WorldWideScience

Sample records for sakazakii-induced nitric oxide

  1. Lactobacillus bulgaricus Prevents Intestinal Epithelial Cell Injury Caused by Enterobacter sakazakii-Induced Nitric Oxide both In Vitro and in the Newborn Rat Model of Necrotizing Enterocolitis▿

    Science.gov (United States)

    Hunter, Catherine J.; Williams, Monica; Petrosyan, Mikael; Guner, Yigit; Mittal, Rahul; Mock, Dennis; Upperman, Jeffrey S.; Ford, Henri R.; Prasadarao, Nemani V.

    2009-01-01

    Enterobacter sakazakii is an emerging pathogen that has been associated with outbreaks of necrotizing enterocolitis (NEC) as well as infant sepsis and meningitis. Our previous studies demonstrated that E. sakazakii induces NEC in a newborn rat model by inducing enterocyte apoptosis. However, the mechanisms responsible for enterocyte apoptosis are not known. Here we demonstrate that E. sakazakii induces significant production of nitric oxide (NO) in rat intestinal epithelial cells (IEC-6) upon infection. The elevated production of NO, which is due to increased expression of inducible NO synthase, is responsible for apoptosis of IEC-6 cells. Notably, pretreatment of IEC-6 cells with Lactobacillus bulgaricus (ATCC 12278) attenuated the upregulation of NO production and thereby protected the cells from E. sakazakii-induced apoptosis. Furthermore, pretreatment with L. bulgaricus promoted the integrity of enterocytes both in vitro and in the infant rat model of NEC, even after challenge with E. sakazakii. Infection of IEC-6 cells with E. sakazakii upregulated several genes related to apoptosis, cytokine production, and various signaling pathways, as demonstrated by rat gene array analysis, and this upregulation was subdued by pretreatment with L. bulgaricus. In agreement with these data, L. bulgaricus pretreatment protected newborn rats infected with E. sakazakii from developing NEC, resulting in improved survival. PMID:19075027

  2. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  3. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  4. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  5. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  6. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1595-1603 ... Cellular inactivation of nitric oxide induces p53-dependent apoptosis in ... apoptosis induced by a selective iNOS inhibitor, N-[(3-aminomethyl) benzyl] acetamidine (1400W), .... and nitrate. ... Nitrite production was measured in culture media.

  7. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  8. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  9. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Treatment Of Sunitinib-Induced Hypertension In Solid Tumors By Nitric Oxid Donors

    Directory of Open Access Journals (Sweden)

    Luís A. Leon

    2015-08-01

    Hypertension (HT is one of the most common adverse effects of angiogenesis inhibitors. Hypertension observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of hypertension. Although the exact mechanism by TKIs induce hypertension has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS and nitric oxide (NO production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction occurs upon VEGF signaling inhibition.

  11. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook

    2006-01-01

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 μg/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects

  12. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  13. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  14. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  15. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line.

    Science.gov (United States)

    Moeslinger, Thomas; Friedl, Roswitha; Spieckermann, Paul Gerhard

    2006-06-20

    Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of

  16. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  17. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  18. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  19. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    Science.gov (United States)

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  20. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    Science.gov (United States)

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  1. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  2. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  3. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin

    NARCIS (Netherlands)

    Lechner, Matthias; Lirk, Philipp; Rieder, Josef

    2005-01-01

    Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological

  4. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  5. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  6. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    Science.gov (United States)

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  8. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats.

    Science.gov (United States)

    Bank, N; Aynedjian, H S; Khan, G A

    1994-09-01

    Either acute or chronic inhibition of nitric oxide synthesis by L-arginine analogues results in increases in mean arterial pressure and reductions in renal blood flow. The role of endogenous vasoconstrictors in mediating these effects is not entirely clear. In the present study, nitric oxide was inhibited in male Sprague-Dawley rats by oral administration of nitro-L-arginine for 3 weeks. At the end of this time, mean arterial pressure was 30 to 40 mm Hg higher than in normal controls, renal blood flow and glomerular filtration rate were 25% to 30% lower, and renal vascular resistance was markedly increased. Intravenous infusion of receptor antagonists for angiotensin II, thromboxane, epinephrine, and endothelin-1 had no significant effect on the hypertension. Inhibition of prostaglandin synthesis and furosemide-induced diuresis in the presence of angiotensin blockade also had no effect on blood pressure. Renal vascular resistance was also unaffected by these interventions, except that saralasin did reduce renal resistance in both control and nitric oxide-inhibited groups. However, the absolute level of renal vascular resistance remained higher in the latter group. Calcium channel blockade partially corrected blood pressure and renal resistance, but the levels remained significantly higher than in control animals. The findings are consistent with the view that the increase in vascular smooth muscle tone caused by inhibition of nitric oxide synthesis cannot be accounted for by overexpression of common endogenous vasoconstrictors. Rather, the generalized increase in vascular smooth muscle tone appears to be due to a direct effect of reduced nitric oxide availability, which may lead to an increase in intracellular calcium concentration or sensitivity.

  9. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  10. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  12. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    International Nuclear Information System (INIS)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-01-01

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  13. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  14. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  15. Role of nitric oxide in glucose-, fructose and galactose-induced ...

    African Journals Online (AJOL)

    Previous studies have shown that the infusion of glucose, fructose and galactose resulted in significant increases in intestinal glucose uptake (IGU) and the role of nitric oxide in these responses was not known. The present study was designed to investigate the role of nitric oxide in the observed increases in IGU.

  16. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  17. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  18. Cronobacter (Enterobacter) sakazakii

    Science.gov (United States)

    Cronobacter sakazakii has been identified as an infrequently isolated opportunistic pathogen. Over 120 cases of C. sakazakii-related illness have been reported and most reported cases are life-threatening infections. Many of these outbreaks have been linked the consumption of C. sakazakii-contamina...

  19. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of Cronobacter sakazakii in powdered infant formula.

    Science.gov (United States)

    Shukla, Shruti; Haldorai, Yuvaraj; Bajpai, Vivek K; Rengaraj, Arunkumar; Hwang, Seung Kyu; Song, Xinjie; Kim, Myunghee; Huh, Yun Suk; Han, Young-Kyu

    2018-06-30

    A sensitive electrochemical immunosensing platform for the detection of Cronobacter sakazakii was developed using a graphene oxide/gold (GO/Au) composite. Transmission electron microscopy showed that the Au nanoparticles, with an average size of GCE). The electrochemical sensing performance of immunofunctionalized GCE was characterized by cyclic voltammetry and differential pulse voltammetry. Under optimized conditions, in pure culture there was a linear relationship between electrical signal and C. sakazakii levels over the range 2.0 × 10 2 -2.0 × 10 7 cfu/mL (R 2 = 0.999), with a detection limit of 2.0 × 10 1 cfu/mL. The total analytical time was 15 min per sample. The C. sakazakii electrochemical immunosensing assay was able to successfully detect 2.0 × 10 1 cfu/mL of C. sakazakii in artificially contaminated powdered infant formula without any enrichment or pre-enrichment steps. Furthermore, the recovery rates of the C. sakazakii electrochemical immunosensing assay following spiking of powdered infant formula with different concentrations of C. sakazakii (cfu/mL) were 82.58% at 2.0 × 10 1 cfu/mL, 84.86% at 2.0 × 10 2 cfu/mL, and 95.40% at 2.0 × 10 3 cfu/mL. The C. sakazakii electrochemical immunosensing assay had good selectivity, reproducibility, and reactivity compared with other Cronobacter spp. and/or pathogens belonging to other genera, indicating its significant potential in the clinical diagnosis of C. sakazakii. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  1. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  2. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    Science.gov (United States)

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  3. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  4. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  5. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway.

    Science.gov (United States)

    Achike, Francis I; Kwan, Chiu-Yin

    2003-09-01

    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or

  6. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  7. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  8. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  9. Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoporosis.

    Science.gov (United States)

    Armour, K E; Van'T Hof, R J; Grabowski, P S; Reid, D M; Ralston, S H

    1999-12-01

    Inflammatory disease is associated with increased production of nitric oxide (NO) and activation of the inducible nitric oxide synthase (iNOS) pathway. Several studies have addressed the role of NO as a mediator of cytokine effects on bone cell activity in vitro. Stimulatory and inhibitory actions have been found, however, depending on the concentrations produced and model system used. In view of this, it has been difficult to predict whether increased production of NO during inflammation is likely to increase bone loss or prevent it. We have investigated the pathogenic role of NO in an animal model of inflammation-induced osteoporosis (IMO). NO production was increased in IMO when compared with controls (+344%; p turnover, but L-NMMA had no effect on bone mass in control animals. This study has important implications for many inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, and inflammatory bowel disease which are associated with increased NO production and osteoporosis. Our data not only suggest that iNOS activation and increased NO production contribute to the pathogenesis of osteoporosis in these situations, but also suggest that NOS inhibitors could be of therapeutic value in the prevention and treatment of such bone loss.

  10. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  11. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  12. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  13. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  14. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  15. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  16. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Begley, Máire; Hill, Colin

    2012-06-01

    Significant phenotypic diversity was observed when we examined the abilities of a number of Cronobacter sakazakii natural isolates to cope with various sublethal stress conditions (acid, alkaline, osmotic, oxidative, or heat stress). Levels of catalase activity and use of acetate as a carbon source, phenotypes commonly used as indirect assays to predict RpoS function, revealed a high correlation between predicted RpoS activity and tolerance to acid, alkaline, osmotic, and oxidative treatments. The rpoS genes were sequenced and analyzed for polymorphisms. Loss-of-function mutations were found in two strains; C. sakazakii DPC 6523 and the genome-sequenced strain C. sakazakii ATCC BAA-894. The complementation of these strains with a functional rpoS gene resulted in an increase in bacterial tolerance to acid, osmotic, and oxidative stresses. The pigmentation status of strains was also assessed, and a high variability in carotenoid content was observed, with a functional rpoS gene being essential for the production of the characteristic yellow pigment. In conclusion, the evidence presented in this study demonstrates that rpoS is a highly polymorphic gene in C. sakazakii, and it supports the importance of RpoS for the tolerance under stress conditions that C. sakazakii may encounter in the food chain and in the host during infection.

  17. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Won Chung, Jin Uk Oh, Sehyung Lee and Sung-Jin Kim* ... was determined by Western blot analysis for iNOS and COX-2 expression in LPS-stimulated RAW ..... Nitric oxide-scavenging and antioxidant effects ofUraria crinite root. Food.

  18. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  19. Non-asthmatic patients show increased exhaled nitric oxide concentrations

    Directory of Open Access Journals (Sweden)

    Beatriz M. Saraiva-Romanholo

    2009-01-01

    Full Text Available OBJECTIVE: Evaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm. INTRODUCTION: Intraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation. METHODS: A total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group, 12 asthmatics (Asthma group and 10 subjects with no previous airway disease or symptoms (Control group. All subjects were submitted to exhaled nitric oxide measurements (parts/billion, spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test. RESULTS: The normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05. The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83] compared with either the Bronchospasm [0.55 (0-1.26] or the Control group [0.0 (0] (p <0.05; exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7] (p< 0.05. CONCLUSIONS: Non-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.

  20. Corn silk induces nitric oxide synthase in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Choi, Sang Kyu; Choi, Hye Seon

    2004-12-31

    Corn silk has been purified as an anticoagulant previously and the active component is a polysaccharide with a molecular mass of 135 kDa. It activates murine macrophages to induce nitric oxide synthase (NOS) and generate substantial amounts of NO in time and dose-dependent manners. It was detectable first at 15 h after stimulation by corn silk, peaked at 24 h, and undetectable by 48 h. Induction of NOS is inhibited by pyrolidine dithiocarbamate (PDTC) and genistein, an inhibitor of nuclear factor kappa B (NF-kappaB) and tyrosine kinase, respectively, indicating that iNOS stimulated by corn silk is associated with tyrosine kinase and NF-kappaB signaling pathways. IkappaB-alpha degradation was detectible at 10 min, and the level was restored at 120 min after treatment of corn silk. Corn silk induced nuclear translocation of NF-kappaB by phosphorylation and degradation of IkappaB-alpha.

  1. Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway

    Directory of Open Access Journals (Sweden)

    Kim Vriens

    2017-01-01

    Full Text Available Amphotericin B (AmB induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB’s fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB’s action. Hence, superoxide radicals were important for AmB’s fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.

  2. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  3. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells.

    Science.gov (United States)

    Friedl, R; Moeslinger, T; Kopp, B; Spieckermann, P G

    2001-12-01

    1. In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. 2. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 - 0.8 microg microl(-1)) showed a dose dependent stimulation of inducible nitric oxide synthesis. 3. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. 4. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-kappaB DNA binding activity. 5. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase.

  4. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rats

    Directory of Open Access Journals (Sweden)

    Bhagavathi Sundaram eSivamaruthi

    2015-09-01

    Full Text Available It is well established that Cronobacter sakazakii infection cause septicemia, necrotizingenterocolitis (NEC and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT. To investigate the possible effect on SERT, on postnatal day (PND-15, wistar rat pups were administered with single dose of C. sakazakii culture (Infected group: IF; 107 CFU or 100μL of Luria-Bertani broth (LB; Medium Control: MC or without any treatment (Naïve control: NC. All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of Toll-like receptor-3 (TLR-3 and heat-shock proteins-90 (Hsp-90. On the other hand, level of serotonin (5-HT and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA (miR-16 expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakkii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder.

  5. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  6. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  7. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  8. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  9. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    Science.gov (United States)

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  10. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes

  11. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    Science.gov (United States)

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  12. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases

  13. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  14. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  16. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks

    DEFF Research Database (Denmark)

    Thomsen, L L; Kruuse, C; Iversen, Helle Klingenberg

    1994-01-01

    Supersensitivity to induction of headache and arterial dilatation by a donor of nitric oxide (nitroglycerin) has recently been demonstrated in migraine sufferers. The aims of the present study were to examine whether the nitric oxide donor nitroglycerin may induce a typical migraine attack......, to exclude placebo-related effects and to describe the relation between middle cerebral artery dilatation and provoked migraine. Nitroglycerin (0.5 μg/kg/min for 20 min) or placebo was infused into 12 migraine patients in a double-blind cross-over trial. Blood velocity in the middle cerebral artery...

  17. Protective Effect of Edaravone Against Cyclosporine-Induced Chronic Nephropathy Through Antioxidant and Nitric Oxide Modulating Pathways in Rats

    Directory of Open Access Journals (Sweden)

    Elahe Sattarinezhad

    2017-03-01

    Full Text Available Background: Cyclosporine A (CsA is an immunosuppressant with therapeutic indications in various immunological diseases; however, its use is associated with chronic nephropathy. Oxidative stress has a crucial role in CsA-induced nephrotoxicity. The present study evaluates the protective effect of edaravone on CsA-induced chronic nephropathy and investigates its antioxidant and nitric oxide modulating property. Methods: Male Sprague-Dawley rats (n=66 were distributed into nine groups, including a control (group 1 (n=7. Eight groups received CsA (15 mg/kg for 28 days while being treated. The groups were categorized as: •\tGroup 2: Vehicle (n=10 •\tGroups 3, 4, and 5: Edaravone (1, 5, and 10 mg/kg (n=7 each •\tGroup 6: Diphenyliodonium chloride, a specific endothelial nitric oxide synthase (eNOS inhibitor (n=7 •\tGroup 7: Aminoguanidine, a specific inducible nitric oxide synthase (iNOS inhibitor (n=7 •\tGroup 8: Edaravone (10 mg/kg plus diphenyliodonium chloride (n=7 •\tGroup 9: Edaravone (10 mg/kg plus aminoguanidine (n=7 Blood urea nitrogen and serum creatinine levels, malondialdehyde, superoxide dismutase, and glutathione reductase enzyme activities were measured using standard kits. Renal histopathological evaluations and measurements of eNOS and iNOS gene expressions by RT-PCR were also performed. Data were analyzed using one-way analysis of variance (ANOVA followed by Tukey’s test (SPSS software version 18.0. Results: Edaravone (10 mg/kg significantly attenuated CsA-induced oxidative stress, renal dysfunction, and kidney tissue injury. Aminoguanidine improved the renoprotective effect of edaravone. Edaravone reduced the elevated mRNA level of iNOS, but could not alter the level of eNOS mRNA significantly. Conclusion: Edaravone protects against CsA-induced chronic nephropathy using antioxidant property and probably through inhibiting iNOS gene expression.

  18. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  19. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  20. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  1. Nitric oxide-dependent pigment migration induced by ultraviolet radiation in retinal pigment cells of the crab Neohelice granulata.

    Science.gov (United States)

    Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia

    2010-01-01

    The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  2. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms.

    Science.gov (United States)

    Kanugula, Anantha Koteswararao; Gollavilli, Paradesi Naidu; Vasamsetti, Sathish Babu; Karnewar, Santosh; Gopoju, Raja; Ummanni, Ramesh; Kotamraju, Srigiridhar

    2014-08-01

    Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti-proliferative and anti-invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti-proliferative and anti-invasive properties of hydrophobic statins in MDA-MB-231, MDA-MB-453 and BT-549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin-induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI-298) but not farnesyl transferase inhibitor (FTI-277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin-induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage-binding protein 2), catalase and glutathione which, in turn, diminished H2 O2 levels. Fluvastatin-induced downregulation of TfR1, matrix metalloproteinase-2, -9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death. © 2014 FEBS.

  3. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so......-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...

  4. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  5. Exercise promotes collateral artery growth mediated by monocytic nitric oxide.

    Science.gov (United States)

    Schirmer, Stephan H; Millenaar, Dominic N; Werner, Christian; Schuh, Lisa; Degen, Achim; Bettink, Stephanie I; Lipp, Peter; van Rooijen, Nico; Meyer, Tim; Böhm, Michael; Laufs, Ulrich

    2015-08-01

    Collateral artery growth (arteriogenesis) is an important adaptive response to hampered arterial perfusion. It is unknown whether preventive physical exercise before limb ischemia can improve arteriogenesis and modulate mononuclear cell function. This study aimed at investigating the effects of endurance exercise before arterial occlusion on MNC function and collateral artery growth. After 3 weeks of voluntary treadmill exercise, ligation of the right femoral artery was performed in mice. Hindlimb perfusion immediately after surgery did not differ from sedentary mice. However, previous exercise improved perfusion restoration ≤7 days after femoral artery ligation, also when exercise was stopped at ligation. This was accompanied by an accumulation of peri-collateral macrophages and increased expression of endothelial nitric oxide synthase and inducible nitric oxide synthase (iNOS) in hindlimb collateral and in MNC of blood and spleen. Systemic monocyte and macrophage depletion by liposomal clodronate but not splenectomy attenuated exercise-induced perfusion restoration, collateral artery growth, peri-collateral macrophage accumulation, and upregulation of iNOS. iNOS-deficient mice did not show exercise-induced perfusion restoration. Transplantation of bone marrow-derived MNC from iNOS-deficient mice into wild-type animals inhibited exercise-induced collateral artery growth. In contrast to sedentary controls, thrice weekly aerobic exercise training for 6 months in humans increased peripheral blood MNC iNOS expression. Circulating mononuclear cell-derived inducible nitric oxide is an important mediator of exercise-induced collateral artery growth. © 2015 American Heart Association, Inc.

  6. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats.

    Science.gov (United States)

    Mohamed, Yasmin S; Ahmed, Lamiaa A; Salem, Hesham A; Agha, Azza M

    2018-05-01

    Liver fibrosis is one of the most serious conditions affecting patients worldwide. In the present study, the role of nitric oxide and KATP channel was investigated for the first time in the possible protection mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats. Nicorandil (3 mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed marked improvement in liver function tests, hepatic oxidative stress and inflammatory markers as well as inducible and endothelial nitric oxide synthase protein expressions. Furthermore, nicorandil administration led to significant decrement of phosphorylated protein kinase C, fibrosis and hepatic stellate cells activation as indicated by decreased alpha smooth muscle actin expression. Oral co-administration of glibenclamide (5 mg/kg/day) (a KATP channel blocker) with nicorandil mostly showed similar improvement though not reaching to that of nicorandil group. However, co-adminstration of L-NAME (15 mg/kg/day) (an inhibitor of nitric oxide synthase) completely abolished the protective effects of nicorandil and produced more or less similar results to that of untreated bile duct ligated group. In conclusion, nicorandil is an effective therapy against the development of bile duct ligation-induced liver fibrosis in rats where nitric oxide plays a more prominent role in the protective effect of nicorandil than KATP channel opening. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  8. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    Science.gov (United States)

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  9. Prenatal irradiation: nitric oxide and oxidative stress roles in radiation-induced apoptosis of the developing central nervous system

    International Nuclear Information System (INIS)

    Sanjurjo, Julieta

    2001-01-01

    Full text: The effects of prenatal irradiation on developing brain should be considered at cellular, structural and functional levels, integrating the information obtained from different sources in an appropriated model to explain the mechanisms involved in neuronal damage. That would permit to make risk estimations and improve radiological protection. Human brain is especially sensitive to ionizing radiation during certain stages of prenatal development. At doses such as those received by Hiroshima and Nagasaki's atomic bomb explosions survivors that were prenatally exposed, the maximum risk was to those exposed between the 8th and 15th weeks of gestation, in coincidence with the highest rate of neuron production and its migration to the brain cortex. The major effect produced on both, brain growth and development, was the augmentation of the Severe Mental Retardation (SMR) incidence. Radiation-induced apoptosis of neuronal progenitors should be considered as one of the factors associated with this pathology, apart from those of migration and synaptogenesis. Apoptosis is an innate and evolutionally conserved process by which the cells provoke the inactivation, disorganisation and degradation of their structural and functional components in a systematic fashion, with the aim of producing its own death. It is also the main cell death mechanism induced by low linear energy transfer (LET) ionizing radiation in developing Central Nervous System (CNS). Radioinduced apoptosis characterization during the different developmental stages, its kinetics and the possible implicated mechanisms (like oxidative injury and nitric oxide) was done using an 'in vitro' system of cortical micro masses (primary cultures of brain cortex cells) from rat embryo brains. Cell cultures were exposed to a single dose of gamma radiation, between 0,2 and 2 Gy, supplied by a Co 60 source (Picker C4M60) at a 70 cm distance with a field area size of 25 cm x 25 cm and at a 0,34 Gy/minute dose rate

  10. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75

    OpenAIRE

    Cáceres, Lucía; Necakov, Aleksandar S.; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J.H.; Krause, Henry M.

    2011-01-01

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer part...

  11. Nitric oxide enhances osmoregulation of tobacco ( Nicotiana ...

    African Journals Online (AJOL)

    This study was carried out to investigate the effect of the intracellular signaling molecule nitric oxide (NO) on osmoregulation of tobacco cells under osmotic stress caused by phenylethanoid glycosides 6000 (PEG 6000). The results show that the PEG stress induced a specific pattern of endogenous NO production with two ...

  12. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  13. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status

    NARCIS (Netherlands)

    Vos, TA; van Goor, H; Tuyt, L; de Jager-Krikken, A; Leuvenink, R; Kuipers, F; Jansen, PLM; Moshage, H

    The inducible nitric oxide synthase (iNOS) promoter contains nuclear factor kappa B (NF-kappa B) binding sites. NF-kappa B activation is determined, in part, by the intracellular redox status, The aim of this study was to determine the importance of the cellular glutathione status in relation to

  14. Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ

    Directory of Open Access Journals (Sweden)

    Yongwei Qin

    2016-04-01

    Full Text Available miR-155 (microRNA-155 is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m infection. Transfection with anti-miR-155 enhances nitric oxide (NO synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ activated macrophages. More importantly, miR-155 can directly bind to the 3′UTR of CCAAT/enhancer binding protein β (C/EBPβ, a positive transcriptional regulator of nitric oxide synthase (NOS2, and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious.

  15. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    OpenAIRE

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils.

  16. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  18. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  19. Enhancement of vascular targeting by inhibitors of nitric oxide synthase

    International Nuclear Information System (INIS)

    Davis, Peter D.; Tozer, Gillian M.; Naylor, Matthew A.; Thomson, Peter; Lewis, Gemma; Hill, Sally A.

