPC (dodecylphosphocholine) micelles was used as a membrane mimetic environment. NMR-derived conformations of these two ligands were docked within h-MC4R models. NMR and docking studies revealed intriguing differences which can help explain the different activities of these two ligands. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.

    Science.gov (United States)

    Kikuchi, Haruhisa; Horoiwa, Seiko; Kasahara, Ryota; Hariguchi, Norimitsu; Matsumoto, Makoto; Oshima, Yoshiteru

    2014-04-09

    Febrifugine, a quinazoline alkaloid isolated from Dichroa febrifuga roots, shows powerful antimalarial activity against Plasmodium falciparum. Although the use of ferifugine as an antimalarial drug has been precluded because of its severe side effects, its potent antimalarial activity has stimulated medicinal chemists to pursue its derivatives instead, which may provide valuable leads for novel antimalarial drugs. In the present study, we synthesized new derivatives of febrifugine and evaluated their in vitro and in vivo antimalarial activities to develop antimalarials that are more effective and safer. As a result, we proposed tetrahydroquinazoline-type derivative as a safe and effective antimalarial candidate. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    DEFF Research Database (Denmark)

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infect...

  17. Investigation of formation constant of complex of a new synthesized tripodal ligand with Cu2+ using rank annihilation factor analysis in surfactant media

    Directory of Open Access Journals (Sweden)

    R. Golbedaghi

    2014-01-01

    Full Text Available The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA. According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1. Formation constant of this complex was derived using RAFA on spectrophotometric data. The performance of the method has been evaluated by using synthetic data. Also concentration and spectral profiles of ligand and complex can be obtained by using the stability constant and appropriate equations. The effect of surfactants such as sodium dodecyl sulfate (SDS, cetyltrimethylammonium bromide (CTAB and Triton X-100 on complex formation constant of Cu2+ with the ligand was investigated.

  18. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

    DEFF Research Database (Denmark)

    Gold, Marielle C.; McLaren, James E.; Reistetter, Joseph A.

    2015-01-01

    with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped...

  19. Determination of UO2(II), and Ce(III) complexes formed with halogen and nitro derivatives of 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Teksoez, S.; Uenak, P.

    2001-01-01

    Proton-ligand stability constants for some iodo and nitro derivatives of 8-hydroxyquinoline were determined by Calvin Bjerrum potantiometrical method. The stability constants of the corresponding chelates with UO 2 (II), Th(IV) and Ce(III) were studied potentiometrically at 25 degree Celsius by applying Irving-Rossotti computing method. The complexes of the nitro-substituted ligands were less stable than the corresponding complexes of the unsubstituted ligands. The stability constants of metal-ligands depend on the ionic radii and ionic charge of metals and also they decrease with steric repulsions of the nitro groups

  20. Synthesis and characterization of ligands and bifunctional chelating agents by modification of cysteine for complexation studies with 99mTc

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Kothari, K.; Banerjee, S.; Samuel, G.; Suresh, M.; Sarma, H.D.

    1998-01-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products are characterised by high resolution NMR spectroscopy. Complexation studies of the ligands with 99m Tc are standardised using stannous tartrate as the reducing agent at varying reaction conditions. The complexes are characterised using standard quality control techniques such as TLC, paper electrophoresis and PC. Lipophilicities of the complexes are estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity in the 99m Tc complexes are observed on substituting the carboxylic acid residue in ligand I and II with the ethyl carboxylate groups (ligands III and IV). All the ligands formed complexes in high yield. While the complexes of ligand I and II are observed to be hydrophilic in nature and are not extractable into CHCl 3 , ligands III and IV gave neutral and lipophilic complexes. Though the distribution ratios of the complexes of ligands III and IV in CHCl 3 /saline system are observed to be very high, considerable differences in lipophilicities are also observed as evidenced by the difference in their respective extractabilities in chloroform. On storage, the complex of ligand III exhibit a tendency to get converted to a hydrophilic and non-extractable species. The bio-distribution of the complexes of ligands I and II showed that they have predominantly renal clearances whereas the complexes of ligands III and IV exhibited a significant hepatobiliary uptake and did not show much uptake in brain in spite of its favourable properties such as neutrality, lipophilicity and conversion into a hydrophilic species. (author)