    2002-01-01

    Purpose: This study investigates the enhancement of the vascular targeting activity of the tubulin-binding agent combretastatin A4 phosphate (CA4P) by various inhibitors of nitric oxide synthases. Methods and Materials: The syngeneic tumors CaNT and SaS growing in CBA mice were used for this study. Reduction in perfused vascular volume was measured by injection of Hoechst 33342 24 h after drug administration. Necrosis (hematoxylin and eosin stain) was assessed also at 24 h after treatment. Combretastatin A4 phosphate was synthesized by a modification of the published procedure and the nitric oxide synthase inhibitors L-NNA, L-NMMA, L-NIO, L-NIL, S-MTC, S-EIT, AMP, AMT, and L-TC, obtained from commercial sources. Results: A statistically significant augmentation of the reduction in perfused vascular volume by CA4P in the CaNT tumor was observed with L-NNA, AMP, and AMT. An increase in CA4P-induced necrosis in the same tumor achieved significance with L-NNA, L-NMMA, L-NIL, and AMT. CA4P induced little necrosis in the SaS tumor, but combination with the inhibitors L-NNA, L-NMMA, L-NIO, S-EIT, and L-TC was effective. Conclusions: Augmentation of CA4P activity by nitric oxide synthase inhibitors of different structural classes supports a nitric oxide-related mechanism for this effect. L-NNA was the most effective inhibitor studied

  20. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Pindjáková, Jana; Zajícová, Alena; Krulová, Magdalena; Železná, Blanka; Matoušek, Petr; Svoboda, Petr

    2005-01-01

    Roč. 12, č. 3 (2005), s. 227-234 ISSN 0908-665X R&D Projects: GA MZd(CZ) NR7816; GA ČR(CZ) GP310/02/D162; GA ČR(CZ) GD310/03/H147; GA MŠk(CZ) ME 300; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915; CEZ:AV0Z50110509 Keywords : inducible nitric oxide synthase production * nitric oxide * suppressive molecule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2005

  1. The protective role of nitric oxide and nitric oxide synthases in whole-body hyperthermia-induced hepatic injury in rats.

    Science.gov (United States)

    Chen, Chao-Fuh; Wang, David; Leu, Fur-Jiang; Chen, Hsing I

    2012-01-01

    The present study was designed to elucidate the role of endothelial nitric oxide (NO) synthase (eNOS), inducible NOS (iNOS)-derived NO and heat-shock protein (Hsp70) in a rat model of whole-body hyperthermia (WBH)-induced liver injury. Real-time polymerase chain reaction, immunohistochemistry and western blot were used to observe the mRNA and protein expression of eNOS, iNOS and Hsp70. Rats were exposed to hyperthermia by immersion for 60 min at a conscious state in a water bath maintained at 41°C. Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were used to assess liver injury 15 h after the hyperthermia challenge. Nitrosative and oxidative mediators, particularly NO and hydroxyl radical were measured. Plasma AST, ALT, hydroxyl radical, and NO were significantly increased after WBH. There were 4.14 ± 0.42, 2.82 ± 0.34 and 2.91 ± 0.16-fold increases in the mRNA expression of eNOS, iNOS and Hsp70. Immunohistochemistry and western blot showed up-regulation of eNOS, iNOS and Hsp70 protein. An eNOS inhibitor (N(ω)-nitro-L-arginine methyl ester (L-NAME)), or an iNOS inhibitor (aminoguanidine (AG)), significantly aggravated the liver injury. On the contrary, administration of NO precursor, L-arginine (L-ARG), attenuated the liver injury. Hsp70 inhibitor quercetin reduced Hsp70, while aggravating the WBH-induced hepatic changes. WBH induces increases in eNOS, iNOS and Hsp70 expression with increase in NO release. The deleterious effects of L-NAME and AG and the protective effects of L-ARG and Hsp70 inhibitor on the liver function and pathology suggest that NO and heat shock protein play a beneficial role in the WBH-induced hepatic injury.

  2. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced clonic seizures in mice.

    Science.gov (United States)

    Payandemehr, Borna; Rahimian, Reza; Gooshe, Maziar; Bahremand, Arash; Gholizadeh, Ramtin; Berijani, Sina; Ahmadi-Dastgerdi, Mohammad; Aminizade, Mehdi; Sarreshte-Dari, Ali; Dianati, Vahid; Amanlou, Massoud; Dehpour, Ahmad Reza

    2014-05-01

    Thalidomide is an old glutamic acid derivative which was initially used as a sedative medication but withdrawn from the market due to the high incidence of teratogenicity. Recently, it has reemerged because of its potential for counteracting number of diseases, including neurodegenerative disorders. Other than the antiemetic and hypnotic aspects, thalidomide exerts some anticonvulsant properties in experimental settings. However, the underlying mechanisms of thalidomide actions are not fully realized yet. Some investigations revealed that thalidomide could elicit immunomodulatory or neuromodulatory properties by affecting different targets, including cytokines (such as TNF α), neurotransmitters, and nitric oxide (NO). In this regard, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of thalidomide is affected through modulation of the l-arginine-nitric oxide pathway or not. Injection of a single effective dose of thalidomide (10 mg/kg, i.p. or higher) significantly increased the seizure threshold (P<0.05). On the one hand, pretreatment with low and per se noneffective dose of l-arginine [NO precursor] (10, 30 and 60 mg/kg) prevented the anticonvulsant effect of thalidomide. On the other hand, NOS inhibitors [l-NAME and 7-NI] augmented the anticonvulsant effect of a subeffective dose of thalidomide (1 and 5 mg/kg, i.p.) at relatively low doses. Meanwhile, several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of thalidomide significantly. In summary, our findings demonstrated that the l-arginine-nitric oxide pathway can be involved in the anticonvulsant properties of thalidomide, and the role of constitutive nNOS is prominent in the reported neuroprotective feature. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    Science.gov (United States)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  4. Nitric oxide as a mediator of gastrointestinal mucosal injury?—Say it ain't so

    Directory of Open Access Journals (Sweden)

    Paul Kubes

    1995-01-01

    Full Text Available Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.

  5. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  6. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-Nitro-L-arginine induces cortical spreading ischemia when K+0+ is increased in the subarachnoid space

    DEFF Research Database (Denmark)

    Dreier, J.P.; Körner, K.; Ebert, Nathalie

    1998-01-01

    Cerebral blood flow, nitric oxide, potassium, spreading depression, vasospasm, migraine, migrainous stroke, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)......Cerebral blood flow, nitric oxide, potassium, spreading depression, vasospasm, migraine, migrainous stroke, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)...

  7. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    Science.gov (United States)

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  8. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    Science.gov (United States)

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  9. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  10. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  11. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  12. Interactions between cytokines and nitric oxide.

    Science.gov (United States)

    Liew, F Y

    1995-01-01

    There is now an impressive range of evidence supporting the important role of cytokines in sleep regulation (see Krueger et al., 1995; De Simoni et al., 1995). It has also been reported that inhibition of nitric oxide (NO) synthesis suppresses sleep in rabbits (Kapás et al., 1994). This is not surprising, since NO is closely involved in neurotransmission (Garthwaite, 1991; Schuman and Madison, 1994) and cytokines are the major inducers of NO synthesis (Hibbs et al., 1990). Further, it is now clear that NO plays an important role in modulating immune responses, possibly through the differential regulation of cytokine synthesis (Taylor-Robinson et al., 1994). In this article, I will provide evidence for the interactions between cytokines and nitric oxide, and discuss their implications in the regulation of immune responses. I shall illustrate these mainly with results from my coworkers and I, from our laboratory rather than attempting an exhaustive review of the subject.

  13. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  14. Effect of Nitric Oxide, Vitamin E and Selenium on Streptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Nader, Manar M.; Eissa, Laila A.; Gamil, Nariman M.; Ammar, El-Sayed M.

    2007-01-01

    Diabetes mellitus is characterized by a series of complications that may affect many organs. This study aimed to investigate the role of nitric oxide (NO) as a physiological mediator in the body via the use of L-arginine as NO precursor Ng-nitro-arginine methyl ester (L-NAME) as Nitric oxide synthase (NOS) enzyme inhibitor in diabetic rats. The effect of vitamin E as antioxidant and selenium as a potent insulin-mimetic agent in diabetic rats were studied. The possible combination of selenium or vitamin E with L-arginine was studied in the same animal model to show the ability of these treatments to ameliorate some of the biochemical changes that are worsen with the development of diabetes such as lipid profile, plasma glucose, blood malondialdehyde (MDA), plasma nitric oxide and plasma b-2 microglobulin levels. Experimental diabetes was induced in male rats by I.V. injection of Streptozotocin (STZ) (50mg/kg). Diabetic rats showed a significant increase (P<0.05) in the plasma level of glucose, triglycerides, total cholesterol, LDL-cholesterol, b2-micro globulin, blood MDA as a result of increased oxidative stress while there was a significant decrease in plasma HDL-cholesterol, and nitrate/nitrite levels. L-arginine, vitamin E and selenium administration produced a significant decrease in plasma glucose level of diabetic arts (13%, 29.11%, 61.65%) respectively from its initial value, so as they showed a significant reduction in blood MDA level, plasma triglyceride, total cholesterol, LDL-Ch.. levels when compared with the initial diabetic values. Combined therapy of vitamin E and L-arginine showed no significant change of any of the measured parameters (except for nitrate/nitrite level) on comparison either with vitamin E or with L-arginine treated group. The combined therapy of selenium and L-arginine showed a significant decrease nearly to normal level in the plasma glucose concentration and may be of clinical significance. (author)

  15. Nitric oxide and chronic colitis

    Directory of Open Access Journals (Sweden)

    Matthew B Grisham

    1996-01-01

    Full Text Available Nitric oxide (NO is thought to play an important role in modulating the inflammatory response by virtue of its ability to affect bloodflow, leukocyte function and cell viability. The objective of this study was to assess the role that NO may play in mediating the mucosal injury and inflammation in a model of chronic granulomatous colitis using two pharmacologically different inhibitors of nitric oxide synthase (NOS. Chronic granulomatous colitis with liver and spleen inflammation was induced in female Lewis rats via the subserosal (intramural injection of peptidoglycan/polysaccharide (PG/PS derived from group A streptococci. Chronic NOS inhibition by oral administration of NG-nitro-L-arginine methyl ester (L-NAME (15 µmol/kg/day or amino-guanidine (AG (15 µmol/ kg/day was found to attenuate the PG/PS-induced increases in macroscopic colonic inflammation scores and colonic myeloperoxidase activity. Only AG -- not L-NAME – attenuated the PG/PS-induced increases in colon dry weight. Both L-NAME and AG significantly attenuated the PG/PS-induced increases in spleen weight whereas neither was effective at significantly attenuating the PG/PS-induced increases in liver weight. Although both L-NAME and AG inhibited NO production in vivo, as measured by decreases in plasma nitrite and nitrate levels, only AG produced significantly lower values (38±3 versus 83±8 µM, respectively, P<0.05. Finally, L-NAME, but not AG, administration significantly increased mean arterial pressure from 83 mmHg in colitic animals to 105 mmHg in the PG/PS+ L-NAME-treated animals (P<0.05. It is concluded that NO may play an important role in mediating some of the pathophysiology associated with this model of chronic granulomatous colitis.

  16. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice.

    NARCIS (Netherlands)

    Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Genovese, T.; Paola, R. Di; Ruggeri, Z.; Vegeto, E.; Caputi, A.P.; Loo, F.A.J. van de; Puzzolo, D.; Maggi, A.

    2003-01-01

    Several clinical studies have shown that bone loss may be attributed to osteoclast recruitment induced by mediators of inflammation. In different experimental paradigms we have recently demonstrated that estrogen exhibits antiinflammatory activity by preventing the induction of inducible nitric

  17. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    International Nuclear Information System (INIS)

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui

    2007-01-01

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl 2 -induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression

  18. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  19. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Science.gov (United States)

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  1. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Science.gov (United States)

    2010-04-01

    ... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be used in conjunction with a ventilator or other breathing gas administration system. (b) Classification...

  2. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  3. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus.

    Science.gov (United States)

    Dyuizen, Inessa V; Kotsyuba, Elena P; Lamash, Nina E

    2012-08-01

    Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5-10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.

  4. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  5. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza

    2018-03-20

    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.

  6. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  7. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  8. Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Amour, Julien; Loyer, Xavier; Le Guen, Morgan; Mabrouk, Nejma; David, Jean-Stéphane; Camors, Emmanuel; Carusio, Nunzia; Vivien, Benoît; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno

    2007-09-01

    In the diabetic heart, the positive inotropic response to beta-adrenoceptor stimulation is altered and beta1 and beta2 adrenoceptors are down-regulated, whereas beta3 adrenoceptor is up-regulated. In heart failure, beta3-adrenoceptor stimulation induces a negative inotropic effect that results from endothelial nitric oxide synthase (NOS3)-derived nitric oxide production. The objective of our study was to investigate the role of beta3-adrenoceptor in diabetic cardiomyopathy. beta-Adrenergic responses were investigated in vivo (dobutamine echocardiography) and in vitro (left ventricular papillary muscle) in healthy and streptozotocin-induced diabetic rats. The effect of beta3-adrenoceptor inhibition on the inotropic response was studied in vitro. Immunoblots and NOS activities were performed in heart homogenates (electron paramagnetic resonance) and isolated cardiomyocytes. Data are mean percentage of baseline +/- SD. The impaired positive inotropic effect was confirmed in diabetes both in vivo (121 +/- 15% vs. 160 +/- 16%; P < 0.05) and in vitro (112 +/- 5% vs. 179 +/- 15%; P < 0.05). In healthy rat, the positive inotropic effect was not significantly modified in presence of beta3-adrenoceptor antagonist (174 +/- 20%), nonselective NOS inhibitor (N -nitro-l-arginine methylester [l-NAME]; 183 +/- 19%), or selective NOS1 inhibitor (vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine [l-VNIO]; 172 +/- 13%). In diabetes, in parallel with the increase in beta3-adrenoceptor protein expression, the positive inotropic effect was partially restored by beta3-adrenoceptor antagonist (137 +/- 8%; P < 0.05), l-NAME (133 +/- 11%; P < 0.05), or l-VNIO (130 +/- 13%; P < 0.05). Nitric oxide was exclusively produced by NOS1 within diabetic cardiomyocytes. NOS2 and NOS3 proteins were undetectable. beta3-Adrenoceptor is involved in altered positive inotropic response to beta-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by NOS1-derived nitric oxide in diabetic

  9. BIOTIPE ISOLAT LOKAL ENTEROBACTER SAKAZAKII

    Directory of Open Access Journals (Sweden)

    Iza Ayu Saufani

    2016-05-01

    Full Text Available Enterobacter sakazakii telah diklasifikasikan ke dalam 16 biogrup berdasarkan sifat biokimianya dan menjadi 3 biogrup berdasarkan 20 reaksi biokimia dengan perangkat cepat API 20E. Pada tahun 2007, Iversen mengklasifikasi ulang Enterobacter sakazakii menjadi Cronobacter spp. berdasarkan sifat genotip dan biokimia seperti uji indol, pemanfaatan malonat, dan kemampuannya memproduksi asam dari dulsitol serta metil-α-D-glukosida. Pengelompokan berdasarkan sifat biokimia terhadap genus dan spesies ini belum banyak dilakukan. Penelitian ini bertujuan untuk mengelompokkan Enterobacter sakazakii yang telah diisolasi dan terkonfirmasi menggunakan PCR berdasarkan gen penyandi 16S rRNA-nya pada penelitian sebelumnya. Pengelompokan dilakukan dengan menggunakan perangkat cepat RapID ONE® dan 4 reaksi biokimia Iversen. Hasil klasifikasi menggunakan RapID ONE® kemudian dibandingkan dengan hasil klasifikasi menggunakan API 20E yang telah dilaporkan sebelumnya. Dengan menggunakan RapID ONE diperoleh 9 isolat Enterobacter sakazakii, 9 isolat Enterobacter cloacae dan 1 isolat Enterobacter cancerogenus dari 19 isolat yang diteliti. Kesembilan belas isolat uji tersebut dapat dikelompokkan menjadi 16 biotipe. Jika dibandingkan dengan menggunakan API 20E, terdapat 8 isolat yang juga teridentifikasi sebagai Enterobacter sakazakii. Berdasarkan 4 reaksi biokimia Iversen, 15 dari 19 isolat di atas dapat diklasifikasikan ke dalam Cronobacter spp. Uji pirolidonil disarankan untuk mengklasifikasikan 4 isolat yang tidak terklasifikasi dengan 4 reaksi biokimia Iversen.

  10. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    International Nuclear Information System (INIS)

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Pettersen, Erik Olai; Vollan, Hilde Synnove; Reger, Katharina; Görlach, Agnes

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2 - 0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. (author)

  11. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  12. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  13. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  14. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    Science.gov (United States)

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  15. Nitric oxide in the psychobiology of mental disorders

    Directory of Open Access Journals (Sweden)

    Altan Eşsizoğlu

    2009-03-01

    Full Text Available Nitric oxide is in a gaseous form and is widespread in the human body. It functions by acting as a secondary messenger in the modulatory activities of neuronal functions of the central nervous system. Nitric oxide is the first identified neurotransmitter of the nontraditional neurotransmitter family.Studies conducted on experimental animals demonstrate that nitric oxide has a neuromodulatory efficacy on the secretions of other neurotransmitters and that it has an effect on learning and memory functions, and on various neuronal mechanisms. Many studies have been conducted to investigate the location of nitric oxide in the central nervous system, its effect on anxiety and depression, its relationship with other neurotransmitters, and also about its role on neurotoxicity. There are clinical studies concerning the level of nitrate, a product of nitric oxide metabolism, and also experimental studies concerning its rewarding effect of alcohol and substance use, in patients with depression and schizophrenia. However, limited studies have been conducted to investigate its relationship with stress, which is an important factor in the etiology of psychiatric disorders. These studies demonstrate that nitric oxide is closely related with stress physiology.Nitric oxide is a neuromodulator, which is frequently being mentioned about nowadays in psychiatry. Clinical and experimental studies play an important role in the psychobiology of psychiatric disorders.

  16. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    Science.gov (United States)

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  17. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    Science.gov (United States)

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  18. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    Directory of Open Access Journals (Sweden)

    Sonia A Ronchetti

    Full Text Available Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2 are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS activity and expression and may thereby modulate the production of nitric oxide (NO, an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  19. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    Science.gov (United States)

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  20. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model.

    Science.gov (United States)

    Yadav, Satyndra Kumar; Rai, Sachchida Nand; Singh, Surya Pratap

    2017-03-01

    Parkinson's disease is one of the most common neurodegenerative disease found in aged peoples. Plentiful studies are being conducted to find a suitable and effective cure for this disease giving special impetus on use of herbal plants. The study aimed at investigating the effect of ethanolic extract of Mucuna pruriens (Mp) on level of nitric oxide (NO) in paraquat (PQ) induced Parkinson's disease (PD) mouse model and its subsequent contribution to lipid peroxidation. Twenty four Swiss albino mice were divided into three groups; Control, PQ and PQ+Mp. PQ doses were given intraperitoneally, twice in a week and oral dose of ethanolic extract of Mp seed was given for 9 weeks. Nitrite content and lipid peroxidation was measured in all treated groups along with respective controls. RNA was isolated from the nigrostriatal tissue of control and the treated mice and was reverse transcribed into cDNA. PCR was performed to amplify iNOS mRNA and western blot analysis was performed to check its protein level. We had also perfused the mice in all treated group and performed Tyrosine hydroxylase (TH) and iNOS immunoreactivity in substantia nigra region of mice brain. PQ-treatment increased nitrite content, expression of iNOS and lipid peroxidation compared to respective controls. Mp treatment resulted in a significant attenuation of iNOS expression, nitrite content and lipid peroxidation demonstrating that it reduces nitric oxide in PQ-induced Parkinson's disease. Interestingly; we also observed that mRNA, protein expression and immunoreactivity of iNOS was significantly decreased after Mp treatment and TH immunoreactivity was significantly improved after the treatment of Mp. Our results demonstrated that Mp protects the dopaminergic neurons from the NO injury in substantia nigra. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.

    Science.gov (United States)

    Ueda, Nobuo; Degnan, Sandie M

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  2. Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects

    Science.gov (United States)

    Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung; Blackstock, Christopher; Galvez, Sarah; Vaughn, Charlotte; Titterington, Jane; Delafontaine, Patrick

    2011-01-01

    We have shown previously that insulin like-growth factor I (IGF-1) suppressed atherosclerosis in Apoe−/− mice and activated endothelial nitric oxide (NO) synthase. To determine whether IGF-1-induced atheroprotection depends on NO, IGF-1- or saline-infused mice were treated with L-NAME, the pan-NO synthase inhibitor or with D-NAME (control). IGF-1 reduced atherosclerosis in both the D-NAME and L-NAME groups suggesting that IGF-1’s anti-atherogenic effect was NO-independent. IGF-1 increased plaque smooth muscle cells, suppressed cell apoptosis and downregulated lipoprotein lipase and these effects were also NO-independent. On the contrary, IGF-1 decreased oxidative stress and suppressed TNF-α levels and these effects were blocked by L-NAME. Thus IGF-1’s anti-oxidant effect is dependent on its ability to increase NO but is distinct from its anti-atherosclerotic effect which is NO-independent. PMID:21872589

  3. Reversal by methylene blue of tetanic fade induced in cats by nitric oxide

    Directory of Open Access Journals (Sweden)

    C.R. Ambiel

    1998-03-01

    Full Text Available Previous data from our laboratory have indicated that nitric oxide (NO acting at the presynaptic level increases the amplitude of muscular contraction (AMC of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat. Intra-arterial injection of NO (0.75-1.5 mg/kg induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz, but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway

  4. Nitric oxide mediated bystander responses induced by microbeam targeted cells

    International Nuclear Information System (INIS)

    Shao, C.; Prise, K.M.; Folkard, M.; Michael, B.D.

    2003-01-01

    Considerable evidence has recently been accumulated in support of the existence of a 'bystander effect', which cells having received no irradiation show biological consequences from their vicinal irradiated cells. The application of microbeams is providing new insights into the radiation-induced bystander effect. The present study found that when a fraction of radioresistant human glioblastoma cells were individually targeted with a precise number of helium ions generated from the Gray Cancer Institute Charged Particle Microbeam, micronucleus (MN) induction significantly exceeded the expected value that was calculated from the number of MN observed when all of the cells were targeted assuming no bystander effect occurring. Even when only a single cell within a population was hit by one helium ion, the MN induction in the population could be increased by 16%. These results provide direct evidence of radiation-induced bystander effect. Moreover, MN was effectively induced in the unirradiated primary human fibroblasts and glioblastoma cells either co-cultured with irradiated cells or treated with the medium harvested from irradiated cells, indicating a signal molecule was produced from the irradiated cells. However, when c-PTIO, a nitric oxide (NO)-specific scavenger, was present in the medium during and after irradiation until MN analysis, the production of MN in all of the above cases was reduced to low levels. Consequently, NO plays an important role in the radiation-induced bystander effect

  5. Cellular signaling with nitric oxide and cyclic GMP

    Directory of Open Access Journals (Sweden)

    F. Murad

    1999-11-01

    Full Text Available During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.

  6. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  7. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  8. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  9. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Choudhury, Mahua G.; Saha, Nirmalendu

    2012-01-01

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  10. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  11. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  12. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    Science.gov (United States)

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  13. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  14. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  15. Tolerance and withdrawal to anticonvulsant action of clonazepam: role of nitric oxide.

    Science.gov (United States)

    Gupta, N; Bhargava, V K; Pandhi, P

    2000-05-01

    The use of clonazepam in the long-term treatment of epilepsy is greatly inhibited by its capacity to induce tolerance and dependence. A means of preventing or minimizing the tolerance and dependence inducing properties is required. Here the role of nitric oxide in preventing the development of tolerance and withdrawal hyperexcitability was studied. In Wistar rats, clonazepam at a dose of 0.25 mg/kg i.p. twice daily produced tolerance to its anticonvulsant action in 28 days. After sudden cessation of therapy it produced hyperexcitability. Tolerance was shown by a decrease in seizure threshold to near control value while withdrawal hyperexcitability was evidenced by a significant decrease in seizure threshold below the control value. L-Arginine (a donor of nitric oxide) and N omega-nitro-L-arginine (an inhibitor of nitric oxide synthase) were given in doses of 150 mg/kg and 8 mg/kg, respectively on day 1, 3, 7, 14, 21 and 28 with clonazepam. Withdrawal hyperexcitability was seen on day 1, 2 and 4 after cessation of drug therapy. Electroshock was used as a model of epilepsy and seizure thresholds were determined by an up and down method of Kimball et al. L-Arginine was found to inhibit the development tolerance as well as withdrawal hyperexcitability when administered with clonazepam while N omega-L-arginine did not prevent either the development of tolerance or withdrawal hyperexcitability in the electroshock model. In the PTZ model, however, L-arginine had no effect on the anticonvulsant action and withdrawal hyperexcitability while inhibition of nitric oxide synthesis prevented withdrawal hyperexcitability in PTZ-induced seizures.

  16. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  17. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.