  1. Mixed complexes of uranium(IV) and thorium(IV) with N,N'-ethylenebis(salicylideneimine) and N,N'-propylenebis(salicylideneimine)

    Energy Technology Data Exchange (ETDEWEB)

    Doretti, L; Madalosso, F; Sitran, S; Faleschini, S [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1976-01-01

    Recently some uranium tetrachloride adducts with N-(hydroxyphenyl)-salicylaldimine and N-(methoxyphenyl)salicylaldimine have been prepared (Doretti et al., J. Inorg. Nucl. Chem., (in press)): the study has now extended to the complexes of Uranium(IV) and Thorium(IV) with N,N'-Ethylenebis(salicylideneimine), H/sub 2/salen, and N,N'-Propylenebis(salicylideneimine), H/sub 2/salpropen, with the aim to prepare fully substituted complexes, mixed complexes containing both chloride and Schiff base groups and adducts of tetrachlorides with free Schiff bases. This paper reports the preparation and properties of the compounds MCl/sub 4/(H/sub 2/salen), MCl/sub 4/(H/sub 2/salpropen), M(salen)Cl/sub 2/, M(salen)/sub 2/ and M(salpropen)/sub 2/, where M = U or Th. These compounds have been characterized by elemental analyses and their IR spectra are reported and discussed.

  2. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  3. Identification of the homing molecules that escort pluripotent stem cells-derived hematopoietic stem cells to their niches and human activated T-cells to inflammatory sites.

    KAUST Repository

    Ali, Amal

    2017-12-01

    Hematopoietic cells exploit the multistep paradigm of cell migration to ultimately enable them to perform their function. This process is dictated by the ability of adhesion molecules on the circulating hematopoietic cells to find their counter-receptors on endothelial cells. Of those molecules, the selectin family and their respective ligands induce the initial transient interactions between circulating cells and the opposing endothelium. In this thesis, I focused on studying E-selectin mediated cellular migration in two hematopoietic cell types, namely human hematopoietic stem and progenitor cells (HSPCs) and human T-lymphocytes. HSPCs derived from pluripotent sources theoretically offers a novel, unlimited source for hematopoietic stem cell transplantation therapy. In vitro pluripotent stem cell derived- hematopoietic stem/progenitor cells (ES/iPS-HSPCs) behave much like somatic HSPCs in that they exhibit clonal expansion and multilineage hematopoietic capacity. However, unlike somatic sources, ES/iPS-HSPCs do not give rise to effective hematopoietic repopulation, which may be due to insufficient HSPCs homing to the bone marrow. HSPCs exploit E- and P-selectin to home and engraft into bone marrow niches. Thus, one of my objectives in this thesis was to study the expression of E-selectin ligands associated with ES/iPS-HSPCs. I showed that ES/iPS-HSPCs lack functional E-selectin ligand(s). In an effort to enhance the interaction between Eselectin and ES/iPS-HSPCs, we decorated the cell surface with sialyl-Lewis x (sLex) using the ex-vivo glycan engineering technology. However, this decoration did not improve the engraftment capacity of ES/iPS-HSPCs, in vivo. Induction of E-selectin expression during inflammation is key to recruitment of immune cells and therefore I also focused on analyzing the expression of E-selectin ligands on activated human T-cells. I identified several novel glycoproteins that may function as E-selectin ligands. Specifically, I compared the

  4. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    Science.gov (United States)

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  5. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  6. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Science.gov (United States)

    Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo; Huang, Yong; Louie, Alexander; Pollastri, Michael P; Wang, Cuihua; Patel, Gautam; Franks, Diana G; Schlezinger, Jennifer; Sherr, David H; Silverstone, Allen E; Hahn, Mark E; McCune, Joseph M

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  8. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  9. Effects of a novel, selective, sigma1-ligand, MS-377, on phencyclidine-induced behaviour.

    Science.gov (United States)

    Takahashi, S; Takagi, K; Horikomi, K

    2001-07-01

    Phencyclidine (PCP)-induced head-weaving is inhibited by a novel selective sigma1-ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), but not by dopamine D2 antagonists. In the present study, we examined the effects of two potent and selective sigma1-ligands, MS-377 and N,N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy)phenyl) ethylamine (NE-100), on PCP-induced rearing behaviour, hyperlocomotion and ataxia in comparison with the currently available antipsychotic agents with affinity for D2 receptors, haloperidol, sultopride and risperidone. Male Wistar rats or ddY mice were administered MS-377, NE-100, haloperidol, sultopride or risperidone, and PCP was administered 60 min later (in the case of NE-100 10 min later). Rearing behaviour, hyperlocomotion and ataxia were examined 10 min after PCP administration. MS-377, haloperidol, sultopride and risperidone dose-dependently inhibited PCP-induced rearing and hyperlocomotion, but did not antagonize PCP-induced ataxia. In contrast, the other selective sigma1-ligand, NE-100, did not affect any of the PCP-induced behaviour patterns in this study. These results suggest that there are at least two types of ligands for sigma1-receptors and that some sigma1-ligands, including MS-377, have more comprehensive effects against PCP-induced abnormal behaviour than other sigma1-ligands or D2 antagonists.

  10. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  11. Substituent-directed structural and physicochemical controls of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    Science.gov (United States)

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.

  12. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun; Dong, Haopeng; Zhang, Qiong; Voznyy, Oleksandr; Sargent, Edward H.

    2014-01-01

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  13. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun

    2014-10-28

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  14. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  15. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  16. Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

    KAUST Repository

    Voznyy, Oleksandr; Mokkath, Junais Habeeb; Jain, Ankit; Sargent, Edward H.; Schwingenschlö gl, Udo

    2016-01-01

    The electronic and optical properties of tetrahedral CdSe magic clusters (average diameter.5 nm) protected by carboxyl and amine ligands, which correspond to previously reported experimental structures, are studied using density functional theory. We find extreme ligand packing densities, capping every single dangling bond of the inorganic core, strong dependence of the Z-type metal carboxylate binding on the amount of excess amine, and potential for improved photoluminescence upon replacing phenyl ligands with alkanes. The computed absorption spectra of the Cd35Se20 cluster agree well with experiments, resolving the 0.2 eV splitting of the first exciton peak due to spin-orbit coupling. We discuss the origin of the significant broadening of the optical spectra as due to phonons and structural variations in the ligand configurations and inorganic core apexes. © 2016 American Chemical Society.

  17. Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

    KAUST Repository

    Voznyy, Oleksandr

    2016-04-28

    The electronic and optical properties of tetrahedral CdSe magic clusters (average diameter.5 nm) protected by carboxyl and amine ligands, which correspond to previously reported experimental structures, are studied using density functional theory. We find extreme ligand packing densities, capping every single dangling bond of the inorganic core, strong dependence of the Z-type metal carboxylate binding on the amount of excess amine, and potential for improved photoluminescence upon replacing phenyl ligands with alkanes. The computed absorption spectra of the Cd35Se20 cluster agree well with experiments, resolving the 0.2 eV splitting of the first exciton peak due to spin-orbit coupling. We discuss the origin of the significant broadening of the optical spectra as due to phonons and structural variations in the ligand configurations and inorganic core apexes. © 2016 American Chemical Society.

  18. Identifying Marine Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  19. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  20. Kinetics and mechanism of ligand-exchange reactions of Cd(II) chelates

    Energy Technology Data Exchange (ETDEWEB)

    Nivorozhkin, L.E.; Kalabin, G.A.; Nivorozhkin, A.L.; Valeev, R.B.; Minkin, V.I.