    Science.gov (United States)

    Cunha, Andréia S; Matheus, Filipe C; Moretti, Morgana; Sampaio, Tuane B; Poli, Anicleto; Santos, Danúbia B; Colle, Dirleise; Cunha, Mauricio P; Blum-Silva, Carlos H; Sandjo, Louis P; Reginatto, Flávio H; Rodrigues, Ana Lúcia S; Farina, Marcelo; Prediger, Rui D

    2016-10-01

    Dyskinesia consists in a series of trunk, limbs and orofacial involuntary movements that can be observed following long-term pharmacological treatment in some psychotic and neurological disorders such as schizophrenia and Parkinson's disease, respectively. Agmatine is an endogenous arginine metabolite that emerges as neuromodulator and a promising agent to manage diverse central nervous system disorders by modulating nitric oxide (NO) pathway, glutamate NMDA receptors and oxidative stress. Herein, we investigated the effects of a single intraperitoneal (i.p.) administration of different agmatine doses (10, 30 or 100mg/kg) against the orofacial dyskinesia induced by reserpine (1mg/kg,s.c.) in mice by measuring the vacuous chewing movements and tongue protusion frequencies, and the duration of facial twitching. The results showed an orofacial antidyskinetic effect of agmatine (30mg/kg, i.p.) or the combined administration of sub-effective doses of agmatine (10mg/kg, i.p.) with the NMDA receptor antagonists amantadine (1mg/kg, i.p.) and MK801 (0.01mg/kg, i.p.) or the neuronal nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI; 0.1mg/kg, i.p.). Reserpine-treated mice displayed locomotor activity deficits in the open field and agmatine had no effect on this response. Reserpine increased nitrite and nitrate levels in cerebral cortex, but agmatine did not reverse it. Remarkably, agmatine reversed the decrease of dopamine and non-protein thiols (NPSH) levels caused by reserpine in the striatum. However, no changes were observed in striatal immunocontent of proteins related to the dopaminergic system including tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter type 2, pDARPP-32[Thr75], dopamine D1 and D2 receptors. These results indicate that the blockade of NO pathway, NMDAR and oxidative stress are possible mechanisms associated with the protective effects of agmatine against the orofacial dyskinesia induced by reserpine in mice

  18. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    Science.gov (United States)

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  19. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    Science.gov (United States)

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.

  20. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging

    Science.gov (United States)

    Gordish, Kevin L.

    2014-01-01

    Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products. PMID:24431202

  1. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  2. Nitric Oxide Metabolites and Asymmetric Dimethylarginine Concentrations in Breast Milk

    Directory of Open Access Journals (Sweden)

    Hakan Öztürk

    2017-04-01

    Full Text Available Objective: Nitric oxide plays a preventive role in the development of necrotizing enterocolitis. Oral nitrite and nitrate intake has gained importance with the discovery of the conversion of nitrite to nitric oxide in acidic medium out of the synthesis of nitric oxide from L-arginine. Objective of this study was to examine the breast milk concentrations of nitric oxide and asymmetric dimethylarginine which is a competitive inhibitor of nitric oxide and to compare these concentrations in terms of gestational age and maturity of breast milk. Study Design: Forty-one women were included in the study. Milk samples were collected from 3 groups of mothers as term, late preterm and preterm on the postpartum days 3, 7 and 28. Results: When breast milk concentrations of nitric oxide were compared according to the postnatal day of the milk independently from gestational age; nitric oxide concentration was higher in the colostrum than in the transition milk and mature milk (p=0,035; p=0,001; respectively. For the comparison of asymmetric dimethylarginine concentrations among these groups and days; no statistically significant difference was observed in terms of gestational age and maturity of the milk (p=0.865, p=0.115; respectively. Conclusion: The highest nitric oxide concentration was found in the colostrum, suggesting that colostrum is a valuable food for newborns. Plasma concentrations of asymmetric dimethylarginine were negatively correlated with nitric oxide and did not show a correlation with breast milk, suggesting that asymmetric dimethylargininedoesn’t make nitric oxide inhibition in breast milk.

  3. Nitric oxide and TGF-β1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF-β1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF-β1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF-β1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF-β1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF-β1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  4. Incidence of Cronobacter sakazakii in Dairy-based Desserts

    Directory of Open Access Journals (Sweden)

    Nagah M. Saad

    2018-04-01

    Full Text Available Cronobacter sakazakii is one of emerging foodborne pathogens around the world. A total of 90 dairy-based desserts samples (ice cream, Muhallabia and rice pudding were examined for detecting C. sakazakii. All samples were submitted for bacteriological examination and confirmed by molecular identification using 16S rRNA gene for C. sakazakii. The bacteriological and molecular examination revealed that the incidence of occurrence of C. sakazakii was 5.55% from the total dairy-based desserts samples, the highest percentage occurred in rice pudding samples (10%, while the incidence of C. sakazakii in ice cream and Muhallabia were 3.33% for each type. The results pointed out that high risk for human may occur by contaminated dairy-based desserts. The hygienic precautions must be taken during the processing of these types of products.

  5. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease.

    Science.gov (United States)

    Santos-Lobato, Bruno Lopes; Borges, Vanderci; Ferraz, Henrique Ballalai; Mata, Ignacio Fernandez; Zabetian, Cyrus P; Tumas, Vitor

    2018-04-01

    Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    OpenAIRE

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.; Park, S-H.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression na...

  7. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Hermansen, Mette N; Nielsen, Kim G

    2005-01-01

    BACKGROUND: Exercise-induced bronchoconstriction (EIB) is of particular importance in children with asthma. It is an important measure of asthma control and should be monitored by exercise testing. However, exercise testing puts a large demand on health-care resources and is therefore not widely...... used in routine monitoring of pediatric asthma control. The fractional concentration of exhaled nitric oxide (FeNO) also reflects uncontrolled asthma. We hypothesized that FeNO may be used for prescreening of asthmatic children to exclude those with good asthma control unlikely to have EIB, thereby...... reducing the need for exercise testing. OBJECTIVE: The aim of this study was to estimate the value of FeNO as a predictor of EIB in asthmatic children. METHODS: Stable outpatient asthmatic school children performed standard exercise challenge tests and measurement of FeNO. RESULTS: FeNO and response...

  8. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  9. Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza

    2012-01-06

    Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  11. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  12. How to protect liver graft with nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Hassen Ben Abdennebi; Mohamed Amine Zaoualí; Izabel Alfany-Fernandez; Donia Tabka; Joan Roselló-Catafau

    2011-01-01

    Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting "endogenous" pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative "exogenous" pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.

  13. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Mahua G Choudhury

    Full Text Available The air-breathing singhi catfish (Heteropneustes fossilis is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a the possible induction of inducible nitric oxide synthase (iNOS gene with enhanced production of nitric oxide (NO by intra-peritoneal injection of lipopolysaccharide (LPS (a bacterial endotoxin, and (b to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted

  14. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Wu Defeng; Cederbaum, Arthur

    2006-01-01

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G -Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  15. Isolation of Cronobacter sakazakii from different herbal teas

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2011-01-01

    Full Text Available Bacground/Aim. Cronobacter sakazakii (C. sakazakii is an emerging food-borne pathogen that has increasingly raised interest among the whole public community and food industry, especially in the production of powder infant formula. It has been isolated from water, sediment and soil. The question is whether this pathogen can be present in herbal teas. Herbal teas are widely used for great number of health problems, as an additional or sometimes only “medicine” given. The aim of this study was to investigate the presence of C. sakazakii in herbal teas which are traditionally used for all restricted populations, including newborns and immunocompromised infant and adults. Methods. In this study 150 samples of dried herbal teas were tested: Children (Baby tea (11, Althaea officinalis (7, Sennae folium (4, Mentha piperita (8, Hypericum perforatum (3, Thymus serpyllum (5, Matricaria recutita (6, Fruit tea (18, Black, Green and Rooibos tea (11, Salvia officinalis (9, Arctostaphylos uva ursi (5, Urtica dioica (3, Achillea millefolium (2, Melissa officinalis (4, Cynosbati fructus (3, Flower Herbal tea (3 and 17 different mixtures of tea (48 samples. The presence of C. sakazakii was also investigated in previously positive samples of prepared teas (48 samples after 2 h, 12 h and 24 h. C. sakazakii was isolated by the use of the official method ISO TS 22964 : 2006 and confirmed with the biochemical test API 20E (Biomerieux-France. Results. The obtained results showed that C. sakazakii was isolated from 48 (32% samples dried herbal teas. C. sakazakii was not isolated only from 2 (4% of the 48 tested samples of prepared tea and in 46 (96% of the samples C. sakazakii remained viable after 2 h, 12 h and 24 h. Conclusion. Herbal teas should be carefully used, especially for infants and immunocompromited people with severe chronic diseases because of the possibility of infection by C. sakazakii. Better control and improve testing as well as new facts about

  16. Role of nitric oxide in targeted-subcellular organelles induced bystander effect

    International Nuclear Information System (INIS)

    Shao Chunlin; Folkard, M.; Prise, K.M.

    2007-01-01

    The work is to investigate the bystander effect and related signaling factor induced by targeted irradiation on tumor cells. Human glioblastoma T98G cells were irradiated with a precise number of helium microbeam ions, which targeted to either nuclear or cytoplasm. Chromosome damage and intracellular NO level were assayed. Influence of a NO free radical scavenger on these radiation responses was measured. Using DEANO, the cellular effect of NO was also studied. It was found that even only one cell with a population was targeted with one particle through either nuclear or cytoplasm, additional cellular damage was induced in other 10s cells through a signaling amplification pathway and related bystander response. Although cell damage induced directly by nuclear irradiation was greater than that induced by cytoplasmic irradiation, bystander responses induced by these two kinds of irradiation were similar. When a fraction of cells were individually irradiated by helium ions, the yield of micronuclei was obviously higher than that assuming no bystander effect. However, these targeted irradiation induced bystander response were inhibited by c-PTIO, a scavenger of nitric oxide (NO) free radical. Detected with a NO molecular probe DAF-AM, it was observed that when only 1% of cells were irradiated either through nuclear or cytoplasm, the percentage of NO-positive cells increased by about 30% so that the NO-related fluorescence intensity increased by 15%. Moreover, micronuclei were induced indeed in T98G cells treated with a NO donor. These indicate that NO is a bystander signaling factor for both nuclear irradiation and cytoplasmic irradiation. (authors)

  17. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    Science.gov (United States)

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  18. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  19. On hydrazine oxidation in nitric acid media

    International Nuclear Information System (INIS)

    Zil'berman, B.Ya.; Lelyuk, G.A.; Mashkin, A.N.; Yasnovitskaya, A.L.

    1988-01-01

    Yield of products of radiolytic ( 60 Co gamma radiation) and chemical hydrazine (HZ) oxidation in nitric acid media is studied. Under radiolyte HZ oxidation by nitric acid hydrazoic acid, ammonia and nitrogen appear to be the reaction products. HN 3 yield maximum under HZN oxidation makes up ∼ 0.35 mol per a mol of oxiduzed HZN. Under chemical oxidation HZN is oxidized by HNO 3 according to reaction catalysed by technetium HN 3 yield makes up ∼ 0.35 mol per a mol of oxidized HZN. Radiation-chemical oxidation of HN 3 proceeds up to its complete decomposition, decomposition rate is comparable with HZ oxidation rate. Under the chemical oxidation HN 3 is more stable, it is slowly decomposed after complete HZ decomposition

  20. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion.

    Science.gov (United States)

    Kolarow, Richard; Kuhlmann, Christoph R W; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.

  1. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    Science.gov (United States)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  2. Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: role of nitric oxide.

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    Full Text Available In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times.

  3. The lack of effects of zinc and nitric oxide in initial state of pilocarpine-induced seizures.

    Science.gov (United States)

    Noyan, Behzat; Jensen, Morten Skovgaard; Danscher, Gorm

    2007-07-01

    In this study we investigated whether intracerebroventricular (i.c.v.) injection of L-NAME (a nitric oxide synthase inhibitor) or CaEDTA (an extracellular zinc chelator) or the combination of the two could affect the initial phase of pilocarpine induced (2 h) seizures. Two groups of rats were used. Animals from both groups were given with i.c.v. injections of either saline (10 microl), L-NAME (150 microg/10 microl), CaEDTA (100 mM/10 microl) or L-NAME and CaEDTA. One group received pilocarpine HCl (380 mg/kg i.p.) the other served as control. Pilocarpine HCl was injected intraperitoneally 10 min later. The behavior of the animals was observed for 2h and the intensity of their seizures was scored. The rats were then sacrificed and their brains were removed and analyzed for zinc ions by using the immersion autometallography and the TSQ fluorescence staining. All the animals which received pilocarpine HCl developed seizures. Despite treatment with L-NAME and/or CaEDTA we found that the latency and the intensity of seizures were similar in both groups investigated. The distribution of stainable zinc ions and the intensity of staining in hippocampus were not affected by pilocarpine and found unchanged after L-NAME and/or CaEDTA injections in both the control animals and the pilocarpine treated animals. The data suggest that the nitric oxide system and zinc ions do not affect pilocarpine-induced seizures in their initial state.

  4. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  5. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  6. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  7. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults

    NARCIS (Netherlands)

    Thijs, Willemien; de Mutsert, Renée; le Cessie, Saskia; Hiemstra, Pieter S.; Rosendaal, Frits R.; Middeldorp, Saskia; Rabe, Klaus F.

    2014-01-01

    Exhaled nitric oxide is a noninvasive measure of airway inflammation that can be detected by a handheld device. Obesity may influence the reproducibility of exhaled nitric oxide measurements, by - for instance - decreased expiratory reserve volume. We analyzed triple exhaled nitric oxide

  8. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    Science.gov (United States)

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  9. Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia

    Directory of Open Access Journals (Sweden)

    Poonsit Hiransai

    2016-11-01

    Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-M-induced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7 macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.

  10. Flame thermometry using laser-induced-grating spectroscopy of nitric oxide

    Science.gov (United States)

    Luers, Andrew; Salhlberg, Anna-Lena; Hochgreb, Simone; Ewart, Paul

    2018-03-01

    A systematic study of laser-induced thermal-grating scattering (LITGS) using nitric oxide as an absorbing species is presented as a means of thermometry in air-fed combustion. The relative contributions to the scattered signal from degenerate four-wave mixing, DFWM, and from laser-induced thermal-grating scattering, LITGS, are studied in the time domain for NO in N2 buffer gas up to 4 bar, using a pulsed laser system to excite the (0,0) γ-bands of NO at 226.21 nm. LITGS signals from combustion-generated NO in a laminar, pre-mixed CH4/O2/N2 flame on an in-house constructed slot burner were used to derive temperature values as a function of O2 concentration and position in the flame at 1 and 2.5 bar total pressure. Temperature values consistent with the calculated adiabatic flame temperature were derived from averaged LITGS signals over 50-100 single shots at 10 Hz repetition rate in the range 1600-2400 K with a pressure-dependent uncertainty of ± 1.8% at 1 bar to ± 1.4% at 2.5 bar. Based on observed signal-to-noise ratios, the minimum detectable concentration of NO in the flame is estimated to be 80 ppm for a 5 s measurement time at 10 Hz repetition rate.

  11. The effect of weight loss on serum concentrations of nitric oxide induced by short - term exercise in obese women

    Directory of Open Access Journals (Sweden)

    M Olszanecka-Glinianowicz

    2009-07-01

    Full Text Available Objective: The aim of present study was to examine the effect of weight loss comprising regular moderate physical activity on resting serum concentrations of nitric oxide metabolites and exercise induced NO release. Materials and Methods: The study was carried out in 43 obese women without additional diseases (age 41.8±11.9y, body weight 94.5±15.1kg, BMI 36.5±4.6kg/m2. All obese patients participated in a 3-month weight reduction programme that consisted of 1 a group instruction in behavioural and dietary methods of weight control every two weeks; 2 1000-1400kcal/day balanced diet, and 3 moderate physical exercises (30 minutes, 3 times a week. Before and after treatment body mass and height were measured, body mass index (BMI was calculated. Body composition was determined by impedance analysis using a Bodystat analyser. The serum concentration of nitric oxide metabolites before and after exercise was measured using spectrophotometry method by Griess. The serum concentrations of lactate before and after exercise were measured with the use of strip test (ACCUSPORT analyzer. Serum concentration of insulin was measured with the use of RIA. Plasma glucose, cholesterol, HDL cholesterol and triglicerydes were determined by enzymatic procedure. Results: The mean weight loss during treatment was 8.3±4.3 kg. We did not observe differences between resting serum concentrations of NO and lactate before and after weight loss. During exercise serum NO concentrations increased significantly both before and after weight loss treatment. After the weight reduction treatment, the time of exercise test increased significantly P<0.005, but there were no significant differences between the value of NO before and after weight loss. Conclusion: 3 – month regular physical activity and weight loss did not influence exercise-induced nitric oxide production.

  12. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    Science.gov (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in Raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Martíšková, Hana; Vašíček, Ondřej; Binó, Lucia; Klinke, A.; Lau, D.; Kuchta, R.; Kadlec, J.; Vrba, R.; Kubala, Lukáš

    2011-01-01

    Roč. 11, - (2011), s. 2443-2457 ISSN 1537-744X R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : macrophage s * L-arginine * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 1.524, year: 2010

  14. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  15. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  16. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    Science.gov (United States)

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  17. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  18. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  19. Role of nitric oxide in the radiation-induced bystander effect.

    Science.gov (United States)

    Yakovlev, Vasily A

    2015-12-01

    Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The Effect of Central Amygdala Nitric Oxide in Expression Of Drug Seeking Behaviors

    Directory of Open Access Journals (Sweden)

    Mahnaz Rahimpour

    2011-11-01

    Full Text Available Introduction: Previous studies shows L-arginin (nitric oxide precursor increases conditioned place preference and drug seeking behaviors whereas LG-nitro-arginine methyl ester L-NAME( as nitric oxide synthase inhibitor decreases this process. In this project, effects of intra-central amygdale bilateral injection of nitric oxide agents on drug-seeking behaviors including rearing, sniffing and compartment entrance were investigated. Method: animals were wistar male rats (200-250 g which allowed to be recovered after they’re being suffered from a surgery by strereotaxis apparatus to be cannulated in coordination of central amygdale nucleus (CeA. CPP was conducted using a five-day schedule of unbiased procedure. Findings: morphine (2.5-10 mg/kg s.c induced significant drug-seeking behaviors. Naloxone (0.1-0.4 mg/kg i.p injection pretesting (after conditioning by morphine 7.5 mg/kg decreased the expression of behaviors. When L-arginine (0.3-3 µgr/rat injected intra–CeA prior to naloxone (0.4 mg/kg, increased behaviors but L-NAME (0.3-3 µgr/rat intra–CeA injections prior to L-arginine (0.3 µgr/rat pretesting, caused significant decreasement of L-arginine response. Conclusion: NO in the CeA may play an important role in the drug seeking behaviors induced of morphine.

  1. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    OpenAIRE

    Ning Xia; Andrea Pautz; Ursula Wollscheid; Gisela Reifenberg; Ulrich Förstermann; Huige Li

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects ...

  2. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  4. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-rela...

  5. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells.

    Science.gov (United States)

    Gharun, Kourosh; Senges, Julia; Seidl, Maximilian; Lösslein, Anne; Kolter, Julia; Lohrmann, Florens; Fliegauf, Manfred; Elgizouli, Magdeldin; Vavra, Martina; Schachtrup, Kristina; Illert, Anna L; Gilleron, Martine; Kirschning, Carsten J; Triantafyllopoulou, Antigoni; Henneke, Philipp

    2017-12-01

    Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state. © 2017 The Authors.

  6. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  7. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Birenbaum, Aurélie; Tesse, Angela; Loyer, Xavier; Michelet, Pierre; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno; Amour, Julien

    2008-12-01

    In senescent heart, beta-adrenergic response is altered in parallel with beta1- and beta2-adrenoceptor down-regulation. A negative inotropic effect of beta3-adrenoceptor could be involved. In this study, the authors tested the hypothesis that beta3-adrenoceptor plays a role in beta-adrenergic dysfunction in senescent heart. beta-Adrenergic responses were investigated in vivo (echocardiography-dobutamine, electron paramagnetic resonance) and in vitro (isolated left ventricular papillary muscle, electron paramagnetic resonance) in young adult (3-month-old) and senescent (24-month-old) rats. Nitric oxide synthase (NOS) immunolabeling (confocal microscopy), nitric oxide production (electron paramagnetic resonance) and beta-adrenoceptor Western blots were performed in vitro. Data are mean percentages of baseline +/- SD. An impaired positive inotropic effect (isoproterenol) was confirmed in senescent hearts in vivo (117 +/- 23 vs. 162 +/- 16%; P < 0.05) and in vitro (127 +/- 10 vs. 179 +/- 15%; P < 0.05). In the young adult group, the positive inotropic effect was not significantly modified by the nonselective NOS inhibitor N-nitro-L-arginine methylester (L-NAME; 183 +/- 19%), the selective NOS1 inhibitor vinyl-L-N-5(1-imino-3-butenyl)-L-ornithine (L-VNIO; 172 +/- 13%), or the selective NOS2 inhibitor 1400W (183 +/- 19%). In the senescent group, in parallel with beta3-adrenoceptor up-regulation and increased nitric oxide production, the positive inotropic effect was partially restored by L-NAME (151 +/- 8%; P < 0.05) and L-VNIO (149 +/- 7%; P < 0.05) but not by 1400W (132 +/- 11%; not significant). The positive inotropic effect induced by dibutyryl-cyclic adenosine monophosphate was decreased in the senescent group with the specific beta3-adrenoceptor agonist BRL 37344 (167 +/- 10 vs. 142 +/- 10%; P < 0.05). NOS1 and NOS2 were significantly up-regulated in the senescent rat. In senescent cardiomyopathy, beta3-adrenoceptor overexpression plays an important role in the

  8. Cronobacter sakazakii reduction by blueberry proanthocyanidins.

    Science.gov (United States)

    Joshi, Snehal S; Howell, Amy B; D'Souza, Doris H

    2014-05-01

    Blueberry juice and blueberry polyphenols reportedly have antimicrobial properties against foodborne pathogens, without much currently known on their effects against Cronobacter sakazakii. This study evaluated the antimicrobial effects of blueberry proanthocyanidins (PAC) and commercial blueberry juice (BJ) against two strains of C. sakazakii, ATCC 29004 and 29544. BJ (pH 2.8), blueberry PAC (5 mg/ml) and controls (phosphate buffered saline (PBS), pH 7.2, and malic acid pH 3.0) were mixed with equal volumes of washed overnight cultures of C. sakazakii and incubated for 30 min, 1 h, 3 h and 6 h at 37°C. Reductions of ∼1 and 1.50 log CFU/ml were obtained for strains 29004 and 29544, respectively after 30 min with BJ or blueberry PAC. Both C. sakazakii strains 29004 and 29544 were reduced to undetectable levels from 8.25 ± 0.12 log CFU/ml and 8.48 ± 0.03 log CFU/ml, respectively with BJ (pH 2.8) or blueberry PAC after 1 h, while malic acid (pH 3.0) showed ∼1.3 log CFU/ml reduction for both strains. Scanning electron microscopy studies showed differences in cell membrane morphology with clumping and formation of blebs of the treated strains compared to untreated controls. These results warrant further in vivo studies with blueberry bioactives to determine potential for preventing and treating C. sakazakii infections. Copyright © 2013. Published by Elsevier Ltd.

  9. Serotonin-induced vasodilatation in the human forearm is mediated by the "nitric oxide-pathway": no evidence for involvement of the 5-HT3-receptor

    NARCIS (Netherlands)

    Bruning, T. A.; Chang, P. C.; Blauw, G. J.; Vermeij, P.; van Zwieten, P. A.