    1987-03-01

    Tetrahedral Cd(II) bis(5-thio(or seleno)pyrazole-4-carboxaldiminates) of types II and III have been synthesized for the first time. The kinetics of the degenerate ligand exchange and enantiomerization of the complexes obtained have been studied by dynamic /sup 111/Cd, /sup 77/Se, and /sup 1/H (s = 1/2) NMR. The rate of intramolecular enantiomerization (k = 1/tau) is more than an order of magnitude greater than the corresponding values for processes of degenerate ligand exchange (a second-order reaction) determined from the dynamics of the averaging of the /sup 111/Cd-/sup 77/Se and /sup 111/Cd-N=CH spin-spin coupling constants. The cleavage and formation processes of the Cd-Se and Cd-N bonds are isoenergetic (..delta.. G/sub 298//sup not equal to/ = 14.4 kcal/mole for chelate II with X = Se and R = CH/sub 2/C/sub 6/H/sub 5/). The free energies of activation of degenerate ligand exchange determined form the dynamics of the averaging of the /sup 111/Cd N=CH spin-spin coupling constant increase from 12.7 to 17.9 kcal/mole along the following series for R: C/sub 2/H/sub 5/ < Ar < CH/sub 2/C/sub 6/H/sub 5/ < t-C/sub 4/H/sub 9/ < cyclo-C/sub 6/H/sub 11/. Replacement of the sulfur atom in the chelate ring by selenium results in increases in the rates of ligand exchange. A mechanism of degenerate ligand exchange has been proposed.

  1. On complex compounds of molybdenum(5) with nicotinic amide, isonicotinic acid hydrazide and some of its derivatives

    International Nuclear Information System (INIS)

    Azizov, M.M.; Kushakbaev, A.; Parpiev, N.A.

    1977-01-01

    Oxychloride complexes of molybdenum (5) with polyfunctional ligands (L), namely with nicotinamide (NA), isonicotinic acid hydrazide (INH) and its derivatives (ftivazide, saluzide and larusan) have been synthesized and investigated. In ethanol all the ligands independently of their molar ratio form with MoCl 5 a non-electrolite compound MoOCl 3 xL 2 . Infrared spectra of the complexes suggest that in Mo(5) complexeS with NA and INH the central atom is bound through the pyridine nitrogen, whereas in the complexes with INH derivatives it is bound throught the carbonyl group oxygen

  2. Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.

    Science.gov (United States)

    Eble, Johannes A

    2018-02-15

    The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.

  3. New Computational Approaches for NMR-based Drug Design: A Protocol for Ligand Docking to Flexible Target Sites

    International Nuclear Information System (INIS)

    Gracia, Luis; Speidel, Joshua A.; Weinstein, Harel

    2006-01-01

    NMR-based drug design has met with some success in the last decade, as illustrated in numerous instances by Fesik's ''ligand screening by NMR'' approach. Ongoing efforts to generalize this success have led us to the development of a new paradigm in which quantitative computational approaches are being integrated with NMR derived data and biological assays. The key component of this work is the inclusion of the intrinsic dynamic quality of NMR structures in theoretical models and its use in docking. A new computational protocol is introduced here, designed to dock small molecule ligands to flexible proteins derived from NMR structures. The algorithm makes use of a combination of simulated annealing monte carlo simulations (SA/MC) and a mean field potential informed by the NMR data. The new protocol is illustrated in the context of an ongoing project aimed at developing new selective inhibitors for the PCAF bromodomains that interact with HIV Tat

  4. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  5. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis and Crystal Structures of Ni(II)/(III) and Zn(II) Complexes with Schiff Base Ligands

    International Nuclear Information System (INIS)

    Koo, Bon Kweon

    2013-01-01

    Coordination polymers are of great interest due to their intriguing structural motifs and potential applications in optical, electronic, magnetic, and porous materials. The most commonly used strategy for designing such materials relies on the utilization of multidentate N- or Odonor ligands which have the capacity to bridge between metal centers to form polymeric structures. The Schiff bases with N,O,S donor atoms are an useful source as they are readily available and easily form stable complexes with most transition metal ions. Schiff bases are also important intermediates in synthesis of some bioactive compounds and are potent anti-bacterial, anti-fungal, anticancer and antiviral compounds. In this work, the Schiff bases, Hapb and Hbpb, derived from 2-acetylpyridene or 2-benzoylpyridine and benzhydrazide were taken as trifunctional (N,N,O) monobasic ligand (Scheme 1). This ligand is of important because the π-delocalization of charge and the configurational flexibility of their molecular chain can give rise to a great variety of coordination modes. Although many metal.Schiff base complexes have been reported, the 1D, 2D, and 3D networks of coordination polymers linked through the bridging of ligands such as dicyanamide, N(CN) 2 - as coligand have been little published. In the process of working to extend the dimensionality of the metal-Schiff base complexes using benzilic acid as a bridging ligand, we obtained three simple metal (II)/(III) complexes of acetylpyridine/2-benzoyl pyridine based benzhydrazide ligand. Therefore, we report here the synthesis and crystal structures of the complexes

  7. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  8. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  9. N,O-Type Carborane-Based Materials

    Directory of Open Access Journals (Sweden)

    José Giner Planas

    2016-05-01

    Full Text Available This review summarizes the synthesis and coordination chemistry of a series of carboranyl ligands containing N,O donors. Such carborane-based ligands are scarcely reported in the literature when compared to other heteroatom-containing donors. The synthetic routes for metal complexes of these N,O-type carborane ligands are summarized and the properties of such complexes are described in detail. Particular attention is paid to the effect that the incorporation of carboranes has into the coordination chemistry of the otherwise carbon-based ligands and the properties of such materials. The reported complexes show a variety of properties such as those used in magnetic, chiroptical, nonlinear optical, catalytic and biomedical applications.

  10. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    Science.gov (United States)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  11. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  12. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    International Nuclear Information System (INIS)

    Li Yunwu; Chen Weilin; Wang Yonghui; Li Yangguang; Wang Enbo

    2009-01-01

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN 3 and ZnCl 2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H 2 O (1), [Zn(pdtz)(bpp)] 2 .3H 2 O (2) and Zn(pdtz) 0.5 (N 3 )(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H 2 pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz 2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN 3 in the presence of Zn 2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  13. Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells.

    Directory of Open Access Journals (Sweden)

    Guomin Jiang

    Full Text Available On entering the tissues, infiltrating autoreactive T cells must be reactivated locally to gain pathogenic activity. We have previously reported that, when activated by Toll-like receptor 3 (TLR3 and TLR4 ligands, retinal astrocytes (RACs are able to function as antigen-presenting cells to re-activate uveitogenic T cells and allow responder T cells to induce uveitis in mice. In the present study, we found that, although the triggering of TLR2 or nucleotide-binding oligomerization domain receptor 2 (NOD2 alone did not activate RACs, their combined triggering induced RACs with the phenotypes required to efficiently re-activate interphotoreceptor retinoid-binding protein (IRBP-specific T cells. The synergistic effect of TLR2 and NOD2 ligands on RAC activation might be explained by the observations that bacterial lipoprotein (BLP, a TLR2 ligand was able to upregulate NOD2 expression and the combination of BLP and muramyldipeptide (MDP, a NOD2 ligand enhanced the expression of RICK (Rip2, the signaling molecule of NOD2. Moreover, the synergistic effect of MDP and BLP on RACs was lost when the RACs were derived from NOD2 knockout mice or were pre-treated with Rip2 antagonist. Thus, our data suggest that exogenous or endogenous molecules acting on both TLR2 and NOD2 on RACs might have an enhancing effect on susceptibility to autoimmune uveitis.

  14. Concurrent coordination of ligand in metal chloride complexes with 1-vinyl-2-(2-pyridyl)benzimidazole

    International Nuclear Information System (INIS)

    Bajkalov, L.V.; Domnina, E.S.

    1996-01-01

    The properties and structure of bivalent cadmium and 1-vinyl-2-(2-pyridyl)benzimidazole chloride complexes, which have been prepared for the first time, have been studied by the methods of potentiometric titration and PMR, 35 Cl NQR, UV and IR spectroscopy. For the complexes above di- and polymeric structures in crystal phase are suggested, where ligand plays the role of a bridge. N,N-bidentate ligand. In solution the complexes dissociate with formation of monomeric coordination compounds, their metal being bound by different ways, stemming from participation of N benzimidazole or pyridine fragment of the ligand. Adducts of ionic type with second sphere 1-vinyl-2-(2-pyridyl)benzimidazole cation have been obtained in the course of hydrochlorination of the complexes prepared

  15. Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives.