    1993-01-01

    The "nitric oxide (NO)-pathway" is presumed to be involved in acetylcholine (ACh)- and serotonin (5-hydroxytryptamine, 5-HT)-mediated vasodilatation. In addition, both the 5-HT-induced transient and persistent vasodilator responses in the forearm vascular bed are abolished by the

  10. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  11. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  12. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells

    International Nuclear Information System (INIS)

    Ulanova, Marina; Marcet-Palacios, Marcelo; Munoz, Samira; Asfaha, Samuel; Kim, Moo-Kyung; Schreiber, Alan D.; Befus, A. Dean

    2006-01-01

    We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in β1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via β1 integrins, suggesting that TNF and β1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-κB. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders

  13. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    International Nuclear Information System (INIS)

    Chiueh, C.C.; Andoh, Tsugunobu; Chock, P. Boon

    2005-01-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of ·NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating · NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation. Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP + ). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and · NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP + , which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in · NO-dependent preconditioning hormesis against MPTP/MPP +

  14. Nitric oxide and HSV vaginal infection in BALB/c mice

    International Nuclear Information System (INIS)

    Benencia, Fabian; Gamba, Gisela; Cavalieri, Hernan; Courreges, Maria Cecilia; Benedetti, Ruben; Villamil, Soledad Maria; Massouh, Ernesto Jorge

    2003-01-01

    Here we study the role of nitric oxide in the vaginal infection of Balb/c mice with herpes simplex virus type 2. Inducible nitric oxide synthase (iNOS) mRNA was detected by RT-PCR in vaginal tissue and inguinal lymph nodes early postinfection. iNOS was also found to be activated in cells recovered from vaginal washings of infected animals. Animals treated with aminoguanidine (AG), an iNOS inhibitor, showed a dose-dependent increase in vaginal pathology after viral infection compared to controls. Viral titers in vaginal washings and vaginas were higher in AG-treated mice. Treated animals presented higher PMN counts in vaginal washings compared to controls. Histopathology studies revealed a profound inflammatory exudate in vaginal tissue of treated animals. Finally, RT-PCR analysis showed increased expression of the chemokines MIP-2 and RANTES in vaginal tissue and inguinal lymph nodes of these animals

  15. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  16. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  17. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    Science.gov (United States)

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  18. Nitric Oxide - Its Importance in Swallowing, Inflammatory Bowel Disease and Cirrhotic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    ABR Thomson

    2001-01-01

    Full Text Available Nitric oxide is a neurotransmitter found in the central and peripheral nervous systems. Nitric oxide synthase (NOS is localized in the central nervous system, including the nucleus of the solitary tract, nucleus ambiguus and dorsal motor nucleus of the vagus. These are regions that are implicated in the central control of swallowing and esophageal motility. In rats and rabbits, NOS has been shown to be present in the nucleus subcentralis of the nucleus of the solitary tract, and is thought to be responsible for the central programming of the striated muscle component of esophageal peristalsis. Beyak and co-workers from the University of Toronto, Toronto, Ontario provided evidence that the L-arginine-nitric oxide pathway is implicated in the central control of swallowing and esophageal motility. They studied oropharyngeal swallowing as well as esophageal peristalsis, and determined the functional role of brain stem nitric oxide by examining the effects of blockade of central nervous system NOS on swallowing, and on primary and secondary peristalsis. Administering NOS inhibitors intravenously or intracerebroventricularly into the fourth ventricle produced a number of oropharyngeal swallows and induced primary peristalsis in the smooth muscle portion of the esophageal body. NOS reduced the number of oropharyngeal swallows and the incidence of primary peristalsis in both smooth and striated muscle, and reduced the amplitude of peristalsis and smooth muscle contraction. This suggests that nitric oxide is a functional neurotransmitter in the central pattern generator responsible for swallowing and the central control of esophageal peristalsis. Peripherally administered NOS inhibitor can access structures within the blood-brain barrier to affect neuronal activity and physiological function. The central pattern generated for swallowing and esophageal peristalsis is suggested to be a serial network of linked neurons within the nucleus of the solitary

  19. Nitric oxide production is not required for dihydrosphingosine-induced cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Da Silva, Daniel; Lachaud, Christophe; Cotelle, Valérie; Brière, Christian; Grat, Sabine; Mazars, Christian; Thuleau, Patrice

    2011-05-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium dependent programmed cell death (PCD) in tobacco BY-2 cells. In addition, we have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction. 

  20. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  1. The correlation between total antioxidant capacity and nitric oxide ...

    African Journals Online (AJOL)

    DNA damage was measured by comet assay and nitric oxide concentration was evaluated by Griess assay. TAC was measured in seminal plasma based on the generation of peroxyl radicals from 2,2-azinobis (2-amidino propane) dihydrochlorid (AAPH). Our results show that the means of DNA damage and nitric oxide ...

  2. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  3. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  4. Sevoflurane-induced Preconditioning Impact of Protocol and Aprotinin Administration on Infarct Size and Endothelial Nitric-Oxide Synthase Phosphorylation in the Rat Heart In Vivo

    NARCIS (Netherlands)

    Fräßdorf, Jan; Huhn, Ragnar; Weber, Nina C.; Ebel, Dirk; Wingert, Nadja; Preckel, Benedikt; Toma, Octavian; Schlack, Wolfgang; Hollmann, Markus W.

    2010-01-01

    Background Sevoflurane induces preconditioning (SevoPC) 1 he effect of aprotinin and the involvement of endothelial nitric-oxide synthase (NOS) on SevoPC are unknown We investigated (1) whether SevoPC is strengthened by multiple preconditioning cycles (2) whether SevoPC is blocked by aprotinin, and

  5. Cannula sensor for nitric oxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Glazier, S.A. [National Institute of Standard and Technology, Gaithersburg, MD (United States)

    1995-12-31

    Nitric oxide (NO) has received much attention because of its numerous roles in mammalian systems. It has been found in the brain and nervous system to act as a neurotransmitter, in blood vessels as a blood pressure regulator, in the immune system to act as a bactericide and tumorcide, and in other postulated roles as well. Nitric oxide is produced in mammalian cells by the enzyme nitric oxide synthetase. Once produced, NO is oxidized or reacts rapidly with components in living systems and hence has a short half-life. Only a few sensors have been constructed which can detect NO at nanomolar to micromolar levels found in these systems. We are currently examining the use of a cannula sensor employing oxyhemoglobin for NO detection. This sensor continuously draws in liquid sample at a low rate and immediately reacts it with oxyhemoglobin. The absorbance changes which accompany the reaction are monitored. The sensor has a linear response range from approximately 50 to 1000 nM of NO in aqueous solution. Its utility in monitoring NO produced by stimulated murine macrophage cells (RAW 264.7) in culture is currently being examined. The sensor design is generic in that it can also employ fluorescence and chemiluminescence detection chemistries which may allow lower detection limits to be achieved. Details of the sensor`s performance will be given.

  6. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  7. JS-K, a nitric oxide prodrug, induces cytochrome c release and caspase activation in HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Udupi, Vidya; Yu, Margaret; Malaviya, Swati; Saavedra, Joseph E; Shami, Paul J

    2006-10-01

    Nitric oxide (NO) induces differentiation and apoptosis in acute myelogenous leukemia (AML) cells. The NO prodrug O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate, or JS-K, has potent antileukemic activity. JS-K induces apoptosis in HL-60 cells by a caspase-dependent mechanism. The purpose of this study was to determine the pathway through which JS-K induces apoptosis. We show that JS-K alters mitochondrial membrane potential (DeltaPsim) and induces cytochrome c release from mitochondria into the cytoplasm. Treatment with JS-K resulted in activation of Caspase (Casp) 9, Casp 3 and Casp 8. JS-K constitutes a promising lead for a new class of anti-leukemic agents.

  8. Enterobacter sakazakii in infants: Novel phenomenon in India

    Directory of Open Access Journals (Sweden)

    Ray P

    2007-01-01

    Full Text Available E. sakazakii has been implicated in necrotizing enterocolitis, bloodstream and central nervous system infections, with mortality rates of 40-80%. Two cases of E. sakazakii infections; one preterm very low birth weight neonate with meningitis and a two month infant with bacteraemia, are described for the first time in India. The first baby succumbed to the infection while the other responded to appropriate therapy. Powdered infant milk formulae have been implicated in causing neonatal infections and the first baby was on formula feed with classic signs of sepsis and meningitis. The second infant was on breast feed and probably developed nosocomial E. sakazakii bacteraemia.

  9. Manipulation of nitric oxide in an animal model of acute liver injury ...

    African Journals Online (AJOL)

    We evaluated the impact of altering nitric oxide release on acute liver injury, the associated gut injury and bacterial translocation, at different time intervals. Methods: An acute rat liver injury model induced by D-galactosamine was used. Sprague Dawley rats were divided into four main groups: normal control, acute liver ...

  10. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  11. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  12. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  14. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  15. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  16. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  17. Zeolites as catalyzer to environmental control. Nitric oxide removal

    International Nuclear Information System (INIS)

    Montes, C.; Zapata N, M; Villa H, A.L.

    1995-01-01

    Zeolites and the microporous materials related to them are a class of environmental catalysts, it which are used to remove the produced gases in combustion process (as mobile sources). In this work the importance that has catalysis for environment improvement is emphasized. A review of recent progress in the use of certain zeolitic material as catalysts for nitric oxide elimination of combustion systems is presented. More used nitric oxide removal methods are presented, as well as its advantages and disadvantages. Furthermore, it is emphasized on the need of accomplishing more investigation projects on the development of an active catalyst for the decomposition of the nitric oxide in its elements (N and O)

  18. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  19. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  20. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean

    International Nuclear Information System (INIS)

    Souza, Silvia R.; Blande, James D.; Holopainen, Jarmo K.

    2013-01-01

    The roles that ozone and nitric oxide (NO), the chief O 3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O 3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O 3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O 3 (NO/O 3 ) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O 3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O 3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds. -- Highlights: •NO and O 3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants. •Exposure to NO before exposure to O 3 does not alter the antioxidant defenses and malondialdehyde levels. •The total sum of induced volatiles is reduced in plants that are exposed to NO and then O 3 . •The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O 3 . -- Capsule: Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect

  1. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis

    International Nuclear Information System (INIS)

    Leterrier, Marina; Airaki, Morad; Palma, José M.; Chaki, Mounira; Barroso, Juan B.; Corpas, Francisco J.

    2012-01-01

    Environmental contamination by arsenic constitutes a problem in many countries, and its accumulation in food crops may pose health complications for humans. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved at various levels in the mechanism of responding to environmental stress in higher plants. Using Arabidopsis seedlings exposed to different arsenate concentrations, physiological and biochemical parameters were analyzed to determine the status of ROS and RNS metabolisms. Arsenate provoked a significant reduction in growth parameters and an increase in lipid oxidation. These changes were accompanied by an alteration in antioxidative enzymes and the nitric oxide (NO) metabolism, with a significant increase in NO content, S-nitrosoglutathione reductase (GSNOR) activity and protein tyrosine nitration as well as a concomitant reduction in glutathione and S-nitrosoglutathione (GSNO) content. Our results indicate that 500 μM arsenate (AsV) causes nitro-oxidative stress in Arabidopsis, being the glutathione reductase and the GSNOR activities clearly affected. - Highlights: ► In Arabidopsis, arsenate provokes damages in the membrane integrity of root cells. ► As induces an oxidative stress according to an increase in lipid oxidation. ► NO content and protein tyrosine nitration increases under arsenate stress. ► Arsenate provokes a reduction of GSH, GSSG and GSNO content. ► Arsenate induces a nitro-oxidative stress in Arabidopsis. - Arsenic stress affects nitric oxide (NO) and glutathione (GSH) metabolism which provokes a nitro-oxidative stress.

  2. Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide

    Science.gov (United States)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681

  3. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Directory of Open Access Journals (Sweden)

    Irene Cuadrado

    Full Text Available Inhibition of Extracellular Matrix degradation by nitric oxide (NO induces cardiac protection against coronary ischemia/reperfusion (IR. Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN stimulates enzymatic activation of matrix metalloproteinases (MMPs in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2 knockout (KO mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9, in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF. NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6. The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5, or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  4. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Science.gov (United States)

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  5. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    Science.gov (United States)

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  6. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  7. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    Science.gov (United States)

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours

    Directory of Open Access Journals (Sweden)

    Vegh Irene

    2007-11-01

    Full Text Available Abstract Background The N-Nitrosomethylurea breast cancer model induced in rats is used for the study of carcinogenesis in mammary cancer, prostate, pancreas, etc. This model is very similar to human neoplastic disease. Methods The present experimental study was designed to assess whether metoclopramide administration has any effect on development of MNU-induced tumours, and evaluate the treatment of goserelin acetate on PRL, TNF alpha and NO expression. NMU was administered to female Wistar rats on 2 occasions (5 mg/100 g body w/rat. PRL and TNF alpha were performed by immune-assay. Nitric Oxide by semi automated-assay and ploidy analyses by flow cytometry. Results The administration of metoclopramide made the induction time shorter and increased the incidence and average of tumours per rat. Tumours development was inhibited by a goserelin chronic administration. The ploidy of adenocarcinoma was polyploid-aneuploid type (average S = 60%. It was higher basal PRL plasma levels in rats with NMU induced tumours than in basal controls without tumour (p Conclusion The increase of blood PRL levels in NMU-induced rats may be an indicator of a poor prognosis of mammary cancer evolution. The metoclopramide administration accelerates tumour growth. However goserelin administration achieves regression in tumour development associated to inhibition PRL, TNF alpha and NO expression.

  9. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin.

    Science.gov (United States)

    Ribeiro-Junior, Jerônimo Aparecido; Franchin, Marcelo; Cavallini, Miriam Elias; Denny, Carina; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2015-01-01

    The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH) groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg) reduced the ulcerative lesions induced by the ethanol (P 0.05). These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  10. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin

    Directory of Open Access Journals (Sweden)

    Jerônimo Aparecido Ribeiro-Junior

    2015-01-01

    Full Text Available The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg reduced the ulcerative lesions induced by the ethanol (P0.05. These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  11. Long-term treatment of anterior pituitary cells with nitric oxide induces programmed cell death.

    Science.gov (United States)

    Velardez, Miguel Omar; Poliandri, Ariel Hernán; Cabilla, Jimena Paula; Bodo, Cristian Carlos Armando; Machiavelli, Leticia Inés; Duvilanski, Beatriz Haydeé

    2004-04-01

    Nitric oxide (NO) plays a complex role in modulating programmed cell death. It can either protect the cell from apoptotic death or mediate apoptosis, depending on its concentration and the cell type and/or status. In this study, we demonstrate that long-term exposition to NO induces cell death of anterior pituitary cells from Wistar female rats. DETA NONOate (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, 1 mm], a NO donor that releases NO for an extended period of time, decreased cellular viability and prolactin release from primary cultures of anterior pituitary cells. Morphological studies showed an increase in the number of cells with chromatin condensation and nuclear fragmentation at 24 and 48 h after DETA/NO exposure. DNA internucleosomal fragmentation was also observed at the same time. Reversibility of the NO effect on cellular viability and prolactin release was observed only when the cells were incubated with DETA/NO for less than 6 h. Most apoptotic cells were immunopositive for prolactin, suggesting a high susceptibility of lactotrophs to the effect of NO. The cytotoxic effect of NO is dependent of caspase-9 and caspase-3, but seems to be independent of oxidative stress or nitrosative stress. Our results show that the exposition of anterior pituitary cells to NO for long periods induces programmed cell death of anterior pituitary cells.

  12. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Chen, Fei; Wang, Fang; Sun, Hongyan

    2010-01-01

    M Cd increased the accumulation of O2•-, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress......A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μ...... in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5-15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide...

  13. Genetic responses against nitric oxide toxicity

    Directory of Open Access Journals (Sweden)

    B. Demple

    1999-11-01

    Full Text Available The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1 synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.

  14. Reactive oxygen species and nitric oxide signaling in bystander cells.

    Science.gov (United States)

    Jella, Kishore Kumar; Moriarty, Roisin; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2018-01-01

    It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell

  15. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2016-12-01

    Full Text Available Introduction : Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. Aim: To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS and MPO. Material and methods: A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. Results: While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. Conclusions : Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.

  16. Isolation of Cronobacter spp. (Enterobacter sakazakii from artisanal mozzarella

    Directory of Open Access Journals (Sweden)

    Francesco Casalinuovo

    2014-02-01

    Full Text Available Cronobacter spp. (Enterobacter sakazakii is an opportunistic bacterial pathogen capable of causing disease and even fatalities in newborn infants within the first weeks of life if consumed as part of the diet. Premature and immunocompromised newborn infants are at particular risk. The microorganism has been isolated from a variety of foods including contaminated infant milk formula powder and milk powder substitute. The study aimed to evaluate the level of microbiological contamination in 47 samples of mozzarella cheese made with cow’s milk collected from artisan cheese producers in Southern Italy. Samples were collected from commercial sales points and underwent qualitative and quantitative microbiological analyses to test for the bacterial contaminants most commonly found in milk and cheese products. The 47 samples underwent qualitative and quantitative microbiological tests according to ISO UNI EN standards. Analyses focused on Staphylococcus aures, Salmonella spp., Listeria monocytogenes, Pseudomonas spp., E. coli, Yersinia spp., total coliforms and Cronobacter sakazakii. The ISO/TS 22964:2006 method was used to investigate possible contamination by C. sakazakii. Biochemical identification was carried out using an automated system for identification and susceptibility tests. None of the samples examined resulted positive for Salmonella spp. or Listeria spp. Only one sample resulted positive for Staphylococcus aureus. Pseudomonas spp. was isolated in 10 (21% of 47 samples. High levels of total coliforms were found in 10 of 47 samples. Cronobacter spp. (Enterobacter sakazakii was isolated in one sample. This is the first study to confirm isolation of C. sakazakii in artisan mozzarella cheese made from cow’s milk. The presence of C. sakazakii could be related to external contamination during the phases of production or to the use of contaminated milk. Since mozzarella is recommended in the diet of children and adults of all ages, this

  17. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  19. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats

    NARCIS (Netherlands)

    Wesseling, Sebastiaan; Joles, Jaap A.; van Goor, Harry; Bluyssen, Hans A.; Kemmeren, Patrick; Holstege, Frank C.; Koomans, Hein A.; Braam, Branko

    2007-01-01

    Nitric oxide (NO) depletion in rats induces severe endothelial dysfunction within 4 days. Subsequently, hypertension and renal injury develop, which are ameliorated by alpha-tocopherol (VitE) cotreatment. The hypothesis of the present study was that NO synthase (NOS) inhibition induces a renal

  1. Inducible nitric oxide expression correlates with the level of inflammation in periapical cysts.

    Science.gov (United States)

    Matsumoto, Mariza Akemi; Ribeiro, Daniel Araki

    2007-10-01

    In an attempt to elucidate if inducible nitric oxide expression (iNOS) is correlated with the level of inflammation in periapical cysts with accuracy, the goal of this study was to evaluate the expression of iNOS in these ones. 30 cases were included in this study being iNOS evaluated by means of immunohistochemistry. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the post-hoc Dunn's test. iNOS stain was detected throughout the epithelium, subepithelial fibroblasts and macrophages in all cases, indistinctly. Nevertheless, iNOS immunostaining in periapical cysts was different according to the levels of inflammation, being the strongest effect associated with intense inflammatory infiltrate. Taken together, our results indicate that immunoreactivity of iNOS was expressed in several cellular types present in periapical cyst, being positively correlated with the level of inflammation. Therefore, iNOS expression plays an important role in the pathogenesis of periapical cysts.

  2. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  3. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    Science.gov (United States)

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  4. Stress tolerant virulent strains of Cronobacter sakazakii from food

    Directory of Open Access Journals (Sweden)

    Md Fakruddin

    2014-01-01

    Full Text Available BACKGROUND: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. RESULT: Six (6 Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer, extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. CONCLUSION: Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  5. Toll-like Receptor 4 Signaling Confers Cardiac Protection Against Ischemic Injury via Inducible Nitric Oxide Synthase- and Soluble Guanylate Cyclase-dependent Mechanisms

    Science.gov (United States)

    Wang, E; Feng, Yan; Zhang, Ming; Zou, Lin; Li, Yan; Buys, Emmanuel S.; Huang, Peigen; Brouckaert, Peter; Chao, Wei

    2011-01-01

    Background Prior administration of a small dose of lipopolysaccharide confers a cardiac protection against ischemia-reperfusion injury. However, the signaling mechanisms that control the protection are incompletely understood. We tested the hypothesis that TLR4 mediates the ability of lipopolysaccharide to protect against cardiac ischemia-reperfusion injury through distinct intracellular pathways involving myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor protein inducing interferon-β–mediated transcription-factor (Trif), inducible nitric-oxide synthase (iNOS), and soluble guanylate cyclase (sGC). Methods Wild-type mice and the genetically modified mice, i.e., TLR4-deficient (TLR4-def), TLR2 knockout (TLR2−/−), MyD88−/−, Trif−/−, iNOS−/−, and sGCα1−/−, were treated with normal saline or 0.1 mg/kg of lipopolysaccharide, intraperitoneally. Twenty-four hours later, isolated hearts were perfused in a Langendorff apparatus and subsequently subjected to 30 min of global ischemia and reperfusion for up to 60 min. Left ventricular function and myocardial infarction sizes were examined. Results Compared to saline-treated mice, lipopolysaccharide-treated mice had markedly improved left ventricular developed pressure and dP/dtmax (P < 0.01) and reduced MI sizes (37.2 ± 3.4% vs. 19.8 ± 4.9%, P < 0.01) after ischemia-reperfusion. The cardiac protective effect of lipopolysaccharide was abolished in the TLR4-def and MyD88−/− mice, but remained intact in TLR2−/− or Trif−/− mice. iNOS−/− mice or wild-type mice treated with the iNOS inhibitor 1400W failed to respond to the TLR4-induced nitric oxide production and were not protected by the lipopolysaccharide preconditioning. While sGC 1−/− mice had robust nitric oxide production in response to lipopolysaccharide, they were not protected by the TLR4-elicited cardiac protection. Conclusions TLR4 activation confers a potent cardiac protection against ischemia

  6. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  7. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  8. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species

    DEFF Research Database (Denmark)

    Iversen, Carol; Waddington, Michael; On, Stephen L.W.

    2004-01-01

    The phylogenetic relationships of Enterobacter sakazakii strains were investigated using 16S ribosomal DNA (rDNA) and hsp60 sequencing. Each analysis distributed E. sakazakii strains among four clusters, indicating substantial taxonomic heterogeneity. The E. sakazakii type strain 16S rDNA sequence...... was 97.8% similar to that of Citrobacter koseri but 97.0% similar to that of Enterobacter cloacae....

  9. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  10. The effects of H1-antihistamines on the nitric oxide production by RAW 264.7 cells with respect to their lipophilicity

    Czech Academy of Sciences Publication Activity Database

    Králová, Jana; Račková, L.; Pekarová, Michaela; Kubala, Lukáš; Nosál, R.; Jančinová, V.; Číž, Milan; Lojek, Antonín

    2009-01-01

    Roč. 9, 7-8 (2009), s. 990-995 ISSN 1567-5769 R&D Projects: GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA525/06/1196 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : H1-antihistamines * nitric oxide * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 2.214, year: 2009

  11. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    International Nuclear Information System (INIS)

    Na, Young Ho; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup; Kumar, Naresh

    2015-01-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development. (paper)

  12. Chronic deficiency of nitric oxide affects hypoxia inducible factor-1α (HIF-1α stability and migration in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Cattaneo

    Full Text Available BACKGROUND: Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs were investigated. RESULTS: Endothelial nitric oxide synthase (eNOS was chronically inhibited either by N(G-Nitro-L-arginine methyl ester (L-NAME treatment or its expression was down-regulated by RNA interference. After long-term L-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF and VEGF receptor-2 (kinase insert domain receptor, KDR expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α. Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O(2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells. CONCLUSION: Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.

  13. Inhibitory effects of bovine lactoferrin and lactoferricin B on Enterobacter sakazakii.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Yamauchi, Koji; Takase, Mitsunori

    2008-03-01

    The susceptibility of Enterobacter sakazakii, a food-borne pathogen, to several metal-bound forms of bovine lactoferrin (LF), pepsin-hydrolyzed LF (LF-hyd), and LF-derived peptide lactoferricin B (LFcin B) was tested. MIC and MBC testing revealed that 4 strains of E. sakazakii show susceptibility to apo- and Cu-LF, LF-hyd, and LFcin B, but not to Fe-LF, similarly to Escherichia coli. A growth curve test indicated that E. sakazakii was inhibited in a dose-dependent manner by apo-LF at 0.5 to 8 mg/ml. Even after being heated at 80 degrees C, LF at above 1 mg/ml inhibited the bacterial growth. These results suggest that bovine LF-related compounds may be useful for the inhibition of E. sakazakii in foods.

  14. Circulating nitric oxide products do not solely reflect nitric oxide release in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Afzelius, Pia; Bazeghi, Nassim; Bie, Peter

    2011-01-01

    Patients with cirrhosis often develop a systemic vasodilatation and a hyperdynamic circulation with activation of vasoconstrictor systems such as the renin-angiotensin-aldosterone system (RAAS), and vasopressin. Increased nitric oxide (NO) synthesis has been implicated in the development of this ...

  15. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  16. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.

    Science.gov (United States)

    Taverne, Yannick J; de Wijs-Meijler, Daphne; Te Lintel Hekkert, Maaike; Moon-Massat, Paula F; Dubé, Gregory P; Duncker, Dirk J; Merkus, Daphne

    2017-05-01

    Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1 ) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2 ) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3 ) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor N ω -nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ET A /ET B receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ET A /ET B receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers. NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood

  17. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  18. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  19. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity.

    Science.gov (United States)

    Ahn, Soo Kyung; Hong, Samin; Park, Yu Mi; Choi, Ja Yong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2012-12-17

    Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (pAgmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  1. Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication

    DEFF Research Database (Denmark)

    Polzik, Peter; Hansen, Marco Bo; Olsen, Niels Vidiendal

    2017-01-01

    PURPOSE: To determine the effects of a blockade of nitric oxide (NO) synthesis on hyperbaric oxygen (HBO₂) therapy during cyanide (CN) intoxication. METHODS: 39 anesthetized female Sprague-Dawley rats were exposed to CN intoxication (5.4 mg/kg intra-arterially) with or without previous nitric oxide...

  2. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    Science.gov (United States)

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  3. The role of nitric oxide in reproduction

    Directory of Open Access Journals (Sweden)

    McCann S.M.

    1999-01-01

    Full Text Available Nitric oxide (NO plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH. The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP. NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG.

  4. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  5. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  6. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?

    International Nuclear Information System (INIS)

    Liu Jing; Gupta, Ramesh C.; Goad, John T.; Karanth, Subramanya; Pope, Carey

    2007-01-01

    Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with no significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation

  7. DNA sequence changes induced by two nitric oxide donor drugs in the supF assay

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, M.N.; Dipple, A. [ABL-Basic Research Program, Frederick, MD (United States); Wink, D.A.; Keefer, L.K. [National Cancer Institute, Frederick, MD (United States)

    1994-09-01

    To refine our understanding of the mutational spectra one might expect on exposure of human cells to nitric oxide (NO), we have treated the plasmid pSP189 at pH 7.4 with two compounds that generate NO spontaneously in solution, and then sequenced the mutations found when the treated plasmid was transfected into human Ad293 cells and allowed to replicate. G{center_dot}C {yields} A{center_dot}T transitions were the most abundant mutation observed with these NO donor drugs, whereas in previous work, A{center_dot}T {yields} G{center_dot}C transitions predominated when nitric oxide gas was bubbled through the plasmid solution under otherwise identical conditions. A difference in reactive intermediates formed in solution- versus gas-phase NO exposure was demonstrated by treating buffered 2,2{prime}-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) or ferrocyanide, in the presence or absence of azide, aerobically with preformed solutions of NO, with solutions of the two NO-releasing compounds, or with gaseous mixtures of equimolar NO/O{sub 2} in air; oxidation of these substrates was extensive with the gas-phase NO source whether azide was present or not, while azide almost completely quenched the oxidation pathway in the solution-phase reactions.

  8. [Role of restricted nitric oxide overproduction in the cardioprotective effect of adaptation to intermittent hypoxia].

    Science.gov (United States)

    goriacheva, A V; Belkina, L M; Terekhina, O L; Dawney, H F; Mallet, R T; Smirin, B V; Smirnova, E A; Mashina, S Iu; Manukhina, E B

    2012-01-01

    Adaptation to intermittent normobaric hypoxia is cardioprotective and can stimulate nitric oxide (NO) synthesis. However the role of nitric oxide (NO) in prevention of ischemia-reperfusion (IR) injury of myocardium is controversial. This study was focused on evaluating the effect of adaptation to hypoxia and IR on NO production and development of nitrative stress in the myocardium. Adaptation to hypoxia tended to increase NO production, which was determined by the total level of plasma nitrite and nitrate, and prevented IR-induced NO overproduction. The IR-induced NO overproduction was associated with significant 3-nitrotyrosine (3-NT) accumulation in the left ventricle but not in septum or aorta. In hypoxia-adapted rats, 3-NT after IR was similar to that of control rats without IR. IHC induced marked accumulation of HIF-1alpha in the left ventricle. We suggest that HIF-1alpha contributes to NO-synthase expression during adaptation to hypoxia and thereby facilitates the increase in NO production. NO, in turn, may subsequently prevent NO overproduction during IR by a negative feedback mechanism.

  9. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  10. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available The potential role of the human immunodeficiency virus-1 (HIV-1 accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3, thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT-1, STAT-2 and STAT-3 through the production of proinflammatory factors.We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

  11. Unexpected neuronal protection of SU5416 against 1-Methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Wei Cui

    Full Text Available SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2 for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA abolished the neuroprotective effects of SU5416 against MPP(+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.

  12. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  13. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  14. Role of endogenous nitric oxide on PAF-induced vascular and respiratory effects

    Directory of Open Access Journals (Sweden)

    M. Clement

    1995-01-01

    Full Text Available The role of endogenous nitric oxide (NO on vascular and respiratory smooth muscle basal tone was evaluated in six anaesthetized, paralysed, mechanically ventilated pigs. The involvement of endogenous NO in PAF-induced shock and airway hyperresponsiveness was also studied. PAF (50 ng/kg, i.v. was administered before and after pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.v., an NO synthesis inhibitor. PAF was also administered to three of these pigs after indomethacin infusion (3 mg/kg, i.v.. In normal pigs, L-NAME increased systemic and pulmonary vascular resistances, caused pulmonary hypertension and reduced cardiac output and stroke volume. The pulmonary vascular responses were correlated with the increase in static and dynamic lung elastances, without changing lung resistance. Inhibition of NO synthesis enhanced the PAF-dependent increase in total, intrinsic and viscoelastic lung resistances, without affecting lung elastances or cardiac activity. The systemic hypotensive effect of PAF was not abolished by pretreatment with L-NAME or indomethacin. This indicates that systemic hypotension is not correlated with the release of endogenous NO or prostacyclines. Indomethacin completely abolished the PAF-dependent respiratory effects.

  15. New Evidence for Cross Talk between Melatonin and Mitochondria Mediated by a Circadian-Compatible Interaction with Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Marzia Arese

    2013-05-01

    Full Text Available Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10−9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours’ incubation; both findings compatible with the melatonin circadian cycle.

  16. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    International Nuclear Information System (INIS)

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-01-01

    Highlights: ► GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. ► NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. ► Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  17. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse

    Directory of Open Access Journals (Sweden)

    Sophie A. Bradley

    2016-01-01

    Full Text Available Nitric oxide (NO is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS, new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Huntington’s.

  18. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Dobešová, Zdenka; Čejka, Jakub; Kuneš, Jaroslav; Zicha, Josef

    2004-01-01

    Roč. 22, č. 1 (2004), s. 167-173 ISSN 0263-6352 R&D Projects: GA ČR GA305/03/0769; GA MŠk LN00A069 Grant - others:VEGA(SK) 2/3185/23; SAV(SK) APVT51-017902 Institutional research plan: CEZ:AV0Z5011922 Keywords : nitric oxide synthase * L-NAME hypertension * aminoguanidine Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.871, year: 2004

  19. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  20. Continuous determination of nitric oxide and nitrogen dioxide in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, S; Yamate, N; Mitsuzawa, S; Mori, M

    1966-10-01

    Continuous determinations of nitric oxide and nitrogen dioxide in that atmospheric air by the use of a modified Saltzman reagent is described. Measurement was made intermittently, once every 30 min., by an automatic continuous analyzer equipped with a single-path colorimeter. The response of the analyzer was obtained as an average of the concentration of nitrogen oxides over a period of 25 min. Two bubblers were used for absorbing nitrogen oxides into the modified Saltzman reagent, whose transmittance was measured for the determination. One bubbler was designed to absorb nitrogen dioxide, and the other, nitric oxide plus nitrogen dioxide after the oxidation of the nitric oxide by permanganate. The oxidizing efficiency of the permanganate was 96-100%. The acetic acid in the Saltzman reagent was replaced with n-propyl alcohol in the modified Saltzman reagent; the spontaneous coloration and corrosive quality of the reagent was decreased by this substitution. The concentration of nitric oxide was obtained from the difference between the two responses of the analyzer, while the concentration of nitrogen dioxide could be read directly from the indication of the recorder. The transmittance ratio method was applied to the measurements, accurate determinations were possible, even at high blank values. Therefore, the reagent was used repeatedly by cycling it on the basis of measuring the difference in the coloration of the reagent before and after the absorption of nitrogen oxides. The analyzer could be used for a long period without changing the reagent.

  1. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  2. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  3. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF

  4. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  5. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    Science.gov (United States)

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-08-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca2+]i) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism.

  6. Meningoencephalitis and Compartmentalization of the Cerebral Ventricles Caused by Enterobacter sakazakii

    Science.gov (United States)

    Kleiman, Martin B.; Allen, Stephen D.; Neal, Patricia; Reynolds, Janet

    1981-01-01

    A necrotizing meningoencephalitis complicated by ventricular compartmentalization and abscess formation caused by Enterobacter sakazakii in a previously healthy 5-week-old female is described. A detailed description of the isolate is presented. This communication firmly establishes the pathogenicity of E. sakazakii. PMID:7287892

  7. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  8. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  9. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Rout, Satyabrata

    2001-01-01

    Application of pulsed electrical discharges for gas cleaning is gaining prominence, mainly from the energy consideration point of view. This present paper presents recent work on applying the electrical discharge plasma technology for treating gaseous pollutants, in general, and nitric oxide, in particular, as this is one of the major contributors to air pollution. The present work focuses attention on pulsed electrical discharge technique for nitric oxide removal from simulated gas compositions and study of effect of packed dielectric pellets, with and without a coating of catalyst, on the removal process. Experiments were conducted in a cylindrical corona reactor energized by repetitive high voltage pulses. The effects of various parameters, viz. pulse voltage magnitude, pulse frequency, initial nitric oxide concentration and gas mixture composition on nitric oxide removal efficiency, are discussed. When the reactors were filled with different dielectric pellets like, barium titanate, alumina, and alumina coated with palladium catalyst, the improvement in nitric oxide removal efficiency is studied and discussed. The power dissipated in the reactor and the energy consumed per nitric oxide molecule removed was calculated. Further results and comparative study of various cases are presented in the paper

  10. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    Science.gov (United States)

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  11. A possible mechanism for transpupillary thermotherapy: nitric-oxide-related cellular damage.

    Science.gov (United States)

    Ozdek, Sengul; Urgancioglu, Berrak; Turkcu, Ummuhani Ozel; Bilgihan, Ayse

    2007-08-01

    To determine the oxidative stress markers on rabbit vitreous following transpupillary thermotherapy (TTT) application. The pigmented rabbit eyes were divided into 3 groups, each containing 6 eyes. Group 1 was used as a control group. Twelve eyes underwent TTT with a power of 250 mW (group 2) and 800 mW (group 3), with a diameter of 3000 microm and duration of 60 s; 24 h after laser application, vitreous samples were collected. Nitric oxide (NO) and malondialdehyde (MDA) levels and superoxide dismutase (SOD) activities were determined in all groups. NO levels were statistically significantly higher in all groups when compared with the control group (p 0.05). Our results support the hypothesis that TTT application induces NO synthesis, which may lead to occlusion at choroidal neovessels. Because of the nonsignificantly increased levels of MDA and decrease of SOD activities there maybe only a weak relation between lipid peroxidation induced by free oxygen radicals and TTT-induced vascular damage.

  12. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  13. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  14. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  15. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  16. Vascular nitric oxide: Beyond eNOS

    Directory of Open Access Journals (Sweden)

    Yingzi Zhao

    2015-10-01

    Full Text Available As the first discovered gaseous signaling molecule, nitric oxide (NO affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC to produce cyclic guanosine monophosphate (cGMP, although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA or production of cyclic inosine monophosphate (cIMP] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  17. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...

  18. Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats.

    Science.gov (United States)

    Omanwar, S; Saidullah, B; Ravi, K; Fahim, M

    2013-01-01

    Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10(-4) M) was significantly increased, and in presence of glybenclamide (10(-5) M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  19. Modulation of Vasodilator Response via the Nitric Oxide Pathway after Acute Methyl Mercury Chloride Exposure in Rats

    Directory of Open Access Journals (Sweden)

    S. Omanwar

    2013-01-01

    Full Text Available Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.. The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh. In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M was significantly increased, and in presence of glybenclamide (10-5 M, the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF. In addition, superoxide dismutase (SOD + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  20. Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Rodriguez-Rodriguez, Rosalia; Dalsgaard, Thomas

    2009-01-01

    Endothelial dysfunction, which is defined by decreased endothelium-dependent vasodilatation, is associated with an increased number of cardiovascular events. Nitric oxide (NO) bioavailability is reduced by altered endothelial signal transduction or increased formation of radical oxygen species...... reacting with NO. Endothelial dysfunction is therapeutically reversible and physical exercise, calcium channel blockers, angiotensin converting enzyme inhibitors, and angiotensin receptor antagonists improve flow-evoked endothelium-dependent vasodilation in patients with hypertension and diabetes. We have...... the endothelial signal transduction pathways involved in vasorelaxation and NO release induced by an olive oil component, oleanolic acid, and (3) investigated the role of calcium-activated K channels in the release of NO induced by receptor activation. Tempol increases endothelium-dependent vasodilatation...

  1. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  2. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  3. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  4. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    Science.gov (United States)

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  6. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells.

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D; George, Steven C

    2007-07-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl.s(-1.)cm(-2)) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air-liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 +/- 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13-stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS.

  7. Does increased Nitric Oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Marjan Aghajani

    2017-01-01

    Full Text Available Background &Objectives: High fat (HF diet by affecting the oxidative stress and nitric oxide (NO production may lead to different effects on function of the heart after myocardial infarction (MI. In the present study we aimed to address the hypothesis that high release of NO by activated macrophages affects LV function after MI.Methods: The animals were randomly divided into four groups comprising each of 10 rats: 1 Sham; 2 MI; 3 Sham+ HF diet; 4 MI+ HF diet. Animals fed with HF diet 30 days before sham and MI surgery. MI was induced by permanent ligation of left anterior descending coronary artery (LAD. Nitric oxide (NO production of peritoneal macrophages, the concentrations of MDA in the heart and the infarct size were measured.Results: Our study indicated that HF has adverse effects on myocardium and it may increase NO production as well as oxidative stress, resulting in augmentation of infarct size.Conclusion: Our results add to our knowledge that HF diet was associated with overproduction of NO by peritoneal macrophages and ROS that lead to development of infarct size and adverse remodeling.

  8. The myth of nitric oxide in central cardiovascular control by the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Talman W.T.

    1997-01-01

    Full Text Available Considerable evidence suggests that nitroxidergic mechanisms in the nucleus tractus solitarii (NTS participate in cardiovascular reflex control. Much of that evidence, being based on responses to nitric oxide precursors or inhibitors of nitric oxide synthesis, has been indirect and circumstantial. We sought to directly determine cardiovascular responses to nitric oxide donors microinjected into the NTS and to determine if traditional receptor mechanisms might account for responses to certain of these donors in the central nervous system. Anesthetized adult Sprague Dawley rats that were instrumented for recording arterial pressure and heart rate were used in the physiological studies. Microinjection of nitric oxide itself into the NTS did not produce any cardiovascular responses and injection of sodium nitroprusside elicited minimal depressor responses. The S-nitrosothiols, S-nitrosoglutathione (GSNO, S-nitrosoacetylpenicillamine (SNAP, and S-nitroso-D-cysteine (D-SNC produced no significant cardiovascular responses while injection of S-nitroso-L-cysteine (L-SNC elicited brisk, dose-dependent depressor and bradycardic responses. In contrast, injection of glyceryl trinitrate elicited minimal pressor responses without associated changes in heart rate. It is unlikely that the responses to L-SNC were dependent on release of nitric oxide in that 1 the responses were not affected by injection of oxyhemoglobin or an inhibitor of nitric oxide synthesis prior to injection of L-SNC and 2 L- and D-SNC released identical amounts of nitric oxide when exposed to brain tissue homogenates. Although GSNO did not independently affect blood pressure, its injection attenuated responses to subsequent injection of L-SNC. Furthermore, radioligand binding studies suggested that in rat brain synaptosomes there is a saturable binding site for GSNO that is displaced from that site by L-SNC. The studies suggest that S-nitrosocysteine, not nitric oxide, may be an

  9. Comparison Between the Acute Pulmonary Vascular Effects of Oxygen with Nitric Oxide and Sildenafil

    Directory of Open Access Journals (Sweden)

    Ronald W. Day

    2015-03-01

    Full Text Available Objective. Right heart catheterization is performed in patients with pulmonary arterial hypertension to determine the severity of disease and their pulmonary vascular reactivity. The acute pulmonary vascular effect of inhaled nitric oxide is frequently used to identify patients who will respond favorably to vasodilator therapy. This study sought to determine whether the acute pulmonary vascular effects of oxygen with nitric oxide and intravenous sildenafil are similar. Methods. A retrospective, descriptive study of 13 individuals with pulmonary hypertension who underwent heart catheterization and acute vasodilator testing was performed. The hemodynamic measurements during five phases (21% to 53% oxygen, 100% oxygen, 100% oxygen with 20 ppm nitric oxide, 21% to 51% oxygen, and 21% to 51% oxygen with 0.05 mg/kg to 0.29 mg/kg intravenous sildenafil of the procedures were compared.Results. Mean pulmonary arterial pressure and pulmonary vascular resistance acutely decreased with 100% oxygen with nitric oxide, and 21% to 51% oxygen with sildenafil. Mean pulmonary arterial pressure (mm Hg, mean ± standard error of the mean was 38 ± 4 during 21% to 53% oxygen, 32 ± 3 during 100% oxygen, 29 ± 2 during 100% oxygen with nitric oxide, 37 ± 3 during 21% to 51% oxygen, and 32 ± 2 during 21% to 51% oxygen with sildenafil. There was not a significant correlation between the percent change in pulmonary vascular resistance from baseline with oxygen and nitric oxide, and from baseline with sildenafil (r2 = 0.011, p = 0.738. Conclusions. Oxygen with nitric oxide and sildenafil decreased pulmonary vascular resistance. However, the pulmonary vascular effects of oxygen and nitric oxide cannot be used to predict the acute response to sildenafil. Additional studies are needed to determine whether the acute response to sildenafil can be used to predict the long-term response to treatment with an oral phosphodiesterase V inhibitor.

  10. Exhaled Nitric Oxide is Decreased by Exposure to the Hyperbaric Oxygen Therapy Environment

    Directory of Open Access Journals (Sweden)

    Zudin A. Puthucheary

    2006-01-01

    or 40% oxygen, 1 ATA. In an in vitro study, nitrate/nitrite release decreased after 90 minutes HBOT in airway epithelial (A549 cells. Conclusion. HBO exposure causes a fall in eNO. Inducible nitric oxide synthase (iNOS may cause elevated eNO in patients secondary to inflammation, and inhibition of iNOS may be the mechanism of the reduction of eNO seen with HBOT.

  11. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  12. A novel immunosensor for Enterobacter sakazakii based on multiwalled carbon nanotube/ionic liquid/thionine modified electrode

    International Nuclear Information System (INIS)

    Zhang Xiao; Dou Wenchao; Zhan Xuejia; Zhao Guangying

    2012-01-01

    Highlights: ► Constructed a novel immunosensor using MWCNT/[BMIM]PF 6 /thionine for E. sakazakii. ► Optimum conditions for the detection of E. sakazakii were investigated. ► The properties of proposed immunosensor were studied by AFM and CVs. ► The biosensor exhibited good specificity, reproducibility, stability and accuracy. - Abstract: A novel immunosensor for Enterobacter sakazakii (E. sakazakii) based on screen-printed carbon electrode (SPCE) modified by multiwalled carbon nanotube (MWCNT), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF 6 ) and thionine (Thi) was developed for the first time. The surface morphologies of modified electrodes were characterized by means of atomic force microscope (AFM). The electrochemical performance of the immunosensor was evaluated by cyclic voltammetry. Horseradish peroxidase labeled antibody to E. sakazakii in [BMIM]PF 6 showed high activity and stability. Under optimal conditions, E. sakazakii could be detected in range of 10 3 –10 9 CFU/ml with detection limit of 7.7 × 10 1 CFU/ml. The proposed immunosensor exhibited excellent long-time storage stability and had potential use in clinical immunoassay of E. sakazakii.

  13. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Inadomi, Chiaki, E-mail: inadomic@nagasaki-u.ac.jp [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Murata, Hiroaki [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Ihara, Yoshito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509 (Japan); Goto, Shinji; Urata, Yoshishige [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yodoi, Junji [Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Kondo, Takahito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Sumikawa, Koji [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  14. Nitric oxide synthase expression and apoptotic cell death in brains of AIDS and AIDS dementia patients

    NARCIS (Netherlands)

    Vincent, V. A.; de Groot, C. J.; Lucassen, P. J.; Portegies, P.; Troost, D.; Tilders, F. J.; van Dam, A. M.

    1999-01-01

    To determine the occurrence and cellular localization of inducible nitric oxide synthase (iNOS), NOS activity and its association with cell death in brains of AIDS and AIDS dementia complex (ADC) patients. Post-mortem cerebral cortex tissue of eight AIDS patients, eight ADC patients and eight

  15. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  16. Methanol Extract of Codonopsis pilosula Inhibits Inducible Nitric ...

    African Journals Online (AJOL)

    Purpose: To evaluate the mechanism of antioxidant activity of the methanol extract of Codonopsis pilosula. Methods: Anti-oxidative properties were assessed by measuring free radical scavenging activity, nitric oxide (NO) levels, protein oxidation and reducing power, while the mechanism of antioxidative effect of ...

  17. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  18. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  19. [Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis].

    Science.gov (United States)

    Camargo, Alejandra B; Manucha, Walter

    Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    -called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...... experimentation make it highly likely that antagonizing NO effects will be effective in the treatment of primary headaches. Nonselective NOS inhibitors are likely to have side effects whereas selective compounds are now in early clinical trials. Antagonizing the rate limiting cofactor tetrahydrobiopterin seems...

  1. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum.

    Science.gov (United States)

    Nakaki, T; Mishima, A; Suzuki, E; Shintani, F; Fujii, T

    2000-09-01

    Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.

  2. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  3. Bronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide

    NARCIS (Netherlands)

    Ricciardolo, F. L.; Rado, V.; Fabbri, L. M.; Sterk, P. J.; Di Maria, G. U.; Geppetti, P.

    1999-01-01

    Gastroesophageal acid reflux into the airways can trigger asthma attacks. Indeed, citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We investigated the role of tachykinins, bradykinin, and nitric oxide (NO) on the citric

  4. Investigating nitric oxide signalling involvement in the antidepressant action of ketamine

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2012-01-01

    Stress-induced excessive glutamate transmission at N-methyl-D-aspartate receptors (NMDA-R’s) may underlie a primary mechanism in the physiology that leads to depression, and ketamine, an NMDA-R antagonist, has been shown to rapidly relieve depression in humans. A number of downstream mechanisms...... have been suggested to mediate the antidepressant action of ketamine, including the activation of extracellular-signal-regulated kinases 1/2 (ERK1/2), protein kinase B (or Akt) and the mammalian target of rapamycin (mTOR). However, the mechanism(s) that are affected immediately downstream of NMDA......-R’s remain unclear. Neuronal nitric oxide synthase (nNOS) is directly coupled to and activated by NMDA-R’s, and the uncoupling of the nNOS-NMDA-R complex prevents NMDA-R-mediated excitotoxicity. Therefore, we investigated whether the antidepressant mechanism of ketamine involves the inhibition of nitric...

  5. Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1).

    Science.gov (United States)

    Cifuentes, Diana; Poittevin, Marine; Bonnin, Philippe; Ngkelo, Anta; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2017-07-31

    The epidemiological link between hypertension and Alzheimer disease is established. We previously reported that hypertension aggravates the Alzheimer-like pathology in APPPS1 mice (amyloid precursor protein/presenilin-1, mouse model of Alzheimer disease) with angiotensin II-induced hypertension, in relation with hypertension and nitric oxide deficiency. To provide further insights into the role of nitric oxide in the hypertension-Alzheimer disease cross-talk, we studied the effects of nitric oxide blockade in APPPS1 mice using N (ω)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with hydralazine, to normalize blood pressure. Compared with normotensive APPPS1 mice, those with l-NAME-induced hypertension had greater amyloid burden ( P <0.05), increased cortical amyloid angiopathy ( P <0.01), decreased regional microvascular density ( P <0.05), and deficient long-term spatial reference memory ( P <0.001). Blood pressure normalization with hydralazine did not protect APPPS1 mice from l-NAME-induced deterioration except for cortical amyloid angiopathy, linked to hypertension-induced arterial wall remodeling. By testing the cerebrovascular response to hypercapnic breathing, we evidenced early functional impairment of cerebral vasomotor activity in APPPS1 mice. Whereas in control wild-type normotensive mice, carbon dioxide breathing resulted in 15±1.3% increase in the mean blood flow velocity ( P <0.001), paradoxical mild decrease (1.5±0.4%) was recorded in normotensive APPPS1 mice ( P <0.001). Carbon dioxide-induced decrease in mean blood flow velocity was not significantly modified in l-NAME-treated hypertensive APPPS1 mice (2.5±1.2%) and partly reversed to mild vasodilation by hydralazine (3.2±1.5%, P <0.01). These results suggest that impaired nitric oxide bioavailability exacerbates the pathophysiology of Alzheimer disease, essentially impacting amyloid load and cognitive impairment, independently of l-NAME-induced hypertension. Only cerebral

  6. Inhibition of Inducible Nitric Oxide Controls Pathogen Load and Brain Damage by Enhancing Phagocytosis of Escherichia coli K1 in Neonatal Meningitis

    OpenAIRE

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A.; Prasadarao, Nemani V.

    2010-01-01

    Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS−/− mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood...

  7. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  8. Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats

    Directory of Open Access Journals (Sweden)

    IVANA STEVANOVIĆ

    2009-05-01

    Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

  9. Alloantigen-induced, T-cell-dependent production of nitric oxide by macrophages infiltrating skin allografts in mice

    Czech Academy of Sciences Publication Activity Database

    Krulová, Magdalena; Zajícová, Alena; Frič, Jan; Holáň, Vladimír

    2002-01-01

    Roč. 15, - (2002), s. 108-116 ISSN 0934-0874 R&D Projects: GA ČR GA310/99/0360; GA MZd NI6659; GA MŠk LN00A026 Keywords : Allograft rejection, nitric oxide Subject RIV: EC - Immunology Impact factor: 2.520, year: 2002

  10. Increase of hepatic nitric oxide levels in a nutritional model of fatty ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... (MDA) and protein carbonyl (PC), and also nitric oxide (NO) in over fed broiler breeder hens, 198 hens. (30 weeks old) .... The total protein in the liver tissue was determined by a method ... Table 1. Egg production and LHS in broiler breeder hens .... trations of nitric oxide metabolites (nitrates-nitrites) in rat.

  11. Heat Tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici Inoculated into Galactooligosaccharide.

    Science.gov (United States)

    Bang, Jihyun; Choi, Moonkak; Jeong, Haeseok; Lee, Sangseob; Kim, Yoonbin; Ryu, Jee-Hoon; Kim, Hoikyung

    2017-07-01

    Food-grade galactooligosaccharide (GOS) with low water activity (a w of ca. 0.7) is used as an ingredient in various foods. We evaluated heat tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici at temperatures (70 to 85°C) used during the saturation process of GOS by comparing decimal reduction time (D-values) and thermal resistance constants (z-values). To determine the D- and z-values, GOS containing Salmonella (5.1 to 5.8 log CFU/g) or C. sakazakii (5.3 to 5.9 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 40, 25, or 15 s, respectively, and GOS containing P. acidilactici (6.1 to 6.5 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 150, 75, or 40 s, respectively. The D-values were calculated using a linear model for heating time versus microbial population for each bacterium. When the D-values for Salmonella, C. sakazakii, and P. acidilactici in GOS were compared, the thermal resistance of all bacteria decreased as the temperature increased. Among the three bacteria, P. acidilactici had higher D-values than did Salmonella and C. sakazakii. The z-values of Salmonella, C. sakazakii, and P. acidilactici were 30.10, 33.18, and 13.04°C, respectively. Overall order of thermal resistance was P. acidilactici > Salmonella ≈ C. sakazakii. These results will be useful for selecting appropriate heat treatment conditions for the decontamination of pathogenic microorganisms during GOS manufacturing.

  12. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Oh, Sang-Hee; Byun, Eui-Baek; Kim, Jae-Hun; Kim, Jang-Ho; Woon, Jae-Ho; Byun, Myung-Woo

    2007-01-01

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D 10 -values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g -1 onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 deg. C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula

  13. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Oh, Sang-Hee [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580 185 (Korea, Republic of); Byun, Eui-Baek [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580 185 (Korea, Republic of); Graduate School of Biotechnology, Korea University, Yeongi 339-700 (Korea, Republic of); Kim, Jae-Hun; Kim, Jang-Ho [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580 185 (Korea, Republic of); Woon, Jae-Ho [Livestock Products standard Division, National Veterinary Research and Quarantine Service, Anyang 430-824 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580 185 (Korea, Republic of)], E-mail: mwbyun@kaeri.re.kr

    2007-11-15

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D{sub 10}-values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g{sup -1} onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 deg. C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula.

  14. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    Science.gov (United States)

    Lee, Ju-Woon; Oh, Sang-Hee; Byun, Eui-Baek; Kim, Jae-Hun; Kim, Jang-Ho; Woon, Jae-Ho; Byun, Myung-Woo

    2007-11-01

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D10-values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g -1 onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 °C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula.

  15. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice

    Directory of Open Access Journals (Sweden)

    Cyrus Jalili

    2016-02-01

    Full Text Available Background: The predominant phytoestrogen in soy and derived products is the isoflavone Genistein. Genistein has antioxidant properties. Morphine is a main psychoactive chemical in opium that can increase the generation of free radicals and therefore it could adversely affects the spermatogenesis. Objective: The main goal was to investigate whether the Genistein could protect morphine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone and nitric oxide in blood serum. Materials and Methods: In this study, various doses of Genistein (0, 1, 2, and 3 mg/kg and Genistein plus morphine (0, 1, 2, and 3 mg/kg were administered interaperitoneally to 48 male mice for 30 consequent days. These mice were randomly assigned to 8 groups (n=6 and sperm parameters (sperm cells viability, count, motility and morphology, testis weight and histology, testosterone hormone (ELISA method, FSH and LH hormones (immunoradiometry and serum nitric oxide (griess assay were analyzed and compared. Results: The results indicated that morphine administration significantly decreased testosterone (0.03 ng/mg LH and FSH level, histological parameters, count, viability (55.3%, morphology and motility of sperm cells (1%, testis weight (0.08 gr and increase nitric oxide compared to saline group (p=0.00. However, administration of Genistein and Genistein plus morphine significantly boosted motility, morphology, count, viability of sperm cells, seminiferous tubules diameter, germinal thickness, testosterone, LH and FSH while decrease nitric oxide level in all groups compared to morphine group (p<0.025. Conclusion: It seems that Genistein administration could increase the quality of spermatozoa and prevent morphine- induced adverse effects on sperm parameters.

  16. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  17. Nitric oxide levels in the anterior chamber of vitrectomized eyes with silicon oil

    Directory of Open Access Journals (Sweden)

    Paulo Escarião

    2013-10-01

    Full Text Available PURPOSE: To investigate the nitric oxide levels in the anterior chamber of eyes who underwent pars plana vitrectomy (PPV with silicone oil. METHODS: Patients who underwent PPV with silicon oil injection, from february 2005 to august 2007, were selected. Nine patients (nine eyes participated in the study (five women and four men. Nitric oxide concentration was quantified after the aspiration of aqueous humor samples during the procedure of silicon oil removal. Data such as: oil emulsification; presence of oil in the anterior chamber; intraocular pressure and time with silicone oil were evaluated. Values of p <0.05 were considered to be statistically significant. RESULTS: A positive correlation between nitric oxide concentration and time with silicon oil in the vitreous cavity (r=0.799 was observed. The nitric oxide concentration was significantly higher (p=0.02 in patients with silicon oil more than 24 months (0.90µmol/ml ± 0.59, n=3 in the vitreous cavity comparing to patients with less than 24 months (0.19µmol/ml ± 0.10, n=6. CONCLUSION: A positive correlation linking silicone oil time in the vitreous cavity with the nitric oxide concentration in the anterior chamber was observed.

  18. Carboxyhemoglobin formation secondary to nitric oxide therapy in the setting of interstitial lung disease and pulmonary hypertension.

    Science.gov (United States)

    Ruisi, Phillip; Ruisi, Michael

    2011-01-01

    Carbon monoxide (CO) has been widely recognized as an exogenous poison, although endogenous mechanisms for its formation involve heme-oxygenase (HO) isoforms, more specifically HO-1, in the setting of oxidative stress such as acute respiratory distress syndrome, sepsis, trauma, and nitric oxide use have been studied. In patients with refractory hypoxemia, inhaled nitric oxide (iNO) therapy is used to selectively vasodilate the pulmonary vasculature and improve ventilation-perfusion match. Inhaled nitric oxide is rapidly inactivated on binding to hemoglobin in the formation of nitrosyl- and methemoglobin in the pulmonary vasculature. Hence, inhaled nitric oxide has minimal systemic dissemination. Several experimental design studies involving lab rats have demonstrated increased levels of carboxyhemoglobin and exhaled CO as a result of nitric oxide HO-1 induction.

  19. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after {alpha}-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Shaopeng [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-02-03

    Low-dose {alpha}-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose {alpha}-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor {beta}1 (TGF-{beta}1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-{beta}1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  20. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lamotte, Olivier; Courtois, Cécile; Dobrowolska, Grazyna; Besson, Angélique; Pugin, Alain; Wendehenne, David

    2006-04-15

    In this study, we investigated a role for nitric oxide (NO) in mediating the elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in plants using Nicotiana plumbaginifolia cells expressing the Ca(2+) reporter apoaequorin. Hyperosmotic stress induced a fast increase of [Ca(2+)](cyt) which was strongly reduced by pretreating cell suspensions with the NO scavenger carboxy PTIO, indicating that NO mediates [Ca(2+)](cyt) changes in plant cells challenged by abiotic stress. Accordingly, treatment of transgenic N. plumbaginifolia cells with the NO donor diethylamine NONOate was followed by a transient increase of [Ca(2+)](cyt) sensitive to plasma membrane Ca(2+) channel inhibitors and antagonist of cyclic ADP ribose. We provided evidence that NO might activate plasma membrane Ca(2+) channels by inducing a rapid and transient plasma membrane depolarization. Furthermore, NO-induced elevation of [Ca(2+)](cyt) was suppressed by the kinase inhibitor staurosporine, suggesting that NO enhances [Ca(2+)](cyt) by promoting phosphorylation-dependent events. This result was further supported by the demonstration that the NO donor induced the activation of a 42-kDa protein kinase which belongs to SnRK2 families and corresponds to Nicotiana tabacum osmotic-stress-activated protein kinase (NtOSAK). Interestingly, NtOSAK was activated in response to hyperosmotic stress through a NO-dependent process, supporting the hypothesis that NO also promotes protein kinase activation during physiological processes.

  1. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after α-particle irradiation

    International Nuclear Information System (INIS)

    Han Wei; Chen Shaopeng; Yu, K.N.; Wu Lijun

    2010-01-01

    Low-dose α-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose α-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor β1 (TGF-β1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-β1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  2. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  3. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  4. Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Gozalov, Aydin; Jansen-Olesen, Inger; Klærke, Dan Arne

    2008-01-01

    OBJECTIVE: The objective of this study was to explore the role of K(ATP) channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. BACKGROUND: Dilatation of cerebral and dural...... CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood flow by Laser Doppler flowmetry (LCBF(Flux)) were measured. RESULTS: CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro...

  5. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  6. Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D.; George, Steven C.

    2007-01-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl·s−1.cm−2) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air–liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 ± 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13–stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS. PMID:17347445

  7. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin F Nickel

    Full Text Available BACKGROUND: A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. PRINCIPAL FINDINGS: Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs. Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS and soluble guanylate cyclase (sGC subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot. In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs. Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1. CONCLUSION: These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.

  8. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    Zheng, Dongyun; Liu, Xiaojun; Zhu, Shanying; Cao, Huimin; Chen, Yaguang; Hu, Shengshui

    2015-01-01

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  9. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    The haplotype analysis confirmed ... hand, no consistent association was shown between the two SNPs and SBP or. DBP. ... Endothelial nitric oxide synthase gene polymorphisms and risk of MI .... type (-786T*+894G), the haplotypes ... Tests adjusted for age, BMI, diabetes, current smoking and alcohol consumption.

  10. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  11. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  12. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  13. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  14. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that i

  15. A new protocol for the detection of Enterobacter sakazakii applied to environmental samples

    NARCIS (Netherlands)

    Kandhai, M.C.; Reij, M.W.; Puyvelde, van K.; Guillaume-Gentil, O.; Beumer, R.R.; Schothorst, van M.

    2004-01-01

    Enterobacter sakazakii is a motile, peritrichous, gram-negative rod that was previously known as a yellow pigmented Enterobacter cloacae. It is documented as a rare cause of outbreaks and sporadic cases of life-threatening neonatal meningitis, necrotizing enterocolitis, and sepsis. E. sakazakii has

  16. Iron-induced nitric oxide leads to an increase in the expression of ferritin during the senescence of Lotus japonicus nodules.

    Science.gov (United States)

    Chungopast, Sirinapa; Duangkhet, Mallika; Tajima, Shigeyuki; Ma, Jian Feng; Nomura, Mika

    2017-01-01

    Iron is an essential nutrient for legume-rhizobium symbiosis and accumulates abundantly in the nodules. However, the concentration of free iron in the cells is strictly controlled to avoid toxicity. It is known that ferritin accumulates in the cells as an iron storage protein. During nodule senescence, the expression of the ferritin gene, Ljfer1, was induced in Lotus japonicus. We investigated a signal transduction pathway leading to the increase of Ljfer1 in the nodule. The Ljfer1 promoter of L. japonicus contains a conserved Iron-Dependent Regulatory Sequence (IDRS). The expression of Ljfer1 was induced by the application of iron or sodium nitroprusside, which is a nitric oxide (NO) donor. The application of iron to the nodule increased the level of NO. These data strongly suggest that iron-induced NO leads to increased expression of Ljfer1 during the senescence of L. japonicus nodules. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    Science.gov (United States)

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  18. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia.

    Science.gov (United States)

    Motta-Mejia, Carolina; Kandzija, Neva; Zhang, Wei; Mhlomi, Vuyane; Cerdeira, Ana Sofia; Burdujan, Alexandra; Tannetta, Dionne; Dragovic, Rebecca; Sargent, Ian L; Redman, Christopher W; Kishore, Uday; Vatish, Manu

    2017-08-01

    Preeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother. We hypothesized that STBEV-bound eNOS (STBEV-eNOS), capable of producing NO, are released into the maternal circulation. Dual-lobe ex vivo placental perfusion and differential centrifugation was used to isolate STBEV from preeclampsia (n=8) and normal pregnancies (NP; n=11). Plasma samples of gestational age-matched preeclampsia and NP (n=6) were used to isolate circulating STBMV. STBEV expressed placental alkaline phosphatase, confirming placental origin. STBEV coexpressed eNOS, but not inducible nitric oxide synthase, confirmed using Western blot, flow cytometry, and immunodepletion. STBEV-eNOS produced NO, which was significantly inhibited by N   G -nitro-l-arginine methyl ester (eNOS inhibitor; P preeclampsia-perfused placentae had lower levels of STBEV-eNOS (STBMV; P preeclampsia women had lower STBEV-eNOS expression compared with that from NP women ( P preeclampsia placentae, as well as in plasma. The lower STBEV-eNOS NO production seen in preeclampsia may contribute to the decreased NO bioavailability in this disease. © 2017 The Authors.

  19. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  20. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    Supplementary data: Endothelial nitric oxide synthase polymorphism G298T in association with oxidative DNA damage in coronary atherosclerosis. Rajesh G. Kumar, Mrudula K. Spurthi, Kishore G. Kumar, Sanjib K. Sahu and Surekha H. Rani. J. Genet. 91, 349–352. Table 1. The demographic and clinical data of the CHD ...

  1. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress.

    Science.gov (United States)

    Zhang, Yin Hua

    2017-01-01

    Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S -nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  2. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  3. Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Bethany R Hannas

    2010-08-01

    Full Text Available Nitrate and nitrite (jointly referred to herein as NO(x are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NO(x undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.These experiments were performed with insect cells (Drosophila S2 and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO(3(- and nitrite (NO(2(- to nitric oxide using amperometric real-time nitric oxide detection. Both NO(3(- and NO(2(- were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO(2(- to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control and to concentrations of NO(3(- and NO(2(-. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers.Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

  4. The effect of inhaled nitric oxide in acute respiratory distress syndrome in children and adults

    DEFF Research Database (Denmark)

    Karam, O; Gebistorf, F; Wetterslev, J

    2017-01-01

    on mortality in adults and children with acute respiratory distress syndrome. We included all randomised, controlled trials, irrespective of date of publication, blinding status, outcomes reported or language. Our primary outcome measure was all-cause mortality. We performed several subgroup and sensitivity......Acute respiratory distress syndrome is associated with high mortality and morbidity. Inhaled nitric oxide has been used to improve oxygenation but its role remains controversial. Our primary objective in this systematic review was to examine the effects of inhaled nitric oxide administration......% CI) 1.59 (1.17-2.16)) with inhaled nitric oxide. In conclusion, there is insufficient evidence to support inhaled nitric oxide in any category of critically ill patients with acute respiratory distress syndrome despite a transient improvement in oxygenation, since mortality is not reduced and it may...

  5. Intrauterine growth restriction is associated with structural alterations in human umbilical cord and decreased nitric oxide-induced relaxation of umbilical vein.

    Science.gov (United States)

    Peyter, A-C; Delhaes, F; Baud, D; Vial, Y; Diaceri, G; Menétrey, S; Hohlfeld, P; Tolsa, J-F

    2014-11-01

    Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples.

  7. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  8. Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis

    NARCIS (Netherlands)

    Heeringa, P; van Goor, H; Itoh-Lindstrom, Y; Maeda, N; Falk, RJ; Assmann, KJM; Kallenberg, CGM; Jennette, JC

    Nitric oxide (NO) radicals generated by endothelial nitric oxide synthase (eNOS) are involved in the regulation of vascular tone. In addition, NO radicals derived from eNOS inhibit platelet aggregation and leukocyte adhesion to the endothelium and, thus, may have anti-inflammatory effects. To study

  9. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  10. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  11. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica

    Directory of Open Access Journals (Sweden)

    Hyo-Jin An

    2015-12-01

    Full Text Available Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae were performed using high-performance liquid chromatography (HPLC. We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO formation in lipopolysaccharide (LPS-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic acid were isolated and identified by NMR spectroscopy. The structure of isoeugenin was determined as 7-hydroxy-5-methoxy-2-methylchromone by the 2D-NMR technique. Among the four compounds, isoeugenin has the lowest IC50 value on the inhibition of NO production in LPS-activated macrophage RAW264.7 cells (IC50, 9.33 μg/mL. In addition, isoeugenin significantly suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, and proinflammatory cytokines mRNA levels. Taken together, these results suggest that the anti-inflammatory activity of isoeugenin is associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines in RAW264.7 cells. Accordingly, our results suggest that the new chromone isoegenin should be considered a potential treatment for inflammatory disease.

  12. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica.

    Science.gov (United States)

    An, Hyo-Jin; Nugroho, Agung; Song, Byong-Min; Park, Hee-Juhn

    2015-12-01

    Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae) were performed using high-performance liquid chromatography (HPLC). We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO) formation in lipopolysaccharide (LPS)-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic acid were isolated and identified by NMR spectroscopy. The structure of isoeugenin was determined as 7-hydroxy-5-methoxy-2-methylchromone by the 2D-NMR technique. Among the four compounds, isoeugenin has the lowest IC50 value on the inhibition of NO production in LPS-activated macrophage RAW264.7 cells (IC50, 9.33 μg/mL). In addition, isoeugenin significantly suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines mRNA levels. Taken together, these results suggest that the anti-inflammatory activity of isoeugenin is associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines in RAW264.7 cells. Accordingly, our results suggest that the new chromone isoegenin should be considered a potential treatment for inflammatory disease.

  13. Serum ferritin, serum nitric oxide, and cognitive function in pediatric thalassemia major

    Directory of Open Access Journals (Sweden)

    Septiana Nur Qurbani

    2017-06-01

    Full Text Available Background Hemolysis and repeated blood transfusions in children with thalassemia major cause iron overload in various organs, including the brain, and may lead to neurodegeneration. Hemolysis also causes decreased levels of nitric oxide, which serves as a volume transmitter and slow dynamic modulation, leading to cognitive impairment. Objective To assess for correlations between serum ferritin as well as nitric oxide levels and cognitive function in children with thalassemia major.  Methods This analytical study with cross-sectional design on 40 hemosiderotic thalassemia major patients aged 6−14 years, was done at the Thalassemia Clinic in Dr. Hasan Sadikin Hospital, Bandung, West Java, from May to June 2015. Serum ferritin measurements were performed by an electrochemiluminescence immunoassay; serum nitric oxide was assayed by a colorimetric procedure based on Griess reaction; and cognitive function was assessed by the Wechsler Intelligence Scale for Children test. Statistical analysis was done using Spearman’s Rank correlation, with a significance value of 0.05. Results Abnormal values in verbal, performance, and full scale IQ were found in 35%, 57.5% and 57.5%, respectively. Serum nitric oxide level was significantly correlated with performance IQ (P=0.022, but not with verbal IQ (P=0.359 or full scale IQ (P=0.164. There were also no significant correlations between serum ferritin level and full scale, verbal, or performance IQ (P=0.377, 0.460, and 0.822, respectively. Conclusion Lower serum nitric oxide level is significantly correlated to lower cognitive function, specifically in the performance IQ category. However, serum ferritin level has no clear correlation with cognitive function.

  14. Critical evaluation of pressurized microwave-assisted digestion efficiency using nitric acid oxidizing systems (M7)

    International Nuclear Information System (INIS)

    Matusiewicz, H.

    2002-01-01

    Full text: The possibilities of enhancement of a medium-pressure microwave-assisted digestion system for sample preparation in trace element analysis of biological material was investigated. Based on optimal digestion conditions for oxidizing systems with nitric acid, different digestion procedures were examined to minimize residual carbon. The substitution of nitric acid and the addition of hydrogen peroxide and ozone to nitric acid was evaluated. The residual carbon content of the digestate was determined coulometrically. Addition of hydrogen peroxide during organic oxidation reactions does not lower the resolved carbon in the solution. Ozone was tested as an additional, potentially non-contaminating, digestion/oxidation system to the nitric acid used in the sample preparation method. (author)

  15. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Wenwen; Xu, Wenzhong; Xu, Hua; Chen, Yanshan; He, Zhenyan; Ma, Mi

    2010-07-01

    Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.

  16. Intravenous beta-endorphin administration fails to alter hypothalamic blood flow in rats expressing normal or reduced nitric oxide synthase activity

    NARCIS (Netherlands)

    Benyo, Z.; Szabo, C; Velkel, M.H; Bohus, B.G J; Wahl, M.A; Sandor, P

    1996-01-01

    beta-Endorphin (beta-END) significantly contributes to the maintenance of hypothalamic blood flow (HBF) autoregulation during hemorrhagic hypotension in rats. Recently, several natural and synthetic opioid peptides were reported to induce nitric oxide (NO)-mediated dilation in the cerebrovascular

  17. The Mechanism of Helium-Induced Preconditioning: A Direct Role for Nitric Oxide in Rabbits

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo. METHODS Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.9% saline (control) or three cycles of 70% helium–30% oxygen administered for 5 min interspersed with 5 min of an air–oxygen mixture before left anterior descending coronary artery occlusion in the absence or presence of pretreatment with the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg), the selective inducible NOS inhibitor aminoguanidine hydrochloride (AG; 300 mg/kg), or selective neuronal NOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg). In additional rabbits, the fluorescent probe 4,5-diaminofluroscein diacetate (DAF-2DA) and confocal laser microscopy were used to detect NO production in the absence or presence of helium with or without L-NAME pretreatment. RESULTS Helium reduced (P < 0.05) infarct size (24% ± 4% of the left ventricular area at risk; mean ± sd) compared with control (46% ± 3%). L-NAME, AG, and 7-NI did not alter myocardial infarct size when administered alone. L-NAME, but not 7-NI or AG, abolished helium-induced cardioprotection. Helium enhanced DAF-2DA fluorescence compared with control (26 ± 8 vs 15 ± 5 U, respectively). Pretreatment with L-NAME abolished these helium-induced increases in DAF-2DA fluorescence. CONCLUSIONS The results indicate that cardioprotection by helium is mediated by NO that is probably generated by endothelial NOS in vivo. PMID:18713880

  18. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  19. Regulation and control of nitric oxide (NO) in macrophages

    DEFF Research Database (Denmark)

    Kovacevic, Zaklina; Sahni, Sumit; Lok, K.H.

    2017-01-01

    We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores and transp......We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores...... be responsible for delivering cytotoxic NO as DNICs via MRP1 from M1-MØs, to tumor cell targets....

  20. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  1. The effect of nitric oxide releasing cream on healing pressure ulcers

    Directory of Open Access Journals (Sweden)

    Vahid Saidkhani

    2016-01-01

    Full Text Available Background: Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. Materials and Methods: In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29 and control (placebo cream; n = 29. In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH. At the outset of the study (before using the cream, the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. Results: Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing between the two groups was statistically significant (P = 0.04. Conclusions: Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future.

  2. The effect of nitric oxide releasing cream on healing pressure ulcers

    Science.gov (United States)

    Saidkhani, Vahid; Asadizaker, Marziyeh; Khodayar, Mohammad Javad; Latifi, Sayed Mahmoud

    2016-01-01

    Background: Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO) has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. Materials and Methods: In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29) and control (placebo cream; n = 29). In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH). At the outset of the study (before using the cream), the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. Results: Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing) between the two groups was statistically significant (P = 0.04). Conclusions: Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future. PMID:27186212

  3. In vivo arginine production and nitric oxide synthesis in pregnant Indian women with normal and low body mass indices

    Science.gov (United States)

    Nitric oxide (NO) has been proposed as a mediator of vascular expansion during pregnancy. Inability to increase NO synthesis and/or production of its precursor, arginine, may be a contributor to pregnancy-induced hypertension or preeclampsia. Because maternal weight is associated with blood pressure...

  4. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine.

    Science.gov (United States)

    Payandemehr, Borna; Rahimian, Reza; Bahremand, Arash; Ebrahimi, Ali; Saadat, Seyedehpariya; Moghaddas, Peiman; Fadakar, Kaveh; Derakhshanian, Hoda; Dehpour, Ahmad Reza

    2013-06-13

    The anticonvulsant effects of agmatine, an endogenous polyamine and a metabolite of l-arginine, have been shown in various experimental seizure models. Agmatine also potentiates the anti-seizure activity of morphine. The present study aimed to investigate a possible involvement of nitric oxide (NO) pathway in the protection by agmatine and morphine co-administration against pentylenetetrazole (PTZ) -induced seizure in male mice. To this end, the thresholds for the clonic seizures induced by the intravenous administration of PTZ, a GABA antagonist, were assessed. Intraperitoneal administration of morphine at lower dose (1mg/kg) increased the seizure threshold. Also intraperitoneal administration of agmatine (5 and 10mg/kg) increased the seizure threshold significantly. Combination of subeffective doses of morphine and agmatine led to potent anticonvulsant effects. Non-effective doses of morphine (0.1 and 0.5mg/kg) were able to induce anticonvulsant effects in mice pretreated with agmatine (3mg/kg). Concomitant administration of either the non-selective nitric oxide synthase (NOS) inhibitor L-NAME (1, 5mg/kg, i.p.) or the selective NOS inhibitor 7-NI (15, 30mg/kg, i.p.), with an ineffective combination of morphine (0.1mg/kg) plus agmatine (1mg/kg) produced significant anticonvulsant impacts. Moreover, the NO precursor, l-arginine (30, 60mg/kg, i.p.), inhibited the anticonvulsant action of agmatine (3mg/kg) plus morphine (0.5mg/kg) co-administration. Our results indicate that pretreatment of animals with agmatine enhances the anticonvulsant effects of morphine via a mechanism which may involve the NO pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Macrophage activation by a vanadyl-aspirin complex is dependent on L-type calcium channel and the generation of nitric oxide

    International Nuclear Information System (INIS)

    Molinuevo, Maria Silvina; Etcheverry, Susana Beatriz; Cortizo, Ana Maria

    2005-01-01

    Bone homeostasis is the result of a tight balance between bone resorption and bone formation where macrophage activation is believed to contribute to bone resorption. We have previously shown that a vanadyl(IV)-aspirin complex (VOAspi) regulates cell proliferation and differentiation of osteoblasts in culture. In this study, we assessed VOAspi and VO effects and their possible mechanism of action on a mouse macrophage cell line RAW 264.7. Both vanadium compounds inhibited cell proliferation in a dose-dependent manner. Nifedipine completely reversed the VOAspi-induced macrophage cytotoxicity, while it could not block the effect of VO. VOAspi also stimulated nitric oxide (NO) production, the oxidation of dihydrorhodamine 123 (DHR-123) and enhanced the expression of both constitutive and inducible isoforms of nitric oxide syntases (NOS). All these effects were abolished by nifedipine. Althogether our finding give evidence that VOAspi-induced macrophage cytotoxicity is dependent on L-type calcium channel and the generation of NO though the induction of eNOS and iNOS. Contrary, the parent compound VO exerted a cytotoxic effect by mechanisms independent of a calcium entry and the NO/NOS activation

  6. Nitric oxide improves the hemodynamic performance of the hypoxic goldfish (Carassius auratus) heart

    DEFF Research Database (Denmark)

    Imbrogno, Sandra; Capria, C.; Tota, Bruno

    2014-01-01

    Goldfish tolerate prolonged and severe hypoxia, thus representing a well-suited model to study the maintenance of cardiac function when O2 availability represents a limiting factor. Using a working heart preparation, we explored the role of the intracardiac nitric oxide synthase (NOS)- derived...... complemented by Western blotting analysis which revealed increased expressions of NOS and hypoxia inducible factor α(HIF-1α). In conclusion, we demonstrated that intracardiac NO/NOS enhances goldfish heart performance, remarkably expanding its hypoxic tolerance....

  7. Regression of L-NAME−Induced Hypertension: The Role of Nitric Oxide and Endothelium-Derived Constricting Factor

    Czech Academy of Sciences Publication Activity Database

    Paulis, Ĺudovít; Zicha, Josef; Kuneš, Jaroslav; Hojná, Silvie; Behuliak, M.; Celec, P.; Kojšová, S.; Pecháňová, O.; Šimko, F.

    2008-01-01

    Roč. 31, č. 4 (2008), s. 793-803 ISSN 0916-9636 R&D Projects: GA MŠk(CZ) 1M0510 Grant - others:VEGA(SK) 1/3429/06; VEGA(SK) 2/6148/26; APVT(SK) 51-027404 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide * endothelial factors * cyclooxygenase Subject RIV: ED - Physiology Impact factor: 3.146, year: 2008

  8. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  9. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize

    International Nuclear Information System (INIS)

    Zhang, L.; Tian, L.; Lai, J.; Zheng, P.; Liang, Z.; Alva, A

    2014-01-01

    Foliar urea has been proved to play a better positive role in enhancing accumulation of nitric oxide (NO) and glycinebetaine (GB) in maize (Zea mays L.) under drought stress (DS). However, it is unclear how foliar urea affects biosynthetic metabolism of NO and its relationship with GB accumulation. This study was on investigating the effect of foliar- applied urea on seedlings of maize cultivar Zhengdan 958 grown in a hydroponic medium under DS or No DS. Contents of NO and GB and nitric oxide synthase (NOS) activity increased and peaked 12 h after the treatment. Nitrate reductase activity (NRA) followed the similar pattern 6h after the treatment. Under DS foliar urea application increased NR and NOS activity and, thereby, increased NO formation. Therefore, enhancement in activities of both NRA and NOS resulted in an increase of NO accumulation. Foliar- applied urea could induce an increased NO burst by enhanced NO synthesis metabolism as a nitrogen signal, possibly resulting in GB accumulation under DS. (author)

  10. On EPR detection of nitric oxide in vivo

    NARCIS (Netherlands)

    van Faassen, E.E.H.

    2008-01-01

    Nitric oxide (NO ) is a peculiar radical: Ground state is not paramagnetic (g = 0 since orbital and spin magnetic moments cancel); low reactivity with other molecules except superoxide (O2 ); thermodynamically unstable; dimerizes to N2O2; difficult to detect in-vivo.

  11. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  12. Arginine affects appetite via nitric oxide in ducks.

    Science.gov (United States)

    Wang, C; Hou, S S; Huang, W; Xu, T S; Rong, G H; Xie, M

    2014-08-01

    The objective of the study was to investigate the mechanism by which arginine regulates feed intake in Pekin ducks. In experiment 1, one hundred forty-four 1-d-old male Pekin ducks were randomly allotted to 3 dietary treatments with 6 replicate pens of 8 birds per pen. Birds in each group were fed a corn-corn gluten meal diet containing 0.65, 0.95, and 1.45% arginine. Ducks fed the diet containing 0.65% arginine had lower feed intake and plasma nitric oxide level (P ducks were allotted to 1 of 2 treatments. After 2 h fasting, birds in the 2 groups were intraperitoneally administrated saline and l-NG-nitro-arginine methyl ester HCl (L-NAME) for 3 d, respectively. Feed intake (P study implied that arginine modifies feeding behavior possibly through controlling endogenous synthesis of nitric oxide in Pekin ducks. © Poultry Science Association Inc.

  13. Deltamethrin-induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor.

    Science.gov (United States)

    El-Gohary, M; Awara, W M; Nassar, S; Hawas, S

    1999-01-01

    This study is the first to examine and characterize the testicular apoptosis which might be induced due to exposure of male rats to deltamethrin. Furthermore, the role which might be played by nitric oxide (NO), as well as the other reactive oxygen species (ROS) in controlling this testicular apoptosis was assessed. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis and cellular morphology on testicular tissue sections. It was found that administration of deltamethrin (1 mg/kg daily for 21 days) to animals resulted in characteristic DNA migration patterns (laddering), thereby providing evidence that apoptosis is the major mechanism of cell death in the testicular tissues. In addition, histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells, primary and secondary spermatocytes. These changes, in addition to the appearance of Sertoli cell vacuoles in deltamethrin-intoxicated animals, indicates the suppression of spermatogenesis. At the same time, the plasma levels of both NO and lipid peroxides measured as malondialdehyde (MDA) were found to be significantly increased in deltamethrin-treated animals. Administration of NO synthase (NOS) inhibitors such as N(G)-nitro monomethyl L-arginine hydrochloride (L-NMMA, 1 mg/kg) to rats 2 h before exposure to deltamethrin was effective in the reduction of the typically testicular apoptotic DNA fragmentation pattern and the associated histopathological changes. These findings may suggest that deltamethrin-induced testicular apoptosis is mediated by NO. Therefore, the pharmacological manipulation of apoptosis by selective NOS inhibitors such as L-NMMA may offer new possibilities for the control of deltamethrin-induced testicular dysfunction and infertility in the future.

  14. DMPD: Regulation of nitric oxide synthesis and apoptosis by arginase and argininerecycling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17513437 Regulation of nitric oxide synthesis and apoptosis by arginase and arginin...tion of nitric oxide synthesis and apoptosis by arginase and argininerecycling. A...erecycling. Mori M. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. (.png) (.svg) (.html) (.csml) Show Regulation of nitric oxide synthe...sis and apoptosis by arginase and argininerecycling. PubmedID 17513437 Title Regula

  15. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    Science.gov (United States)

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-01-01

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be

  16. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    Science.gov (United States)

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nitric oxide and non-quantal acetylcholine release

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František

    2003-01-01

    Roč. 7, č. 3 (2003), s. 241-243 ISSN 1211-7579. [Celostátní konference biologické psychiatrie /11./. Luhačovice, 11.06.2003-14.06.2003] R&D Projects: GA ČR GA305/02/1333 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : nitric oxide Subject RIV: ED - Physiology

  18. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Weihrauch, Dorothee; Billstrom, Amie R; Zielonka, Jacek; Krolikowski, John G; Bienengraeber, Martin W; Warltier, David C; Pratt, Philip F; Kersten, Judy R

    2009-02-01

    Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.

  19. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Ambrozova, Gabriela; Pekarova, Michaela; Lojek, Antonin

    2011-02-01

    Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Alloantigen-induced, T-cell dependent production of nitric oxide by macrophages infiltrating skin allografts in mice

    Czech Academy of Sciences Publication Activity Database

    Krulová, Magdalena; Zajícová, Alena; Frič, Jan; Holáň, Vladimír

    15, 2002, 2-3 (2002), s. 108-116 ISSN 0934-0874 R&D Projects: GA ČR GA310/99/D044; GA ČR GA310/99/0360; GA MZd NI6659; GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : mouse * allograft rejection * nitric oxide Subject RIV: EC - Immunology Impact factor: 2.520, year: 2002

  1. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2008-06-01

    Full Text Available Abstract Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD, is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES, are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO production via suppression of inducible NO synthase (iNOS protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels. NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and

  2. Cerebral infarctions due to CNS infection with Enterobacter sakazakii

    International Nuclear Information System (INIS)

    Gallagher, P.G.; Ball, W.S.

    1991-01-01

    Recent reports have implicated Enterobacter sakazakii, a gram-negative enteric bacillus, in neonatal sepsis and meningitis. Cases of severe central nervous system involvement, including ventriculitis, brain abscess, infarction, and cyst formation, have been described. We present serial head CT findings in a case of neonatal E. sakazakii meningitis complicated by a ring enhancing cerebral infarction which mimicked abscess formation. In meningitis secondary to this agent, a recognized pattern of cerebral hypodensity with or without cystic degeneration late in the course of the infection is likely to represent cerebral infarction rather than an abscess especially if there is a lack of culture evidence of a bacterial infection. (orig.)

  3. CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.

    Science.gov (United States)

    Ogrodzki, Pauline; Forsythe, Stephen James

    2016-12-01

    Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.

  4. Role of nitric oxide in pheromone-mediated intraspecific communication in mice.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2009-12-07

    Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.

  5. Nitric oxide and neopterin in bipolar affective disorder

    NARCIS (Netherlands)

    Hoekstra, R.; Fekkes, D.; Pepplinkhuizen, L.; Loonen, A.J.M.; Tuinier, S.; Verhoeven, W.M.A.

    2006-01-01

    Background: There is an increasing interest in the role of nitric oxide (NO) and pterines in the pathophysiology of neuropsychiatric disorders. The results so far show an inconsistent pattern. Methods: In the present study, neopterin and a measure of NO synthesis in plasma of symptomatic and

  6. Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test.

    Science.gov (United States)

    Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L

    2017-02-01

    Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.

  7. NITRIC OXIDE AND ENDOTHELIN-1 IN CHILDREN WITH DIGESTIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    I. V. Panova

    2012-01-01

    Full Text Available The important part in the group of biological compounds, participating in the regulation of the functions of the gastro-intestinal tract, is assigned to endothelial factors because of their impact on the majority of physiological and pathophysiological processes of the digestive system. The article provides information about physiological role of nitric oxide and endothelin-1 and presents a review of scientific data on the participation of nitric oxide and endothelin-1 in the pathogenesis of many digestive system diseases, emphasizing chronic inflammatory disorders of the upper gastrointestinal tract. The authors accentuate the importance of endothelium endocrine function research in children with esophagogastroduodenal disorders at the beginning of puberty, which is the critical period of ontogenesis.

  8. L-Arginine Increases Cytotoxicity in Irradiated Ehrlich Carcinoma Cell Line: Possible Potential Role of Nitric Oxide

    International Nuclear Information System (INIS)

    Noaman, E.

    2008-01-01

    Cancer cells possess nitric oxide syntheses (NOS) which metabolize L-Arginine (L-Arg) for producing nitric oxide (NO) The present study investigates the relations between NO and ionizing radiation in the Ehrlich ascites carcinoma (EAC) cell line. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 m M) supply led to an increase in ionizing radiation induced cytotoxicity (% of viability 18± 3 %) whereas, neither L-Arg itself nor ionizing irradiation caused cell death at the doses used in this study. Also, cells were treated either with L-Thio citrulline (L-Thio), an irreversible inhibitor of NOS or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg mediated deleterious effects on Irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activity was also determined. Ionizing radiation + L-Arg stress altered the activity of catalase (66 % decrease) and glutathione peroxidase (83 % decrease). Our findings demonstrated that L-Arg induces increase the radiation-mediated deleterious effects in Ehrlich ascites carcinoma cells cytotoxicity and that the ratio NO/ O 2 plays a key role in these processes. NO could participate the deleterious effect of irradiation, in conjugation with others reactive oxygen species (ROS) produced during the oxidation of intracellular components by ionizing radiation (dose 6 Gy)

  9. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  10. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  11. A possible way to assess tidal exhaled nitric oxide in neonates and infants treated with nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Schmidt, Birgitte Johanne; Reim, Pauline Schibler; Pedersen, Ole Find

    2018-01-01

    The endogenous compound nitric oxide (NO) is released into the airways via inducible NO synthase (1),which has the capacity to produce NO when up-regulated by pro-inflammatory cytokines or exogenous factors, like hypoxia, bacterial toxins and viruses (2). Prematurely born infants are susceptible...

  12. A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide.

    Science.gov (United States)

    Reinhardt, Christopher J; Zhou, Effie Y; Jorgensen, Michael D; Partipilo, Gina; Chan, Jefferson

    2018-01-24

    Photoacoustic (PA) imaging is an emerging imaging modality that utilizes optical excitation and acoustic detection to enable high resolution at centimeter depths. The development of activatable PA probes can expand the utility of this technology to allow for detection of specific stimuli within live-animal models. Herein, we report the design, development, and evaluation of a series of Acoustogenic Probe(s) for Nitric Oxide (APNO) for the ratiometric, analyte-specific detection of nitric oxide (NO) in vivo. The best probe in the series, APNO-5, rapidly responds to NO to form an N-nitroso product with a concomitant 91 nm hypsochromic shift. This property enables ratiometric PA imaging upon selective irradiation of APNO-5 and the corresponding product, tAPNO-5. Moreover, APNO-5 displays the requisite photophysical characteristics for in vivo PA imaging (e.g., high absorptivity, low quantum yield) as well as high biocompatibility, stability, and selectivity for NO over a variety of biologically relevant analytes. APNO-5 was successfully applied to the detection of endogenous NO in a murine lipopolysaccharide-induced inflammation model. Our studies show a 1.9-fold increase in PA signal at 680 nm and a 1.3-fold ratiometric turn-on relative to a saline control.

  13. Nitric Oxide PLIF Measurements in the Hypersonic Materials Environmental Test System (HYMETS)

    Science.gov (United States)

    Inman, Jennifer A.; Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.; McRae, Colin D.

    2013-01-01

    Planar laser-induced fluorescence (PLIF) of naturally occurring nitric oxide (NO) has been used to obtain instantaneous flow visualization images, and to make both radial and axial velocity measurements in the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. This represents the first application of NO PLIF flow visualization in HYMETS. Results are presented at selected facility run conditions, including some in a simulated Earth atmosphere (75% nitrogen, 20% oxygen, 5% argon) and others in a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon), for specific bulk enthalpies ranging from 6.5 MJ/kg to 18.4 MJ/kg. Flow visualization images reveal the presence of large scale unsteady flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core flow for specific bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core flow for specific bulk enthalpies above about 16 MJ/kg. Axial velocimetry was performed using molecular tagging velocimetry (MTV). Axial velocities of about 3 km/s were measured along the centerline. Radial velocimetry was performed by scanning the wavelength of the narrowband laser and analyzing the resulting Doppler shift. Radial velocities of +/- 0.5 km/s were measured.

  14. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2.

    Science.gov (United States)

    Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong

    2015-04-01

    Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.

  15. Nitric oxide in health and disease of the respiratory system

    NARCIS (Netherlands)

    Ricciardolo, Fabio L. M.; Sterk, Peter J.; Gaston, Benjamin; Folkerts, Gert

    2004-01-01

    During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO

  16. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  17. Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice.

    Science.gov (United States)

    Gawali, Nitin B; Chowdhury, Amrita A; Kothavade, Pankaj S; Bulani, Vipin D; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-01-05

    In view of the reports that nitric oxide modulates the neurotransmitters implicated in obsessive-compulsive disorder (OCD), patients with OCD exhibit higher plasma nitrate levels, and drugs useful in OCD influence nitric oxide. Agmatine is a polyamine and widely distributed in mammalian brain which interacts with nitrergic systems. Hence, the present study was carried out to understand the involvement of nitrergic systems in the anticompulsive-like effect of agmatine. We used marble-burying behaviour (MBB) of mice as the animal model of OCD, and nitric oxide levels in hippocampus (HC) and cortex homogenate were measured. Results revealed that, agmatine (20 and 40mg/kg, i.p) significantly inhibited the MBB. Intraperitoneal administration of nitric oxide enhancers viz. nitric oxide precursor - l-arginine (l-ARG) (400mg/kg and 800mg/kg) increased MBB as well as brain nitrites levels, whereas treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) neuronal nitric oxide synthase inhibitor (30mg/kg and 50mg/kg, i.p.) and 7-nitroindazole (7-NI) (20mg/kg and 40mg/kg) attenuated MBB and nitrites levels in brain. Further, in combination studies, the anticompulsive-like effect of agmatine (20mg/kg, ip) was exacerbated by prior administration of l-ARG (400mg/kg) and conversely l-NAME (15mg/kg) or 7-NI (10.0mg/kg) attenuated OCD-like behaviour with HC and cortex changes in the levels of NO. None of the above treatment had any significant influence on locomotor activity. In conclusion, Agmatine is effective in ameliorating the compulsive-like behaviour in mice which appears to be related to nitric oxide in brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Total Glucosides of Paeonia lactiflora Pall Suppress Nitric Oxide ...

    African Journals Online (AJOL)

    iNOS) expression and ... Keywords: Total glucosides, Paeonia lactiflora, Nitric oxide, iNOs, Nuclear factor-κB. Tropical Journal of Pharmaceutical Research ... Nuclear factor (NF)-κB is the key transcriptional factor regulating iNOS gene transcription.

  19. Experience with inhaled nitric oxide therapy in hypoxic respiratory failure of the newborn.

    Science.gov (United States)

    Sehgal, Arvind; Callander, Ian; Stack, Jacqueline; Momsen, Tracey; Sterling-Levis, Katy

    2005-01-01

    Respiratory diseases are the commonest cause of morbidity and mortality in newborns. Inhaled nitric oxide (iNO) has been shown to be effective in the management of persistent pulmonory hypertension of newborn (PPHN). To retrospectively analyse data to determine the effectiveness of inhaled nitric oxide (iNO) in the management of newborns with PPHN in terms of survival and changes in oxygenation status. Neo-natal data since inception of iNO therapy at the unit (past six years) was reviewed. Pertinent demographic and clinical information was collected from medical records of newborns that received inhaled nitric oxide therapy during their stay. Details of underlying illnesses, other therapeutic modalities, arterial blood gas, ventilatory and nitric oxide parameters were assessed and analysed to ascertain efficacy of iNO. A total of 36 babies (gestational age ranging from 24-41 weeks) received iNO during this period; two were excluded from final analysis. Overall survival rate was 80 percent. There was a statistically significant increase in systemic oxygenation (PaO2) from 41.1 +/- 2.1 mmHg to 128.5 +/- 13.2 mmHg and a decline in oxygenation index (OI) from 49.4 +/- 5.9 to 17.3 +/- 2.5, when assessed after four hours (P < 0.001). Mean duration of iNO therapy was 63 +/- 7.3 hours and the maximum methaemoglobin levels were noted to be 2.1 percent. Inhaled nitric oxide appears to be an effective rescue therapy for the management of PPHN associated with hypoxic respiratory failure. It is safe and well tolerated with no evidence of clinical or biochemical side effects.

  20. Is nitric oxide signalling involved in the antidepressant action of ketamine?

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2012-01-01

    Background and Aim: Stress-induced excessive glutamate transmission at N-methyl-D-aspartate (NMDA) receptors may underlie a major mechanism in the pathophysiology that leads to depression, while ketamine, an NMDA receptor antagonist, has been shown to induce a rapid antidepressant effect in depre......Background and Aim: Stress-induced excessive glutamate transmission at N-methyl-D-aspartate (NMDA) receptors may underlie a major mechanism in the pathophysiology that leads to depression, while ketamine, an NMDA receptor antagonist, has been shown to induce a rapid antidepressant effect...... in depressed patients following a single intravenous administration that is sustained for ± 7 days. A number of downstream cellular mechanisms appear to mediate the antidepressant action of ketamine, and the majority of evidence point to a rapid activation of protein translation leading to increased synaptic...... receptors, while the uncoupling of the nNOS-NMDA receptor complex prevents NMDA-induced excitotoxicity. Thus, it is possible that the inhibition of nitric oxide (NO) signalling underlies a key upstream mechanism in the antidepressant action of ketamine. Methods: We used a genetic rat model of depression...

  1. Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Sanches, Françoise P; Tomokane, Thaise Y; Da Matta, Vânia L R; Marcondes, Mary; Corbett, Carlos E P; Laurenti, Márcia D

    2014-09-07

    There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well. Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS⁺ cells was higher in infected dogs compared to controls (P spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS⁺ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS⁺ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329). The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.

  2. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  3. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production

    International Nuclear Information System (INIS)

    Deliconstantinos, G.; Villiotou, V.; Stravrides, J.C.

    1995-01-01

    The mechanism of human sunburn is poorly understood but its characteristic features include the development of erythema. In this study we attempted to determine whether human keratinocytes possess a nitric oxide (NO) synthase (NOS), if this enzyme could be activated to release NO following exposure to ultraviolet B (u.v.B) and to define whether this photo-induced response could be involved in the pathogenesis of sunburn erythema. The present results indicate that u.v.B radiation acts as a potent stimulator of NOS in keratinocytes. NO is lipophilic and may diffuse out of the keratinocytes, activating sGC in endothelial cells and neighbouring smooth muscle cells. This may be a major part of the integrated response of the skin leading to vasodilatation and erythema. (author)

  4. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms With Acute Rejection in Liver Transplant Recipients.

    Science.gov (United States)

    Azarpira, Negar; Namazi, Soha; Malahi, Sayan; Kazemi, Kourosh

    2016-06-01

    Polymorphisms of the endothelial nitric oxide synthase gene have been associated with altered endothelial nitric oxide synthase activity. The purpose of this study was to investigate the relation between endothelial nitric oxide synthase -786T/C and 894G/T polymorphism and their haplotypes on the occurrence of acute rejection episodes in liver transplant recipients. We conducted a case control study in which 100 liver transplant recipients and 100 healthy controls were recruited from Shiraz Transplant Center. The patients used triple therapy including tacrolimus, mycophenolate mofetil, and prednisolone for immunosuppression maintenance. DNA was extracted from peripheral blood and endothelial nitric oxide synthase polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism. Patients included 60 men and 40 women (mean age, 32.35 ± 10.2 y). There was a significant association of endothelial nitric oxide synthase 894G/T and acute rejection episode. The GT* gen-otype and acute rejection episodes had a significant association (odds ratio, 2.42; 95% confidence interval, 0.97-6.15; P = .03). The GG and GT* genotype and T* allele frequency were significantly different between patients and control subjects (P = .001). Haplotype TT* was higher in recipients than control subjects (odds ratio, 2.17; 95% confidence interval, 1.12-4.25; P = .01). Haplotype TG was higher in the control group (odds ratio, 0.62; 95% confidence interval, 0.40-0.96; P = .02). Our results suggest a relation between different endothelial nitric oxide synthase geno-types and risk of acute rejection episodes. However, further study is necessary to determine genetic susceptibility for transplant patients.

  5. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  6. Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting.

    Science.gov (United States)

    Pfeiffer, Tomas; Wallich, Martina; Sandmann, Wilhelm; Schrader, Jürgen; Gödecke, Axel

    2006-05-01

    Intimal hyperplasia (IH) is most commonly the cause of graft occlusion in infrainguinal bypass grafting for arterial occlusive disease. We investigated the influence of nitric oxide on the IH of the arterial vessel wall at the region of prosthetic bypass anastomoses. Experiments were performed in 10 Foxhound dogs. We used a technique of inducible nitric oxide synthase (iNOS) overexpression by a non-virus-mediated, liposome-based iNOS gene transfer. The plasmid pSCMV-iNOS, which drives the expression of iNOS under control of the cytomegalovirus promoter, was complexed with cationic liposomes (lipoplexes). Segments of both carotid arteries were pretreated by intramural injection of a lipoplex solution by using an infiltrator balloon catheter (Infiltrator Drug Delivery Balloon System). In each dog, iNOS was administered at one side, and a control vector (pSCMV2) was administered at the contralateral side. Carotid arteries were ligated, and bypass grafts (expanded polytetrafluoroethylene, 6-mm, ring enforced) were implanted on both sides. The proximal and distal anastomoses (end-to-side fashion; running nonabsorbable sutures) were placed in the pretreated regions. After 6 months, the prostheses were excised, and the intimal thicknesses of 50 cross sections (orcein staining) of each anastomosis were measured planimetrically. The average reduction of the neointima thickness of the iNOS side in proximal anastomoses at the prosthetic wall, suture region, and arterial wall was 43%, 52%, and 81%, respectively. In distal anastomoses, the average reduction was 40%, 47%, and 52%, respectively. All differences of neointima thickness between the iNOS and control sides were statistically significant (Wilcoxon test; P < or = .05). Inducible NOS expression is an efficient approach for inhibition of IH. In contrast to earlier studies, which investigated the efficacy of gene therapeutic NOS expression at 3 to 4 weeks after intervention, the novelty of our findings is that a single

  7. Pancreatic nitric oxide and oxygen free radicals in the early stages of streptozotocin-induced diabetes mellitus in the rat

    Directory of Open Access Journals (Sweden)

    González E.

    2000-01-01

    Full Text Available The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ-induced pancreatic damage, which may involve nitric oxide (NO production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD (1 U/ml produced a decrease in nitrite levels (42% and NO synthase (NOS activity (50% in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA (600 µM, SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight. The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32. Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein, and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05; spermine nonoate (100 µM abolished the decrease in lipoperoxide level (0.70 ± 0.02. We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.

  8. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  9. Nitric oxide prevents alveolar senescence and emphysema in a mouse model.

    Directory of Open Access Journals (Sweden)

    Amanda E Boe

    Full Text Available Nω-nitro-L-arginine methyl ester (L-NAME treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction and functional (increased compliance and reduced elastance characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1. Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.

  10. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.

    Science.gov (United States)

    Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong

    2016-04-26

    We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

  11. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects

    International Nuclear Information System (INIS)

    Tengan, Celia H.; Kiyomoto, Beatriz H.; Godinho, Rosely O.; Gamba, Juliana; Neves, Afonso C.; Schmidt, Beny; Oliveira, Acary S.B.; Gabbai, Alberto A.

    2007-01-01

    NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle

  12. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme.

    Science.gov (United States)

    Günzle, Jessica; Osterberg, Nadja; Saavedra, Joseph E; Weyerbrock, Astrid

    2016-09-01

    The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance.

  13. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit.

    Science.gov (United States)

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2011-09-14

    The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels.

  14. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes

    NARCIS (Netherlands)

    Sprangers, F.; Sauerwein, H. P.; Romijn, J. A.; van Woerkom, G. M.; Meijer, A. J.

    1998-01-01

    There is increasing evidence for the existence of intrahepatic regulation of glucose metabolism by Kupffer cell products. Nitric oxide (NO) is known to inhibit gluconeogenic flux through pyruvate carboxylase and phosphoenolpyruvate carboxykinase. However, NO may also influence glucose metabolism at

  15. The antidiabetic effect of L-carnitine in rats: the role of nitric oxide system

    Directory of Open Access Journals (Sweden)

    Shaghayegh Hajian-Shahri

    2017-11-01

    Full Text Available Background: Nowadays, the use of L-carnitine in the treatment of diabetes is increasing. This study was conducted to investigate the effect of co-administration of L-arginine (precursor for the synthesis of nitric oxide and nitro-L-arginine (nitric oxide synthesis inhibitor on antidiabetic activity of L-carnitine in diabetic rats. Materials and Methods: In this study, 50 male rats weighing 180-201g were divided into five groups: (1 non diabetic control rats; (2 untreated diabetic rats; (3 diabetic rats treated with L-carnitine 300 mg/kg (4; diabetic rats treated with L-carnitine 300 mg/kg + L-arginine 300 mg/kg; and (5 diabetic rats treated with L-carnitine (300 mg/kg + nitro-L-arginine (1mg/kg. Type 1 diabetes was induced by a single intraperitoneal injection of 110 mg/kg body weight alloxan. After 30 days, liver malondialdehyde levels, lipid profile, serum glucose, and glycated hemoglobin serum levels were measured. Results: Blood glucose, liver enzymes, glycated hemoglobin, and liver malondialdehyde levels significantly decreased in diabetic rats treated with L-carnitine compared to the untreated diabetic group (P<0.05. The co-administration of L-arginine and L-carnitine led to a significant decrease in glycated hemoglobin levels and serum glucose, in a manner similar to the group received only L-carnitine. Also, L-arginine and nitro-l-arginine had similar effects on liver lipid peroxidation and serum biochemical parameters. Conclusion: The results suggest that the hypoglycemic effect of L-carnitine is mediated independently from nitric oxide pathways. The interaction between L-carnitine and L-arginine may not be synergistic. So, their combined administration is not recommended for the diabetic patients.

  16. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  17. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    Science.gov (United States)

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.

  18. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  19. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    Science.gov (United States)

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  20. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  1. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    DEFF Research Database (Denmark)

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L

    2008-01-01

    BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodiu......-116; doi:10.1038/ajh.2007.16American Journal of Hypertension (2008) 21 111-116; doi:10.1038/ajh.2007.16....

  2. A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells.

    Science.gov (United States)

    Huang, Dachuan; Lim, Sylvia; Chua, Rong Yuan Ray; Shi, Hong; Ng, Mah Lee; Wong, Siew Heng

    2010-03-01

    MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.

  3. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  4. Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide.

    Science.gov (United States)

    Mousavi, Seyyedeh Elaheh; Saberi, Pegah; Ghasemkhani, Naeemeh; Fakhraei, Nahid; Mokhtari, Rezvan; Dehpour, Ahmad Reza

    2018-01-01

    Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, possesses antioxidant, antiapoptotic, neuroprotective, and anti-inflammatory properties. The aim of the present study was to investigate the effect of licofelone on lipopolysaccharide (LPS)-induced depression in a mouse model and also a possible role for nitric oxide (NO). To elucidate the role of NO on this effect of licofelone (5 and 20 mg/kg, i.p.), L-NAME, a non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), a specific inducible NOS (iNOS) inhibitor; 7-nitroindazole (7-NI) a preferential neuronal NOS inhibitor (nNOS) and; L-arginine (L-Arg), as a NO donor, were used. The animal's behaviors were evaluated employing forced swimming test (FST), tail suspension test (TST) and open field test (OFT). LPS (0.83 mg/kg, i.p.) induced depressive-like behavior increasing immobility time in FST and TST. Conversely, licofelone (20 mg/kg i.p.) reversed the depressive effect of LPS and lowered the immobility time in FST and TST. On the other hand, pretreatment with L-Arg also reversed the antidepressant-like effect of licofelone (20 mg/kg) in FST and TST. On the other hand, L-NAME (10 and 30 mg/kg), AG (50 and 100 mg/kg) and 7-NI (60 mg/kg) could potentiate licofelone (5 mg/kg) and lowered the immobility duration. NO down-regulation possibly through iNOS and nNOS inhibition may involve in the antidepressant property of licofelone. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  5. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide.

    Science.gov (United States)

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-02-01

    Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production.

  6. Physiologic ischaemic training induces endothelial progenitor cell mobilization and myocardial angiogenesis via endothelial nitric oxide synthase related pathway in rabbits.

    Science.gov (United States)

    Xiao, Mingyue; Lu, Xiao; Li, Jianan; Li, Ling; Li, Yongxue

    2014-04-01

    Ischaemia-induced angiogenesis promises to improve neovascularization by delivery of angiogenic factors or endothelial progenitor cells (EPCs) to cardiac ischaemic areas. In order to avoid the risk of excessive myocardial ischaemia, therefore, we hypothesized that physiological ischaemic training (PIT) of normal skeletal muscle might contribute to myocardial angiogenesis via nitric oxide mediated mobilization of EPCs from the bone marrow in the established rabbit model of controllable myocardial ischaemia. The rabbits were grouped by sham-operation, myocardial ischaemia without PIT, PIT and PIT with pretreatment with the endothelial nitric oxide synthase (eNOS) inhibitor L-nitroarginine methyl ester (L-NAME). Controlled myocardial ischaemia was modelled by a water balloon constrictor implanted on the left ventricular branch in a rabbit. The PIT procedure included three cycles of 3 min of cuff inflation followed by 5 min of deflation on hind limbs of the rabbits for 4 weeks. At the endpoints, circulating EPCs (CD34/Flk-1) were measured by fluorescence-activated cell sorter; capillary density, by immunohistochemistry; blood flow, by a microsphere technique; endothelial nitric oxide synthase (eNOS) mRNA and protein, by real-time reverse transcriptase (RT)-PCR and Western blotting. The mRNA levels of eNOS were significantly higher in the PIT and L-NAME groups than in the sham-operation group (P < 0.05). Phospho-eNOS protein expression was higher in the PIT group than in the sham-operation and myocardial ischaemia without PIT groups (P < 0.05), and the effect was inhibited by L-NAME pretreatment (P < 0.05). Compared with sham-operation and myocardial ischaemia without PIT groups, the PIT group had the highest EPC count (P < 0.001), and the increase of capillary density (P < 0.01) and collateral blood flow (P < 0.05) in the ischaemic myocardium was consistent with the finding of EPC count. These effects were also inhibited by pretreatment with

  7. Trypanosoma cruzi: Serum levels of nitric oxide and expression of inducible nitric oxide synthase in myocardium and spleen of dogs in the acute stage of infection with metacyclic or blood trypomastigotes.

    Science.gov (United States)

    Vieira, Paula Melo de Abreu; Francisco, Amanda Fortes; de Souza, Sheler Martins; Malaquias, Luiz Cosme Cotta; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro; Veloso, Vanja Maria; de Lana, Marta; Tafuri, Washington Luiz; Carneiro, Cláudia Martins

    2009-01-01

    The participation of nitric oxide (NO) in the control of blood parasitemia and parasitism during the acute phase of infection in dogs inoculated with blood trypomastigotes (BT) or metacyclic trypomastigotes (MT group) of Berenice-78 Trypanosoma cruzi strain has been evaluated. Animals of the MT group (n=4) presented increased levels of serum NO throughout the infection when compared with the BT (n=4) or control (n=4) groups, and a delay in parasitemia peak compared with the BT group. In spleen fragments, tissue parasitism was not observed but the MT group presented larger areas associated with inducible NO synthase (iNOS) in relation to BT and control groups. Heart fragments of MT-infected animals exhibited comparatively low tissue parasitism and high iNOS expression, while animals of the BT group presented high inflammatory infiltrate, high tissue parasitism and low iNOS expression. These results indicate that the source of inoculum can interfere with the development of the acute phase of Chagas disease, and may also trigger a distinct parasite-host interaction during this phase.

  8. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  9. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  10. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes.

    Science.gov (United States)

    Wu, Gong-Jhe; Chen, Tyng-Guey; Chang, Huai-Chia; Chiu, Wen-Ta; Chang, Chia-Chen; Chen, Ruei-Ming

    2007-08-15

    During inflammation, overproduction of nitric oxide (NO) can damage chondrocytes. In this study, we separately evaluated the toxic effects of exogenous and endogenous NO on human chondrocytes and their possible mechanisms. Human chondrocytes were exposed to sodium nitroprusside (SNP), an NO donor, or a combination of lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) as the exogenous and endogenous sources of NO, respectively. Administration of SNP or a combination of LPS and IFN-gamma in human chondrocytes increased cellular NO levels but decreased cell viability. Exposure to exogenous or endogenous NO significantly induced apoptosis of human chondrocytes. When treated with exogenous or endogenous NO, the mitochondrial membrane potential time-dependently decreased. Exposure to exogenous or endogenous NO significantly enhanced cellular reactive oxygen species (ROS) and cytochrome c (Cyt c) levels. Administration of exogenous or endogenous NO increased caspase-3 activity and consequently induced DNA fragmentation. Suppression of caspase-3 activation by Z-DEVD-FMK decreased NO-induced DNA fragmentation and cell apoptosis. Similar to SNP, exposure of human chondrocytes to S-nitrosoglutathione (GSNO), another NO donor, caused significant increases in Cyt c levels, caspase-3 activity, and DNA fragmentation, and induced cell apoptosis. Pretreatment with N-monomethyl arginine (NMMA), an inhibitor of NO synthase, significantly decreased cellular NO levels, and lowered endogenous NO-induced alterations in cellular Cyt c amounts, caspase-3 activity, DNA fragmentation, and cell apoptosis. Results of this study show that NO from exogenous and endogenous sources can induce apoptotic insults to human chondrocytes via a mitochondria-dependent mechanism.

  11. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages.

    Science.gov (United States)

    Kim, Hyun Young; Baik, Jung Eun; Ahn, Ki Bum; Seo, Ho Seong; Yun, Cheol-Heui; Han, Seung Hyun

    2017-02-01

    Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by ...

    African Journals Online (AJOL)

    Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by Methanol Extract of Polyopes affinis in Lipopolysaccharide-stimulated BV2 Microglial Cells through Suppression of Akt-dependent NF-kB Activity and MAPK Pathway.

  13. Gender-based reciprocal expression of transforming growth factor-β1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis

    Directory of Open Access Journals (Sweden)

    Loughran Patricia A

    2009-08-01

    Full Text Available Abstract Background The pluripotent cytokine transforming growth factor-β1 (TGF-β1 is the central regulator of inducible Nitric Oxide Synthase (iNOS that is responsible for nitric oxide (NO production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP-induced cystitis in the bladder. TGF-β1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-β1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC, the present study examined the relationship between TGF-β1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. Methods Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-β1 and NO reaction products (NO2-/NO3- were quantified as a function of time following CYP. Expression of active and latent TGF-β1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. Results Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p 2-/NO3- and TGF-β1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-β1 in urine (p 2-/NO3- after CYP were inversely correlated to latent and active TGF-β1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p Conclusion The results of this study suggest that there exists an inverse relationship between the expression of TGF-β1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-β1 and NO2-/NO3- in this inflammatory

  14. Nitric oxide nanoparticles

    Science.gov (United States)

    Schairer, David O.; Martinez, Luis R.; Blecher, Karin; Chouake, Jason S.; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M.; Nosanchuk, Joshua D.; Friedman, Adam J.

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections. PMID:22286699

  15. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  16. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  17. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  18. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  19. Effects of nitric oxide inhibitors in mice with bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    Marcy Lancia Pereira

    Full Text Available ABSTRACT Purpose To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS, or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS, after 5 weeks of partial bladder outlet obstruction (BOO, in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. Materials and Methods C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. Results BOO animals showed increase of non-voiding contractions (NVC and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. Conclusion It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.

  20. Fe-Chlorophyllin Promotes the Growth of Wheat Roots Associated with Nitric Oxide Generation

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2010-12-01

    Full Text Available : Effects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission. The intensity of fluorescent in the presence of 0.1 mg/L Fe-chlorophyllin was near to that observed with the positive control of sodium nitroprusside (SNP, the nitric oxide donor. IAA oxidase activity decreased with all treatments of Fe-chlorophyllin from 0.01 to 10 mg/L. At the relatively lower Fe-chlorophyllin concentration of 0.1 mg/L, the activity of IAA oxidase displayed a remarkable decrease, being 40.1% lower than the control. Meanwhile, Fe-chlorophyllin treatment could increase the activities of reactive oxygen scavenging enzymes, such as superoxide dismutase (SOD and peroxidase (POD, as determined using non-denaturing polyacrylamide gel electrophoresis. These results indicate that Fe-chlorophyllin contributes to the growth of wheat root associated with nitric oxide generation.

  1. Arylboronate ester based diazeniumdiolates (BORO/NO), a class of hydrogen peroxide inducible nitric oxide (NO) donors.

    Science.gov (United States)

    Dharmaraja, Allimuthu T; Ravikumar, Govindan; Chakrapani, Harinath

    2014-05-16

    Here, we report the design, synthesis, and evaluation of arylboronate ester based diazeniumdiolates (BORO/NO), a class of nitric oxide (NO) donors activated by hydrogen peroxide (H2O2), a reactive oxygen species (ROS), to generate NO. We provide evidence for the NO donors' ability to permeate bacteria to produce NO when exposed to H2O2 supporting possible applications for BORO/NO to study molecular mechanisms of NO generation in response to elevated ROS.

  2. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    Science.gov (United States)

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  3. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise.

    Science.gov (United States)

    Jankord, Ryan; McAllister, Richard M; Ganjam, Venkataseshu K; Laughlin, M Harold

    2009-03-01

    Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.

  4. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation...... mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full...

  5. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase

    DEFF Research Database (Denmark)

    Ebbesson, Lars O E; Tipsmark, Christian K; Holmqvist, Bo

    2005-01-01

    We investigated the relationship between nitric oxide (NO) and Na(+),K(+)-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphor...

  6. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO

  7. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Science.gov (United States)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  8. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun-Hee [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Park, Ji-Yong [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jong-Hyun [Department of Food Science and Biotechnology, Kyungwon University, Sungnam 461-701 (Korea, Republic of); Chung, Myong-Soo [Department of Food Science, Ehwa Women' s University, Seoul 120-750 (Korea, Republic of); Kwon, Ki-Sung [Center for Food safety Evaluation, Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Chung, Kyungsook; Won, Misun [Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Song, Kyung-Bin [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)], E-mail: kbsong@cnu.ac.kr

    2008-09-15

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D{sub 10}-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  9. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    International Nuclear Information System (INIS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-01-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D 10 -vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities

  10. Effect of sildenafil citrate on interleukin-1β-induced nitric oxide synthesis and iNOS expression in SW982 cells

    Science.gov (United States)

    Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun

    2008-01-01

    The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266

  11. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  12. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide.

    Science.gov (United States)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Panda, Koustubh; Acharya, Krishnendu

    2017-06-01

    Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  14. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity

    OpenAIRE

    Christou, Demetra D.; Pierce, Gary L.; Walker, Ashley E.; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H.; English, Mark; Seals, Douglas R.

    2012-01-01

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18–79 years; body mass index (BMI), 16.4–42.2 kg/m2], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI...

  15. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along......Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  16. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  17. Effects of epidermal growth factor, interleukin 1 and nitric oxide on prostaglandin production by guinea-pig uterus.

    Science.gov (United States)

    Keeble, J E; Poyser, N L

    2002-08-01

    Initial experiments in the present study investigated the effects of epidermal growth factor (EGF), interleukin 1beta (IL-1beta) and sodium nitroprusside (a nitric oxide donor) on the output of prostaglandins from guinea-pig uterus on day 7 of the oestrous cycle. Superfusion of day 7 guinea-pig uterus in vitro with either EGF or sodium nitroprusside increased the output of PGF(2alpha) and 6-keto-PGF(1alpha), but not of PGE(2). IL-1beta had no effect on the output of these three prostaglandins. EGF still increased the output of PGF(2alpha), but did not increase the output of 6-keto-PGF(1alpha) in a calcium-depleted superfusate. Subsequent experiments investigated the effect of sodium nitroprusside on contractile activity of day 7 guinea-pig uterus. Basal spontaneous activity of both the intact uterus and isolated myometrium superfused in vitro was low. Sodium nitroprusside increased the contractile activity of these tissues two- to fourfold. EGF did not affect the contractile activity of the uterus, indicating that sodium nitroprusside-induced contractions are not due to increased prostaglandin production. Overall, the findings indicate that EGF and nitric oxide may act as mediators in the mechanism by which oestradiol acting on a progesterone-primed uterus stimulates the increase in PGF(2alpha) production by the guinea-pig uterus necessary for luteolysis. Nitric oxide may increase the spontaneous activity of the uterus when this activity is low.

  18. Effects of chronic administration of tamsulosin and tadalafil, alone or in combination, in rats with bladder outlet obstruction induced by chronic nitric oxide deficiency.

    Science.gov (United States)

    Regadas, Rommel Prata; Reges, Ricardo; Cerqueira, João Batista Gadelha; Sucupira, Daniel Gabrielle; Jamacaru, Francisco Vagnaldo F; Moraes, Manoel Odorico de; Gonzaga-Silva, Lúcio Flávio

    2014-01-01

    The aim of this study was to define if tadalafil causes detrusor muscle impairment and to observe the effect of combination of tadalafil with tamsulosin on the lower urinary tract of rats with bladder outlet obstruction (BOO) induced by chronic nitric oxide deficiency. Thirty-one male rats were randomized to following groups: 1 - control; 2 - L-Nitroarginine methyl ester (L-NAME); 3 - Tamsulosin + L-NAME, 4 Tadalafil+L-NAME; and 5 - Tamsulosin + Tadalafil + L-NAME. At the end of the treatment period (30 days), all animals were submitted to urodynamic study. The administration of L-NAME increased the number of non-voiding contractions (NVC) (1.04 ± 0.22), volume threshold (VT) (1.86 ± 0.35), and micturition cycle (MC) (1.34 ± 0.11) compared with control (0.52 ± 0.06, 0.62 ± 0.06, and 0.67 ± 0.30), respectively. The administration of tamsulosin reduced the number of NVC (0.57 ± 0.42) and VT (0.76 ± 0.24 ) compared with L-NAME group. Co-treatment with tadalafil decreased the number of VT (0.85 ± 0.53) and MC (0.76 ± 0.22) compared with L-NAME group. The combination of tamsulosin with tadalafil improved the number of NVC (0.56 ± 0.18), VT (0.97 ± 0.52) and MC (0.68 ± 0.30) compared with L-NAME group. In rats with BOO induced by chronic nitric oxide deficiency, tadalafil did not cause impairment in detrusor muscle and seems to have an addictive effect to tamsulosin because the combination decreased non voiding contractions as well the number of micturition cycles.

  19. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  20. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.