    Science.gov (United States)

    Suganthi, Murugesan; Elango, Kuppanagounder P

    2017-01-01

    Synthesis, characterization and bovine serum albumin (BSA) binding properties of three derivatives of vitamin K3 have been described. Results of UV-Vis and fluorescence spectra indicate complexation between BSA and the ligands with conformational changes in protein, which is strongly supported by synchronous and three dimensional fluorescence studies. Addition of the ligands quenches the fluorescence of BSA which is accompanied by reduction in quantum yield (Ф) from 0.1010 to 0.0775-0.0986 range. Thermodynamic investigations reveal that hydrophobic interaction is the major binding force in the spontaneous binding of these ligands with BSA. The binding constants obtained depend on the substituent present in the quinone ring, which correlates linearly with the Taft's field substituent constant (σ F ). The results show that compound with strong electron withdrawing nitro-group forms relatively stronger complex with BSA than amino and thioglycolate substituted ones. Circular dichroism studies show that the α-helical content of the protein, upon complexation with the ligands, decreases in the case of amino and nitro substituted vitamin K3 while increases in thioglycolate substituted compound. Molecular docking studies indicated that the vitamin K3 derivatives are surrounded by hydrophobic residues of the BSA molecule, which is in good agreement with the results of fluorescence spectral and thermodynamic studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modulating p-hydroxycinnamate behavior as a ditopic linker or photoacid in copper(ii) complexes with an auxiliary pyridine ligand.

    Science.gov (United States)

    Soldevila-Sanmartín, Joan; Calvet, Teresa; Font-Bardia, Merce; Domingo, Concepción; Ayllón, José A; Pons, Josefina

    2018-05-08

    The reaction of copper(ii) acetate monohydrate with p-hydroxycinnamic acid (HpOHcinn) and different pyridine derivatives (4-tert-butylpyridine, 4-tBupy; 4-acetylpyridine, 4-Acpy; 3-phenylpyridine, 3-Phpy; 4-phenylpyridine, 4-Phpy) was essayed in methanol solvent at room temperature. The crystal structures of the resulting compounds were elucidated. Their analysis shows that the choice of pyridine ligands determines different coordination modes of the pOHcinn ligand and the Cu(ii) coordination, nuclearity and geometry. The pOHcinn acts as a monodentate carboxylate ligand in combination with 4-tBupy or 4-Phpy, yielding monomers and dimers, associated by hydrogen bonds into supramolecular networks in which the phenol group plays a key role. Conversely, in combination with 4-Acpy or 3-Phpy, the phenol group coordinates directly to the Cu(ii), acting as a ditopic ligand and yielding 2D coordination polymers. The compound containing 3-Phpy shows interesting MeOH-H2O reversible exchange behavior. Not only has the pyridine auxiliary ligand had a tremendous effect on the coordination mode of pOHcinn, but also its reactivity is influenced. Particularly, in the case of the compound containing 4-Phpy, it undergoes a photoinduced process, in which the phenol group deprotonates and coordinates to Cu(ii) as a phenoxy ligand. This yields a coordination polymer in which two different dimers alternate, bridged by the resulting pOcinn ligand. The magneto-structural correlation of this compound is also discussed.

  17. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms

    KAUST Repository

    Eubank, Jarrod F.

    2011-11-09

    A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms. © 2011 American Chemical Society.

  18. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms

    KAUST Repository

    Eubank, Jarrod F.; Wojtas, Łukasz; Hight, Matthew R.; Bousquet, Till; Kravtsov, Victor Ch H; Eddaoudi, Mohamed

    2011-01-01

    A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms. © 2011 American Chemical Society.

  19. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  20. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand [3H]PK 14105

    International Nuclear Information System (INIS)

    Benavides, J.; Dubois, A.; Dennis, T.; Hamel, E.; Scatton, B.

    1989-01-01

    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with [ 3 H]PK 14105. In thymus sections, [ 3 H]PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands