WorldWideScience

Sample records for safety training requirements

  1. Training Requirements in OSHA Standards and Training Guidelines.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    This booklet contains Occupational Safety and Health Administration (OSHA) training requirements, excerpted from OSHA standards. The booklet is designed to help employers, safety and health professionals, training directors, and others who need to know training requirements. (Requirements for posting information, warning signs, labels, and the…

  2. Education and training requirements in the revised European Basic Safety Standards Directive

    International Nuclear Information System (INIS)

    Mundigl, S.

    2009-01-01

    The European Commission is currently developing a modified European Basic Safety Standards Directive covering two major objectives: the consolidation of existing European Radiation Protection legislation, and the revision of the European Basic Safety Standards. The consolidation will merge the following five Directives into one single Directive: the Basic Safety Standards Directive, the Medical Exposures Directive, the Public Information Directive, the Outside Workers Directive, and the Directive on the Control of high-activity sealed radioactive sources and orphan sources. The revision of the European Basic Safety Standards will take account of the latest recommendations by the International Commission on Radiological Protection (ICRP) and shall improve clarity of the requirements where appropriate. It is planned to introduce more binding requirements on natural radiation sources, on criteria for clearance, and on the cooperation between Member States for emergency planning and response, as well as a graded approach for regulatory control. One additional goal is to achieve greater harmonisation between the European BSS and the international BSS. Following a recommendation from the Article 31 Group of Experts, the current draft of the modified BSS will highlight the importance of education and training by dedicating a specific title to radiation protection education, training and information. This title will include a general requirement on the Member States to ensure the establishment of an adequate legislative and administrative framework for providing appropriate radiation protection education, training and information. In addition, there will be specific requirements on training in the medical field, on information and training of workers in general, of workers potentially exposed to orphan sources, and to emergency workers. The revised BSS directive will include requirements on the competence of a radiation protection expert (RPE) and of a radiation protection

  3. Training Requirements in OSHA Standards. Revised.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    This booklet contains excerpts of the training-related requirements of the standards promulgated by the Occupational Safety and Health Administration (OSHA). It is designed as an aid for employers, safety and health professionals, and others who need to know training requirements. (References to training may be difficult to locate in the long and…

  4. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  5. Training the Masses ? Web-based Laser Safety Training at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, D D

    2004-12-17

    The LLNL work smart standard requires us to provide ongoing laser safety training for a large number of persons on a three-year cycle. In order to meet the standard, it was necessary to find a cost and performance effective method to perform this training. This paper discusses the scope of the training problem, specific LLNL training needs, various training methods used at LLNL, the advantages and disadvantages of these methods and the rationale for selecting web-based laser safety training. The tools and costs involved in developing web-based training courses are also discussed, in addition to conclusions drawn from our training operating experience. The ILSC lecture presentation contains a short demonstration of the LLNL web-based laser safety-training course.

  6. Effective safety training program design

    International Nuclear Information System (INIS)

    Chilton, D.A.; Lombardo, G.J.; Pater, R.F.

    1991-01-01

    Changes in the oil industry require new strategies to reduce costs and retain valuable employees. Training is a potentially powerful tool for changing the culture of an organization, resulting in improved safety awareness, lower-risk behaviors and ultimately, statistical improvements. Too often, safety training falters, especially when applied to pervasive, long-standing problems. Stepping, Handling and Lifting injuries (SHL) more commonly known as back injuries and slips, trips and falls have plagued mankind throughout the ages. They are also a major problem throughout the petroleum industry. Although not as widely publicized as other immediately-fatal accidents, injuries from stepping, materials handling, and lifting are among the leading causes of employee suffering, lost time and diminished productivity throughout the industry. Traditional approaches have not turned the tide of these widespread injuries. a systematic safety training program, developed by Anadrill Schlumberger with the input of new training technology, has the potential to simultaneously reduce costs, preserve employee safety, and increase morale. This paper: reviews the components of an example safety training program, and illustrates how a systematic approach to safety training can make a positive impact on Stepping, Handling and Lifting injuries

  7. Implementation of the INEEL safety analyst training standard

    International Nuclear Information System (INIS)

    Hochhalter, E. E.

    2000-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) safety analysis units at the Idaho National Engineering and Environmental Laboratory (INEEL) are in the process of implementing the recently issued INEEL Safety Analyst Training Standard (STD-1107). Safety analyst training and qualifications are integral to the development and maintenance of core safety analysis capabilities. The INEEL Safety Analyst Training Standard (STD-1107) was developed directly from EFCOG Training Subgroup draft safety analyst training plan template, but has been adapted to the needs and requirements of the INEEL safety analysis community. The implementation of this Safety Analyst Training Standard is part of the Integrated Safety Management System (ISMS) Phase II Implementation currently underway at the INEEL. The objective of this paper is to discuss (1) the INEEL Safety Analyst Training Standard, (2) the development of the safety analyst individual training plans, (3) the implementation issues encountered during this initial phase of implementation, (4) the solutions developed, and (5) the implementation activities remaining to be completed

  8. High-Speed Maglev Trains; German Safety Requirements

    Science.gov (United States)

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  9. 29 CFR 1926.21 - Safety training and education.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Safety training and education. 1926.21 Section 1926.21... Provisions § 1926.21 Safety training and education. (a) General requirements. The Secretary shall, pursuant to section 107(f) of the Act, establish and supervise programs for the education and training of...

  10. Safety Training: a right or an obligation?

    CERN Multimedia

    HSE Unit

    2014-01-01

    CERN’s Safety Training programme currently offers around 50 classroom courses and 17 e-learning courses. Although anyone can attend any of these courses, some are compulsory for everyone working at CERN. In particular, “CERN Safety Introduction” and “Safety during LS1” are compulsory for all new arrivals.   The "Self-Rescue Mask" training course. Photo: Christoph Balle. However, depending on the type of activities, the type of workstation, the role you have been assigned (TSO, project leader, etc.) and/or the area where you will be working (e.g. confined spaces), you might be required to follow additional safety training provided by CERN. In accordance with the provisions of the CERN Safety Policy, members of the personnel must keep themselves informed of their obligations in terms of safety training and of the actions they must take to keep up to date. Most training courses are valid for three years, and as they reach the ...

  11. OSHA Training Programs. Module SH-48. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on OSHA (Occupational Safety and Health Act) training programs is one of 50 modules concerned with job safety and health. This module provides a list of OSHA training requirements and describes OSHA training programs and other safety organizations' programs. Following the introduction, 11 objectives (each keyed to a page in the…

  12. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  13. SafetyNet. Human factors safety training on the Internet

    DEFF Research Database (Denmark)

    Hauland, G.; Pedrali, M.

    2002-01-01

    This report describes user requirements to an Internet based distance learning system of human factors training, i.e. the SafetyNet prototype, within the aviation (pilots and air traffic control), maritime and medical domains. User requirements totraining have been elicited through 19 semi...

  14. The European Nuclear Safety Training and Tutoring Institute

    International Nuclear Information System (INIS)

    2012-01-01

    The European Nuclear Safety Training and Tutoring Institute, ENSTTI, is an initiative of European Technical Safety Organizations (TSO) in order to provide vocational training and tutoring in the methods and practices required to perform assessment in nuclear safety, nuclear security and radiation protection. ENSTTI calls on TSOs' expertise to maximize the transmission of safety and security knowledge, practical experience and culture. Training, tutoring and courses for specialists are achieved through practical lectures, working group and technical visits and lead to a certificate after knowledge testing. ENSTTI contributes to the harmonization of nuclear safety and security practices and to the networking of today and future nuclear safety experts in Europe and beyond. (A.C.)

  15. Safety training news

    CERN Multimedia

    Safety Training, HSE Unit

    2014-01-01

      SELF-RESCUE MASK The "Self-Rescue Mask" face-to-face training course has been replaced by a revised version. This measure concerns both the initial and the refresher course. For personnel who have successfully attended the initial or refresher Self-Rescue Mask training within the last three years, their Self-Rescue Mask training will still be valid.  The course description and registration form can be found in the training catalogue on the Safety Training Service’s website or catalogue. The Self-Rescue Mask training course is a mandatory prerequisite for following the new "Portable ODH Detector" e-learning course.   PORTABLE ODH DETECTOR A new e-learning awareness course, "Portable ODH Detector", is available via the SIR application on CERN’s intranet. Personnel requiring a portable ODH detector of the DRÄGER x-am 5000 type to allowed access th...

  16. [Patient safety in education and training of healthcare professionals in Germany].

    Science.gov (United States)

    Hoffmann, Barbara; Siebert, H; Euteneier, A

    2015-01-01

    In order to improve patient safety, healthcare professionals who care for patients directly or indirectly are required to possess specific knowledge and skills. Patient safety education is not or only poorly represented in education and examination regulations of healthcare professionals in Germany; therefore, it is only practiced rarely and on a voluntary basis. Meanwhile, several training curricula and concepts have been developed in the past 10 years internationally and recently in Germany, too. Based on these concepts the German Coalition for Patient Safety developed a catalogue of core competencies required for safety in patient care. This catalogue will serve as an important orientation when patient safety is to be implemented as a subject of professional education in Germany in the future. Moreover, teaching staff has to be trained and educational and training activities have to be evaluated. Patient safety education and training for (undergraduate) healthcare professional will require capital investment.

  17. Occupational safety training and practices in selected vocational training institutions and workplaces in Kampala, Uganda.

    Science.gov (United States)

    Kintu, Denis; Kyakula, Michael; Kikomeko, Joseph

    2015-01-01

    Several industrial accidents, some of them fatal, have been reported in Uganda. Causes could include training gaps in vocational training institutions (VTIs) and workplaces. This study investigated how occupational safety training in VTIs and workplaces is implemented. The study was carried out in five selected VTIs and workplaces in Kampala. Data were collected from instructors, workshop technicians, students, workshop managers, production supervisors, machine operators and new technicians in the workplaces. A total of 35 respondents participated in the study. The results revealed that all curricula in VTIs include a component of safety but little is practiced in VTI workshops; in workplaces no specific training content was followed and there were no regular consultations between VTIs and industry on safety skills requirements, resulting in a mismatch in safety skills training. The major constraints to safety training include inadequate funds to purchase safety equipment and inadequate literature on safety.

  18. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  19. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  20. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  1. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  2. [Innovative training for enhancing patient safety. Safety culture and integrated concepts].

    Science.gov (United States)

    Rall, M; Schaedle, B; Zieger, J; Naef, W; Weinlich, M

    2002-11-01

    Patient safety is determined by the performance safety of the medical team. Errors in medicine are amongst the leading causes of death of hospitalized patients. These numbers call for action. Backgrounds, methods and new forms of training are introduced in this article. Concepts from safety research are transformed to the field of emergency medical treatment. Strategies from realistic patient simulator training sessions and innovative training concepts are discussed. The reasons for the high numbers of errors in medicine are not due to a lack of medical knowledge, but due to human factors and organisational circumstances. A first step towards an improved patient safety is to accept this. We always need to be prepared that errors will occur. A next step would be to separate "error" from guilt (culture of blame) allowing for a real analysis of accidents and establishment of meaningful incident reporting systems. Concepts with a good success record from aviation like "crew resource management" (CRM) training have been adapted my medicine and are ready to use. These concepts require theoretical education as well as practical training. Innovative team training sessions using realistic patient simulator systems with video taping (for self reflexion) and interactive debriefing following the sessions are very promising. As the need to reduce error rates in medicine is very high and the reasons, methods and training concepts are known, we are urged to implement these new training concepts widely and consequently. To err is human - not to counteract it is not.

  3. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  4. All aboard the Safety Train(ing)!

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    Would you like to influence CERN’s safety courses? Do you want to help build better training courses? If your answer is yes to one or both of these questions: now is the time! The Safety Training section is looking for volunteers from the whole CERN community to test new courses before they go online for all members of the personnel.    The Safety Training section is redesigning the CERN e-learning package in order to adopt a more educational approach and to make the courses a more enjoyable experience. The section is now calling for volunteers. “We know we can do much more with testers’ help and feedback,” explains Christoph Balle, Safety Training section leader. “By having the end users actively involved in the process, we’ll achieve our goal of communicating safety in the best possible way. As the volunteers will play an active role in the development of the courses, they will be providing a service to the whole community.&am...

  5. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  6. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  7. Validity of your safety awareness training

    CERN Multimedia

    DG Unit

    2010-01-01

    AIS is setting up an automatic e-mail reminder system for safety training. You are invited to forward this message to everyone concerned. Reminder: Please check the validity of your Safety courses Since April 2009 the compulsory basic Safety awareness courses (levels 1, 2 and 3) have been accessible on a "self-service" basis on the web (see CERN Bulletin). Participants are required to pass a test at the end of each course. The test is valid for 3 years so courses must be repeated on a regular basis. A system of automatic e-mail reminders already exists for level 4 courses on SIR and will be extended to the other levels shortly. The number of levels you are required to complete depends on your professional category. Activity Personnel concerned Level 1 Level 2 Level 3 Level 4     Basic safety Basic Safety ...

  8. Safety and economic study of special trains

    International Nuclear Information System (INIS)

    Loscutoff, W.V.; Hall, R.J.

    1976-01-01

    A comparative evaluation is being conducted of the safety and economics of special (35 mph and less) and regular trains for shipment of spent fuels. The approach, pertinent considerations, and results to date are discussed. The preliminary conclusion is that special train requirements have potential for only a small reduction in the accident likelihood, while increasing the cost

  9. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  10. [Does simulator-based team training improve patient safety?].

    Science.gov (United States)

    Trentzsch, H; Urban, B; Sandmeyer, B; Hammer, T; Strohm, P C; Lazarovici, M

    2013-10-01

    Patient safety became paramount in medicine as well as in emergency medicine after it was recognized that preventable, adverse events significantly contributed to morbidity and mortality during hospital stay. The underlying errors cannot usually be explained by medical technical inadequacies only but are more due to difficulties in the transition of theoretical knowledge into tasks under the conditions of clinical reality. Crew Resource Management and Human Factors which determine safety and efficiency of humans in complex situations are suitable to control such sources of error. Simulation significantly improved safety in high reliability organizations, such as the aerospace industry.Thus, simulator-based team training has also been proposed for medical areas. As such training is consuming in cost, time and human resources, the question of the cost-benefit ratio obviously arises. This review outlines the effects of simulator-based team training on patient safety. Such course formats are not only capable of creating awareness and improvements in safety culture but also improve technical team performance and emphasize team performance as a clinical competence. A few studies even indicated improvement of patient-centered outcome, such as a reduced rate of adverse events but further studies are required in this respect. In summary, simulator-based team training should be accepted as a suitable strategy to improve patient safety.

  11. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  12. Safety Training Parks – Cooperative Contribution to Safety and Health Trainings

    DEFF Research Database (Denmark)

    Reiman, Arto; Pedersen, Louise Møller; Väyrynen, Seppo

    2017-01-01

    . The concept of Safety Training Park (STP) has been developed to meet these challenges. Eighty stakeholders from the Finnish construction industry have been involved in the construction and financing of the STP in northern Finland (STPNF). This unique cooperation has contributed to the immediate success......, and evidence from the literature are presented with a focus on the pros and cons of the STPNF. The STP is a new and innovative method for safety training that stimulates different learning styles and inspires changes in individuals’ behavior and in the organizations’ safety climate. The stakeholders’ high...... commitment, a long-term perspective, and a strong safety climate are identified as preconditions for the STP concept to work....

  13. Safety training priorities

    Science.gov (United States)

    Thompson, N. A.; Ruck, H. W.

    1984-04-01

    The Air Force is interested in identifying potentially hazardous tasks and prevention of accidents. This effort proposes four methods for determining safety training priorities for job tasks in three enlisted specialties. These methods can be used to design training aimed at avoiding loss of people, time, materials, and money associated with on-the-job accidents. Job tasks performed by airmen were measured using task and job factor ratings. Combining accident reports and job inventories, subject-matter experts identified tasks associated with accidents over a 3-year period. Applying correlational, multiple regression, and cost-benefit analysis, four methods were developed for ordering hazardous tasks to determine safety training priorities.

  14. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  15. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  16. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    International Nuclear Information System (INIS)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements

  17. A case for safety leadership team training of hospital managers.

    Science.gov (United States)

    Singer, Sara J; Hayes, Jennifer; Cooper, Jeffrey B; Vogt, Jay W; Sales, Michael; Aristidou, Angela; Gray, Garry C; Kiang, Mathew V; Meyer, Gregg S

    2011-01-01

    Delivering safe patient care remains an elusive goal. Resolving problems in complex organizations like hospitals requires managers to work together. Safety leadership training that encourages managers to exercise learning-oriented, team-based leadership behaviors could promote systemic problem solving and enhance patient safety. Despite the need for such training, few programs teach multidisciplinary groups of managers about specific behaviors that can enhance their role as leadership teams in the realm of patient safety. The aims of this study were to describe a learning-oriented, team-based, safety leadership training program composed of reinforcing exercises and to provide evidence confirming the need for such training and demonstrating behavior change among management groups after training. Twelve groups of managers from an academic medical center based in the Northeast United States were randomly selected to participate in the program and exposed to its customized, experience-based, integrated, multimodal curriculum. We extracted data from transcripts of four training sessions over 15 months with groups of managers about the need for the training in these groups and change in participants' awareness, professional behaviors, and group activity. Training transcripts confirmed the need for safety leadership team training and provided evidence of the potential for training to increase targeted behaviors. The training increased awareness and use of leadership behaviors among many managers and led to new routines and coordinated effort among most management groups. Enhanced learning-oriented leadership often helped promote a learning orientation in managers' work areas. Team-based training that promotes specific learning-oriented leader behaviors can promote behavioral change among multidisciplinary groups of hospital managers.

  18. Radiation safety requirements for training of users of diagnostic X ...

    African Journals Online (AJOL)

    Background. Globally, the aim of requirements regarding the use and ownership of diagnostic medical X-ray equipment is to limit radiation by abiding by the 'as low as reasonably achievable' (ALARA) principle. The ignorance of radiographers with regard to radiation safety requirements, however, is currently a cause of ...

  19. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Energy Technology Data Exchange (ETDEWEB)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  20. Criticality safety training at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1983-01-01

    In 1972 the Westinghouse Hanford Company (WHC) established a comprehensive program to certify personnel who handle fissionable materials. As the quantity of fissionable material handled at WHC has increased so has the scope of training to assure that all employes perform their work in a safe manner. This paper describes training for personnel engaged in fuel fabrication and handling activities. Most of this training is provided by the Fissionable Material Handlers Certification Program. This program meets or exceeds all DOE requirements for training and has been attended by more than 475 employes. Since the program was instituted, the rate of occurrence of criticality safety limit violations has decreased by 50%

  1. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  2. 28 CFR 345.83 - Job safety training.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Job safety training. 345.83 Section 345... INDUSTRIES (FPI) INMATE WORK PROGRAMS FPI Inmate Training and Scholarship Programs § 345.83 Job safety training. FPI provides inmates with regular job safety training which is developed and scheduled in...

  3. Nuclear Regulatory Systems in Africa: Improving Safety and Security Culture Through Education and Training

    International Nuclear Information System (INIS)

    Kazadi Kabuya, F.

    2016-01-01

    The purpose of this paper is to address the important issue of supporting safety and security culture through an educational and training course program designed both for regulatory staff and licensees. Enhancing the safety and security of nuclear facilities may involve assessing the overall effectiveness of the organization's safety culture. Safety Culture implies steps such as identifying and targeting areas requiring attention, putting emphasis on organizational strengths and weaknesses, human attitudes and behaviours that may positively impact an organization's safety culture, resulting in improving workplace safety and developing and maintaining a high level of awareness within these facilities. Following the terrorist attacks of September 11, 2001, international efforts were made towards achieving such goals. This was realized through meetings, summits and training courses events, with main aim to enhance security at facilities whose activities, if attacked, could impact public health and safety. During regulatory oversight inspections undertaken on some licensee's premises, violations of security requirements were identified. They mostly involved inadequate management oversight of security, lack of a questioning attitude, complacency and mostly inadequate training in both security and safety issues. Using training and education approach as a support to raise awareness on safety and security issues in the framework of improving safety and security culture, a tentative training program in nuclear and radiological safety was started in 2002 with the main aim of vulgarizing the regulatory framework. Real first needs for a training course program were identified among radiographers and radiologists with established working experience but with limited knowledge in radiation safety. In the field of industrial uses of radiation the triggering events for introducing and implementing a training program were: the loss of a radioactive source in a mining

  4. The Training Requirements for the Workers a Legal Instrument to Ensure the Safety Use of the Ionizing Radiation Sources

    International Nuclear Information System (INIS)

    Rosca, G.; Coroianu, A.; Stanescu, G.

    2009-01-01

    Recognizing the need for a graded and commensurate with the practice associated risk approach, the Romanian Regulatory Authority developed the legal framework for defining the roles, duties and responsibilities for the radiation workers (RWs) and the radiological safety officer (RPO). The licensee is responsible to provide for the RWs basic knowledge and understanding of radiation proprieties, good knowledge of the local rules and the operational radiation protection methods and the safety features of the devices, on the job training under the supervision of a RPO or a qualified expert (RPE). Every 5 years the participation to a refresher course is required

  5. 78 FR 47419 - Requirements for the OSHA Training Institute Education Centers Program and the OSHA Outreach...

    Science.gov (United States)

    2013-08-05

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2009-0022] Requirements for the OSHA Training Institute Education Centers Program and the OSHA Outreach Training Program...) Requirements AGENCY: Occupational Safety and Health Administration (OSHA), U.S. Department of Labor. ACTION...

  6. 78 FR 979 - Petition for Positive Train Control Safety Plan Approval and System Certification of the...

    Science.gov (United States)

    2013-01-07

    ...] Petition for Positive Train Control Safety Plan Approval and System Certification of the Electronic Train... the Federal Railroad Administration (FRA) for Positive Train Control (PTC) Safety Plan (PTCSP) approval and system certification of the Electronic Train Management System (ETMS) as required by 49 U.S.C...

  7. Surgical Safety Training of World Health Organization Initiatives.

    Science.gov (United States)

    Davis, Christopher R; Bates, Anthony S; Toll, Edward C; Cole, Matthew; Smith, Frank C T; Stark, Michael

    2014-01-01

    Undergraduate training in surgical safety is essential to maximize patient safety. This national review quantified undergraduate surgical safety training. Training of 2 international safety initiatives was quantified: (1) World Health Organization (WHO) "Guidelines for Safe Surgery" and (2) Department of Health (DoH) "Principles of the Productive Operating Theatre." Also, 13 additional safety skills were quantified. Data were analyzed using Mann-Whitney U tests. In all, 23 universities entered the study (71.9% response). Safety skills from WHO and DoH documents were formally taught in 4 UK medical schools (17.4%). Individual components of the documents were taught more frequently (47.6%). Half (50.9%) of the additional safety skills identified were taught. Surgical societies supplemented safety training, although the total amount of training provided was less than that in university curricula (P < .0001). Surgical safety training is inadequate in UK medical schools. To protect patients and maximize safety, a national undergraduate safety curriculum is recommended. © 2013 by the American College of Medical Quality.

  8. Attitudes of teenagers towards workplace safety training.

    Science.gov (United States)

    Zierold, Kristina M; Welsh, Erin C; McGeeney, Teresa J

    2012-12-01

    More than 70 % of teenagers are employed before graduating high school. Every 10 min, in the United States, a young worker is injured on the job. Safety training has been suggested as a way to prevent injuries, yet little is known about the methods of safety training and the effectiveness of training that teens receive at work. This study is the first to assess the attitudes teens hold towards safety training and what they believe would help them stay safe on the job. In 2010, focus groups and interviews were conducted with 42 teens from public high schools in Jefferson County, Kentucky. Participating teens were aged 15-19 years old, 43 % male, 69 % African-American, and 56 % worked either in the restaurant/food industry or in retail jobs. Most teens reported receiving safety training. Although the majority believed that safety training was important, many felt that they personally did not need safety training; that it was "common sense." However, 52 % of teens reported workplace injuries. Many viewed injury lightly and as part of the job, even those that sustained severe injuries. Most teens were trained by methods that seem at best "boring" and at worst, ineffective. Little interaction, action, or repetition is used. Training is not geared towards teens' developmental levels or interest, as in most cases all workers received the same type of training. Safety training may be a powerful way to reduce injury rates among working teenagers, but it is essential that training methods which are geared towards teens are utilized.

  9. Nuclear safety education and training network

    International Nuclear Information System (INIS)

    Bastos, J.; Ulfkjaer, L.

    2004-01-01

    In March 2001, the Secretariat convened an Advisory Group on Education and Training in nuclear safety. The Advisory Group considered structure, scope and means related to the implementation of an IAEA Programme on Education and Training . A strategic plan was agreed and the following outputs were envisaged: 1. A Training Support Programme in nuclear safety, including a standardized and harmonized approach for training developed by the IAEA and in use by Member States. 2. National and regional training centres, established to support sustainable national nuclear safety infrastructures. 3. Training material for use by lecturers and students developed by the IAEA in English and translated to other languages. The implementation of the plan was initiated in 2002 emphasizing the preparation of training materials. In 2003 a pilot project for a network on Education and Training in Asia was initiated

  10. Restaurant supervisor safety training: evaluating a small business training intervention.

    Science.gov (United States)

    Bush, Diane; Paleo, Lyn; Baker, Robin; Dewey, Robin; Toktogonova, Nurgul; Cornelio, Deogracia

    2009-01-01

    We developed and assessed a program designed to help small business owners/managers conduct short training sessions with their employees, involve employees in identifying and addressing workplace hazards, and make workplace changes (including physical and work practice changes) to improve workplace safety. During 2006, in partnership with a major workers' compensation insurance carrier and a restaurant trade association, university-based trainers conducted workshops for more than 200 restaurant and food service owners/managers. Workshop participants completed posttests to assess their knowledge, attitudes, and intentions to implement health and safety changes. On-site follow-up interviews with 10 participants were conducted three to six months after the training to assess the extent to which program components were used and worksite changes were made. Post-training assessments demonstrated that attendees increased their understanding and commitment to health and safety, and felt prepared to provide health and safety training to their employees. Follow-up interviews indicated that participants incorporated core program concepts into their training and supervision practices. Participants conducted training, discussed workplace hazards and solutions with employees, and made changes in the workplace and work practices to improve workers' health and safety. This program demonstrated that owners of small businesses can adopt a philosophy of employee involvement in their health and safety programs if provided with simple, easy-to-use materials and a training demonstration. Attending a workshop where they can interact with other owners/ managers of small restaurants was also a key to the program's success.

  11. Cernavoda NPP: Training for safety and reliability

    International Nuclear Information System (INIS)

    Postolache, Laura Lia

    2001-01-01

    The safe and reliable operation of NPP require successful integration of plant and system design (1), programmes and procedures (2) and qualified human resources (3). Of these three components, station personnel and management have capability to influence and improve programmes and competence of qualified personnel. Qualifying personnel includes selection, training and evaluation that meet the established performance standards. Training, therefore prepares people to achieve such competence. The critical role of operations personnel has been rightly emphasized by every country with a nuclear power programme. So far as operation team is concerned, they have to work, on the one hand with exacting safety rules and at the same time, they have to do the right thing at all times. In essence, they have to be prepared for new, emergency situations as well as for routine work. The plant operation in the Control Room is essentially a man - machine interaction and a safe and reliable operation requires them to take high quality decisions even under stressful conditions. Here lies therefore the need for high competent and licensed operations engineers who will ensure operation within the operating license of the station under the all conditions. The development of a long-term comprehensive training for Operation Staff is a requirement. The program addresses the qualification requirements of the various nuclear positions on shift, the outline content of the required training programs and the evaluation per the Systematic Approach to Training (SAT). A nuclear operator's training begins the moment he/she enters the station. It takes four to six years to develop the skills required to demonstrate that the candidate is an appropriate choice for the position. Then there's a further about two years of intense training at the Training Center on a simulator. After successful completion of the program, the candidate is authorized by the CNCAN (National Commission for Control of Nuclear

  12. Reactor safety training for decision making

    International Nuclear Information System (INIS)

    Scott, C.K.

    2003-01-01

    The purpose of this paper is to describe an approach to reactor safety training for technical staff working at an operating station. The concept being developed is that, when the engineer becomes a registered professional engineer, they have sufficient reactor safety knowledge to perform independent technical work without compromising the safety of the plant. This goal would be achieved with a focused training program while working as an engineer-in-training (four years in NB). (author)

  13. A Model Train-The-Trainer Program for HACCP-Based Food Safety Training in the Retail/Food Service Industry: An Evaluation.

    Science.gov (United States)

    Martin, Kenneth E.; Knabel, Steve; Mendenhall, Von

    1999-01-01

    A survey showed states are adopting higher training and certification requirements for food-service workers. A train-the-trainer model was developed to prepare extension agents, health officers, and food-service managers to train others in food-safety procedures. (SK)

  14. Fall prevention and safety communication training for foremen: report of a pilot project designed to improve residential construction safety.

    Science.gov (United States)

    Kaskutas, Vicki; Dale, Ann Marie; Lipscomb, Hester; Evanoff, Brad

    2013-02-01

    Falls from heights account for 64% of residential construction worker fatalities and 20% of missed work days. We hypothesized that worker safety would improve with foremen training in fall prevention and safety communication. Training priorities identified through foreman and apprentice focus groups and surveys were integrated into an 8-hour training. We piloted the training with ten foremen employed by a residential builder. Carpenter trainers contrasted proper methods to protect workers from falls with methods observed at the foremen's worksites. Trainers presented methods to deliver toolbox talks and safety messages. Results from worksite observational audits (n=29) and foremen/crewmember surveys (n=97) administered before and after training were compared. We found that inexperienced workers are exposed to many fall hazards that they are often not prepared to negotiate. Fall protection is used inconsistently and worksite mentorship is often inadequate. Foremen feel pressured to meet productivity demands and some are unsure of the fall protection requirements. After the training, the frequency of daily mentoring and toolbox talks increased, and these talks became more interactive and focused on hazardous daily work tasks. Foremen observed their worksites for fall hazards more often. We observed increased compliance with fall protection and decreased unsafe behaviors during worksite audits. Designing the training to meet both foremen's and crewmembers' needs ensured the training was learner-centered and contextually-relevant. This pilot suggests that training residential foremen can increase use of fall protection, improve safety behaviors, and enhance on-the-job training and safety communication at their worksites. Construction workers' training should target safety communication and mentoring skills with workers who will lead work crews. Interventions at multiple levels are necessary to increase safety compliance in residential construction and decrease falls

  15. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  16. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  17. Qualifications of persons working in radiation user's organization and radiation protection training required for competence

    International Nuclear Information System (INIS)

    2004-04-01

    The Guide sets out the requirements governing the qualifications of persons working in userAes organizations and the radiation protection training required for such competence. It also sets out the requirements for training organizations arranging radiation safety officer training and exams. The Guide applies only to uses of radiation requiring a afety licence. The requirements for userAes organizations are set out in Guide ST 1.4

  18. Safety Training: places available in October 2014

    CERN Multimedia

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. Safety Training, HSE Unit safety-training@cern.ch Title of the course EN Title of the course FR Date Hours Language Chemical Safety ATEX Habilitation - Level 2 Habilitation ATEX - Niveau 2 16-Oct-14 to 17-Oct-14 9:00 - 17:30 French Cryogenic Safety Cryogenic Safety - Fundamentals Sécurité Cryogénie - Fondamentaux 23-Oct-14 10:00 - 12:00 English Cryogenic Safety - Helium Transfer Sécurité Cryogénie - Transfert d'hélium 30-Oct-14 9:30 - 12:00 English Electrical Safety Habilitation Electrique - Electrician Low Voltage - Initial Habilitation électrique - Électricien basse tension - Initial 02-Oct-14 to 06-Oct-14 9:00 - 17:30 English 20-Oct-14 to 22-Oct-14 9:00 -...

  19. Safety, training focus of combined organization

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2006-03-15

    This article presented details of Enform, a company that coordinates safety programs and training for new employees in the oil and gas industry. Enform was created when the Petroleum Industry Training Services merged with the Canadian Petroleum Safety Council. The aim of Enform is to ensure continuous improvements in health and safety within the industry by reducing working injuries and promoting health and safety practices. The companies merged to eliminate duplication of services and allow associates further opportunities for advanced training. In 2005, Enform trained an estimated 155,000 students, and a number of new courses were introduced and updated. A franchise program was extended and a training council was formed to offer direction and guidance to the oil industry. Enform focuses on sharing information among companies, as well as working to harmonize safety regulations across provincial borders. A task force was recently created by the company with a specific focus on drug and alcohol abuse. Other concerns include driver safety and driver interactions with wildlife. Enform is mainly focused on the traditional oil industry, and has had little entry into the oil sands industry. It was concluded that increased activity in the oil and gas industry will remain Enform's biggest challenge in the next few years. Plans for Enform's increased involvement in the offshore oil and gas industry were also discussed. 4 figs.

  20. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  1. Improving Chemical Plant Safety Training Using Virtual Reality

    OpenAIRE

    Nasios, Konstantinos

    2002-01-01

    The chemical engineering industry often requires people to work in hazardous environments and to operate complicated equipment which often limits the type of training that be carried out on site. The daily job of chemical plant operators is becoming more demanding due to the increasing plant complexity together with increasing requirements on plant safety, production capacity, product quality and cost effectiveness. The importance of designing systems and environments that are as safe as poss...

  2. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  3. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  4. Safety training for working youth: Methods used versus methods wanted.

    Science.gov (United States)

    Zierold, Kristina M

    2016-04-07

    Safety training is promoted as a tool to prevent workplace injury; however, little is known about the safety training experiences young workers get on-the-job. Furthermore, nothing is known about what methods they think would be the most helpful for learning about safe work practices. To compare safety training methods teens get on the job to those safety training methods teens think would be the best for learning workplace safety, focusing on age differences. A cross-sectional survey was administered to students in two large high schools in spring 2011. Seventy percent of working youth received safety training. The top training methods that youth reported getting at work were safety videos (42%), safety lectures (25%), and safety posters/signs (22%). In comparison to the safety training methods used, the top methods youth wanted included videos (54%), hands-on (47%), and on-the-job demonstrations (34%). This study demonstrated that there were differences in training methods that youth wanted by age; with older youth seemingly wanting more independent methods of training and younger teens wanting more involvement. Results indicate that youth want methods of safety training that are different from what they are getting on the job. The differences in methods wanted by age may aid in developing training programs appropriate for the developmental level of working youth.

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  6. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  7. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  8. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  9. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  10. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  11. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  12. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  13. Safety training parks – A case study on the effectiveness of the trainings

    DEFF Research Database (Denmark)

    Räsänen, Tuula; Sormunen, E.; Reiman, Arto

    The Safety Training Park (STP) concept is a unique Finnish safety training innovation. The STP provides different actors of the construction industry and other branches a practical occupational safety and health (OSH) training area. To the authors’ knowledge, no such parks exist in Europe besides...... Finland. Objec-tive was to study the effectiveness of the STP trainings at a large case company which participated in this study and which has actively trained its personnel in the park. The study was conducted from February 2015 to Feb-ruary 2017. Several key success factors were identified...... in the interviews of this case study. In addition, the company OSH statistics (2010 – 2016) showed a positive development at safety level. However, The Nordic Safety Climate Questionnaire did not show any significant change of results in a one year period. According to the results of the group interviews...

  14. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  15. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  16. EPR meets the next generation PWR safety requirements

    International Nuclear Information System (INIS)

    Bouteille, Francois; Czech, Juergen; Sloan, Sandra

    2006-01-01

    At the origin was the common decision in 1989 of Framatome and Siemens to cooperate to design a Nuclear Island which meets the future needs of utilities. EDF and a group of main German Utilities joined this effort in 1991 and from that point were completely involved in the progress of the work. Compliance of the EPR with the European Utility Requirements (EUR) was verified to ensure a large acceptability of the design by other participating utilities. In addition, the entire process was backed up to the end of 1998 by the French and the German Safety Authorities which engaged into a long-lasting cooperation to define common requirements applicable to future Nuclear Power Plants. Upon signature of the Olkiluoto 3 contract, STUK, the Finnish safety and radiation authority, began reviewing the design of the EPR. Upon the favorable recommendation of STUK, the Finnish government delivered a Construction License for the Olkiluoto 3 NPP on February 17, 2005. Following the positive conclusion of the political debate in France with regard to nuclear energy, EDF will also submit a request to start the construction of an EPR on the Flamanville site. In the US, the first steps in view of a Design Certification by the NRC have been taken. These three independent decisions make the EPR the leading first generation 3+ design under construction. Important safety functions are assured by separate systems in a straightforward operating mode. Four separate, redundant trains for all safety systems are installed in four separate layout division for which a strict separation is ensured so that common mode failure, for example due to internal hazards, can be ruled out. A reduction in common mode failure potential is also obtained by design rules ensuring the systematic application of functional diversity. A four train-redundancy for the major safety systems provides flexibility in adapting the design to maintenance requirements, thus contributing to reduce the outage duration. Additional

  17. Teen worker safety training: methods used, lessons taught, and time spent.

    Science.gov (United States)

    Zierold, Kristina M

    2015-05-01

    Safety training is strongly endorsed as one way to prevent teens from performing dangerous tasks at work. The objective of this mixed methods study was to characterize the safety training that teenagers receive on the job. From 2010 through 2012, focus groups and a cross-sectional survey were conducted with working teens. The top methods of safety training reported were safety videos (42 percent) and safety lectures (25 percent). The top lessons reported by teens were "how to do my job" and "ways to spot hazards." Males, who were more likely to do dangerous tasks, received less safety training than females. Although most teens are getting safety training, it is inadequate. Lessons addressing safety behaviors are missing, training methods used are minimal, and the time spent is insignificant. More research is needed to understand what training methods and lessons should be used, and the appropriate safety training length for effectively preventing injury in working teens. In addition, more research evaluating the impact of high-quality safety training compared to poor safety training is needed to determine the best training programs for teens. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Training Requirements in OSHA Standards and Training Guidelines. Revised.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    This guide provides an overview of Occupational Safety and Health Act (OSHA) standards and training guidelines for various industries. The first section introduces the concept of voluntary training guidelines, explaining that the guidelines are designed to help employers determine whether a worksite problem can be solved by training, what training…

  19. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  20. Management commitment to safety vs. employee perceived safety training and association with future injury.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Verma, Santosh K; Chang, Wen-Ruey; Courtney, Theodore K; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2012-07-01

    The purpose of this study is to explore and examine, specific to the restaurant industry, two important constructs emerging from the safety climate literature: employee perceptions of safety training and management commitment to safety. Are these two separate constructs? Are there both individual- and shared group-level safety perceptions for these two constructs? What are the relationships between these two constructs and future injury outcomes? A total of 419 employees from 34 limited-service restaurants participated in a prospective cohort study. Employees' perceptions of management commitment to safety and safety training and demographic variables were collected at the baseline. The survey questions were made available in three languages: English, Spanish, and Portuguese. For the following 12 weeks, participants reported their injury experience and weekly work hours. A multivariate negative binomial generalized estimating equation model with compound symmetry covariance structure was used to assess the association between the rate of self-reported injuries and measures of safety perceptions. Even though results showed that the correlation between employees'perceived safety training and management commitment to safety was high, confirmatory factor analysis of measurement models showed that two separate factors fit the model better than as two dimensions of a single factor. Homogeneity tests showed that there was a shared perception of the factor of management commitment to safety for the restaurant workers but there was no consistent perception among them for the factor of perceived safety training. Both individual employees'perceived management commitment to safety and perceptions of safety training can predict employees' subsequent injuries above and beyond demographic variables. However, there was no significant relationship between future injury and employees' shared perception of management commitment to safety. Further, our results suggest that the

  1. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  2. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  3. Safety Training: "Manual Handling" course in September

    CERN Multimedia

    Safety Training, HSE Unit

    2016-01-01

    The next "Manual Handling" course will be given, in French, on 26 September 2016. This course is designed for anyone required to carry out manual handling of loads in the course of their work.   The main objective of this course is to adopt and apply the basic principles of physical safety and economy of effort. There are places available. If you are interested in following this course, please fill an EDH training request via our catalogue. 

  4. Safety Training: Access rights underground and safety training

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    This is to remind all CERN Group Leaders/GLIMOS of their obligation to ensure that members of their group/experiment or personnel belonging to firms holding contracts under their responsibility have received the necessary training/instruction in safety before start of work. Access underground will only be authorized upon attendance at safety courses level 1, 2 and 3, provided by the CERN Fire Brigade. All persons not having attended these courses will be locked out. All individuals concerned, as well as their Group Leaders/GLIMOS should check the access rights of their staff at the URL: https://hrt.cern.ch/servlet/cern.hrt.Access.Access In case you or your collaborators do not have the requested authorisation, you/they must attend the safety courses provided every Tuesday by the Fire Brigade or the additional courses on: 16 June, course given in French, 9 a.m. - 12 a.m., AB Auditorium I (Bldg. 6/2-024), 17 June, course given in English, 2 p.m. - 5 p.m., AB Auditorium I (Bldg. 6/2-024). Formation en SEC...

  5. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  6. INDUSTRIAL TRAINING AND TRAINING IN SAFETY, A STATEMENT BY THE CENTRAL TRAINING COUNCIL. MEMORANDUM NUMBER 2.

    Science.gov (United States)

    Ministry of Labour, London (England).

    THE TRAINING OF WORKERS IN SAFETY AND IN SAFE METHODS OF WORK IS AN ESSENTIAL PART OF ACCIDENT PREVENTION. IT IS A MANAGEMENT RESPONSIBILITY TO DO THIS, AND, TO BE EFFECTIVE, MANAGEMENT ITSELF MUST BE CONVINCED OF THE NEED FOR SAFETY TRAINING. IT SHOULD BE CARRIED OUT AS PART OF THE NORMAL TRAINING WHICH ALL ENTRANTS TO INDUSTRY RECEIVE. THE…

  7. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    Havukainen, R.; Bly, R.; Markkanen, M.

    2009-11-01

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  8. EDF training process: From the training needs to the training requirements

    International Nuclear Information System (INIS)

    Poizat, C.

    2002-01-01

    The Training and Development Division - SFP - is the main EDF actor in the strategic skills development. It is the prime contractor designated by the Nuclear Generation Division DPN. The four main SFP goals for the period 2001/2003 are as followed: to satisfy our customers, to optimize and diversify our offer in reply to the needs of our customers and to adapt our skills, to improve our efficiency (cost-effectiveness ratio), and to reinforce the Quality Management of the SFP. The SFP has a quality policy ISO 9001 oriented. It is based on 6 commitments: to take into account the needs of each client regarding training, to insure the requirements of the quality approaches followed by our clients, to assist the national specifications in the training area, to inform SFP customers about the whole training offer, to give a first answer 8 days after each complaint, to provide trainees a good and adapted learning environment. A customers satisfaction survey twice a year and frequent internal and external audits and assessments guarantee these commitments.The main challenge for the Nuclear Generation Division - DPN - is to improve the performances in safety and competitiveness and to increase the professionalism of people involved. That is the reason why the partnership between the DPN and the SFP is now based on the skills management instead of the courses organisation

  9. Use of a Web Site to Enhance Criticality Safety Training

    International Nuclear Information System (INIS)

    Huang, S T; Morman, J

    2003-01-01

    Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas

  10. Safety Training and Awareness: a team at your service

    CERN Multimedia

    HSE Unit

    2014-01-01

    Ever wondered who is on the other end of the safety-training@cern.ch e-mail address? If so, you might like to know that all the activities relating to safety training and awareness (“Safety Training" for short) are managed by a team dedicated to ensuring the smooth running of CERN’s safety training courses.    Photo: Christoph Balle. This team currently consists of five people: the manager in charge of coordinating all the projects, two administrative assistants who provide logistical support and two technicians who manage the training centre. This team, which has seen its workload and the number of challenges it faces increase considerably with LS1, is responsible for organising classroom training sessions (in partnership with some 15 training bodies) and for the management of online e-learning courses in partnership with the GS-AIS Group. The members of the team don't just deal with enrolment on the courses: they also help with the development...

  11. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  12. The present condition of the radiation safety control education in training schools for radiological technologists

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Saito, Kyoko; Hirai, Shoko; Igarashi, Hiroshi; Negishi, Tooru; Hirano, Kunihiro; Kawaharada, Yasuhiro

    2010-01-01

    We made a detailed study on the course of study in radiation safety control prescribed on March 28, 2003. Questionnaires were sent to 39 training schools for radiological technology, to which 66.7% replied (26/39). Subjects on radiation safety control must include knowledge and technology in both radiation control and medical safety. The contents for instruction of radiation control were in accordance with those given in the traditional program; however, some discrepancies were found in the contents of medical safety. As medical safety, emphasized by the revised Medical Service Law, is regarded as very important by many hospitals, safety control education that include medical ethics should be required as part of the curriculum in the training schools for radiological technologists. (author)

  13. Editorial: Advances in healthcare provider and patient training to improve the quality and safety of patient care

    OpenAIRE

    Elizabeth M. Borycki

    2015-01-01

    This special issue of the Knowledge Management & E-Learning: An International Journal is dedicated to describing “Advances in Healthcare Provider and Patient Training to Improve the Quality and Safety of Patient Care.” Patient safety is an important and fundamental requirement of ensuring the quality of patient care. Training and education has been identified as a key to improving healthcare provider patient safety competencies especially when working with new technologies such as electronic ...

  14. Use of a web site to enhance criticality safety training

    International Nuclear Information System (INIS)

    Huang, Song T.; Morman, James A.

    2003-01-01

    Establishment of the NCSP (Nuclear Criticality Safety Program) website represents one attempt by the NCS (Nuclear Criticality Safety) community to meet the need to enhance communication and disseminate NCS information to a wider audience. With the aging work force in this important technical field, there is a common recognition of the need to capture the corporate knowledge of these people and provide an easily accessible, web-based training opportunity to those people just entering the field of criticality safety. A multimedia-based site can provide a wide range of possibilities for criticality safety training. Training modules could range from simple text-based material, similar to the NCSET (Nuclear Criticality Safety Engineer Training) modules, to interactive web-based training classes, to video lecture series. For example, the Los Alamos National Laboratory video series of interviews with pioneers of criticality safety could easily be incorporated into training modules. Obviously, the development of such a program depends largely upon the need and participation of experts who share the same vision and enthusiasm of training the next generation of criticality safety engineers. The NCSP website is just one example of the potential benefits that web-based training can offer. You are encouraged to browse the NCSP website at http://ncsp.llnl.gov. We solicit your ideas in the training of future NCS engineers and welcome your participation with us in developing future multimedia training modules. (author)

  15. The operating organization and the recruitment, training and qualification of personnel for research reactors. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations on meeting the requirements on the operating organization and on personnel for research reactors. It covers the typical operating organization for research reactor facilities; the recruitment process and qualification in terms of education, training and experience; programmes for initial and continuing training; the authorization process for those individuals having an immediate bearing on safety; and the processes for their requalification and reauthorization

  16. Evaluation of the food safety training for food handlers in restaurant operations

    Science.gov (United States)

    Park, Sung-Hee; Kwak, Tong-Kyung

    2010-01-01

    This study examined the extent of improvement of food safety knowledge and practices of employee through food safety training. Employee knowledge and practice for food safety were evaluated before and after the food safety training program. The training program and questionnaires for evaluating employee knowledge and practices concerning food safety, and a checklist for determining food safety performance of restaurants were developed. Data were analyzed using the SPSS program. Twelve restaurants participated in this study. We split them into two groups: the intervention group with training, and the control group without food safety training. Employee knowledge of the intervention group also showed a significant improvement in their score, increasing from 49.3 before the training to 66.6 after training. But in terms of employee practices and the sanitation performance, there were no significant increases after the training. From these results, we recommended that the more job-specific and hand-on training materials for restaurant employees should be developed and more continuous implementation of the food safety training and integration of employee appraisal program with the outcome of safety training were needed. PMID:20198210

  17. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  18. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  19. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  20. Occupational Safety. Hygiene Safety. Pre-Apprenticeship Phase 1 Training.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on hygiene safety is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to familiarize students with the different types of airborne contaminants--including noise--which may be health hazards and with the proper hygienic measures for dealing with them. The…

  1. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  3. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  5. The development of NPP operational safety training courses

    International Nuclear Information System (INIS)

    Lee, Chang Kun; Lee, Duk Sun; Lee, Byung Sun; Lee, Won Koo; Juhn, Heng Run; Moon, Byung Soo; Cho, Min Sik; Lee, Han Young; Moon, Hak Won; Seo, Yeon Ho

    1987-12-01

    The objective of the project is to develop a training course text for the betterment of reactor operation and assurance of its safety in general by providing training materials of the advanced compact nuclear simulator which will become operation in September 1988. Main scope and contents of the project are as follows: - compilation of basic data related to simulator operation and maintenance as well as the comparative analysis with respect to simulator materials in foreign countries - method of training by simulator - review the training status by simulator in foreign countries - development of training course in the field of reactor safety It is expected that the results will be reflected to the actual training and retraining of the reactor operating crew so as to improve and update their capabilities in training fashion. (Author)

  6. The West Virginia Occupational Safety and Health Initiative: practicum training for a new marketplace.

    Science.gov (United States)

    Meyer, J D; Becker, P E; Stockdale, T; Ducatman, A M

    1999-05-01

    Occupational medicine practice has experienced a shift from larger corporate medical departments to organizations providing services for a variety of industries. Specific training needs will accompany this shift in practice patterns; these may differ from those developed in the traditional industrial or corporate medical department setting. The West Virginia Occupational Health and Safety Initiative involves occupational medicine residents in consultation to a variety of small industries and businesses. It uses the expertise of occupational physicians, health and safety extension faculty, and faculty in engineering and industrial hygiene. Residents participate in multidisciplinary evaluations of worksites, and develop competencies in team-building, workplace health and safety evaluation, and occupational medical consulting. Specific competencies that address requirements for practicum training are used to measure the trainee's acquisition of knowledge and skills. Particular attention is paid to the acquisition of group problem-solving expertise, skills relevant to the current market in practice opportunities, and the specific career interests of the resident physician. Preliminary evaluation indicates the usefulness of training in evaluation of diverse industries and worksites. We offer this program as a training model that can prepare residents for the challenges of a changing marketplace for occupational health and safety services.

  7. Safety training: places available in September 2014

    CERN Multimedia

    HSE Unit

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   Please note that there are 7 places left on the “Territorial Safety Officer (TSO) – Initial” course on September 23-25, 2014 (in French).

  8. Editorial: Advances in healthcare provider and patient training to improve the quality and safety of patient care

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Borycki

    2015-09-01

    Full Text Available This special issue of the Knowledge Management & E-Learning: An International Journal is dedicated to describing “Advances in Healthcare Provider and Patient Training to Improve the Quality and Safety of Patient Care.” Patient safety is an important and fundamental requirement of ensuring the quality of patient care. Training and education has been identified as a key to improving healthcare provider patient safety competencies especially when working with new technologies such as electronic health records and mobile health applications. Such technologies can be harnessed to improve patient safety; however, if not used properly they can negatively impact on patient safety. In this issue we focus on advances in training that can improve patient safety and the optimal use of new technologies in healthcare. For example, use of clinical simulations and online computer based training can be employed both to facilitate learning about new clinical discoveries as well as to integrate technology into day to day healthcare practices. In this issue we are publishing papers that describe advances in healthcare provider and patient training to improve patient safety as it relates to the use of educational technologies, health information technology and on-line health resources. In addition, in the special issue we describe new approaches to training and patient safety including, online communities, clinical simulations, on-the-job training, computer based training and health information systems that educate about and support safer patient care in real-time (i.e. when health professionals are providing care to patients. These educational and technological initiatives can be aimed at health professionals (i.e. students and those who are currently working in the field. The outcomes of this work are significant as they lead to safer care for patients and their family members. The issue has both theoretical and applied papers that describe advances in patient

  9. Employers' Occupational Health and Safety Training Obligations in Framework Directive and Training Procedure and Rules in Turkey

    OpenAIRE

    Nuray Gökçek Karaca; Berrin Gökçek

    2015-01-01

    Employers occupational safety and health training obligations are regulated in 89/391/EEC Framework Directive and also in 6331 numbered Occupational Health and Safety Law in Turkey. The main objective of this research is to determine and evaluate the employers’ occupational health and safety training obligations in Framework Directive in comparison with the 6331 numbered Occupational Health and Safety Law and to examine training principles in Turkey. For this purpose, ...

  10. Transportation safety training

    International Nuclear Information System (INIS)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs

  11. Supplement to safety analysis report. 306-W building operations safety requirement

    International Nuclear Information System (INIS)

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  12. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  13. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  14. Regulations for the safe transport of radioactive material, 2005 edition. Safety requirements

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes amendments to the 1996 Edition (As Amended 2003) arising from the second cycle of the biennial review and revision process, as agreed by the Transport Safety Standards Committee (TRANSSC) at its ninth meeting in March 2004, as endorsed by the Commission on Safety Standards at its meeting in June 2004 and as approved by the IAEA Board of Governors in November 2004. Although this publication is identified as a new edition, there are no changes that affect the administrative and approval requirements in Section VIII. The fields covered are General Provisions (radiation protection; emergency response; quality assurance; compliance assurance; non-compliance; special arrangement and training); Activity Limits and Materials Restrictions, Requirement and Controls for Transport , Requirements for Radioactive Materials and for Packagings and Packages, Test Procedures, Approval and Administrative Requirements

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  17. Evaluation of the food safety training for food handlers in restaurant operations

    OpenAIRE

    Park, Sung-Hee; Kwak, Tong-Kyung; Chang, Hye-Ja

    2010-01-01

    This study examined the extent of improvement of food safety knowledge and practices of employee through food safety training. Employee knowledge and practice for food safety were evaluated before and after the food safety training program. The training program and questionnaires for evaluating employee knowledge and practices concerning food safety, and a checklist for determining food safety performance of restaurants were developed. Data were analyzed using the SPSS program. Twelve restaur...

  18. One size fits all: Safety training for 10,000 workers

    International Nuclear Information System (INIS)

    March, J.

    1998-01-01

    Last summer, the author participated in a major, orchestrated, training event at Los Alamos designed to convey some of the key components of ISM to the workforce. The event was called Safety Days 1997. The objectives were to produce a genuine training event that was logical, focused, interactive, well-written, easy to follow, and that provided people with choices rather than a rigid script. This was the first effort at the Laboratory to organize a way for middle managers to become the safety trainers of their work teams. While upper management supported the concept and product, many were satisfied with the notion of simply creating a time for workers to discuss safety concerns. This paper considers the context of Safety Days 1997, how the training was received, the response to that training, and recommendations for Safety Days 1998

  19. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  20. Safety Training: scheduled sessions in April

    CERN Multimedia

    DGS Unit

    2011-01-01

    The following training courses are scheduled in April. You can find the full Safety Training programme on the Safety Training online catalogue. If you are interested in attending any of the below courses, please talk to your supervisor, then apply electronically via EDH from the course description pages, by clicking on SIGN-UP. Registration for all courses is always open – sessions for the less-requested courses are organized on a demand-basis only. Depending on the demand, a session will be organised later in the year. Biocell Training 26-APR-11 (08.30 – 10.00) in French 26-APR-11 (10.30 – 12.00) in French Conduite de plates-formes élévatrices mobiles de personnel (PEMP) 28-APR-11 to 29-APR-11 (08.00 – 17.30) in French* Sécurité chimique – Introduction 29-APR-11 (09.00 – 11.30) in French (*) session in French with the possibility of receiving the documentation in English   By Isabelle Cusato (H...

  1. Innovative approach to training radiation safety regulatory professionals

    International Nuclear Information System (INIS)

    Gilley, Debbie Bray

    2008-01-01

    Full text: The supply of human resources required to adequately manage a radiation safety regulatory program has diminished in the last five years. Competing professional opportunities and a reduction in the number of health physics secondary schools have made it necessary to look at alternative methods of training. There are limited educational programs in the US that prepare our professionals for careers in the Radiation Regulatory Programs. The state of Florida's radiation control program embraced a new methodology using a combination of didactic and work experience using qualification journals, subject matter experts, and formalized training to develop a qualified pool of employees to perform the regulatory functions and emergency response requirements of a state radiation control program. This program uses a task-based approach to identify training needs and draws upon current staff to develop and implement the training. This has led to a task-oriented staff capable of responding to basic regulatory and emergency response activities within one year of employment. Florida's program lends itself to other states or countries with limited resources that have experienced staff attrition due to retirement or competing employment opportunities. Information on establishing a 'task-based' pool of employees that can perform basic regulatory functions and emergency response after one year of employment will be described. Initial task analysis of core functions and methodology is used to determine the appropriate training methodology for these functions. Instructions will be provided on the methodology used to 'mentor' new employees and then incorporate the new employees into the established core functions and be a useful employee at the completion of the first year of employment. New training philosophy and regime may be useful in assisting in the development of programs in countries and states with limited resources for training radiation protection personnel. (author)

  2. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  3. Children Road Safety Training with Augmented Reality (AR) [Demo

    OpenAIRE

    Lugmayr, Artur; Tsang, Joyce; Williams, Toby; Lim, Casey X; Teo, Yeet Yung; Farmer, Matthew

    2018-01-01

    Children killed or seriously injured through road accidents can be avoided through an appropriate safety training. Through play and engagement children learn and understand hazards at i.e. railway stations, bus stops, crossings, school zones, train stations, footpaths, or while cycling. We developed a rapid prototype of an Augmented Reality (AR) safety training proof-of-concept demonstrator for a scaled real-world model of dangerous road hazards. Two scenarios have been picked to give childre...

  4. The role of staff training in the safety of nuclear facilities

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Tanguy, P.

    1980-01-01

    Although nuclear energy largely involves automatic protection systems enabling the effects of human error to be mitigated, the human factor still remains of extreme importance in nuclear risk analysis. Hence, the attainment of the high safety standards sought after for nuclear energy must of necessity entail staff training programmes which take into account the concern for nuclear safety. It is incumbent upon constructors and operators to evolve a training programme suited to each job, and the safety authorities are responsible for assessing whether the programme is satisfactory from the standpoint of safety and, where necessary, for issuing the relevant certificates or permits. The paper makes some comments on the cost of human error and the profitability of investment in training, on the importance of practical training and of the role of simulators, and on the need for operators to note and analyse all operational abnormalities, which are so often an advance warning of accidents. The training of special safety teams is examined, with consideration of three aspects: safety assessment, inspection, and action to be taken in the event of accident. Finally, some information is given on the human reliability studies under way and their implications for nuclear safety and training, with emphasis on the valuable assistance rendered in this matter by international organizations. (author)

  5. Modern design and safety analysis of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Jordan, K.A.; Springfels, D.; Schubring, D.

    2015-01-01

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed

  6. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  7. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  8. Training Requirements and Training Delivery in the Total Army School System

    National Research Council Canada - National Science Library

    Winkler, John

    1999-01-01

    This report analyzes training requirements and school delivery of training in the Total Army School System, focusing on the system's ability to meet its training requirements in Reserve Component Training Institutions...

  9. Occupational Safety. Hand Tools. Pre-Apprenticeship Phase 1 Training.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on safety when using hand tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to teach students the correct safety techniques for operating common hand- and arm-powered tools, including selection, maintenance, technique, and uses. The module may…

  10. Maritime Safety and Security Challenges – 3D Simulation Based Training

    Directory of Open Access Journals (Sweden)

    Christoph Felsenstein

    2013-09-01

    Full Text Available Maritime Safety and Security on board ships very much depends on well trained crews. That is why training and exercising emergency response procedures as well as efficiency in reliable management are extremely necessary. On the other hand research as well as technological development in safety and security, tools and other kinds of technical and organizational systems contribute to further improvement and guarantee high levels of safety and security in maritime transportation. Simulation facilities are essential for both exercising and training but also for research and technological development. This paper introduces the innovative concept of a safety and security training simulator (SST7 and describes research work related to the implementation of training scenarios. Selected results of a case study will be presented. A shorter version of this paper was originally presented at the International Conference on “Marine Navigation and Safety of Sea Transportation” at Gdynia in June 2013.

  11. Safety Training: scheduled sessions in March

    CERN Multimedia

    DGS Unit

    2011-01-01

    The following training courses are scheduled in March. You can find the full Safety Training programme on the Safety Training online catalogue. If you are interested in attending any of the below courses, please talk to your supervisor, then apply electronically via EDH from the course description pages, by clicking on SIGN-UP. Registration for all courses is always open – sessions for the less-requested courses are organized on a demand-basis only. Depending on the demand, a session will be organised later in the year. Biocell Training 08-MAR-11 (08.30 – 10.00) in English 08-MAR-11 (10.30 – 12.00) in French 15-MAR-11 (08.30 – 10.00) in French 15-MAR-11 (10.30 – 12.00) in French 17-MAR-11 (08.30 – 10.00) in English 17-MAR-11 (10.30 – 12.00) in English 22-MAR-11 (08.30 – 10.00) in French 22-MAR-11 (10.30 – 12.00) in French 24-MAR-11 (08.30 – 10.00) in French 24-MAR-11 (10.30 – 12.00) in French 29-MAR...

  12. Safety Training: scheduled sessions in May

    CERN Multimedia

    Isabelle Cusato (HSE Unit)

    2011-01-01

    The following training courses are scheduled in March. You can find the full Safety Training programme on the Safety Training online catalogue. If you are interested in attending any of the below courses, please talk to your supervisor, then apply electronically via EDH from the course description pages, by clicking on SIGN-UP. Registration for all courses is always open – sessions for the less-requested courses are organized on a demand-basis only. Depending on the demand, a session will be organised later in the year.   Biocell Training 10-MAY-11 (08.30 – 10.00) in French 10-MAY-11 (10.30 – 12.00) in French 12-MAY-11 (08.30 – 10.00) in English 12-MAY-11 (10.30 – 12.00) in English 19-MAY-11 (08.30 – 10.00) in French 19-MAY-11 (10.30 – 12.00) in French 24-MAY-11 (08.30 – 10.00) in English 24-MAY-11 (10.30 – 12.00) in English   Champs Magnétiques 13-MAY-11 (09.30 – 11.30) in French...

  13. Health and safety training for hazardous waste site activities at Oak Ridge National Laboratory: Implementation of OSHA 29 CFR 1910.120(e)

    International Nuclear Information System (INIS)

    White, D.A.

    1988-01-01

    Among the requirements set forth by the interim final rule, 29 CFR Part 1910.120, promulgated by the Occupational Safety and Health Administration (OSHA) in response to the Superfund Amendments and Reauthorization Act of 1986 (SARA), are specific provisions for health and safety training of employees involved in hazardous waste operations. These training provisions require a minimum of 40 hours of initial instruction off the site for employees involved in corrective operations and cleanup activities at hazardous waste sites. A less detailed training requirement of 24 hours is specified for employees working in more routine treatment, storage, and disposal activities. Managers and supervisors who are directly responsible for or who supervise employees engaged in hazardous waste operations must complete 8 additional hours of training related to management of hazardous waste site activities. Consistent with the intent of 29 CFR 1910.120, a training program has been developed at Oak Ridge National Laboratory (ORNL) to comply with the need to protect the safety and health of hazardous waste workers. All hourly requirements specified in the interim final rule are met by a comprehensive program structure involving three stages of training. This paper will outline and discuss the content of each of these stages of the program. The involvement of various ORNL organizations in facilitating the training will be highlighted. Implementation strategies will be discussed as well as progress made to date

  14. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  15. Nuclear Criticality Safety Organization training implementation. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program

  16. Nuclear Criticality Safety Organization training implementation. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  17. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  18. Medical students' situational motivation to participate in simulation based team training is predicted by attitudes to patient safety.

    Science.gov (United States)

    Escher, Cecilia; Creutzfeldt, Johan; Meurling, Lisbet; Hedman, Leif; Kjellin, Ann; Felländer-Tsai, Li

    2017-02-10

    Patient safety education, as well as the safety climate at clinical rotations, has an impact on students' attitudes. We explored medical students' self-reported motivation to participate in simulation-based teamwork training (SBTT), with the hypothesis that high scores in patient safety attitudes would promote motivation to SBTT and that intrinsic motivation would increase after training. In a prospective cohort study we explored Swedish medical students' attitudes to patient safety, their motivation to participate in SBTT and how motivation was affected by the training. The setting was an integrated SBTT course during the surgical semester that focused on non-technical skills and safe treatment of surgical emergencies. Data was collected using the Situational Motivation Scale (SIMS) and the Attitudes to Patient Safety Questionnaire (APSQ). We found a positive correlation between students' individual patient safety attitudes and self-reported motivation (identified regulation) to participate in SBTT. We also found that intrinsic motivation increased after training. Female students in our study scored higher than males regarding some of the APSQ sub-scores and the entire group scored higher or on par with comparable international samples. In order to enable safe practice and professionalism in healthcare, students' engagement in patient safety education is important. Our finding that students' patient safety attitudes show a positive correlation to motivation and that intrinsic motivation increases after training underpins patient safety climate and integrated teaching of patient safety issues at medical schools in order to help students develop the knowledge, skills and attitudes required for safe practice.

  19. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  20. Effect of the interval of training course on understanding of radiation safety and an improvement of re-training course

    International Nuclear Information System (INIS)

    Miyoshi, Hirokazu; Yamamoto, Yasuyo; Adachi, Akio

    2005-01-01

    Radiation safety training courses are indispensable educational programs for radiation workers. We have two kinds of courses, which are held before use of radioisotope (beginner's training course) and held annually (re-training course). The interval between two courses was found to give some effects for radiation worker's recognition and knowledge on radiation safety through the result of examination and questionnaire on the radiation safety after training. The average scores of participants indicated that the short interval (3 months) was better than the long interval (almost one year). Furthermore, the average scores of participants in the 2003 training course were higher than those in the 2002 and 2001 training courses. Several participants were found to lack in the basic radiation safety attitude and knowledge. In order to improve these results, the practical training should be given additionally for workers, who lacked in understanding. (author)

  1. 78 FR 59725 - Construction Fall Protection Systems Criteria and Practices, and Training Requirements; Extension...

    Science.gov (United States)

    2013-09-27

    ...- 1648. Mail, hand delivery, express mail, messenger, or courier service: When using this method, you... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2010-0008] Construction Fall Protection Systems Criteria and Practices, and Training Requirements; Extension of the Office...

  2. New control and safety rod unit for the training reactor of the Dresden Technical University

    International Nuclear Information System (INIS)

    Adam, E.; Schab, J.; Knorr, J.

    1983-01-01

    The extension of the experimental training of students at the training reactor AKR of the Dresden Technical University requires the reconstruction of the reactor with a new control and safety rod unit. The specific conditions at the AKR led to a new variant. Results of preliminary experiments, design and mode of operation of the first unit as well as hitherto gained operation experiences are presented. (author)

  3. Training and qualification program for nuclear criticality safety technical staff. Revision 1

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1997-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification

  4. Verification of the safety communication protocol in train control system using colored Petri net

    International Nuclear Information System (INIS)

    Chen Lijie; Tang Tao; Zhao Xianqiong; Schnieder, Eckehard

    2012-01-01

    This paper deals with formal and simulation-based verification of the safety communication protocol in ETCS (European Train Control System). The safety communication protocol controls the establishment of safety connection between train and trackside. Because of its graphical user interface and modeling flexibility upon the changes in the system conditions, this paper proposes a composition Colored Petri Net (CPN) representation for both the logic and the timed model. The logic of the protocol is proved to be safe by means of state space analysis: the dead markings are correct; there are no dead transitions; being fair. Further analysis results have been obtained using formal and simulation-based verification approach. The timed models for the open transmit system and the application process are created for the purpose of performance analysis of the safety communication protocol. The models describe the procedure of data transmission and processing, and also provide relevant timed and stochastic factors, as well as time delay and lost packet, which may influence the time for establishment of safety connection of the protocol. Time for establishment of safety connection of the protocol in normal state is verified by formal verification, and then time for establishment of safety connection with different probability of lost packet is simulated. After verification it is found that the time for establishment of safety connection of the safety communication protocol satisfies the safety requirements.

  5. The Dread Factor: How Hazards and Safety Training Influence Learning and Performance

    Science.gov (United States)

    Burke, Michael J.; Salvador, Rommel O.; Smith-Crowe, Kristin; Chan-Serafin, Suzanne; Smith, Alexis; Sonesh, Shirley

    2011-01-01

    On the basis of hypotheses derived from social and experiential learning theories, we meta-analytically investigated how safety training and workplace hazards impact the development of safety knowledge and safety performance. The results were consistent with an expected interaction between the level of engagement of safety training and hazardous…

  6. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  7. Safety Training: Ergonomie - Sensibilisation à l'ergonomie bureautique

    CERN Multimedia

    2004-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. SAFETY TRAINING Laetitia Laddada tel. 73811 - 79236 safety.training@cern.ch Nous vous proposons une 1/2 journée de sensibilisation sur les risques engendrés par une mauvaise posture lors du travail sur écran (mal de dos, fatigue visuelle, douleurs des poignets...) et des bonnes pratiques pour y remédier. Les prochaines sessions auront lieu le 11 mars 2004. Les cours sont pris en charge par la Commission de Sécurité et animés par Clemente Pilly et Ribordy Marion de « PM postures...

  8. Challenges in developing competency-based training curriculum for food safety regulators in India

    Directory of Open Access Journals (Sweden)

    Anitha Thippaiah

    2014-01-01

    Full Text Available Context: The Food Safety and Standards Act have redefined the roles and responsibilities of food regulatory workforce and calls for highly skilled human resources as it involves complex management procedures. Aims: 1 Identify the competencies needed among the food regulatory workforce in India. 2 Develop a competency-based training curriculum for food safety regulators in the country. 3 Develop training materials for use to train the food regulatory workforce. Settings and Design: The Indian Institute of Public Health, Hyderabad, led the development of training curriculum on food safety with technical assistance from the Royal Society for Public Health, UK and the National Institute of Nutrition, India. The exercise was to facilitate the implementation of new Act by undertaking capacity building through a comprehensive training program. Materials and Methods: A competency-based training needs assessment was conducted before undertaking the development of the training materials. Results: The training program for Food Safety Officers was designed to comprise of five modules to include: Food science and technology, Food safety management systems, Food safety legislation, Enforcement of food safety regulations, and Administrative functions. Each module has a facilitator guide for the tutor and a handbook for the participant. Essentials of Food Hygiene-I (Basic level, II and III (Retail/ Catering/ Manufacturing were primarily designed for training of food handlers and are part of essential reading for food safety regulators. Conclusion: The Food Safety and Standards Act calls for highly skilled human resources as it involves complex management procedures. Despite having developed a comprehensive competency-based training curriculum by joint efforts by the local, national, and international agencies, implementation remains a challenge in resource-limited setting.

  9. 14 CFR 121.433 - Training required.

    Science.gov (United States)

    2010-01-01

    ... procedures set forth in a certificate holder's approved low-altitude windshear flight training program when... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training required. 121.433 Section 121.433..., FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.433 Training required. (a) Initial...

  10. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  11. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  12. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  13. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  14. Evaluating the effectiveness of a logger safety training program.

    Science.gov (United States)

    Bell, Jennifer L; Grushecky, Shawn T

    2006-01-01

    Logger safety training programs are rarely, if ever, evaluated as to their effectiveness in reducing injuries. Workers' compensation claim rates were used to evaluate the effectiveness of a logger safety training program, the West Virginia Loggers' Safety Initiative (LSI). There was no claim rate decline detected in the majority (67%) of companies that participated in all 4 years of the LSI. Furthermore, their rate did not differ from the rest of the WV logging industry that did not participate in the LSI. Worker turnover was significantly related to claim rates; companies with higher turnover of employees had higher claim rates. Companies using feller bunchers to harvest trees at least part of the time had a significantly lower claim rate than companies not using them. Companies that had more inspections per year had lower claim rates. High injury rates persist even in companies that receive safety training; high employee turnover may affect the efficacy of training programs. The logging industry should be encouraged to facilitate the mechanization of logging tasks, to address barriers to employee retention, and to increase the number of in-the-field performance monitoring inspections. Impact on industry There are many states whose logger safety programs include only about 4-8 hours of safe work practices training. These states may look to West Virginia's expanded training program (the LSI) as a model for their own programs. However, the LSI training may not be reaching loggers due to the delay in administering training to new employees and high levels of employee turnover. Regardless of training status, loggers' claim rates decline significantly the longer they work for a company. It may be that high injury rates in the state of West Virginia would be best addressed by finding ways to encourage and facilitate companies to become more mechanized in their harvesting practices, and to increase employee tenure. Increasing the number of yearly performance inspections

  15. Improving staff perception of a safety climate with crew resource management training.

    Science.gov (United States)

    Kuy, SreyRam; Romero, Ramon A L

    2017-06-01

    Communication failure is one of the top root causes in patient safety adverse events. Crew resource management (CRM) is a team building communication process intended to improve patient safety by improving team dynamics. First, to describe implementation of CRM in a Veterans Affair (VA) surgical service. Second, to assess whether staff CRM training is related to improvement in staff perception of a safety climate. Mandatory CRM training was implemented for all surgical service staff at a VA Hospital at 0 and 12 mo. Safety climate questionnaires were completed by operating room staff at a baseline, 6 and 12 mo after the initial CRM training. Participants reported improvement on all 27 points on the safety climate questionnaire at 6 mo compared with the baseline. At 12 mo, there was sustained improvement in 23 of the 27 areas. This is the first published report about the effect of CRM training on staff perception of a safety climate in a VA surgical service. We demonstrate that CRM training can be successfully implemented widespread in a surgical program. Overall, there was improvement in 100% of areas assessed on the safety climate questionnaire at 6 mo after CRM training. By 1 y, this improvement was sustained in 23 of 27 areas, with the areas of greatest improvement being the performance of briefings, collaboration between nurses and doctors, valuing nursing input, knowledge about patient safety, and institutional promotion of a patient safety climate. Published by Elsevier Inc.

  16. Radiation safety training for industrial irradiators: What are we trying to accomplish?

    International Nuclear Information System (INIS)

    Smith, M.A.

    1998-01-01

    Radiation safety training at an industrial irradiator facility takes a different approach than the traditional methods and topics used at other facilities. Where the more routine industrial radiation users focus on standard training topics of contamination control, area surveys, and the traditional dogma of time, distance, and shielding, radiation safety in an industrial irradiation facility must be centered on preventing accidents. Because the primary methods for accomplishing that goal are engineering approaches such as safety system interlocks, training provided to facility personnel should address system operation and emergency actions. This presents challenges in delivering radiation safety training to an audience of varied educational and technical background where little to no commercially available training material specific to this type of operation exists

  17. The effect of training and job interruptions on logging crews' safety in ...

    African Journals Online (AJOL)

    The effect of training and job interruptions on logging crews' safety in ... method, experienced and inexperienced crews were studied before training, after ... that provision of appropriate safety gears as well as delivery of on job training are ...

  18. Criticality safety engineer training at WSRC

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1993-01-01

    Two programs designed to prepare engineers for certification as criticality safety engineers are offered at Westinghouse Savannah River Company (WSRC). One program, Student On Loan Criticality Engineer Training (SOLCET), is an intensive 2-yr course involving lectures, rigorous problem assignments, and mentoring. The other program, In-Field Criticality Engineer Training (IN-FIELD), is a less intensive series of lectures and problem assignments. Both courses are conducted by members of the Applied Physics Group (APG) of the Savannah River Technical Center, the organization at WSRC responsible for the operation and maintenance of criticality codes and for training of code users

  19. Training in nuclear and radiation safety in Latin American and Caribbean

    International Nuclear Information System (INIS)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R.; Lombardi, R.; Quintana, G.

    2013-01-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  20. Millwright Apprenticeship. Related Training Modules. 1.1-1.8 Safety.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains eight modules covering safety. The modules provide information on the following topics: general safety, hand tool safety, power tool safety, fire safety, hygiene, safety and electricity, types of fire and fire prevention, and…

  1. Swiss-Slovak cooperation program: a training strategy for safety analyses

    International Nuclear Information System (INIS)

    Husarcek, J.

    2000-01-01

    During the 1996-1999 period, a new training strategy for safety analyses was implemented at the Slovak Nuclear Regulatory Authority (UJD) within the Swiss-Slovak cooperation programme in nuclear safety (SWISSLOVAK). The SWISSLOVAK project involved the recruitment, training, and integration of the newly established team into UJD's organizational structure. The training strategy consisted primarily of the following two elements: a) Probabilistic Safety Analysis (PSA) applications (regulatory review and technical evaluation of Level-1/Level-2 PSAs; PSA-based operational events analysis, PSA applications to assessment of Technical Specifications; and PSA-based hardware and/or procedure modifications) and b) Deterministic accident analyses (analysis of accidents and regulatory review of licensee Safety Analysis Reports; analysis of severe accidents/radiological releases and the potential impact of the containment and engineered safety systems, including the development of technical bases for emergency response planning; and application of deterministic methods for evaluation of accident management strategies/procedure modifications). The paper discusses the specific aspects of the training strategy performed at UJD in both the probabilistic and deterministic areas. The integration of team into UJD's organizational structure is described and examples of contributions of the team to UJD's statutory responsibilities are provided. (author)

  2. Cycling in the African American Community : safety training guidelines and findings.

    Science.gov (United States)

    2013-08-01

    This report is a program users manual for the Cycling in the African American Community (CAAC) safety training intervention. The CAAC safety training intervention was designed to nudge more African Americans, who are often beginning cyclists...

  3. Training and qualification program for nuclear criticality safety technical staff

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1996-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training

  4. How many employees receive safety training during their first year of a new job?

    Science.gov (United States)

    Smith, Peter M; Mustard, Cameron A

    2007-02-01

    To describe the provision of safety training to Canadian employees, specifically those in their first year of employment with a new employer. Three repeated national Canadian cross-sectional surveys. 59 159 respondents from Statistics Canada's Workplace and Employee Surveys (1999, 2001 and 2003), 5671 who were in their first year of employment. Receiving occupational health and safety training, orientation training or office or non-office equipment training in either a classroom or on-the-job in the previous 12 months. Only 12% of women and 16% of men reported receiving safety training in the previous 12 months. Employees in their first 12 months of employment were more likely to receive safety training than employees with >5 years of job tenure. However, still only one in five new employees had received any safety training while with their current employer. In a fully adjusted regression model, employees who had access to family and support programs, women in medium-sized workplaces and in manufacturing, and men in large workplaces and in part-time employment all had an increased probability of receiving safety training. No increased likelihood of safety training was found in younger workers or those in jobs with higher physical demands, both of which are associated with increased injury risk. From our results, it would appear that only one in five Canadian employees in their first year of a new job received safety training. Further, the provision of safety training does not appear to be more prevalent among workers or in occupations with increased risk of injuries.

  5. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  7. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  8. Building patient safety in intensive care nursing : Patient safety culture, team performance and simulation-based training

    OpenAIRE

    Ballangrud, Randi

    2013-01-01

    Aim: The overall aim of the thesis was to investigate patient safety culture, team performance and the use of simulation-based team training for building patient safety in intensive care nursing. Methods: Quantitative and qualitative methods were used. In Study I, 220 RNs from ten ICUs responded to a patient safety culture questionnaire analysed with statistics. Studies II-IV were based on an evaluation of a simulation-based team training programme. Studies II-III included 53 RNs from seven I...

  9. Critical safety parameters: The logical approach to refresher training

    International Nuclear Information System (INIS)

    Johnson, A.R.; Pilkington, W.; Turner, S.

    1991-01-01

    Nuclear power plant managers must ensure that control room staff are able to perform effectively. This is of particular importance through the longer term after initial authorization. Traditionally refresher training has been based on delivery of fragmented training packages typically derived from the initial authorization training programs. Various approaches have been taken to provide a more integrated refresher training program. However, methods such as job and task analysis and subject matter expert derived training have tended to develop without a focused clear overall training objective. The primary objective of all control room staff training is to ensure a proper and safe response to all plant transients. At the Point Lepreau Nuclear Plant, this has defined the Critical Safety Parameter based refresher training program. The overall objective of the Critical Safety Parameter training program is to ensure that control room staff can monitor and control a discrete set of plant parameters. Maintenance of the selected parameters within defined boundaries assures adequate cooling of the fuel and containment of radioactivity. Control room staff need to be able to reliably respond correctly to plant transients under potentially high stress conditions,. utilizing the essential knowledge and skills to deal with such transients. The inference is that the knowledge and skills must be limited to that which can be reliably recalled. This paper describes how the Point Lepreau Nuclear Plant has developed a refresher training program on the basis of a limited number of Critical Safety Parameters. Through this approach, it has been possible to define the essential set of knowledge and skills which ensures a correct response to plant transients

  10. SAFETY CONSIDERATIONS WITH BLOOD FLOW RESTRICTED RESISTANCE TRAINING

    Directory of Open Access Journals (Sweden)

    Alan Kacin

    2015-11-01

    Full Text Available Blood flow restricted resistance (BFRR training with pneumatic tourniquet has been suggested as an alternative for conventional weight training due to the proven benefits for muscle strength and hypertrophy using relatively low resistance, hence reducing the mechanical stress across a joint. As such, it has become an important part of rehabilitation programs used in either injured or operated athletes. Despite a general consensus on effectiveness of BFRR training for muscle conditioning, there are several uncertainties regarding the interplay of various extrinsic and intrinsic factors on its safety and efficiency, which are being reviewed from a clinical perspective. Among extrinsic factors tourniquet cuff pressure, size and shape have been identified as key for safety and efficiency. Among intrinsic factors, limb anthropometrics, patient history and presence of cardiac, vascular, metabolic or peripheral neurologic conditions have been recognized as most important. Though there are a few potential safety concerns connected to BFRR training, the following have been identified as the most probable and health-hazardous: (a mechanical injury to the skin, muscle, and peripheral nerves, (b venous thrombosis due to vascular damage and disturbed hemodynamics and (c augmented arterial blood pressure responses due to combined high body exertion and increased peripheral vascular resistance. Based on reviewed literature and authors’ personal experience with the use of BFRR training in injured athletes, some guidelines for its safe application are outlined. Also, a comprehensive risk assessment tool for screening of subjects prior to their inclusion in a BFRR training program is being introduced.

  11. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel. That is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  12. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel; that is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  13. How many employees receive safety training during their first year of a new job?

    Science.gov (United States)

    Smith, Peter M; Mustard, Cameron A

    2007-01-01

    Objective To describe the provision of safety training to Canadian employees, specifically those in their first year of employment with a new employer. Design Three repeated national Canadian cross‐sectional surveys. Subjects 59 159 respondents from Statistics Canada's Workplace and Employee Surveys (1999, 2001 and 2003), 5671 who were in their first year of employment. Main outcome Receiving occupational health and safety training, orientation training or office or non‐office equipment training in either a classroom or on‐the‐job in the previous 12 months. Results Only 12% of women and 16% of men reported receiving safety training in the previous 12 months. Employees in their first 12 months of employment were more likely to receive safety training than employees with >5 years of job tenure. However, still only one in five new employees had received any safety training while with their current employer. In a fully adjusted regression model, employees who had access to family and support programs, women in medium‐sized workplaces and in manufacturing, and men in large workplaces and in part‐time employment all had an increased probability of receiving safety training. No increased likelihood of safety training was found in younger workers or those in jobs with higher physical demands, both of which are associated with increased injury risk. Conclusions From our results, it would appear that only one in five Canadian employees in their first year of a new job received safety training. Further, the provision of safety training does not appear to be more prevalent among workers or in occupations with increased risk of injuries. PMID:17296687

  14. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  15. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  16. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  17. Occupational safety and health education and training for underserved populations.

    Science.gov (United States)

    O'Connor, Tom; Flynn, Michael; Weinstock, Deborah; Zanoni, Joseph

    2014-01-01

    This article presents an analysis of the essential elements of effective occupational safety and health education and training programs targeting underserved communities. While not an exhaustive review of the literature on occupational safety and health training, the paper provides a guide for practitioners and researchers to the key factors they should consider in the design and implementation of training programs for underserved communities. It also addresses issues of evaluation of such programs, with specific emphasis on considerations for programs involving low-literacy and limited-English-speaking workers.

  18. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  19. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  20. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  1. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  2. Promoting individual learning for trainees with perceived high helplessness: experiences of a safety training program.

    Science.gov (United States)

    Kiani, Fariba; Khodabakhsh, Mohamad Reza

    2014-01-01

    The article arises from a research project investigating the effectiveness of safety training on changing attitudes toward safety issues. Followed by the training intervention was observed that employees' helplessness decreased. The researchers have come to the idea of investigating how safety training can reduce perceived helplessness. Thus, this research examined the effectiveness of safety training on reducing employees' helplessness with attention to the mediating role of attitude toward safety issues. The current study was an experimental study with the control group. A total of 204 (101 experimental group and 103 control group) completed safety attitude questionnaire and perceived helplessness before a safety training course including four 90-min sessions over 4 consecutive days in Esfahan Steel Company in 2012 between October and December. Only members of the experimental group participated in this course. These questionnaires, approximately 30 days later, again were run on members of both groups. Data were analyzed using descriptive indexes, t-, and F-test. RESULTS by comparing the two groups showed that safety training was effective only on individuals with perceived low helplessness (p = 0.02). In individuals with perceived high helplessness, safety training only with changing safety attitudes can reduce the perceived helplessness.

  3. Computerized based training in nuclear safety in the nuclear research center Negev

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Krubain, H.; Sberlo, E.

    2002-01-01

    The Department of Human Resources and Training in the Nuclear Research Center, Negev, in collaboration with the Department of Radiation Protection and Safety used to organize different kinds of training and refresher courses for different aspects of safety in nuclear centers (radiation safety, biological effects of ionizing radiation, industrial safety, fire fighting, emergency procedures, etc.). All radiation workers received a training program of several days in all these subjects, each year. The administrative employees received a shorter training, each second year. The training included only frontal lectures and no quiz or exams were done. No feedback of the employees was received after the training, as well. Recently, a new training program was developed by the NRC-Negev and the CET (Center for Educational Technology), in order to perform the refresher courses. The training includes CBT-s (Computer Based Training), e.g. tutorials and quiz. The tutorial is an interactive course in one subject, including animations, video films and photo stills. The employee gets a simple and clear explanation (including pictures). After each tutorial there is a quiz which includes 7 American style questions. In the following lecture different parts from two of the tutorials used for the refresher courses, will be presented

  4. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  5. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  6. In-service training and expertise requirements in radiation protection

    International Nuclear Information System (INIS)

    Klener, V.; Heribanova, A.

    2003-01-01

    Proper selection of staff and their special education and training in radiation protection are important factors when assuring faultless man-machine interaction and thereby a reduced likelihood of human factor failure in hazardous practices. University-level institutions can only provide education in the individual partial segments of the multidisciplinary area of radiation protection, whereas the proper practices are learned by graduate personnel on the job, by performing operational tasks at their particular workplace. The scope o expertise of subjects providing radiation protection surveillance and the requirements for their special education and training are outlined. Supervising persons appointed by the radiation source handling licensee to perform a number of operational tasks at the workplace assume a prominent position. Alternatively, systematic supervision at the workplace can be contracted by the licensee from an external body, provided that the latter has acquired appropriate licence from the State Office for Nuclear Safety. The provisions of the Atomic Act and the related implementing regulations with respect to special training and to the examination of professional competence before an expert commission are briefly outlined. (author)

  7. The effect of injection safety training on knowledge and attitude of ...

    African Journals Online (AJOL)

    Background: Studies have shown poor injection safety practices among health workers in Nigeria and this was adduced to lack of adequate training on injection safety practices. Objective: The study assessed the effect of the training intervention on the knowledge and attitude of primary healthcare workers on injection ...

  8. The impact of a peer-led participatory health and safety training program for Latino day laborers in construction.

    Science.gov (United States)

    Williams, Quintin; Ochsner, Michele; Marshall, Elizabeth; Kimmel, Louis; Martino, Carmen

    2010-06-01

    Immigrant Latino day laborers working in residential construction are at particularly high risk of fatal and non-fatal traumatic injury and benefit from targeted training. To understand the impact of a participatory, peer-facilitated health and safety awareness training customized to the needs of Latino day laborers. Baseline surveys exploring exposures, PPE use, attitudes, work practices and work-related injuries were collected from more than 300 New Jersey Latino day laborers in construction prior to their participation in a one day (minimum of six hour) Spanish language health and safety training class. The classes, led by trained worker trainers, engaged participants in a series of tasks requiring teamwork and active problem solving focused on applying safe practices to situations they encounter at their worksites. Follow-up surveys were difficult to obtain among mobile day laborers, and were collected from 70 men (22% response rate) 2-6 months following training. Chi-square analysis was used to compare pre- and post-intervention PPE use, self protective actions, and self-reported injury rates. Focus groups and in-depth interviews addressing similar issues provided a context for discussing the survey findings. At baseline, the majority of day laborers who participated in this study reported great concern about the hazards of their work and were receptive to learning about health and safety despite limited influence over employers. Changes from baseline to follow-up revealed statistically significant differences in the use of certain types of PPE (hard hats, work boots with steel toes, safety harnesses, and visible safety vests), and in the frequency of self-protective work practices (e.g., trying to find out more about job hazards on your own). There was also a suggestive decrease in self-reported injuries (receiving an injury at work serious enough that you had to stop working for the rest of the day) post-training based on small numbers. Sixty-six percent of

  9. Maritime Safety and Security Challenges – 3D Simulation Based Training

    OpenAIRE

    Christoph Felsenstein; Knud Benedict; Michael Baldauf

    2013-01-01

    Maritime Safety and Security on board ships very much depends on well trained crews. That is why training and exercising emergency response procedures as well as efficiency in reliable management are extremely necessary. On the other hand research as well as technological development in safety and security, tools and other kinds of technical and organizational systems contribute to further improvement and guarantee high levels of safety and security in maritime transportation. Simulation faci...

  10. Safety Training: scheduled sessions in September and October 2011

    CERN Multimedia

    DGS Unit

    2011-01-01

    The following training courses are scheduled in September – October. You can find the full Safety Training programme on the Safety Training online catalogue. If you are interested in attending any of the below courses, please talk to your supervisor, then apply electronically via EDH from the course description pages, by clicking on SIGN-UP. Registration for all courses is always open – sessions for the less-requested courses are organized on a demand-basis only. Depending on the demand, a session will be organised later in the year. Alphabetical order (original course titles are maintained) Chemical Safety – Introduction 11-OCT-11, 9.00 – 11.30, in English Conduite de chariots élévateurs 17-OCT-11 to 18-OCT-11, 8.00 – 17.30, in French * Ergonomics - Applying ergonomic principles in the workplace 15-SEP-11, 9.00 – 12.30, in French 15-SEP-11, 14.00 – 17.30, in English Habilitation électrique : Personne...

  11. Training of instructors on nuclear safety in Asian Countries

    International Nuclear Information System (INIS)

    Ikuta, Yuko; Shitomi, Hajimu; Saeki, Masakatsu

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI)is conducting the international cooperation's of training of the foreign instructors and sending the Japanese teacher to the countries of Indonesia, Thailand (both from 1996) and Vietnam (2000). The training is performed in the JAERI for the future instructors of the concerned country for the period of essentially 2 months and is mainly on nuclear safety principles and safety handling of unsealed radioactive sources. Until 2001, 22 instructors from those countries have been trained in 142 courses. The sent Japanese teacher together with the trained instructor conduct the education of mainly radiation protection and measurement for personnel in ETC of BATAN (Education and Training Center, Indonesia atomic energy agency), radiation protection and atomic energy technology/application in OAEP (Office of Atomic Energy for Peace, Thailand) and the same subjects as BATAN in VAEC (Vietnam Atomic Energy Commission). Instruments for radiation measurement are essentially from Japan. This JAERI international cooperation will be open to other Asian countries. (K.H.)

  12. Training of instructors on nuclear safety in Asian Countries

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Yuko; Shitomi, Hajimu; Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Nuclear Technology and Education Center

    2002-11-01

    Japan Atomic Energy Research Institute (JAERI)is conducting the international cooperation's of training of the foreign instructors and sending the Japanese teacher to the countries of Indonesia, Thailand (both from 1996) and Vietnam (2000). The training is performed in the JAERI for the future instructors of the concerned country for the period of essentially 2 months and is mainly on nuclear safety principles and safety handling of unsealed radioactive sources. Until 2001, 22 instructors from those countries have been trained in 142 courses. The sent Japanese teacher together with the trained instructor conduct the education of mainly radiation protection and measurement for personnel in ETC of BATAN (Education and Training Center, Indonesia atomic energy agency), radiation protection and atomic energy technology/application in OAEP (Office of Atomic Energy for Peace, Thailand) and the same subjects as BATAN in VAEC (Vietnam Atomic Energy Commission). Instruments for radiation measurement are essentially from Japan. This JAERI international cooperation will be open to other Asian countries. (K.H.)

  13. Interpreting the SARA and RCRA training requirements

    International Nuclear Information System (INIS)

    Moreland, W.M.; Wells, S.M.

    1987-01-01

    The Resource Conservation and Recovery Act (RCRA) and the Superfund Amendments and Reauthorization Act (SARA) promulgated by the EPA (RCRA) and the OSHA (SARA) require hazardous materials training for all individuals working with hazardous materials. Facilities that are involved in the generation, storage, treatment, transportation, or disposal/removal of hazardous materials/waste must comply with all relevant training regulations. Using the guidelines contained in the RCRA and SARA regulations, decisions must be made to determine: the type of regulatory requirement based on facility function (i.e., whether the facility is a RCRA or CERCLA facility). The type of training required for specific categories of workers (e.g. managers, supervisors, or general site workers). The level of training needed for each category of worker. This presentation outlines how the Environmental Compliance and Health Protection Technical Resources and Training Group, working with waste operations personnel, establishes specific training requirements

  14. 14 CFR 91.1081 - Crewmember training requirements.

    Science.gov (United States)

    2010-01-01

    ... particular assignment of the crewmember: (1) Basic indoctrination ground training for newly hired crewmembers... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Crewmember training requirements. 91.1081... Operations Program Management § 91.1081 Crewmember training requirements. (a) Each program manager must...

  15. 14 CFR 135.329 - Crewmember training requirements.

    Science.gov (United States)

    2010-01-01

    ... of the crewmember: (1) Basic indoctrination ground training for newly hired crewmembers including... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Crewmember training requirements. 135.329... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training...

  16. Demonstration of the LHC Safety Training Tunnel Mock-Up

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    Members of CERN's management visit the LHC tunnel mock-up at the Safety Training Centre on the Prévessin site. The facility is used to train personnel in emergency responses including the use of masks and safe evacuation.

  17. [Evaluating training programs on occupational health and safety: questionnaire development].

    Science.gov (United States)

    Zhou, Xiao-Yan; Wang, Zhi-Ming; Wang, Mian-Zhen

    2006-03-01

    To develop a questionnaire to evaluate the quality of training programs on occupational health and safety. A questionnaire comprising five subscales and 21 items was developed. The reliability and validity of the questionnaire was tested. Final validation of the questionnaire was undertaken in 700 workers in an oil refining company. The Cronbach's alpha coefficients of the five subscales ranged from 0.6194 to 0.6611. The subscale-scale Pearson correlation coefficients ranged from 0.568 to 0.834 . The theta coefficients of the five subscales were greater than 0.7. The factor loadings of the five subscales in the principal component analysis ranged from 0.731 to 0.855. Use of the questionnaire in the 700 workers produced a good discriminability, with excellent, good, fair and poor comprising 22.2%, 31.2%, 32.4% and 14.1 respectively. Given the fact that 18.7% of workers had never been trained and 29.7% of workers got one-off training only, the training program scored an average of 57.2. The questionnaire is suitable to be used in evaluating the quality of training programs on occupational health and safety. The oil refining company needs to improve training for their workers on occupational health and safety.

  18. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  19. Plutonium safety training course

    International Nuclear Information System (INIS)

    Moe, H.J.

    1976-03-01

    This course seeks to achieve two objectives: to provide initial safety training for people just beginning work with plutonium, and to serve as a review and reference source for those already engaged in such work. Numerous references have been included to provide information sources for those wishing to pursue certain topics more fully. The first part of the course content deals with the general safety approach used in dealing with hazardous materials. Following is a discussion of the four properties of plutonium that lead to potential hazards: radioactivity, toxicity, nuclear properties, and spontaneous ignition. Next, the various hazards arising from these properties are treated. The relative hazards of both internal and external radiation sources are discussed, as well as the specific hazards when plutonium is the source. Similarly, the general hazards involved in a criticality, fire, or explosion are treated. Comments are made concerning the specific hazards when plutonium is involved. A brief summary comparison between the hazards of the transplutonium nuclides relative to 239 Pu follows. The final portion deals with control procedures with respect to contamination, internal and external exposure, nuclear safety, and fire protection. The philosophy and approach to emergency planning are also discussed

  20. Training Requirements and Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Cillan, T.F.; Hodgson, M.A.

    1992-05-01

    This is the software user's guide for the Training Requirements and Information Management System. This guide defines and describes the software operating procedures as they apply to the end user of the software program. This guide is intended as a reference tool for the user who already has an indepth knowledge of the Training Requirements and Information Management System functions and data reporting requirement.

  1. Control maintenance training program for special safety systems at Bruce B

    International Nuclear Information System (INIS)

    Reinwald, G.

    1997-01-01

    It was recognized from the early days of commissioning of Bruce B that Control Maintenance staff would require a level of expertise to be able to maintain Special Safety Systems in proper running order. In the early 80's this was achieved through hands on experience during the original commissioning, troubleshooting and placing of the various systems in service. Control maintenance procedures were developed and implemented as the new systems came available for commissioning, as were operating manuals,training manuals etc. Under the development of the Maintenance Manager, a Conduct of Maintenance section was organized. One of the responsibilities of this section was to develop a series of Maintenance Administrative Procedures (MAPs) that set the standards for maintenance activities including training

  2. Classroom instruction versus roadside training in traffic safety education

    NARCIS (Netherlands)

    van Schagen, I; Rothengatter, J.A.

    1997-01-01

    This study compares the effectiveness of different approaches to training complex cognitive and psychomotor skills within the framework of road safety education for primary school children. A method involving roadside behavioral training, a classroom instruction method and a method combining these

  3. Design of a Construction Safety Training System using Contextual Design Methodology

    OpenAIRE

    Baldev, Darshan H.

    2006-01-01

    In the U.S., the majority of construction companies are small companies with 10 or fewer employees (BLS, 2004). The fatality rate in the construction industry is high, indicating a need for implementing safety training to a greater extent. This research addresses two main goals: to make recommendations and design a safety training system for small construction companies, and to use Contextual Design to design the training system. Contextual Design was developed by Holtzblatt (Beyer and Holtzb...

  4. Multidisciplinary training program to create new breed of radiation monitor: the health and safety technician

    International Nuclear Information System (INIS)

    Vance, W.F.

    1979-01-01

    A multidiscipline training program established to create a new monitor, theHealth and Safety Technician, is described. The training program includes instruction in fire safety, explosives safety, industrial hygiene, industrial safety, health physics, and general safety practices

  5. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S ampersand H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules

  6. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  7. Safety requirements applicable to the SMART design

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Kim, Hho Jung

    1999-01-01

    The 330 MW thermal power of integral reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at KAERI for seawater desalination application and electricity generation. The final product of nuclear desalination plant (NDP) is electricity and fresh water. Thus, in addition to the protection of the public around the plant facility from the possible release of radioactive materials, the fresh water should be prevented from radioactivity contamination. In this study, to ensure the safety of SMART reactor in the early stage of design development, the safety requirements applicable to the SMART design were investigated, based on the current regulatory requirements for the existing NPPs and the advanced light water reactor (LWR) designs. The interface requirements related to the desalination facility were also investigated, based on the recent IAEA research activities pertaining to the NDP. As a result, it was found that the current regulatory requirements and guidance for the existing NPPs and advanced LWR designs are applicable to the SMART design and its safety evaluation. However, the safety requirements related to the SMART-specific design and the desalination plant are needed to develop in the future to assure the safety of the SMART reactor

  8. IAEA education and training programme in nuclear safety

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Lederman, L.

    2003-01-01

    This paper presents the IAEA education and training (E and T) programme in nuclear safety. A strategic planning for the programme implementation is described in terms of objectives, outputs and activities. A framework based on areas of competency and the level of depth of the training is presented as well as the main achievements to date. (author)

  9. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  10. Environment, safety and health training catalog

    International Nuclear Information System (INIS)

    Hurley, L.; Brittenham, P.

    1991-12-01

    The ES ampersand H Training Catalog is a tool to assist managers in determining which training courses they require their employees to complete. The narrative description under ''Who Shall Attend'' describes the characteristics of the employees and contractors under the direction of Sandia who are required by law, regulation, DOE Order, or SNL Directive to complete the training in order to be in compliance. The narrative is ''Who Should Attend'' describes the individuals for which the course is 'highly recommended,'' although they are not mandated to attend

  11. Safety requirements and feedback of commonly used material handling equipment

    International Nuclear Information System (INIS)

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  12. SU-D-201-07: A Survey of Radiation Oncology Residents’ Training and Preparedness to Lead Patient Safety Programs in Clinics

    International Nuclear Information System (INIS)

    Spraker, M; Nyflot, M; Ford, E; Kane, G; Zeng, J; Hendrickson, K

    2016-01-01

    Purpose: Safety and quality has garnered increased attention in radiation oncology, and physicians and physicists are ideal leaders of clinical patient safety programs. However, it is not clear whether residency programs incorporate formal patient safety training and adequately equip residents to assume this leadership role. A national survey was conducted to evaluate medical and physics residents’ exposure to safety topics and their confidence with the skills required to lead clinical safety programs. Methods: Radiation oncology residents were identified in collaboration with ARRO and AAPM. The survey was released in February 2016 via email using REDCap. This included questions about exposure to safety topics, confidence leading safety programs, and interest in training opportunities (i.e. workshops). Residents rated their exposure, skills, and confidence on 4 or 5-point scales. Medical and physics residents responses were compared using chi-square tests. Results: Responses were collected from 56 of 248 (22%) physics and 139 of 690 (20%) medical residents. More than two thirds of all residents had no or only informal exposure to incident learning systems (ILS), root cause analysis (RCA), failure mode and effects analysis (FMEA), and the concept of human factors engineering (HFE). Likewise, 63% of residents had not heard of RO-ILS. Response distributions were similar, however more physics residents had formal exposure to FMEA (p<0.0001) and felt they were adequately trained to lead FMEAs in clinic (p<0.001) than medical residents. Only 36% of residents felt their patient safety training was adequate, and 58% felt more training would benefit their education. Conclusion: These results demonstrate that, despite increasing desire for patient safety training, medical and physics residents’ exposure to relevant concepts is low. Physics residents had more exposure to FMEA than medical residents, and were more confident in leading FMEA. This suggests that increasing

  13. SU-D-201-07: A Survey of Radiation Oncology Residents’ Training and Preparedness to Lead Patient Safety Programs in Clinics

    Energy Technology Data Exchange (ETDEWEB)

    Spraker, M; Nyflot, M; Ford, E; Kane, G; Zeng, J; Hendrickson, K [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Safety and quality has garnered increased attention in radiation oncology, and physicians and physicists are ideal leaders of clinical patient safety programs. However, it is not clear whether residency programs incorporate formal patient safety training and adequately equip residents to assume this leadership role. A national survey was conducted to evaluate medical and physics residents’ exposure to safety topics and their confidence with the skills required to lead clinical safety programs. Methods: Radiation oncology residents were identified in collaboration with ARRO and AAPM. The survey was released in February 2016 via email using REDCap. This included questions about exposure to safety topics, confidence leading safety programs, and interest in training opportunities (i.e. workshops). Residents rated their exposure, skills, and confidence on 4 or 5-point scales. Medical and physics residents responses were compared using chi-square tests. Results: Responses were collected from 56 of 248 (22%) physics and 139 of 690 (20%) medical residents. More than two thirds of all residents had no or only informal exposure to incident learning systems (ILS), root cause analysis (RCA), failure mode and effects analysis (FMEA), and the concept of human factors engineering (HFE). Likewise, 63% of residents had not heard of RO-ILS. Response distributions were similar, however more physics residents had formal exposure to FMEA (p<0.0001) and felt they were adequately trained to lead FMEAs in clinic (p<0.001) than medical residents. Only 36% of residents felt their patient safety training was adequate, and 58% felt more training would benefit their education. Conclusion: These results demonstrate that, despite increasing desire for patient safety training, medical and physics residents’ exposure to relevant concepts is low. Physics residents had more exposure to FMEA than medical residents, and were more confident in leading FMEA. This suggests that increasing

  14. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  15. Nuclear criticality safety: 3-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1993-06-01

    The open-quotes 3-Day Training Courseclose quotes is an intensive course in criticality safety consisting of lectures and laboratory sessions, including active student participation in actual critical experiments, a visit to a plutonium processing facility, and in-depth discussions on safety philosophy. The program is directed toward personnel who currently have criticality safety responsibilities in the capacity of supervisory staff and/or line management. This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. It should be noted that when chapters were extracted, an attempt was made to maintain footnotes and references as originally written. Photographs and illustrations are numbered sequentially

  16. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    Energy Technology Data Exchange (ETDEWEB)

    Lim Young Khi [Dept. of Radiological Science, Gachon University, Inchon (Korea, Republic of); Han, Eun Ok; Choi, Yoon Seok [Dept. of Education amd Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2017-06-15

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided.

  17. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    International Nuclear Information System (INIS)

    Lim Young Khi; Han, Eun Ok; Choi, Yoon Seok

    2017-01-01

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided

  18. Safety net : train safely, profitably, and stay out of jail

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2005-08-01

    This article discussed the benefits of new Web-based training and development services provided by AMEC Training and Development Services. Various Alberta safety regulations were also reviewed, and it was noted that the upstream oil and gas sector have already begun building up strong safety programs. Companies are now increasingly using computer-based training for employees to improve workplace safety. Web-based courses ensure that the subject material is understood by students. In addition, Web-based materials can be economically delivered to field personnel. The learning process can be tracked and recorded in the event that misfortune should occur in the future. Various e-learning packages were evaluated, including Gemini's SWIFT e-learning package. However, the degree to which the Web can replace classroom instruction remains controversial. Typically, modules of a course focus initially on a foundation description of the plant or process, then progress to operating procedures and troubleshooting lessons. Moving diagrams can be programmed using Macro-media Flash, and can be used to portray moving mechanical parts and chemical changes that would normally not be visible to an operator even when standing beside the equipment. It was concluded that with hundreds of workers to train, often on a just-in-time basis, training services that include Web-based instruction are often the most cost-effective and efficient means of training staff. 5 figs.

  19. Availabilities in the June Safety Training sessions

    CERN Multimedia

    2010-01-01

    A few places are still available on the safety courses mentioned below. Please consult the Safety training catalogue to obtain all the latest information and to register. Clearance for work with electrical equipment ("Habilitation électrique") for non-electricians (classroom-based course), 9 June, in French, 8 hours from 9.00 am to 5.30 pm (10 places available) Safety in Cryogenics level 1, 14 June, in English, 3 hours from, 9.00 am to 12 noon (5 places available) Lift-truck operation ("Conduite de chariots élévateurs"), 24-25 June, in French, 2 days from 8.00 am to 5.30 pm (3 places available).

  20. Evaluation of safety requirements of erbium laser equipment used in dentistry

    International Nuclear Information System (INIS)

    Braga, Flavio Hamilton

    2002-01-01

    The erbium laser (Er:YAG) has been used in several therapeutic processes. Erbium lasers, however, operate with energies capable to produce lesions in biological tissues. Aiming the safe use, the commercialization of therapeutic laser equipment is controlled in Brazil, where the equipment should comply with quality and safety requirement prescribed in technical regulations. The objective of this work is to evaluate the quality and safety requirements of a commercial therapeutic erbium laser according to Brazilian regulations, and to discuss a risk control program intended to minimize the accidental exposition at dangerous laser radiation levels. It was verified that the analyzed laser can produce lesions in the skin and eyes, when exposed to laser radiation at distances smaller than 80 cm by 10 s or more. In these conditions, the use of protection glasses is recommended to the personnel that have access to the laser operation ambient. It was verified that the user's training and the presence of a target indicator are fundamental to avoid damages in the skin and buccal cavity. It was also verified that the knowledge and the correct use of the equipment safety devices, and the application of technical and administrative measures is efficient to minimize the risk of dangerous expositions to the laser radiation. (author)

  1. Safety Training: places available in July - August 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   July - August 2013 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Cherry-picker training) 01-JUL-13 to 02-JUL-13, 8.30 – 17.30, in French First-Aiders – Basic Course 31-JUL-13, 8.15 – 17.30, in English Habilitation électrique personnel électricien basse tension (electrical habilitation for low voltage) 01-JUL-13 to 03-JUL-13, 9.00 – 17.30, in French (with handouts in English) Pontier-élingueur (Crane training) 03-JUL-13 to 04-JUL-13, 8.30 – 17.30, in French (with handouts in English) Radiological Protection - Controlled Radiation Area - Course A for CERN employees and CERN associates 11-JUL-13, 8.30 – 17.00, in English 11-JUL-13, 8.30 – 17.00, in French 12-JUL-13, 8.30 – 17.00, i...

  2. Safety Training: places available in July - August 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   July - August 2013 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Cherry-picker training) 01-JUL-13 to 02-JUL-13, 8.30 – 17.30, in French First-Aiders – Basic Course 31-JUL-13, 8.15 – 17.30, in English Habilitation électrique personnel électricien basse tension (electrical habilitation for low voltage) 01-JUL-13 to 03-JUL-13, 9.00 – 17.30, in French (with handouts in English) Pontier-élingueur (Crane training) 03-JUL-13 to 04-JUL-13, 8.30 – 17.30, in French (with handouts in English) Radiological Protection - Controlled Radiation Area - Course A for CERN employees and CERN associates 11-JUL-13, 8.30 – 17.00, in English 11-JUL-13, 8.30 – 17.00, in French 12-JUL-13, 8.30 – 17.00, in...

  3. Safety Training: places available in June

    CERN Multimedia

    GS Department

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. June 2012 (alphabetical order) Champs magnétiques 08-JUN-12, 09h30 – 12h00, en anglais Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Cherry-picker training) 11-JUN-12 to 12-JUN-12, 08.00 – 17.00, in French (with possibility to have the handouts in English) Ergonomics - Applying ergonomic principles in the workplace 14-JUN-12, 09.00 – 12.00, in French First Aiders - Basic Course 06-JUN-12 to 07-JUN-12, 08.00 – 17.00, in French (total : 1.5 days) First Aiders - Refresher Course 07-JUN-12, 13.00 – 17.00, in French 12-JUN-12, 08.00 – 12.00, in English 12-JUN-12, 13.00 – 17.00, in English Habilitation ATEX niveau 2 (ATEX certification –  level 2) 07-JUN-12 to 08-JUN-12, 9.00 – 17.30, in French Habilitation &eacut...

  4. Criticality Safety Evaluation for the TACS at DAF

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilize the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.

  5. Revamping occupational safety and health training: Integrating andragogical principles for the adult learner

    Directory of Open Access Journals (Sweden)

    Alex Albert

    2013-09-01

    Full Text Available Despite attempts to improve safety performance, the construction industry continues to account for a disproportionate rate of injuries. A large proportion of these injuries occur because workers are unable to recognize and respond to hazards in dynamic and unpredictable environments. Unrecognized hazards expose workers to unanticipated risks and can lead to catastrophic accidents. In order to enhance hazard recognition skills, employers often put new and experienced workers through formal hazard recognition training programs. Unfortunately, current training programs primarily rely on instructor-centric pedagogical approaches, which are insensitive to the adult learning process. In order to ensure effective adult learning, training programs must integrate learner-centric andragogical principles to improve engagement and retention in adult trainees. This paper aims to discuss training program elements that can potentially accelerate the adult learning process while improving safety knowledge retention. To this end, the researchers reviewed relevant literature on the cognitive processes of adult learning, essential components of effectual training programs and developed a reliable framework for the training and transfer of safety knowledge. A case example of successfully using the framework is also presented. The results of the study will provide safety trainers and construction professionals with valuable information on developing effective hazard recognition and receptor training programs, with the goal of improving construction safety performance.

  6. Near-peers improve patient safety training in the preclinical curriculum.

    Science.gov (United States)

    Raty, Sally R; Teal, Cayla R; Nelson, Elizabeth A; Gill, Anne C

    2017-01-01

    Accrediting bodies require medical schools to teach patient safety and residents to develop teaching skills in patient safety. We created a patient safety course in the preclinical curriculum and used continuous quality improvement to make changes over time. To assess the impact of resident teaching on student perceptions of a Patient Safety course. Using the Institute for Healthcare Improvement patient safety curriculum as a frame, the course included the seven IHI modules, large group lectures and small group facilitated discussions. Applying a social action methodology, we evaluated the course for four years (Y1-Y4). In Y1, Y2, Y3 and Y4, we distributed a course evaluation to each student (n = 184, 189, 191, and 184, respectively) and the response rate was 96, 97, 95 and 100%, respectively. Overall course quality, clarity of course goals and value of small group discussions increased in Y2 after the introduction of residents as small group facilitators. The value of residents and the overall value of the course increased in Y3 after we provided residents with small group facilitation training. Preclinical students value the interaction with residents and may perceive the overall value of a course to be improved based on near-peer involvement. Residents gain valuable experience in small group facilitation and leadership.

  7. NPP safety and personnel training. XII International conference. Abstracts. Volume 2

    International Nuclear Information System (INIS)

    2011-01-01

    The XII International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7 2011. The problems of personnel training for nuclear industry are discussed. The innovation nuclear systems and fuel cycle are considered. The much attention has been given to NPP radiation safety and radioecology issues. The recent high-speed computation and simulation methods used in reactor technology are presented [ru

  8. NPP safety and personnel training. XII International conference. Abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7, 2011. The issues of nuclear technologies safety are considered.The problems of life-cycle management of nuclear facilities are discussed. The criteria of assessment of physical protection systems of nuclear facilities are presented [ru

  9. Site safety requirements for high level waste disposal

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  10. Educating Immigrant Hispanic Foodservice Workers about Food Safety Using Visual-Based Training

    Science.gov (United States)

    Rajagopal, Lakshman

    2013-01-01

    Providing food safety training to a diverse workforce brings with it opportunities and challenges that must be addressed. The study reported here provides evidence for benefits of using visual-based tools for food safety training when educating immigrant, Hispanic foodservice workers with no or minimal English language skills. Using visual tools…

  11. New requirements on safety of nuclear power plants according to the IAEA safety standards

    International Nuclear Information System (INIS)

    Misak, J.

    2005-01-01

    In this presentation author presents new requirements on safety of nuclear power plants according to the IAEA safety standards. It is concluded that: - New set of IAEA Safety Standards is close to completion: around 40 standards for NPPs; - Different interpretation of IAEA Safety Standards at present: best world practices instead of previous 'minimum common denominator'; - A number of safety improvements required for NPPs; - Requirements related to BDBAs and severe accidents are the most demanding due to degradation of barriers: hardware modifications and accident management; - Large variety between countries in implementation of accident management programmes: from minimum to major hardware modifications; -Distinction between existing and new NPPs is essential from the point of view of the requirements; WWER 440 reactors have potential to reflect IAEA Safety Standards for existing NPPs; relatively low reactor power offers broader possibilities

  12. Five Years of a Computer Based New Training Program in Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Tshuva, M.; Fitussi, I.; Ankri, D.

    2004-01-01

    One of the main goals of the Department of Human Resources Development is to give employees fundamental knowledge, refreshing know-how and increasing safety awareness. In this regard safety deals with risks in operating nuclear facilities, including radiation, industrial risks and fire. Israeli Work Supervision (informing and training employees, 1992) (1) and work safety regulations (industrial safety and health for ionization radiation employees) state the need for training by the employer at least once a year. The employer also must take means to verify that the employees actually understand what they were trained for

  13. Resistance training among young athletes: safety, efficacy and injury prevention effects.

    Science.gov (United States)

    Faigenbaum, A D; Myer, G D

    2010-01-01

    A literature review was employed to evaluate the current epidemiology of injury related to the safety and efficacy of youth resistance training. Several case study reports and retrospective questionnaires regarding resistance exercise and the competitive sports of weightlifting and powerlifting reveal that injuries have occurred in young lifters, although a majority can be classified as accidental. Lack of qualified instruction that underlies poor exercise technique and inappropriate training loads could explain, at least partly, some of the reported injuries. Current research indicates that resistance training can be a safe, effective and worthwhile activity for children and adolescents provided that qualified professionals supervise all training sessions and provide age-appropriate instruction on proper lifting procedures and safe training guidelines. Regular participation in a multifaceted resistance training programme that begins during the preseason and includes instruction on movement biomechanics may reduce the risk of sports-related injuries in young athletes. Strategies for enhancing the safety of youth resistance training are discussed.

  14. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    International Nuclear Information System (INIS)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Remp, K.; Sholtis, J.A.

    1992-01-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed

  15. Effective Learning on the Web Using the Internet for Safety Training

    International Nuclear Information System (INIS)

    Bar-Noy, T.; Sugarman, H.

    2004-01-01

    A previous article, Nuclear Physics Education on the web, concentrated on identifying some of the many resources for information on nuclear physics education. This article will concentrate on utilizing these resources in order to create effective learning environments. As more and more learning and training moves from the traditional face to face classroom to the internet, it is becoming increasingly important to improve the quality of online courses. In the examples given here, we concentrate on the area of radiation safety. The reason for this is that government regulations mandate that every worker who comes in contact with radioactive (and other hazardous) materials must undergo safety training before he begins work and at regular intervals thereafter. Unfortunately this training often consists of boring lectures and reading materials, with no interactivity and little or no evaluation following the training. Because of the importance of safety training, it is imperative to improve the quality of this training by creating effective learning environments. One way to do this is to create online courses via the internet. Aside from the fact that use of the internet vastly expands the resources available to the student and instructor, giving a course via the web is much more efficient in terms of time and expense

  16. Non-technical skills training to enhance patient safety.

    Science.gov (United States)

    Gordon, Morris

    2013-06-01

      Patient safety is an increasingly recognised issue in health care. Systems-based and organisational methods of quality improvement, as well as education focusing on key clinical areas, are common, but there are few reports of educational interventions that focus on non-technical skills to address human factor sources of error. A flexible model for non-technical skills training for health care professionals has been designed based on the best available evidence, and with sound theoretical foundations.   Educational sessions to improve non-technical skills in health care have been described before. The descriptions lack the details to allow educators to replicate and innovate further.   A non-technical skills training course that can be delivered as either a half- or full-day intervention has been designed and delivered to a number of mixed groups of undergraduate medical students and doctors in postgraduate training. Participant satisfaction has been high and patient safety attitudes have improved post-intervention.   This non-technical skills educational intervention has been built on a sound evidence base, and is described so as to facilitate replication and dissemination. With the key themes laid out, clinical educators will be able to build interventions focused on numerous clinical issues that pay attention to human factor contributors to safety. © 2013 John Wiley & Sons Ltd.

  17. The effects of Crew Resource Management (CRM) training on flight attendants' safety attitudes.

    Science.gov (United States)

    Ford, Jane; Henderson, Robert; O'Hare, David

    2014-02-01

    A number of well-known incidents and accidents had led the aviation industry to introduce Crew Resource Management (CRM) training designed specifically for flight attendants, and joint (pilot and flight attendant) CRM training as a way to improve teamwork and communication. The development of these new CRM training programs during the 1990s highlighted the growing need for programs to be evaluated using research tools that had been validated for the flight attendant population. The FSAQ (Flight Safety Attitudes Questionnaire-Flight Attendants) was designed specifically to obtain safety attitude data from flight attendants working for an Asia-Pacific airline. Flight attendants volunteered to participate in a study before receiving CRM training (N=563) and again (N=526) after CRM training. Almost half (13) of the items from the 36-item FSAQ showed highly significant changes following CRM training. Years of experience, crew position, seniority, leadership roles, flight attendant crew size, and length of route flown were all predictive of safety attitudes. CRM training for flight attendants is a valuable tool for increasing positive teamwork behaviors between the flight attendant and pilot sub-groups. Joint training sessions, where flight attendants and pilots work together to find solutions to in-flight emergency scenarios, provide a particularly useful strategy in breaking down communication barriers between the two sub-groups. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  18. A cascade method of training for the revised CEGB Radiological Safety Rules and the Ionising Radiations Regulations 1985

    International Nuclear Information System (INIS)

    Jackson, J.R.; John, P.G.L.

    1986-01-01

    In order to achieve compliance with the Ionising Radiations Regulations 1985 the CEGB has introduced a revised set of Radiological Safety Rule. These Rules are for implementation at all sites under the Board's control where ionising radiations are used. It was a requirement that the new Safety Rules be brought into operation on a common date and to a consistent standard of performance throughout the industry; this necessitated a considerable training programme to familiarise and inform some 8,000 staff working at a large number of locations. The training week of identified groups of staff varied widely, according to their different levels of authority and responsibility. The paper sets out the means by which the chosen cascade method of training was selected and developed, and gives details of the modular package of training material which was produced. It also relates how the management objectives were met within the constraints of an uncompromising time schedule. (author)

  19. Building a culture of safety through team training and engagement.

    Science.gov (United States)

    Thomas, Lily; Galla, Catherine

    2013-05-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  20. Nuclear power manpower and training requirements

    International Nuclear Information System (INIS)

    Whan, G.A.

    1984-01-01

    A broad spectrum of technical personnel is required to conduct a national nuclear power program, predominantly electrical, mechanical, and nuclear engineers and health physicists. The need for nuclear education and training, even in the early planning states, is the topic of this paper. Experience gained in the United States can provide useful information to Asia-Pacific countries developing nuclear power programs. Including both on-site and off-site personnel, U.S. plants average about 570 workers for BWRs and 700 for PWRs. The need for an additional 57,000 technical employees over the next decade is projected. The technical backgrounds of the manpower required to operate and support a nuclear power plant are distinctly different from those used by non-nuclear utilities. Manpower cannot be transferred from fossil fuel plants without extensive training. Meeting the demand for nuclear education and training must be a friendly partnership among universities, government, and industry. The long-term supply of nuclear-educated personnel requires strong, government-supported universities. Most specific training, however, must be provided by industry. (author)

  1. Safety Training: places available in March

    CERN Multimedia

    HSE Unit

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. MARCH 2012 (alphabetical order, titles of courses in the original language) Echafaudages, réception et conformité (Scaffolding, reception and conformity): From 29-FEB-12 to 02-MAR-12, 09.00 – 17.30, in French (in Domarin, dept. 38) Laser Users : 09-MAR-12, 09.00 – 12.30, in English Self-Rescue Mask training : 08-MAR-12, 08.30 – 10.00, in French 08-MAR-12, 10.30 – 12.00, in English 13-MAR-12, 08.30 – 10.00, in French 13-MAR-12, 10.30 – 12.00, in English 20-MAR-12, 08.30 – 10.00, in French 20-MAR-12, 10.30 – 12.00, in English 22-MAR-12, 08.30 – 10.00, in French 22-MAR-12, 10.30 – 12.00, , in English 27-MAR-12, 08.30 – 10.00, in French 27-MAR-12, 10.30 – 12.00, in English Habilitation électrique pour Electriciens en b...

  2. National training course on radiation safety, Its insertion in the cuban system of education and training

    International Nuclear Information System (INIS)

    Cornejo Diaz, Netor; Hernadez Saiz, Alejandro; Calli Fernadez, Ernesto; Perez Reyes, Yolanda

    2005-01-01

    The Center for Radiation Protection and Hygiene has been organizing, since more than ten years, the national training course on Radiation Safety, taking into account the particular needs of the Country in this area. The curriculum of the course, after some years of improvements, is showed and some aspects related to its design and insertion in the national system of education and training in Radiation Safety are discussed. The maintenance of an updated database of participants has demonstrated to be a very useful tool for dissemination of knowledge in Radiation Safety and for a continuously improvement of the imparted courses and offered services. The importance of the participation of the Regulatory Authority in the Course, from its organization phase, is also stressed

  3. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  4. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  5. Multimedia for occupational safety and health training: a pilot study examining a multimedia learning theory.

    Science.gov (United States)

    Wallen, Erik S; Mulloy, Karen B

    2006-10-01

    Occupational diseases are a significant problem affecting public health. Safety training is an important method of preventing occupational illness. Training is increasingly being delivered by computer although theories of learning from computer-based multimedia have been tested almost entirely on college students. This study was designed to determine whether these theories might also be applied to safety training applications for working adults. Participants viewed either computer-based multimedia respirator use training with concurrent narration, narration prior to the animation, or unrelated safety training. Participants then took a five-item transfer test which measured their ability to use their knowledge in new and creative ways. Participants who viewed the computer-based multimedia trainings both did significantly better than the control group on the transfer test. The results of this pilot study suggest that design guidelines developed for younger learners may be effective for training workers in occupational safety and health although more investigation is needed.

  6. Meeting the maglev system's safety requirements

    Energy Technology Data Exchange (ETDEWEB)

    Pierick, K

    1983-12-01

    The author shows how the safety requirements of the maglev track system derive from the general legal conditions for the safety of tracked transport. It is described how their compliance beyond the so-called ''development-accompanying'' and ''acceptance-preparatory'' safety work can be assured for the Transrapid test layout (TVE) now building in Emsland and also for later application as public transport system in Germany within the meaning of the General Railway Act.

  7. A framework for the development of patient safety education and training guidelines.

    Science.gov (United States)

    Zikos, Dimitrios; Diomidous, Marianna; Mantas, John

    2010-01-01

    Patient Safety (PS) is a major concern that involves a wide range of roles in healthcare, including those who are directly and indirectly involved, and patients as well. In order to succeed into developing a safety culture among healthcare providers, carers and patients, there should be given great attention into building appropriate education and training tools, especially addressing those who plan patient safety activities. The framework described in this policy paper is based on the results of the European Network for Patient Safety (EUNetPaS) project and analyses the principles and elements of the guidance that should be provided to those who design and implement Patient Safety Education and training activities. The main principles that it should be based on and the core teaching objectives-expected outcomes are addressed. Once the main context and considerations are properly set, the guidance should define the general schema of the content that should be included in the Education and Training activities, as well as how these activities would be delivered. It is also important that the different roles of the recipients are clearly distinguished and linked to their role-specific methods, proper delivery platforms and success stories. Setting these principles into practice when planning and implementing interventions, primarily aims to enlighten and support those who are enrolled to design and implement Patient Safety education and training teaching activities. This is achieved by providing them with a framework to build upon, succeeding to build a collaborative, safety conscious and competent environment, in terms of PS. A guidelines web platform has been developed to support this process.

  8. Generic Safety Requirements for Developing Safe Insulin Pump Software

    Science.gov (United States)

    Zhang, Yi; Jetley, Raoul; Jones, Paul L; Ray, Arnab

    2011-01-01

    Background The authors previously introduced a highly abstract generic insulin infusion pump (GIIP) model that identified common features and hazards shared by most insulin pumps on the market. The aim of this article is to extend our previous work on the GIIP model by articulating safety requirements that address the identified GIIP hazards. These safety requirements can be validated by manufacturers, and may ultimately serve as a safety reference for insulin pump software. Together, these two publications can serve as a basis for discussing insulin pump safety in the diabetes community. Methods In our previous work, we established a generic insulin pump architecture that abstracts functions common to many insulin pumps currently on the market and near-future pump designs. We then carried out a preliminary hazard analysis based on this architecture that included consultations with many domain experts. Further consultation with domain experts resulted in the safety requirements used in the modeling work presented in this article. Results Generic safety requirements for the GIIP model are presented, as appropriate, in parameterized format to accommodate clinical practices or specific insulin pump criteria important to safe device performance. Conclusions We believe that there is considerable value in having the diabetes, academic, and manufacturing communities consider and discuss these generic safety requirements. We hope that the communities will extend and revise them, make them more representative and comprehensive, experiment with them, and use them as a means for assessing the safety of insulin pump software designs. One potential use of these requirements is to integrate them into model-based engineering (MBE) software development methods. We believe, based on our experiences, that implementing safety requirements using MBE methods holds promise in reducing design/implementation flaws in insulin pump development and evolutionary processes, therefore improving

  9. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  10. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  11. Safety Training: places available in the forthcoming sessions in May

    CERN Multimedia

    Safety Commission

    2010-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. MAY 2010: Confined spaces – for supervisors, 4 May, in French, 1 day, 09:00 – 17:30 Laser safety, 5 May, in French, 4 hours, 13:30 – 17:30 Radiological Protection, 7 May, in English, 4 hours, 13:30 – 17:30 Secourisme - Cours de recyclage, 7 May, in French, 4 hours, 08:30 – 12:30 Secourisme - Cours de recyclage, 7 May, in French, 4 hours, 12:30 – 17:30 Cherry-picker driving (basic course), 10-11 May, in French, 2 days, 08:00 – 17:30 Habilitation électrique : Personnel électricien effectuant des opérations du domaine de tension BTA, 10-11 May, in English, 2 days, 09:00 – 17:30 Biocell Training, 11 May, in French, 1.5 hour, 08:30 – 10:00 Biocell Training, 11 May, in French, 1.5 hour, 10:30 – 12:00 Radiological Protection, 11 May, in English, ...

  12. EXPERIENCE NETWORKING UNIVERSITY OF EDUCATION TRAINING MASTERS SAFETY OF LIFE

    Directory of Open Access Journals (Sweden)

    Elvira Mikhailovna Rebko

    2016-02-01

    Full Text Available The article discloses experience networking of universities (Herzen State Pedagogical University and Sakhalin State University in the development and implementation of joint training programs for master’s education in the field of life safety «Social security in the urban environment». The novelty of the work is to create a schematic design of basic educational training program for master’s education in the mode of networking, and to identify effective instructional techniques and conditions of networking.Purpose – present the results of the joint development of a network of the basic educational program (BEP, to identify the stages of networking, to design a generalized scheme of development and implementation of a network of educational training program for master’s education in the field of life safety.Results generalized model of networking partner institutions to develop and implement the basic educational program master.Practical implications: the education process for Master of Education in the field of health and safety in Herzen State Pedagogical University and Sakhalin State University.

  13. Assessment of Native Languages for Food Safety Training Programs for Meat Industry Employees

    Science.gov (United States)

    Olsen, Sherrlyn S.; Cordray, Joseph C.; Sapp, Stephen; Sebranek, Joseph G.; Anderson, Barbara; Wenger, Matt

    2012-01-01

    Challenges arise when teaching food safety to culturally diverse employees working in meatpacking and food manufacturing industries. A food safety training program was developed in English, translated into Spanish, and administered to 1,265 adult learners. Assessments were conducted by comparing scores before and immediately following training.…

  14. 10CFR50.59 safety evaluation training and expert system development

    International Nuclear Information System (INIS)

    Kline, S.W.; Dickinson, D.B.

    1988-01-01

    10CFR50.59 permits utilities to make changes to and conduct tests or experiments on operating nuclear power plants without prior US Nuclear Regulatory Commission (NCR) approval unless the proposed change, test, or experiment (i.e, the proposed activity) involves a change to the plant technical specifications or an unreviewed safety question (USQ). To provide guidance to their engineers for making the determination of whether a proposed activity involves a USQ. Bechtel has developed a safety evaluation training program. This training program incorporates the guidance in and NRC comments to the November 1987 draft Nuclear Management and Resources Council safety evaluation guidance document, NRC statements contained in inspection reports and other documents, and the experience of senior Bechtel engineers. To further develop the question and concerns that need to be addressed in a safety evaluation in a systematic manner, Bechtel is incorporating the training program guidance and other information into an IBM PC-AT-based working model of an expert system using the NEXPERT expert system development tool. The development and use of this expert system working model are being undertaken to provide consistency and completeness to the thought process used and the output provided by Bechtel engineers when performing a safety evaluation

  15. The Safety Assessment Education and Training Programme (SAET). Education and Training in the Area of Safety Assessment

    International Nuclear Information System (INIS)

    Mellinger-Deroy, M.

    2014-01-01

    • The SAET Programme provides a systematic approach for training regulatory, operational and technical support staff in the skills needed for informed decision-making and technical review of NPP safety case documentation. • The objective of the Programme is to support the IAEA Member States in developing the knowledge and skills necessary for making the right decisions in NPP design, licensing and operation. (author)

  16. Assessment of the impact of dipped guideways on urban rail transit systems: Ventilation and safety requirements

    Science.gov (United States)

    1982-01-01

    The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.

  17. Evaluating Behavioral Skills Training with and without Simulated in Situ Training for Teaching Safety Skills to Children

    Science.gov (United States)

    Miltenberger, Raymond; Gross, Amy; Knudson, Peter; Bosch, Amanda; Jostad, Candice; Breitwieser, Carrie Brower

    2009-01-01

    This study compared the effectiveness of behavioral skills training (BST) to BST plus simulated in situ training (SIT) for teaching safety skills to children to prevent gun play. The results were evaluated in a posttest only control group design. Following the first assessment, participants in both training groups and the control group who did not…

  18. Preventing Child Sexual Abuse: Body Safety Training for Young Children in Turkey.

    Science.gov (United States)

    Citak Tunc, Gulseren; Gorak, Gulay; Ozyazicioglu, Nurcan; Ak, Bedriye; Isil, Ozlem; Vural, Pinar

    2018-06-01

    The "Body Safety Training Program" is an education program aimed at ensuring children are informed about their body and acquire self-protection skills. In this study, a total of 83 preschoolers were divided into experimental and control groups; based on a power analysis, 40 children comprised the experimental group, while 43 children comprised the control group. The "Body Safety Training Programme" was translated into Turkish and content validity was determined regarding the language and cultural appropriateness. The "What If Situations Test" (WIST) was administered to both groups before and after the training. Mann-Whitney U Test, Kruskal-Wallis Variance Analysis, and the Wilcoxon Signed Ranks Test were used to compare between the groups and the Spearman correlation analysis was used to determine the strength of the relationship between the dependent and independent variable. The differences between the pretest and posttest scores for the subscales (appropriate recognition, inappropriate recognition, say, do, tell, and reporting skills), and the personal safety questionnaire (PSQ) score means for the children in the experimental group were found to be statistically significant (p Body Safety Training programme" is effective in increasing the child sexual abuse prevention and self-protection skills in Turkish young children.

  19. Safety Training: scheduled sessions in September and October 2011

    CERN Multimedia

    2011-01-01

    The following training courses are scheduled in September – October. You can find the full Safety Training programme on the Safety Training online catalogue. If you are interested in attending any of the below courses, please talk to your supervisor, then apply electronically via EDH from the course description pages, by clicking on SIGN-UP. Registration for all courses is always open – sessions for the less-requested courses are organized on a demand-basis only. Depending on the demand, a session will be organised later in the year. Alphabetical order (original course titles are maintained) Conduite de chariots élévateurs 17-OCT-11 to 18-OCT-11, 8.00 – 17.30, in French * Ergonomics - Applying ergonomic principles in the workplace 15-SEP-11, 9.00 – 12.30, in French 15-SEP-11, 14.00 – 17.30, in English Habilitation électrique : Personnel électricien effectuant des opérations du domaine de tension BTA...

  20. The Safety Training Centre is also used for recruitment

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The Safety Training Centre on the Prévessin site boasts not only a life-sized mock-up of the LHC accelerator but also a number of other simulators, such as those used for electrical work certification (“habilitation électrique"). What better place to test the technical competencies of candidates applying for a job in the CERN Fire Brigade?     Instructors put the technical competencies of candidates applying for positions in the CERN Fire Brigade to the test in the tunnel that houses the LHC mock-up.   On 4 and 5 November, the Fire and Rescue Service’s facilities were used for the first time by the selection committee for a staff position. This gave candidates the chance to show their abilities and physical fitness in practice. CERN’s Safety Training Centre, which was fitted with a mock-up of the LHC in 2013, is becoming more and more widely used: by the Fire Brigade for their professional training sessions, incl...

  1. Participatory/problem-based methods and techniques for training in health and safety.

    Science.gov (United States)

    Rosskam, E

    2001-01-01

    More knowledgeable and trained people are needed in the area of occupational health, safety, and environment (OSHE) if work-related fatalities, accidents, and diseases are to be reduced. Established systems have been largely ineffective, with few employers taking voluntary measures to protect workers and the environment and too few labor inspectors available. Training techniques using participatory methods and a worker empowerment philosophy have proven value. There is demonstrated need for the use of education for action, promoting the involvement of workers in all levels of decision-making and problem-solving in the workplace. OSH risks particular to women s jobs are virtually unstudied and not addressed at policy levels in most countries. Trade unions and health and safety professionals need to demystify technical areas, empower workers, and encourage unions to dedicate special activities around women s jobs. Trained women are excellent motivators and transmitters of safety culture. Particular emphasis is given to train-the-trainer approaches.

  2. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  3. Training and Action for Patient Safety: Embedding Interprofessional Education for Patient Safety within an Improvement Methodology

    Science.gov (United States)

    Slater, Beverley L.; Lawton, Rebecca; Armitage, Gerry; Bibby, John; Wright, John

    2012-01-01

    Introduction: Despite an explosion of interest in improving safety and reducing error in health care, one important aspect of patient safety that has received little attention is a systematic approach to education and training for the whole health care workforce. This article describes an evaluation of an innovative multiprofessional, team-based…

  4. Training and qualification of health and safety technicians at a national laboratory

    International Nuclear Information System (INIS)

    Egbert, W.F.; Trinoskey, P.A.

    1994-10-01

    Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals from Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function

  5. Instructional games and activities for criticality safety training

    International Nuclear Information System (INIS)

    Bullard, B.; McBride, J.

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclear Regulatory Commission (NRC) fuel facility inspectors

  6. General Employee Training Live, Course 15503

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, Daniel Glen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Heather [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This training at Los Alamos National Laboratory contains the following sections: Introduction to the Laboratory, Institutional Quality Assurance, Facilities, Policies, Procedures, and Other Requirements, Safety Expectations, Worker Protection: Occupational Safety and Health, Industrial Hygiene and Safety, Lockout/Tagout, General Employee Radiological Training, Fire Protection, Security, Emergency Operations, Occupational Health, and Environment.

  7. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  8. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  9. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  10. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  11. Safety Training: Ergonomie - Sensibilisation à l'ergonomie bureautique - French version only

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Formation en SECURITE SAFETY Training Laetitia Laddada 73811 - 79236 safety.training@cern.ch Nous vous proposons une 1/2 journée de sensibilisation sur les risques engendrés par une mauvaise posture lors du travail sur écran (mal de dos, fatigue visuelle, douleurs des poignets...) et des bonnes pratiques pour y remédier. Les prochaines sessions auront lieu le 8 juillet 2004. Les cours sont pris en charge par la Commission de Sécurité et animés par Clemente Pilly et Ribordy Marion de « PM postures &ra...

  12. 77 FR 6411 - Training, Qualification, and Oversight for Safety-Related Railroad Employees

    Science.gov (United States)

    2012-02-07

    ... Oversight for Safety-Related Railroad Employees AGENCY: Federal Railroad Administration (FRA), Department of... establishing minimum training standards for each category and subcategory of safety-related railroad employee... or contractor that employs one or more safety-related railroad employee to develop and submit a...

  13. Evaluation of aviation-based safety team training in a hospital in The Netherlands.

    Science.gov (United States)

    De Korne, Dirk F; Van Wijngaarden, Jeroen D H; Van Dyck, Cathy; Hiddema, U Francis; Klazinga, Niek S

    2014-01-01

    The purpose of this paper is to evaluate the implementation of a broad-scale team resource management (TRM) program on safety culture in a Dutch eye hospital, detailing the program's content and procedures. Aviation-based TRM training is recognized as a useful approach to increase patient safety, but little is known about how it affects safety culture. Pre- and post-assessments of the hospitals' safety culture was based on interviews with ophthalmologists, anesthesiologists, residents, nurses, and support staff. Interim observations were made at training sessions and in daily hospital practice. The program consisted of safety audits of processes and (team) activities, interactive classroom training sessions by aviation experts, a flight simulator session, and video recording of team activities with subsequent feedback. Medical professionals considered aviation experts inspiring role models and respected their non-hierarchical external perspective and focus on medical-technical issues. The post-assessment showed that ophthalmologists and other hospital staff had become increasingly aware of safety issues. The multidisciplinary approach promoted social (team) orientation that replaced the former functionally-oriented culture. The number of reported near-incidents greatly increased; the number of wrong-side surgeries stabilized to a minimum after an initial substantial reduction. The study was observational and the hospital's variety of efforts to improve safety culture prevented us from establishing a causal relation between improvement and any one specific intervention. Aviation-based TRM training can be a useful to stimulate safety culture in hospitals. Safety and quality improvements are not single treatment interventions but complex socio-technical interventions. A multidisciplinary system approach and focus on "team" instead of "profession" seems both necessary and difficult in hospital care.

  14. Preparedness of fire safety in underground train station: Comparison between train operators in Malaysia with other operators from the developed countries

    Science.gov (United States)

    Tajedi, Noor Aqilah A.; Sukor, Nur Sabahiah A.; Ismail, Mohd Ashraf M.; Shamsudin, Shahrul A.

    2017-10-01

    The purpose of this paper is to compare the fire evacuation plan and preparation at the underground train stations in the different countries. The methodology for this study was using the extended questionnaire survey to investigate the Rapid Rail Sdn Bhd, Malaysia's fire safety plan and preparation at the underground train stations. There were four sections in the questionnaire which included (i) background of the respondents, (ii) the details on the train stations, safety instruction and fire evacuation exercises (iii) technical systems, installation and equipment at the underground stations and (iv) procedures and technical changes related to fire safety that had been applied by the operators. Previously, the respondents from the different train operator services in the developed countries had completed the questionnaires. This paper extends the response from the Rapid Rail Sdn Bhd to compare the emergency procedures and preparation for fire event with the developed countries. As a result, this study found that the equipment and facilities that provided at the underground train stations that operated by Rapid Rail are relevant for fire safety procedures and needs. The main advantage for Rapid Rail is the underground stations were designed with two or more entrances/exits that may perform better evacuation compare to one main entrance/exit train stations in the other developed countries.

  15. Safety and health education and training of contract workers in nuclear power plants

    International Nuclear Information System (INIS)

    Matsumoto, Akikuni; Hara, Hisayuki; Nawata, Kazumitsu

    2008-01-01

    Nuclear power plants have used many contract workers. Their safety and health conditions are very important in Japan. Several amendments, which deregulate temporary personnel service and employment agency markets, have been done in recent years. The number of contract and temporary help agency workers have been rapidly increasing especially since the 1990s. As a result, ensuring the level of safety and health education and training of workers becomes a serious problem. This paper examines the possibility that the level of safety training of the contract workers is less than that of the direct-hire employees in nuclear power plants. We show that (1) the use of contract workers could be less efficient for ensuring the level of safety training, and (2) nuclear power plants still use contract workers in some situations in spite of the loss of efficiency. We also study legislations and past cases relating to nuclear power generation. We find that there are some structural problems that might make the contract workers less trained. (author)

  16. Workplace Safety and Health Improvements Through a Labor/Management Training and Collaboration

    Science.gov (United States)

    Mahan, Bruce; Morawetz, John; Ruttenberg, Ruth; Workman, Rick

    2014-01-01

    Seven hundred thirty-nine workers at Merck's Stonewall plant in Elkton, Virginia, have a safer and healthier workplace because four of them were enthusiastic about health and safety training they received from the union's training center in Cincinnati, Ohio. What emerged was not only that all 739 plant employees received OSHA 10-hour General Industry training, but that it was delivered by “OSHA-authorized” members of the International Chemical Workers Union Council who worked at the plant. Merck created a new fulltime position in its Learning and Development Department and hired one of the four workers who had received the initial training. Strong plant leadership promoted discussions both during the training, in evaluation, and in newly energized joint labor-management meetings following the training. These discussions identified safety and health issues needing attention. Then, in a new spirit of trust and collaboration, major improvements occurred. PMID:24704812

  17. Workplace safety and health improvements through a labor/management training and collaboration.

    Science.gov (United States)

    Mahan, Bruce; Morawetz, John; Ruttenberg, Ruth; Workman, Rick

    2013-01-01

    Seven hundred thirty-nine workers at Merck's Stonewall plant in Elkton, Virginia, have a safer and healthier workplace because four of them were enthusiastic about health and safety training they received from the union's training center in Cincinnati, Ohio. What emerged was not only that all 739 plant employees received OSHA 10-hour General Industry training, but that it was delivered by "OSHA-authorized" members of the International Chemical Workers Union Council who worked at the plant. Merck created a new full-time position in its Learning and Development Department and filled it with one of the four workers who had received the initial training. Strong plant leadership promoted discussions both during the training, in evaluation, and in newly energized joint labor-management meetings following the training. These discussions identified safety and health issues needing attention. Then, in a new spirit of trust and collaboration, major improvements occurred.

  18. Exploiting Science: Enhancing the Safety Training of Pilots to Reduce the Risk of Bird Strikes

    Science.gov (United States)

    Mendonca, Flavio A. C.

    Analysis of bird strikes to aviation in the U.S. from 1990 to 2015 indicate that the successful mitigation efforts at airports, which must be sustained, have reduced incidents with damage and a negative effect-on-flight since 2000. However, such efforts have done little to reduce strikes outside the airport jurisdiction, such as occurred with US Airways Flight 1549 in 2009. There are basically three strategies to mitigate the risk of bird strikes: standards set by aviation authorities, technology, and actions by crewmembers. Pilots play an important role as stakeholders in the prevention of bird strikes, especially outside the airport environment. Thus, safety efforts require enhanced risk management and aeronautical decision-making training for flight crews. The purpose of this study was to determine if a safety training protocol could effectively enhance CFR Part 141 general aviation pilots' knowledge and skills to reduce the risk of bird strikes to aviation. Participants were recruited from the Purdue University professional flight program and from Purdue Aviation. The researcher of this study used a pretest posttest experimental design. Additionally, qualitative data were collected through open-ended questions in the pretest, posttest, and a follow-up survey questionnaire. The participants' pretest and posttest scores were analyzed using parametric and nonparametric tests. Results indicated a significant increase in the posttest scores of the experimental group. An investigation of qualitative data showed that the topic "safety management of bird hazards by pilots" is barely covered during the ground and flight training of pilots. Furthermore, qualitative data suggest a misperception of the safety culture tenets and a poor familiarity with the safety risk management process regarding bird hazards. Finally, the researcher presented recommendations for practice and future research.

  19. 49 CFR 238.105 - Train electronic hardware and software safety.

    Science.gov (United States)

    2010-10-01

    ... and software system safety as part of the pre-revenue service testing of the equipment. (d)(1... safely by initiating a full service brake application in the event of a hardware or software failure that... 49 Transportation 4 2010-10-01 2010-10-01 false Train electronic hardware and software safety. 238...

  20. The main requirements of the International Basic Safety Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  1. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  2. Safety and feasibility of inpatient exercise training in pediatric heart failure: a preliminary report.

    Science.gov (United States)

    McBride, Michael G; Binder, Tracy Jo; Paridon, Stephen M

    2007-01-01

    To determine the safety and feasibility of an inpatient exercise training program for a group of pediatric heart transplantation candidates on multiple inotropic support. Children with end-stage heart disease often require heart transplantation. Currently, no data exist on the safety and feasibility of an inpatient exercise training program in pediatric patients awaiting heart transplantation while on inotropic support. Twenty ambulatory patients (11 male; age, 13.6 +/- 3.2 years) were admitted, listed, and subsequently enrolled into an exercise training program while awaiting heart transplantation. Patient diagnoses consisted of dilated cardiomyopathy (n = 15), restrictive cardiomyopathy (n = 1), and failing single-ventricle physiology (n = 4). Inotropic support consisted of a combination of dobutamine, dopamine, or milrinone. Exercise sessions were scheduled three times a week lasting from 30 to 60 minutes and consisted of aerobic and musculoskeletal conditioning. Over 6.2 +/- 4.2 months, 1,251 of a possible 1,508 exercise training sessions were conducted, with a total of 615 hours (26.3 +/- 2.7 min/session) dedicated to low-intensity aerobic exercise. Reasons for noncompliance included a change in medical status, staffing, or patient cooperation. Two adverse episodes (seizures) occurred, neither of which resulted in termination from the program. No adverse episodes of hypotension or significant complex arrhythmias occurred. No complication of medication administration or loss of intravenous access occurred. Data from this study indicate that pediatric patients on inotropic support as a result of systemic ventricular or biventricular heart failure can safely participate in exercise training programs with relatively moderate to high compliance.

  3. Health and Safety Legislation in Australia: Complexity for Training Remains

    Science.gov (United States)

    Bahn, Susanne; Barratt-Pugh, Llandis

    2014-01-01

    This paper presents the findings from a study that examined the impact of the National Occupational Health and Safety Strategy 2002-2012 and the harmonisation of the Work Health and Safety Act 2011 on Australian training design, delivery and outcomes. There has been a comparative reduction in work related injuries, fatalities and disease, and…

  4. 78 FR 61251 - The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and...

    Science.gov (United States)

    2013-10-03

    ...-0030] RIN 2132-AB20; 2132-AB07 The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and the Public Transportation Safety Certification Training Program; Transit... Public Transportation Safety Program (National Safety Program) and the requirements of the new transit...

  5. Safety Requirements and Modern Technical Requirements in Human Information Systems in Amman Hotels

    OpenAIRE

    Farouq Ahmad Alazzam; Sattam Rakan Allahawiah; Mohammad Nayef Alsarayreh; Kafa Hmoud Abdallah al Nawaiseh

    2015-01-01

    This study aimed to demonstrate the availability of Safety requirements and modern technical requirements in human information systems in Amman hotels. an the most important results of this study is the availability of security and safety requirements in human information systems In Amman hotels and The adequacy of the information that it provided .and show that all departments are not connected by appropriate and effective communication networks in adequate form . Also sophisticated operatin...

  6. Republished: Building a culture of safety through team training and engagement.

    Science.gov (United States)

    Thomas, Lily; Galla, Catherine

    2013-07-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  7. Training Children in Pedestrian Safety: Distinguishing Gains in Knowledge from Gains in Safe Behavior

    OpenAIRE

    Schwebel, David C.; McClure, Leslie A.

    2014-01-01

    Pedestrian injuries contribute greatly to child morbidity and mortality. Recent evidence suggests that training within virtual pedestrian environments may improve children’s street crossing skills, but may not convey knowledge about safety in street environments. We hypothesized that (a) children will gain pedestrian safety knowledge via videos/software/internet websites, but not when trained by virtual pedestrian environment or other strategies; (b) pedestrian safety knowledge will be associ...

  8. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  9. [Does annual simulation training influence the safety climate of a university hospital? : Prospective 5‑year investigation using dimensions of the safety attitude questionnaire].

    Science.gov (United States)

    St Pierre, M; Gall, C; Breuer, G; Schüttler, J

    2017-12-01

    Simulation-based training with a focus on non-technical skills can have a positive influence on safety relevant attitudes of participants. If an organization succeeds in training sufficient staff, it may experience a positive change in the safety climate. As the effects of a single training are of a transient nature, annual training sessions may lead to an incremental improvement of safety relevant attitudes of employees over time. In spring 2012 the Department of Anesthesia at the University Hospital of Erlangen established an annual simulation-based training for staff members (e.g. consultants, trainee anesthetists and nurse anesthetists). The study aimed to test whether an annual simulation-based training would result in an incremental longitudinal improvement in attitudes towards teamwork, safety and stress recognition. A survey comprising three domains (teamwork climate, safety climate and stress recognition) of the safety attitudes questionnaire (SAQ) and items addressing briefing and speaking up was distributed to all participants in an annual in-house simulation training. Participants filled out the questionnaire in the morning of each training day. The attitudes were measured before the first training series in 2012, 6 months after the first training and then every year (2013-2016). Participants generated a personalized identification code which allowed individuals to be anonymously tracked over time. Results of the 5‑point Likert scale were transformed to a 100-point scale. Results were calculated at the group level and at the individual level. Univariable linear regression was used to calculate mean changes per year. Over a period of 5 years (2012-2016) a total of 255 individuals completed the questionnaire. Each year, 14-20% of all nurse anesthetists and 81-90% of all anesthetists participated in the simulation-based training. As a result of annual staff turnover 16-24% of participants were new staff members. A personalized code allowed the

  10. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes.

    Science.gov (United States)

    Haas, Emily J; Hoebbel, Cassandra L; Rost, Kristen A

    2014-09-01

    Satisfactory completion of mine safety training is a prerequisite for being hired and for continued employment in the coal industry. Although training includes content to develop skills in a variety of mineworker competencies, research and recommendations continue to specify that specific limitations in the self-escape portion of training still exist and that mineworkers need to be better prepared to respond to emergencies that could occur in their mine. Ecological models are often used to inform the development of health promotion programs but have not been widely applied to occupational health and safety training programs. Nine mine safety trainers participated in in-depth semi-structured interviews. A theoretical analysis of the interviews was completed via an ecological lens. Each level of the social ecological model was used to examine factors that could be addressed both during and after mine safety training. The analysis suggests that problems surrounding communication and collaboration, leadership development, and responsibility and accountability at different levels within the mining industry contribute to deficiencies in mineworkers' mastery and maintenance of skills. This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels-individual, interpersonal, organizational, and community-to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  11. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards

  12. Occupational Safety and Health Professionals' Training in Italy: Qualitative Evaluation Using T-LAB

    Science.gov (United States)

    Papaleo, Bruno; Cangiano, Giovanna; Calicchia, Sara

    2013-01-01

    Purpose: The purpose of this paper is to describe the evaluation of a training course on chemicals for occupational safety and health (OSH) professionals. The study aims were to assess the effectiveness of the course; to find out what type of training met these workers' needs best, as their role is vital in the management of safety at work; and to…

  13. Safety training: Ergonomie - Sensibilisation à l'ergonomie bureautique

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    Nous vous proposons une 1/2 journée de sensibilisation sur les risques engendrés par une mauvaise posture lors du travail sur écran (mal de dos, fatigue visuelle, douleurs des poignets...) et des bonnes pratiques pour y remédier. Les prochaines sessions auront lieu le 8 juillet 2004. Les cours sont pris en charge par la Commission de Sécurité et animés par Pily Clemente et Marion Ribordy de « PM postures » . L'inscription via EDH est obligatoire. Pour plus d'information et inscription par EDH à ce cours, veuillez consulter les pages Formation et Développement (groupe sécurité) de HR, ou contacter l'organisateur. Les places seront attribuées dans l'ordre de réception des inscriptions. Organisateur : Ana-Paula Bernardes/SC-GS (71385) Ana-paula.bernardes@cern.chFORMATION EN SECURITE SAFETY TRAINING Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  14. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  15. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  16. Safety Training: places available in October 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   October 2013 (alphabetical order) Habilitation ATEX niveau 1 (ATEX habilitation level 1) 08-OCT-13, 9.00 – 17.30, in French Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Driving cherry-pickers) 21-OCT-13 to 22-OCT-13, 08.30 – 17.30, in French with handouts in English Ergonomics - Applying ergonomic principles in the workplace 03-OCT-13, 9.00 – 12.00, in English Être TSO au CERN (Being a TSO at CERN) 29-OCT-13 to 31-OCT-13, 9.00 – 17.30, in French Self-Rescue Mask Training 01-OCT-13, 10.30 – 12.30, in French 03-OCT-13, 10.30 – 12.30, in English 04-OCT-13, 8.30 – 10.30, in English 08-OCT-13, 10.30 – 12.30, in French 09-OCT-13, 10.30 – 12.30, in English 15-OCT-13, 10.30 – 12.30, in French 17-OCT-13, 10.30...

  17. Safety Training: places available in February 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   February 2013 (alphabetical order) Noise - Understanding the risks 01-FEB-13, 10.00 – 12.30, in French Magnetic Fields 08-FEB-13, 9.00 – 11.30, in French Conduite de plates-formes élévatrices mobiles de personnel (PEMP) – Cherry-picker driving 18-FEB-13 to 19-FEB-13, 8.30 – 17.30, in French Self-Rescue Mask Training 05-FEB-13, 8.30 – 10.00, in French 05-FEB-13, 10.30 – 12.00, in French 12-FEB-13, 8.30 – 10.00, in French 12-FEB-13, 10.30 – 12.00, in French 14-FEB-13, 8.30 – 10.00, en anglais 14-FEB-13, 10.30 – 12.00, en anglais 19-FEB-13, 8.30 – 10.00, in French 19-FEB-13, 10.30 – 12.00, in French 21-FEB-13, 8.30 – 10.00, en anglais 21-FEB-13, 10.30 – 12.00, en anglais 26-FEB-13, 8.30 &ndash...

  18. OSHA safety requirements for hazardous chemicals in the workplace.

    Science.gov (United States)

    Dohms, J

    1992-01-01

    This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.

  19. The Canadian Nuclear Safety Commission's financial guarantee requirements

    International Nuclear Information System (INIS)

    Ferch, R.

    2006-01-01

    The Nuclear Safety and Control Act gives the Canadian Nuclear Safety Commission (CNSC) the legal authority to require licensees to provide financial guarantees in order to meet the purposes of the Act. CNSC policy and guidance with regard to financial guarantees is outlined, and the current status of financial guarantee requirements as applied to various CNSC licensees is described. (author)

  20. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  1. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition); Bezopasnost' atomnykh ehlektrostantsij: proektirovanie. Konkretnye trebovaniya bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  2. Safety Training: Ergonomie - Sensibilisation aux gestes et postures de travail

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    Nous vous proposons un nouveau cours d'ergonomie (durée : 1 jour) Sensibilisation aux gestes et postures de travail. A l'issue de cette formation, vous serez capable d'adopter et d'appliquer les principes de base de sécurité physique et d'économie d'efforts dans les manipulations d'objets. Les cours sont pris en charge par la Commission de Sécurité. L'inscription EDH est obligatoire. Pour plus d'information, veuillez consulter les pages Formation & Développement (Groupe Sécurité). FORMATION EN SECURITE SAFETY TRAINING Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  3. HySTAR: the hydrogen safety training and risk workplace

    International Nuclear Information System (INIS)

    Hay, R.

    2006-01-01

    This paper shows the output of the software package HySTAR, the Hydrogen Safety, Training and Risk Workplace. This is the software output of the CTFA, Canadian Hydrogen Safety Program projects. It shows the Hydrogen Virtual Interactive Expert Workplace, a guide for permitting and code enforcement for officials and other parties involved in approving hydrogen energy facilities. It also shows the Hydrogen Codes and Standards Report (Site Level) as well as Hydrogen Distances and Clearances Report

  4. Status of safety issues at licensed power plants: TMI action plan requirements, unresolved safety issues, generic safety issues

    International Nuclear Information System (INIS)

    1991-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program was established whereby an annual NUREG report would be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was compiled and reported in three NUREG volumes. Volume 1, published in March 1991, addressed the status of of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). This annual NUREG report combines these volumes into a single report and provides updated information as of September 30, 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. This report is to provide a comprehensive description of the implementation and verification status of TMI Action Plan Requirements, safety issues designated as USIs, and GSIs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  5. 14 CFR Appendix E to Part 121 - Flight Training Requirements

    Science.gov (United States)

    2010-01-01

    ... Training Requirements The maneuvers and procedures required by § 121.424 of this part for pilot initial, transition, and upgrade flight training are set forth in the certificate holder's approved low-altitude... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight Training Requirements E Appendix E...

  6. Safety Training: Sensibilisation aux gestes et postures de travail

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    Nous vous proposons un nouveau cours de sécurité lié aux manutentions manuelles (durée 1 jour) : Sensibilisation aux gestes et postures de travail. Si vous êtes amené à manipuler régulièrement des charges lourdes ou volumineuses, cette formation peut vous aider à prévenir les lésions musculaires ou dorsales. A l'issue de cette formation, vous serez capable d'adopter et d'appliquer les principes de base de sécurité physique et d'économie d'efforts dans les manipulations d'objets. Les cours sont pris en charge par la Commission de Sécurité. L'inscription EDH est obligatoire. Pour plus d'information, veuillez consulter les pages Formation & Développement (Groupe Sécurité). FORMATION EN SECURITE SAFETY TRAINING Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  7. Training for an effective health and safety committee in a small business setting.

    Science.gov (United States)

    Crollard, Allison; Neitzel, Richard L; Dominguez, Carlos F; Seixas, Noah S

    2013-01-01

    Health and safety committees are often heralded as a key element of successful health and safety programs, and are thought to represent a means of engaging workers in health and safety efforts. While the understanding of the factors that make these committees effective is growing, there are few resources for how to assist committees in developing these characteristics. This paper describes one approach to creating and implementing a training intervention aimed at improving health and safety committee function at one multilingual worksite. Short-term impacts were evaluated via questionnaire and qualitative observations of committee function. Results indicated high satisfaction with the training as well as modest increases in participation, cooperation, role clarity, and comfort with health and safety skills among committee members. The committee also made considerable achievements in establishing new processes for effective function. Similar interventions may be useful in other workplaces to increase health and safety committee success.

  8. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  9. Space station pressurized laboratory safety guidelines

    Science.gov (United States)

    Mcgonigal, Les

    1990-01-01

    Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.

  10. 75 FR 79030 - Proposed Extension of Existing Information Collection; Training Plans and Records of Training

    Science.gov (United States)

    2010-12-17

    ... Extension of Existing Information Collection; Training Plans and Records of Training AGENCY: Mine Safety and... extension of the information collection for Training Plans and Records of Training, 30 CFR 48.3, 48.9, 48.23... require training plans for underground and surface mines, respectively. The standards are intended to...

  11. Safety in the mountaineering practices: training in Physical Education

    Directory of Open Access Journals (Sweden)

    Mónica Palacio

    2016-07-01

    Full Text Available Physical Education Teaching with Orientation in Regional Mountain Activities at the Universidad Nacional del Comahue (PEF-CRUB-UNCo is the only one in the country that has a history with over 20 years of training physical education teachers with a particular orientation. It was through dynamic and continuous work over the years that theoretical and practical appropriate contents could be defined for this career.(Palacios, Lopez, Schneider, 2011 Coincidences with those experiences made in other countries such as Spain and Germany where the climbing activities are part of the teacher training and educational curricula have been noticed. (Saez Padilla, Gimenez, Fuentes Guerra 2005; Arribas Cubero 2008; Winter, 2000. It was determined together with other authors (Hepp, Güllich and Heidorn, 2001 that the contents related to Trekking and Climbing are the correct ones to develop a Teaching Program with these characteristics. The handling of safety conditions as an educational content is a permanent concern that challenges the activity. This paper will explain the conditions of safety that had been compiled over the years from experience, permanent research, consultation of specialized literature and actions carried out in teacher training

  12. Development of an Evaluation Tool for Online Food Safety Training Programs

    Science.gov (United States)

    Neal, Jack A., Jr.; Murphy, Cheryl A.; Crandall, Philip G.; O'Bryan, Corliss A.; Keifer, Elizabeth; Ricke, Steven C.

    2011-01-01

    The objective of this study was to provide the person in charge and food safety instructors an assessment tool to help characterize, identify strengths and weaknesses, determine the completeness of the knowledge gained by the employee, and evaluate the level of content presentation and usability of current retail food safety training platforms. An…

  13. Discussion on several important safety requirements for the new nuclear power plant

    International Nuclear Information System (INIS)

    Yan Tianwen; Li Jigen; Zhang Lin; Feng Youcai; Jia Xiang; Li Wenhong

    2013-01-01

    Post the Fukushima nuclear accident, the Chinese government raised higher safety goals and safety requirements for the new nuclear power plant to be constructed. The paper expounded the important indicators of safety requirements and the aspects of safety modification that had been developed for the new NPPs. It also discussed and analyzed the main fields required by the new NPPs safety requirements in the safety goals, safety evaluation of sites, defenses of internal and external events, severe accident prevention and mitigation, design of reactor core, containment system and I and C system, and optimization of engineering measure, which gave some references to the design, construction and safety modifications of new NPPs in China. (authors)

  14. Instructor qualification for radiation safety training at a national laboratory

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department of Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities

  15. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  16. Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process

  17. Design requirements of communication architecture of SMART safety system

    International Nuclear Information System (INIS)

    Park, H. Y.; Kim, D. H.; Sin, Y. C.; Lee, J. Y.

    2001-01-01

    To develop the communication network architecture of safety system of SMART, the evaluation elements for reliability and performance factors are extracted from commercial networks and classified the required-level by importance. A predictable determinacy, status and fixed based architecture, separation and isolation from other systems, high reliability, verification and validation are introduced as the essential requirements of safety system communication network. Based on the suggested requirements, optical cable, star topology, synchronous transmission, point-to-point physical link, connection-oriented logical link, MAC (medium access control) with fixed allocation are selected as the design elements. The proposed architecture will be applied as basic communication network architecture of SMART safety system

  18. Safety Training: places available in May 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   May 2013 (alphabetical order) Conduite de chariots élévateurs (driving of forklifts) 06-MAY-13 to 07-MAY-13, 8.30 – 17.30, in French with handouts in English Self Rescue Mask Training 02-MAY-13, 8.30 – 10.00, in English 02-MAY-13, 10.30 – 12.00, in English 07-MAY-13, 8.30 – 10.00, in French 07-MAY-13, 10.30 – 12.00, in English 14-MAY-13, 8.30 – 10.00, in French 14-MAY-13, 10.30 – 12.00, in French 16-MAY-13, 8.30 – 10.00, in English 16-MAY-13, 10.30 – 12.00, in English 21-MAY-13, 8.30 – 10.00, in French 21-MAY-13, 10.30 – 12.00, in French 23-MAY-13, 8.30 – 10.00, in English 23-MAY-13, 10.30 – 12.00, in English 28-MAY-13, 8.30 – 10.00, in French 28-MAY-13, 10.30 – 12.00, in French 30-MAY-1...

  19. Safety Training: places available in January 2013

    CERN Document Server

    Isabelle CUSATO, HSE Unit

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   January 2013 (alphabetical order) Ergonomics - Applying ergonomic principles in the workplace 24-JAN-13 to 24-JAN-13, 9:00 – 12:00, in English Etre TSO au CERN 23-JAN-13 to 25-JAN-13, 9:00 – 17:30, in French Self-Rescue Mask training 08-JAN-13 to 08-JAN-13, 8:30 – 10:00, in French 08-JAN-13 to 08-JAN-13, 10:30 – 12:00, in French 10-JAN-13 to 10-JAN-13, 8:30 – 10:00, in English 10-JAN-13 to 10-JAN-13, 10:30 – 12:00, in English 15-JAN-13 to 15-JAN-13, 8:30 – 10:00, in French 15-JAN-13 to 15-JAN-13, 10:30 – 12:00, in French 17-JAN-13 to 17-JAN-13, 8:30 – 10:00, in English 17-JAN-13 to 17-JAN-13, 10:30 – 12:00, in English 22-JAN-13 to 22-JAN-13, 8:30 – 10:00, in French 22-JAN-13 to 22-JAN-13, 10:30 – 12:00, in French 24-JAN-13 to 24-JAN-13,...

  20. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes

    Directory of Open Access Journals (Sweden)

    Emily J. Haas

    2014-09-01

    Conclusion: This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels—individual, interpersonal, organizational, and community—to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  1. Increasing patient safety with neonates via handoff communication during delivery: a call for interprofessional health care team training across GME and CME.

    Science.gov (United States)

    Vanderbilt, Allison A; Pappada, Scott M; Stein, Howard; Harper, David; Papadimos, Thomas J

    2017-01-01

    Hospitals have struggled for years regarding the handoff process of communicating patient information from one health care professional to another. Ineffective handoff communication is recognized as a serious patient safety risk within the health care community. It is essential to take communication into consideration when examining the safety of neonates who require immediate medical attention after birth; effective communication is vital for positive patient outcomes, especially with neonates in a delivery room setting. Teamwork and effective communication across the health care continuum are essential for providing efficient, quality care that leads to favorable patient outcomes. Interprofessional simulation and team training can benefit health care professionals by improving interprofessional competence, defined as one's knowledge of other professionals including an understanding of their training and skillsets, and role clarity. Interprofessional teams that include members with specialization in obstetrics, gynecology, and neonatology have the potential to considerably benefit from training effective handoff and communication practices that would ensure the safety of the neonate upon birth. We must strive to provide the most comprehensive systematic, standardized, interprofessional handoff communication training sessions for such teams, through Graduate Medical Education and Continuing Medical Education that will meet the needs across the educational continuum.

  2. TWRS safety SSCs: Requirements and characteristics

    International Nuclear Information System (INIS)

    Smith-Fewell, M.A.

    1997-01-01

    Safety Systems, Structures, and Components (SSCs) have been identified from hazard and accident analyses. These analyses were performed to support the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) and Basis for Interim Operation (BID). The text identifies and evaluates the SSCs and their supporting SSCs to show that they either prevent the occurrence of the accident or mitigate the consequences of the accident to below the acceptance guidelines. The requirements for the SSCs to fulfill these tasks are described

  3. Decree of the State Office for Nuclear Safety No. 146/1997 of 18 June 1997 specifying activities which have an immediate impact on nuclear safety, and activities which are particularly important with respect to radiation protection, requirements for qualification and professional training, procedures for examining special professional competence and for granting certificates to selected personnel, and the scope and structure of documentation to be approved for permitting the training of selected personnel

    International Nuclear Information System (INIS)

    1997-01-01

    The Decree specifies requirements in the following fields: (a) activities which have an immediate impact on nuclear safety and activities which are particularly important with respect to radiation protection; (b) requirements for the qualification of selected personnel; (c) requirements for professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources who are to gain special professional competence; (d) examination commission; (e) examination of special professional competence of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources; (f) granting permission to perform activities of selected personnel; and (g) scope and structure of documentation required to permit professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources. (P.A.)

  4. Development of the video streaming system for the radiation safety training

    International Nuclear Information System (INIS)

    Uemura, Jitsuya

    2005-01-01

    Radiation workers have to receive the radiation safety training every year. It is very hard for them to receive the training within a limited chance of training. Then, we developed the new training system using the video streaming technique and opened the web page for the training on our homepage. Every worker is available to receive the video lecture at any time and at any place by using his PC via internet. After watching the video, the worker should receive the completion examination. It he can pass the examination, he was registered as a radiation worker by the database system for radiation control. (author)

  5. Refresher training as an important factor affecting safety of atomic energy utilization facilities

    International Nuclear Information System (INIS)

    Kapralov, E.

    2005-01-01

    Refresher training appears to be one of the most important factors, affecting safety of atomic energy utilization facilities. To provide up-to-date refresher training programs and courses TC NRS implements best training practice based on the actual and perspective Russian national and international norms, regulations, standards and recommendations. (author)

  6. Safer nuclear power. Strengthening training for operational safety at Paks nuclear power plant - Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    For a nuclear power plant, safety must always be paramount. There can be no compromise on safety to meet production targets or to reduce costs. For any reactor, and in particular where older type reactors are in place, their operational safety can be enhanced by upgrading the training of personnel responsible for operating and maintaining the plant. The Department of Technical Co-operation is sponsoring a programme with technical support from the Nuclear Energy and Nuclear Safety Departments to help improve facilities at the PAKS plant in Hungary and establish self sufficiency in training to the highest international standards for all levels of nuclear power plant manpower. The Model Project described will have a direct impact on the improvement of operational safety and performance at PAKS NPP. It will lead to a more efficient use of resources which in turn will result in lower electricity generation costs. The impact of the project is not expected to be limited to Hungary. WWER reactors are common in Eastern Europe and provide one third to one half of the electricity supply to the region. The training programmes and facilities at PAKS offer a possibility in the future to provide training to experts from other countries operating WWER units and serve as a model to be emulated. Slovakia and the Czech Republic have already expressed interest in using the PAKS experience

  7. Safety Training: places available in April

    CERN Multimedia

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. April 2012 (alphabetical order) Noise - Understanding the risks 18-APR-12, 10.00 – 12.30, in French Conduite de chariots élévateurs / Driving of forklifts 23-APR-12 to 24-APR-12, 09.00 – 17.30, in French (with possibility to have the handouts in English) First-aiders – Basic course 23-APR-12 to 24-APR-12, 08.30 – 17.30 and 08.30 – 12.30 (total: one day and a half), in French First Aiders - Refresher Course 24-APR-12, 13.30 – 17.30, in French Habilitation électrique personnel non électricien / Habilitation électrique for non electricians 02-APR-12 to 03-APR-12, 09.00 – 17.30 and 09.00 – 12.30 (total: one day and a half), in French Manipulation d’extincteurs : exercices sur feux réels / Use of fire extinguisher ...

  8. Design of 3D simulation engine for oilfield safety training

    Science.gov (United States)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  9. Radiological worker training

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  10. Radiological worker training

    International Nuclear Information System (INIS)

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance

  11. CNA Training Requirements and Resident Care Outcomes in Nursing Homes.

    Science.gov (United States)

    Trinkoff, Alison M; Storr, Carla L; Lerner, Nancy B; Yang, Bo Kyum; Han, Kihye

    2017-06-01

    To examine the relationship between certified nursing assistant (CNA) training requirements and resident outcomes in U.S. nursing homes (NHs). The number and type of training hours vary by state since many U.S. states have chosen to require additional hours over the federal minimums, presumably to keep pace with the increasing complexity of care. Yet little is known about the impact of the type and amount of training CNAs are required to have on resident outcomes. Compiled data on 2010 state regulatory requirements for CNA training (clinical, total initial training, in-service, ratio of clinical to didactic hours) were linked to 2010 resident outcomes data from 15,508 NHs. Outcomes included the following NH Compare Quality Indicators (QIs) (Minimum Data Set 3.0): pain, antipsychotic use, falls with injury, depression, weight loss and pressure ulcers. Facility-level QIs were regressed on training indicators using generalized linear models with the Huber-White correction, to account for clustering of NHs within states. Models were stratified by facility size and adjusted for case-mix, ownership status, percentage of Medicaid-certified beds and urban-rural status. A higher ratio of clinical to didactic hours was related to better resident outcomes. NHs in states requiring clinical training hours above federal minimums (i.e., >16hr) had significantly lower odds of adverse outcomes, particularly pain falls with injury, and depression. Total and in-service training hours also were related to outcomes. Additional training providing clinical experiences may aid in identifying residents at risk. This study provides empirical evidence supporting the importance of increased requirements for CNA training to improve quality of care. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  13. 30 CFR 77.1706 - First aid training program; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1706 First aid training program; minimum requirements. (a) All first aid training programs required under the provisions of §§ 77.1703 and 77.1704 shall...

  14. Safety Training: Ergonomie - Sensibilisation à l'ergonomie bureautique

    CERN Multimedia

    2005-01-01

    Nous vous proposons une 1/2 journée de sensibilisation sur les risques engendrés par une mauvaise posture lors du travail sur écran (mal de dos, fatigue visuelle, douleurs des poignets...) et des bonnes pratiques pour y remédier. Les prochaines sessions auront lieu le 24 février 2005 (matin et après-midi). Les cours sont pris en charge par la Commission de Sécurité et animés par Pily Clemente et Marion Ribordy de « PM postures ». L'inscription via EDH est obligatoire. Pour plus d'information et inscription par EDH à ce cours, veuillez consulter les pages Formation et Développement (groupe sécurité) de HR, ou contacter l'organisateur. Les places seront attribuées dans l'ordre de réception des inscriptions. Organisateur : Ana-Paula Bernardes/SC-GS (71385) Ana-paula.bernardes@cern.ch FORMATION EN SECURITE SAFETY TRAINING safety.training@ce...

  15. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  16. EXPERIENCE NETWORKING UNIVERSITY OF EDUCATION TRAINING MASTERS SAFETY OF LIFE

    OpenAIRE

    Elvira Mikhailovna Rebko

    2016-01-01

    The article discloses experience networking of universities (Herzen State Pedagogical University and Sakhalin State University) in the development and implementation of joint training programs for master’s education in the field of life safety «Social security in the urban environment». The novelty of the work is to create a schematic design of basic educational training program for master’s education in the mode of networking, and to identify effective instructional techniques and conditions...

  17. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    International Nuclear Information System (INIS)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  18. Training Requirements and Information Management System. Software user guide

    Energy Technology Data Exchange (ETDEWEB)

    Cillan, T.F.; Hodgson, M.A.

    1992-05-01

    This is the software user`s guide for the Training Requirements and Information Management System. This guide defines and describes the software operating procedures as they apply to the end user of the software program. This guide is intended as a reference tool for the user who already has an indepth knowledge of the Training Requirements and Information Management System functions and data reporting requirement.

  19. Peer training of safety-related skills to institutional staff: benefits for trainers and trainees.

    OpenAIRE

    van Den Pol, R A; Reid, D H; Fuqua, R W

    1983-01-01

    A peer training program, in which experienced staff trained new staff, was evaluated as a method for teaching and maintaining safety-related caregiver skills in an institutional setting for the developmentally disabled. Three sets of safety-type skills were assessed in simulated emergency situations: responding to facility fires, managing aggressive attacks by residents, and assisting residents during convulsive seizures. Using a multiple-baseline research design, results indicated that the p...

  20. Occupational risk perception, safety training, and injury prevention: testing a model in the Italian printing industry.

    Science.gov (United States)

    Leiter, Michael P; Zanaletti, William; Argentero, Piergiorgio

    2009-01-01

    This study examined occupational risk perception in relation to safety training and injuries. In a printing industry, 350 workers from 6 departments completed a survey. Data analysis showed significant differences in risk perceptions among departments. Differences in risk perception reflected the type of work and the injury incidents in the departments. A structural equation analysis confirmed a model of risk perception on the basis of employees' evaluation of the prevalence and lethalness of hazards as well as the control over hazards they gain from training. The number of injuries sustained was positively related to the perception of risk exposure and negatively related to evaluations about the safety training. The results highlight the importance of training interventions in increasing workers' adoption of safety procedures and prevention of injuries.

  1. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  2. A survey of food safety training in small food manufacturers.

    Science.gov (United States)

    Worsfold, Denise

    2005-08-01

    A survey of food safety training was conducted in small food manufacturing firms in South Wales. Structured interviews with managers were used to collect information on the extent and level of food hygiene and HACCP training and the manager's perceptions of and attitude towards training. All the businesses surveyed had undertaken some hygiene training. Hygiene induction programmes were often unstructured and generally unrecorded. Low-risk production workers were usually trained on the job whilst high-care production staff were trained in hygiene to Level 1. Part-time and temporary staff received less training than full-timers. Regular refresher training was undertaken by less than half of the sample. None of the businesses made use of National Vocational Qualification (NVQ) qualifications. Over half of the managers/senior staff had undertaken higher levels of hygiene training and half had attended a HACCP course. Managers trained the workforce to operate the HACCP system. Formal training-related activities were generally only found in the larger businesses. Few of the manufacturers had made use of training consultants. Managers held positive attitudes towards training but most regarded it as operating expense rather than an investment. Resource poverty, in terms of time and money was perceived to be a major inhibiting factor to continual, systematic training.

  3. Commuter Train Passenger Safety Model Using Positive Behavior Approach: The Case Study in Suburban Area

    Science.gov (United States)

    Suryanto, D. A.; Adisasmita, S. A.; Hamid, S.; Hustim, M.

    2018-04-01

    Currently, Train passanger safety measures are more predominantly measurable using negative dimensions in user mode behavior, such as accident rate, accident intensity and accident impact. This condition suggests that safety improvements aim only to reduce accidents. Therefore, this study aims to measure the safety level of light train transit modes (KRL) through the dimensions of traveling safety on commuters based on positive safety indicators with severel condition departure times and returns for work purposes and long trip rates above KRL. The primary survey were used in data collection methods. Structural Equation Modeling (SEM) were used in data analysis. The results show that there are different models of the safety level of departure and return journey. The highest difference is in the security dimension which is the internal variable of KRL users.

  4. 45 CFR 235.62 - State plan requirements for training programs.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false State plan requirements for training programs. 235... ADMINISTRATION OF FINANCIAL ASSISTANCE PROGRAMS § 235.62 State plan requirements for training programs. A State plan under title I, IV-A, X, XIV, or XVI (AABD) of the Act must provide for a training program for...

  5. Hearings before the Ad Hoc Committee on Maritime Education and Training of the Committee on Merchant Marine and Fisheries, Ninety-Third Congress; Second Session on Officer Requirements, and Session on Maritime Education Regarding Safety at Sea. Serial No. 93-44.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Merchant Marine and Fisheries.

    The publication consists of Congressional hearings before the Ad Hoc Committee on Maritime Education and Training: (1) June 26, 1974 hearing pertaining to officer requirements and (2) November 19, 1974 hearing on maritime education regarding safety at sea. Estimated cost per graduate for the U. S. Merchant Marine 1973 class was $31,100. Supply and…

  6. Investigational new drug safety reporting requirements for human drug and biological products and safety reporting requirements for bioavailability and bioequivalence studies in humans. Final rule.

    Science.gov (United States)

    2010-09-29

    The Food and Drug Administration (FDA) is amending its regulations governing safety reporting requirements for human drug and biological products subject to an investigational new drug application (IND). The final rule codifies the agency's expectations for timely review, evaluation, and submission of relevant and useful safety information and implements internationally harmonized definitions and reporting standards. The revisions will improve the utility of IND safety reports, reduce the number of reports that do not contribute in a meaningful way to the developing safety profile of the drug, expedite FDA's review of critical safety information, better protect human subjects enrolled in clinical trials, subject bioavailability and bioequivalence studies to safety reporting requirements, promote a consistent approach to safety reporting internationally, and enable the agency to better protect and promote public health.

  7. Using a Training Video to Improve Agricultural Workers' Knowledge of On-Farm Food Safety

    Science.gov (United States)

    Mathiasen, Lisa; Morley, Katija; Chapman, Benjamin; Powell, Douglas

    2012-01-01

    A training video was produced and evaluated to assess its impact on the food safety knowledge of agricultural workers. Increasing food safety knowledge on the farm may help to improve the safety of fresh produce. Surveys were used to measure workers' food safety knowledge before and after viewing the video. Focus groups were used to determine…

  8. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  9. The Hungarian model project: Strengthening training for operational safety at Paks nuclear power plant

    International Nuclear Information System (INIS)

    Mautner Markhof, F.

    1998-01-01

    The Hungarian Model project (HMP) reflects the commitment to constant increase of safety and reliability of the NPP Paks, the Government of Hungary and the IAEA. It includes some of the most important nuclear power objectives of Paks NPP, namely the strengthening of NPP personnel training and competence through the application of international best practice, the systematic approach to training (SAT), for training operation and maintenance personnel; setting up a state of-the-art maintenance training center (MTC) at Paks and enhancing safety culture at Paks NPP. The IAEA supported implementation of the HMP through fellowships and scientific visits, expert missions, provision of hardware and software for SAT application, and supply od major new uncontaminated items of actual WWER equipment for the MTC

  10. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  11. Identification of training and emergency-planning needs through job-safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Veltrie, J.

    1987-01-01

    Training and emergency-planning needs within the photovoltaic industry may be more accurately determined through the performance of detailed job-safety analysis. This paper outlines the four major components of such an analysis, namely operational review, hazards evaluation, personnel review and resources evaluation. It then shows how these may be developed into coherent training and planning recommendations, for both emergency and non-emergency situations.

  12. Impact of the draft DOE Training and Qualification Standard on an established training and qualification program

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1999-01-01

    One of the provisions of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2 was that the US Department of Energy (DOE) hor e llipsis Develop and institute ahor e llipsiscourse in criticality and criticality safety hor e llipsis to serve as the foundation for a program of formal qualification of criticality engineers. In response, a draft DOE standard establishing requirements for a formal qualification program for nuclear criticality safety (NCS) engineers has been prepared and is currently in review. The Oak Ridge Y-12 plant implemented a formal training and qualification program for NCS engineers in 1995. The program complies with existing DOE requirements. The program was developed using a performance-based systematic approach to training and is accomplished through structured mentoring where experienced personnel interact with candidates through various learning exercises. Self-study, exercises, and work under instruction are all utilized. The candidate's performance is evaluated by mentors and oral boards. Competency gained through experience at other sites can also be credited. Technical portions of the program are primarily contained in an initial Engineer-in-Training segment and in subsequent task-specific qualifications. The Engineer-in-Training segment exposes the candidate to fundamental NCS concepts through example problems; ensures the initial compliance training requirements are met; and includes readings from applicable procedures, technical documents, and standards. Upon completion of this initial training, candidates proceed to task qualifications. Tasks are defined NCS activities such as operational reviews, criticality safety evaluations, criticality safety computations, criticality accident alarm system (CAAS) evaluations, support for emergency management, etc. Qualification on a task basis serves to break up training into manageable pieces and expedites qualification of candidates to perform specific production activities. The

  13. A theory-driven, longitudinal evaluation of the impact of team training on safety culture in 24 hospitals.

    Science.gov (United States)

    Jones, Katherine J; Skinner, Anne M; High, Robin; Reiter-Palmon, Roni

    2013-05-01

    Effective teamwork facilitates collective learning, which is integral to safety culture. There are no rigorous evaluations of the impact of team training on the four components of safety culture-reporting, just, flexible and learning cultures. We evaluated the impact of a year-long team training programme on safety culture in 24 hospitals using two theoretical frameworks. We used two quasi-experimental designs: a cross-sectional comparison of hospital survey on patient safety culture (HSOPS) results from an intervention group of 24 hospitals to a static group of 13 hospitals and a pre-post comparison of HSOPS results within intervention hospitals. Dependent variables were HSOPS items representing the four components of safety culture; independent variables were derived from items added to the HSOPS that measured the extent of team training, learning and transfer. We used a generalised linear mixed model approach to account for the correlated nature of the data. 59% of 2137 respondents from the intervention group reported receiving team training. Intervention group HSOPS scores were significantly higher than static group scores in three dimensions assessing the flexible and learning components of safety culture. The distribution of the adoption of team behaviours (transfer) varied in the intervention group from 2.8% to 31.0%. Adoption of team behaviours was significantly associated with odds of an individual reacting more positively at reassessment than baseline to nine items reflecting all four components of safety culture. Team training can result in transformational change in safety culture when the work environment supports the transfer of learning to new behaviour.

  14. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  15. Safety integrity requirements for computer based I ampersand C systems

    International Nuclear Information System (INIS)

    Thuy, N.N.Q.; Ficheux-Vapne, F.

    1997-01-01

    In order to take into account increasingly demanding functional requirements, many instrumentation and control (I ampersand C) systems in nuclear power plants are implemented with computers. In order to ensure the required safety integrity of such equipment, i.e., to ensure that they satisfactorily perform the required safety functions under all stated conditions and within stated periods of time, requirements applicable to these equipment and to their life cycle need to be expressed and followed. On the other hand, the experience of the last years has led EDF (Electricite de France) and its partners to consider three classes of systems and equipment, according to their importance to safety. In the EPR project (European Pressurized water Reactor), these classes are labeled E1A, E1B and E2. The objective of this paper is to present the outline of the work currently done in the framework of the ETC-I (EPR Technical Code for I ampersand C) regarding safety integrity requirements applicable to each of the three classes. 4 refs., 2 figs

  16. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  17. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  18. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  19. Freight-train derailment rates for railroad safety and risk analysis.

    Science.gov (United States)

    Liu, Xiang; Rapik Saat, M; Barkan, Christopher P L

    2017-01-01

    Derailments are the most common type of train accident in the United States. They cause damage to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause casualties, and harm the environment. Train safety and risk analysis relies on accurate assessment of derailment likelihood. Derailment rate - the number of derailments normalized by traffic exposure - is a useful statistic to estimate the likelihood of a derailment. Despite its importance, derailment rate analysis using multiple factors has not been previously developed. In this paper, we present an analysis of derailment rates on Class I railroad mainlines based on data from the U.S. Federal Railroad Administration and the major freight railroads. The point estimator and confidence interval of train and car derailment rates are developed by FRA track class, method of operation and annual traffic density. The analysis shows that signaled track with higher FRA track class and higher traffic density is associated with a lower derailment rate. The new accident rates have important implications for safety and risk management decisions, such as the routing of hazardous materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Recommended general safety requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    This report presents recommendations for a set of general safety requirements that could form the basis for the licensing of nuclear power plants by the Atomic Energy Control Board. In addition to a number of recommended deterministic requirements the report includes criteria for the acceptability of the design of such plants based upon the calculated probability and consequence (in terms of predicted radiation dose to members of the public) of potential fault sequences. The report also contains a historical review of nuclear safety principles and practices in Canada

  1. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 1, August 2012

    International Nuclear Information System (INIS)

    2012-08-01

    The IAEA has a statutory function to establish standards for the protection of health, life and property against ionizing radiation and to provide for the application of these standards to peaceful nuclear activities. Education and training (E and T) is one of the main mechanisms to provide support to Member States in the application of the standards. In 2000, an internal evaluation of the overall education and training programme was undertaken. The conclusions were that the provision of and support for E and T in Member States tended to be on a reactive rather than proactive basis, contributing to a culture of dependency rather than sustainability. On the basis of this evaluation, a strategic approach to education and training in radiation and waste safety was developed that outlined the objectives and outcomes to be achieved over a ten year period (2001-2010). General Conference Resolutions have underlined or emphasized the importance of sustainable programmes for education and training in radiation, transport and waste safety, and have also welcomed the ongoing commitment of the Secretariat and Member States to the implementation of the strategy. A Steering Committee for Education and Training in Radiation Protection and Waste Safety was established in 2002, with the mission of advising the IAEA on the implementation of the strategy and making recommendations as appropriate. In 2010, the Steering Committee analysed the overall achievement of the strategic approach 2011-2010, refined the vision of the original strategy and redefined the related objectives. The Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) was submitted to the IAEA's policy-making organs and was noted by its Board of Governors in September 2010.

  2. Quality and safety training in primary care: making an impact.

    Science.gov (United States)

    Byrne, John M; Hall, Susan; Baz, Sam; Kessler, Todd; Roman, Maher; Patuszynski, Mark; Thakkar, Kruti; Kashner, T Michael

    2012-12-01

    Preparing residents for future practice, knowledge, and skills in quality improvement and safety (QI/S) is a requisite element of graduate medical education. Despite many challenges, residency programs must consider new curricular innovations to meet the requirements. We report the effectiveness of a primary care QI/S curriculum and the role of the chief resident in quality and patient safety in facilitating it. Through the Veterans Administration Graduate Medical Education Enhancement Program, we added a position for a chief resident in quality and patient safety, and 4 full-time equivalent internal medicine residents, to develop the Primary Care Interprofessional Patient-Centered Quality Care Training Curriculum. The curriculum includes a first-or second-year, 1-month block rotation that serves as a foundational experience in QI/S and interprofessional care. The responsibilities of the chief resident in quality and patient safety included organizing and teaching the QI/S curriculum and mentoring resident projects. Evaluation included prerotation and postrotation surveys of self-assessed QI/S knowledge, abilities, skills, beliefs, and commitment (KASBC); an end-of-the-year KASBC; prerotation and postrotation knowledge test; and postrotation and faculty surveys. Comparisons of prerotation and postrotation KASBC indicated significant self-assessed improvements in 4 of 5 KASBC domains: knowledge (P < .001), ability (P < .001), skills (P < .001), and belief (P < .03), which were sustained on the end-of-the-year survey. The knowledge test demonstrated increased QI/S knowledge (P  =  .002). Results of the postrotation survey indicate strong satisfaction with the curriculum, with 76% (25 of 33) and 70% (23 of 33) of the residents rating the quality and safety curricula as always or usually educational. Most faculty members acknowledged that the chief resident in quality and patient safety enhanced both faculty and resident QI/S interest and

  3. 14 CFR 121.415 - Crewmember and dispatcher training requirements.

    Science.gov (United States)

    2010-01-01

    ... indoctrination ground training for newly hired crewmembers or dispatchers including 40 programmed hours of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Crewmember and dispatcher training... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Training Program § 121.415 Crewmember...

  4. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  5. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  6. Risk and safety requirements for diagnostic and therapeutic procedures in allergology

    DEFF Research Database (Denmark)

    Kowalski, Marek L; Ansotegui, Ignacio; Aberer, Werner

    2016-01-01

    One of the major concerns in the practice of allergy is related to the safety of procedures for the diagnosis and treatment of allergic disease. Management (diagnosis and treatment) of hypersensitivity disorders involves often intentional exposure to potentially allergenic substances (during skin...... attempted to present general requirements necessary to assure the safety of these procedures. Following review of available literature a group of allergy experts within the World Allergy Organization (WAO), representing various continents and areas of allergy expertise, presents this report on risk...... associated with diagnostic and therapeutic procedures in allergology and proposes a consensus on safety requirements for performing procedures in allergy offices. Optimal safety measures including appropriate location, type and required time of supervision, availability of safety equipment, access...

  7. Requirements to be met by a safety philosophy

    International Nuclear Information System (INIS)

    Hahn, L.

    1990-01-01

    The author's assessment of the use of safety philosophies is that, since 'safety philosophers' still are not certain whether a safety philosophy ought to be applicable to just one, particular technology, or rather to a variety of different technologies, there is reason to state that the required ethical, philosophical and political foundations to build a safety philosophy on are still missing. And this, the author presumes, is one of the reasons why our society to a far extent is incapable of acting, faced not only with the nuclear issue, but also with the present and future ecological challenge. (orig./DG) [de

  8. Defence-in-depth and development of safety requirements for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Carnino, A.; Gasparini, M.

    2002-01-01

    The paper addresses a general approach for the preparation of the design safety requirements using the IAEA Safety Objectives and the strategy of defence-in-depth. It proposes a general method (top-down approach) to prepare safety requirements for a given kind of reactor using the IAEA requirements for nuclear power plants as a starting point through a critical interpretation and application of the strategy of defence-in-depth. The IAEA has recently developed a general methodology for screening the defence-in-depth of nuclear power plants starting from the fundamental safety objectives as proposed in the IAEA Safety Fundamentals. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor. Currently the IAEA is preparing the technical basis for the development of safety requirements for Modular High Temperature Gas Reactors, with the aim of showing the viability of the method. A draft TECDOC has been prepared and circulated among several experts for comments. This paper is largely based on the content of the draft TECDOC. (authors)

  9. Patient-led training on patient safety: a pilot study to test the feasibility and acceptability of an educational intervention.

    Science.gov (United States)

    Jha, V; Winterbottom, A; Symons, J; Thompson, Z; Quinton, N; Corrado, O J; Melville, C; Watt, I; Torgerson, D; Wright, J

    2013-09-01

    Training in patient safety is an important element of medical education. Most educational interventions on patient safety training adopt a 'health-professional lens' with limited consideration on the impact of safety lapses on the patient and their families and little or no involvement of patients in the design or delivery of the training. This paper describes a pilot study to test the feasibility and acceptability of implementing a patient-led educational intervention to facilitate safety training amongst newly qualified doctors. Patients and/or carers who had experienced harm during their care shared narratives of their stories with trainees; this was followed by a focused discussion on patient safety issues exploring the causes and consequences of safety incidents and lessons to be learned from these. The intervention, which will be further tested in an NIHR-funded randomised controlled trial (RCT), was successfully implemented into an existing training programme and found acceptance amongst the patients and trainees. The pilot study proved to be a useful step in refining the intervention for the RCT including identifying appropriate outcome measures and highlighting organisational issues.

  10. Safety and Health Topics: Asbestos

    Science.gov (United States)

    ... Safety and Health Program Recommendations It's the Law Poster REGULATIONS Law and Regulations Standard Interpretations Training Requirements ... page requires that javascript be enabled for some elements to function correctly. Please contact the OSHA Directorate ...

  11. Safety Training: Sensibilisation aux gestes et postures de travail

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    Nous vous proposons un nouveau cours de sécurité lié aux manutentions manuelles (durée 1 jour) : Sensibilisation aux gestes et postures de travail. Si vous êtes amené à manipuler régulièrement des charges lourdes ou volumineuses, cette formation peut vous aider à prévenir les lésions musculaires ou dorsales. A l'issue de cette formation, vous serez capable d'adopter et d'appliquer les principes de base de sécurité physique et d'économie d'efforts dans les manipulations d'objets. Les cours sont pris en charge par la Commission de Sécurité. L'inscription EDH est obligatoire. Pour plus d'information, veuillez consulter les pages Formation & Développement (Groupe Sécurité). Formation & Développement (Groupe Sécurité) FORMATION EN SECURITE SAFETY TRAINING Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  12. Improving mine safety technology and training: establishing US global leadership

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    In 2006, the USA's record of mine safety was interrupted by fatalities that rocked the industry and caused the National Mining Association and its members to recommit to returning the US underground coal mining industry to a global mine safety leadership role. This report details a comprehensive approach to increase the odds of survival for miners in emergency situations and to create a culture of prevention of accidents. Among its 75 recommendations are a need to improve communications, mine rescue training, and escape and protection of miners. Section headings of the report are: Introduction; Review of mine emergency situations in the past 25 years: identifying and addressing the issues and complexities; Risk-based design and management; Communications technology; Escape and protection strategies; Emergency response and mine rescue procedures; Training for preparedness; Summary of recommendations; and Conclusions. 37 refs., 3 figs., 5 apps.

  13. A new standard for multidisciplinary health and safety technicians

    International Nuclear Information System (INIS)

    Trinoskey, P.A.; Fry, L.A.; Egbert, W.F.

    2000-01-01

    Over the last two decades, a significant trend in health and safety has been toward greater specialization. However, compartmentalization of health and safety disciplines often leads to an inequity in resources, especially when appropriations overemphasize one risk to the detriment of others. For example, overemphasis on radiological safety can create an imbalance in overall worker protection. A multidisciplinary technical can help restore the balance and provide for a healthier and safer work environment. The key advantages of a multidisciplinary health and safety technician include: Broad coverage of the work area by one technician, More diverse use of the technician pool, Better coverage for off-shift or nonstandard hours, Balance of risks because all hazards are considered, Integrated emergency response, Ownership, Less time of identify the correct person with the requisite skills. We have developed a new standard that establishes the training and related qualifications for a multidisciplinary health and safety technician. The areas of training and qualification that are addressed include elements of industrial hygiene, industrial safety, fire protection, electrical safety, construction safety, and radiation safety. The initial core training program ensures that individuals are trained to the performance of requirements of the job. Initial training is in five areas: Fundamentals, Hazard recognition, Hazard assessment, Hazards controls, Hazards minimization. Core training is followed by formal qualification on specific tasks, including ventilation surveys, air monitoring, noise assessments, radiological monitoring, area inspections, work-area setups, and work coverage. The new standard addresses not only training topics and requirements, but also guidance to ensure that performance objectives are met. The standard applies to technicians, supervisors, technologists, and six specialty areas, including academic institutions and decontamination and decommissioning

  14. A new standard for multidisciplinary health and safety technicians

    Energy Technology Data Exchange (ETDEWEB)

    Trinoskey, P.A.; Fry, L.A. [Lawrence Livermore National Laboratory, Univ. of California, CA (United States); Egbert, W.F. [Lawrence Livermore National Laboratory, Allied Signal Technical Corporation (United States)

    2000-05-01

    Over the last two decades, a significant trend in health and safety has been toward greater specialization. However, compartmentalization of health and safety disciplines often leads to an inequity in resources, especially when appropriations overemphasize one risk to the detriment of others. For example, overemphasis on radiological safety can create an imbalance in overall worker protection. A multidisciplinary technical can help restore the balance and provide for a healthier and safer work environment. The key advantages of a multidisciplinary health and safety technician include: Broad coverage of the work area by one technician, More diverse use of the technician pool, Better coverage for off-shift or nonstandard hours, Balance of risks because all hazards are considered, Integrated emergency response, Ownership, Less time of identify the correct person with the requisite skills. We have developed a new standard that establishes the training and related qualifications for a multidisciplinary health and safety technician. The areas of training and qualification that are addressed include elements of industrial hygiene, industrial safety, fire protection, electrical safety, construction safety, and radiation safety. The initial core training program ensures that individuals are trained to the performance of requirements of the job. Initial training is in five areas: Fundamentals, Hazard recognition, Hazard assessment, Hazards controls, Hazards minimization. Core training is followed by formal qualification on specific tasks, including ventilation surveys, air monitoring, noise assessments, radiological monitoring, area inspections, work-area setups, and work coverage. The new standard addresses not only training topics and requirements, but also guidance to ensure that performance objectives are met. The standard applies to technicians, supervisors, technologists, and six specialty areas, including academic institutions and decontamination and decommissioning

  15. Safety Training - places available in October

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. October 2012 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) – Cherry-picker driving 08-OCT-12 to 09-OCT-12, 9.00 – 17.30, in French 11-OCT-12 to 12-OCT-12, 9.00 – 17.30, in French 17-OCT-12 to 18-OCT-12, 9.00 – 17.30, in French 29-OCT-12 to 30-OCT-12, 9.00 – 17.30, in French With the possibility to have the handouts in English Echafaudages - Réception, conformité (Scaffolding - reception, conformity) 24-OCT-12 to 26-OCT-12, 8.30 – 17.30, in French (location: Domarin, French department 38) First Aiders - Basic Course 04-OCT-12, 8.30 – 17.30, in English Habilitation électrique personnel non électricien (non electricians) 03-OCT-12 to 04-OCT-12, 9.00 – 17.30 (total 1.5 day), in English...

  16. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1, Revision 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  17. Safety Training: places available in April 2014

    CERN Multimedia

    Safety Training team, HSE Unit

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   April 2014 (alphabetical order) ATEX Habilitation - Level 2 03-APR-14 to 04-APR-14, 9.00 – 17.30, in French Cryogenic Safety - Level 1 10-APR-14, 10.00 – 12.00, in English Electrical Palett Truck – Driving 15-APR-14, 8.30 – 12.30, in French (hand-outs in English for non-French-speaking participants) Fire Extinguisher 09-APR-14, 10.30 – 12.00, in French 16-APR-14, 10.30 – 12.00, in English 23-APR-14, 10.30 – 12.00, in English First Aider - Level 1 – Initial 03-APR-14, 8.30 – 17.30, in French 10-APR-14, 8.30 – 17.30, in English 16-APR-14, 8.30 – 17.30, in English 24-APR-14, 8.30 – 17.30, in English First Aider - Level 1 – Refresher 17-APR-14, 8.30 – 12.30, in English 17-APR-14, 13.30 – 17.30, in...

  18. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  19. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  20. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  1. Integrating Safety in the Aviation System: Interdepartmental Training for Pilots and Maintenance Technicians

    Science.gov (United States)

    Mattson, Marifran; Petrin, Donald A.; Young, John P.

    2001-01-01

    The study of human factors has had a decisive impact on the aviation industry. However, the entire aviation system often is not considered in researching, training, and evaluating human factors issues especially with regard to safety. In both conceptual and practical terms, we argue for the proactive management of human error from both an individual and organizational systems perspective. The results of a multidisciplinary research project incorporating survey data from professional pilots and maintenance technicians and an exploratory study integrating students from relevant disciplines are reported. Survey findings suggest that latent safety errors may occur during the maintenance discrepancy reporting process because pilots and maintenance technicians do not effectively interact with one another. The importance of interdepartmental or cross-disciplinary training for decreasing these errors and increasing safety is discussed as a primary implication.

  2. A Guide to the Design of Occupational Safety and Health Training for Immigrant, Latino/a Dairy Workers.

    Science.gov (United States)

    Menger, Lauren M; Rosecrance, John; Stallones, Lorann; Roman-Muniz, Ivette Noami

    2016-01-01

    Industrialized dairy production in the U.S. relies on an immigrant, primarily Latino/a, workforce to meet greater production demands. Given the high rates of injuries and illnesses on U.S. dairies, there is pressing need to develop culturally appropriate training to promote safe practices among immigrant, Latino/a dairy workers. To date, there have been few published research articles or guidelines specific to developing effective occupational safety and health (OSH) training for immigrant, Latino/a workers in the dairy industry. Literature relevant to safety training for immigrant workers in agriculture and other high-risk industries (e.g., construction) was examined to identify promising approaches. The aim of this paper is to provide a practical guide for researchers and practitioners involved in the design and implementation of effective OSH training programs for immigrant, Latino/a workers in the dairy industry. The search was restricted to peer-reviewed academic journals and guidelines published between 1980 and 2015 by universities or extension programs, written in English, and related to health and safety training among immigrant, Latino/a workers within agriculture and other high-risk industries. Relevant recommendations regarding effective training transfer were also included from literature in the field of industrial-organizational psychology. A total of 97 articles were identified, of which 65 met the inclusion criteria and made a unique and significant contribution. The review revealed a number of promising strategies for how to effectively tailor health and safety training for immigrant, Latino/a workers in the dairy industry grouped under five main themes: (1) understanding and involving workers; (2) training content and materials; (3) training methods; (4) maximizing worker engagement; and (5) program evaluation. The identification of best practices in the design and implementation of training programs for immigrant, Latino/a workers within

  3. Companies closely concerned with the mining industry have a training requirement

    International Nuclear Information System (INIS)

    Grossekemper, H.J.; Schmidt, B.; Schulenberg, F.

    1994-01-01

    In view of the serious economic situation the future decisions are extremely difficult for some companies closely concerned with the mining industry. The required orientation of the company towards new markets and new products requires not less, but more training and rethinking in all company divisions: from business management via personnel management to plant organisation and from marketing via development to quality assurance. This is proved by practical examples. An analysis by the ''Training'' working group has produced valuable information on the actual training requirement in the North Rhine-Westphalian engineering industry. It has worked out the concrete situation of the companies closely concerned with the mining industry in North Rhine-Westphalia from the point of view of their own training requirements. It is now the task of each individual company to analyse and reflect its concrete situation against the mirror of the results and to base the specific training requirement on the company aim. (orig.)

  4. OSHA--what is its role in dentistry and how do we provide training?

    Science.gov (United States)

    Basquill, Linda C; Govoni, Mary; Bednarsh, Helene

    2005-03-01

    The mission of the Occupational Safety and Health Administration (OSHA) is to ensure the safety and health of America's workers. Although OSHA's focus is on safety, there is a natural overlap into the infection control arena. The work practice control, engineering control, and personal protective equipment regulations are examples of OSHA safety topics that have a direct impact on dental infection control. In a similar fashion, the regulations designed to protect the dental health care worker often translate into increased safety for the dental patient. To ensure their safety, OSHA requires workers to be appropriately trained. This article reviews the regulatory significance of OSHA, compares OSHA with other regulatory and advisory agencies, and discusses OSHA's training requirements. Principles for conducting training in the dental health care setting along with suggestions for assessing training also are presented.

  5. Tank Farms Technical Safety Requirements. Volume 1 and 2

    International Nuclear Information System (INIS)

    CASH, R.J.

    2000-01-01

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR)

  6. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  7. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition); Seguridad de las centrales nucleares: Diseno. Requisitos de seguridad especificos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    Science.gov (United States)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  10. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 4, August 2014

    International Nuclear Information System (INIS)

    2014-08-01

    IAEA’s Division of Radiation, Transport and Waste Safety is assisting Member States to develop national strategies for education and training in radiation, transport and waste safety via the regional projects on “Strengthening Education and Training Infrastructure, and Building Competence in Radiation Safety” (RAF/9/04, RAS/9/066, RER/9/109 and RLA/9/070). The regional workshops conducted in 2012 in this area and the results achieved were presented in the previous issues of this newsletter focussing specifically on each region of the Technical Cooperation Programme (Africa, Asia and the Pacific, Europe and Latin America). In the course of 2013, a new cycle of Regional Workshops was conducted. The workshops held in the regions of Africa, Asia and the Pacific, and Europe mainly focussed on Sharing Experience and Progress made in establishing a National Strategy for Education and Training in Radiation, Transport and Waste Safety (pages 2-5). The workshop held in the region of Latin America mainly focussed on Developing and Implementing Education and Training programmes. An overview on the results achieved by participating Member States for the period 2012-2013 is provided

  11. IAEA activities on education and training in radiation and waste safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Mrabit, Khammar; Sadagopan; Geetha

    2003-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. In response to GC(44)/RES/13, the IAEA prepared a 'Strategic Approach to Education and Training in Radiation and Waste Safety' aiming at establishing, by 2010, sustainable education a training programmes in Member States. This Strategy was endorsed by General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. In the last General Conference 2002, the IAEA was urged to continue to implement the Strategy, including the convening of the Steering Committee. The first Technical Committee meeting took place during the week 25-29 November 2002. (author)

  12. Safety assessment requirements for onsite transfers of radioactive material

    International Nuclear Information System (INIS)

    Opperman, E.K.; Jackson, E.J.; Eggers, A.G.

    1992-05-01

    This document contains the requirements for developing a safety assessment document for an onsite package containing radioactive material. It also provides format and content guidance to establish uniformity in the safety assessment documentation and to ensure completeness of the information provided

  13. 49 CFR 214.353 - Training and qualification of roadway workers who provide on-track safety for roadway work groups.

    Science.gov (United States)

    2010-10-01

    ... RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.353 Training and qualification of roadway workers who provide on-track safety for roadway work groups. (a) The training and qualification of roadway... 49 Transportation 4 2010-10-01 2010-10-01 false Training and qualification of roadway workers who...

  14. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  15. A Practical Risk Assessment Methodology for Safety-Critical Train Control Systems

    Science.gov (United States)

    2009-07-01

    This project proposes a Practical Risk Assessment Methodology (PRAM) for analyzing railroad accident data and assessing the risk and benefit of safety-critical train control systems. This report documents in simple steps the algorithms and data input...

  16. Designing and Developing an Effective Safety Program for a Student Project Team

    Directory of Open Access Journals (Sweden)

    John Catton

    2018-05-01

    Full Text Available In the workplace, safety must be the first priority of all employers and employees alike. In order to maintain the safety and well-being of their employees, employers must demonstrate due diligence and provide the appropriate safety training to familiarize employees with the hazards within the workplace. Although, a student “project team” is not a business, the work done by students for their respective teams is synonymous with the work done in a place of business and thus requires that similar safety precautions and training be administered to students by their team leads and faculty advisors. They take on the role of supervisors within the team dynamic. Student teams often utilize the guidelines and policies that their universities or colleges have developed in order to build a set of standard operating procedures and safety training modules. These guidelines aid in providing a base for training for the team, however, they are no substitute for training specific to the safety risks associated with the work the team is doing. In order to comply with these requirements, a full analysis of the workplace is required to be completed. A variety of safety analysis techniques need to be applied to define the hazards within the workplace and institute appropriate measures to mitigate them. In this work, a process is developed for establishing a safety training program for a student project team, utilizing systems safety management techniques and the aspect of gamification to produce incentives for students to continue developing their skills. Although, systems safety management is typically applied to the design of active safety components or systems, the techniques for identifying and mitigating hazards can be applied in the same fashion to the workplace. They allow one to analyze their workplace and determine the hazards their employees might encounter, assign appropriate hazard ratings and segregate each respective hazard by their risks. In so

  17. Measuring Training ROI: Silver Bullet or Urban Legend

    Science.gov (United States)

    2008-06-01

    TSRD Doc NAWC Training Systems Division. Training Systems Requirements Analysis Webpage, 30 August 2007 Training System Plan Engineering Specs...QUESTIONNAIRES PERFORMANCE CONTRACTING MONITORING MEASURES OF EFFECTIVENESS 1-X: MSN EFFECTIVENESS (OUTPUT-ORIENTED) e.g.: SAFETY ENVIROMENTAL IMPACT...All costs required to research and develop a system before committing it to production ( engineering design, manufacturing of test articles, testing

  18. IAEA education and training in radiation protection, transport and waste safety-status and new developments for sustainability

    International Nuclear Information System (INIS)

    Sadagopan, G.; Mrabit, K.; Wheatley, J.

    2008-01-01

    IAEA 's education and training activities in radiation, transport and waste safety follow the IAEA vision, strategy and resolutions of its annual General Conferences and reflect the latest IAEA standards and guidance. IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States, which was endorsed by the GC(45)/RES/10C in 2001. In implementing the strategy, IAEA is organising training events at the regional level and assisting the Member States at the national level by providing them the exemplary quality of training material developed at the IAEA. This work will continue ensuring its completeness in all areas of radiation safety. An Inter Centre Network between the Agency and regional, collaborating national training centres is established to facilitate information exchange, improve communication and dissemination of training material. There is a challenge to enhance the technical capability of the Member States to reach sustainability. This is intended through organising number of Train the Trainers events to develop a pool of qualified trainers. The new developments include establishing E-learning, developing a syllabus for training of Radiation Protection Officers and training materials, information materials for radiation workers. These are aimed at assisting Member States attain self sustainability. (author)

  19. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues

    International Nuclear Information System (INIS)

    1992-12-01

    This report is to provide a comprehensive description of the implementation and verification status of Three Mile Island (TMI) Action Plan requirements, safety issues designated as Unresolved Safety Issues (USIs), Generic Safety Issues(GSIs), and other Multiplant Actions (MPAs) that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  20. Effect of a manager training and certification program on food safety and hygiene in food service operations.

    Science.gov (United States)

    Kassa, Hailu; Silverman, Gary S; Baroudi, Karim

    2010-05-06

    Food safety is an important public health issue in the U.S. Eating at restaurants and other food service facilities increasingly has been associated with food borne disease outbreaks. Food safety training and certification of food mangers has been used as a method for reducing food safety violations at food service facilities. However, the literature is inconclusive about the effectiveness of such training programs for improving food safety and protecting consumer health. The purpose of this study was to examine the effect of food manger training on reducing food safety violations. We examined food inspection reports from the Toledo/Lucas County Health Department (Ohio) from March 2005 through February 2006 and compared food hygiene violations between food service facilities with certified and without certified food managers. We also examined the impact on food safety of a food service facility being part of a larger group of facilities.Restaurants with trained and certified food managers had significantly fewer critical food safety violations but more non-critical violations than restaurants without certified personnel. Institutional food service facilities had significantly fewer violations than restaurants, and the number of violations did not differ as a function of certification. Similarly, restaurants with many outlets had significantly fewer violations than restaurants with fewer outlets, and training was not associated with lower numbers of violations from restaurants with many outlets. The value of having certified personnel was only observed in independent restaurants and those with few branches. This information may be useful in indicating where food safety problems are most likely to occur. Furthermore, we recommend that those characteristics of institutional and chain restaurants that result in fewer violations should be identified in future research, and efforts made to apply this knowledge at the level of individual restaurants.

  1. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2003-01-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country , grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well a s the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc...) and are part of the continuous education program of CSEN. (Author)

  2. Safety Training: places available in March 2013

    CERN Multimedia

    Isabelle Cusato, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registration, please refer to the Safety Training Catalogue.   March 2013 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (cherry-picker driving) 18-MAR-13 to 19-MAR-13, 8.30 – 17.30, in French with handouts in English First-Aiders – Basic course 14-MAR-13, 8.15 – 17.30, in French 21-MAR-13, 8.15 – 17.30, in English 28-MAR-13, 8.15 – 17.30, in French Habilitation électrique personnel électricien basse et haute tension (habilitation électrique for electricians in low and high voltage) 11-MAR-13 to 22-MAR-13 (total hours : 32), 9.00 – 17.30, in English Habilitation électrique personnel non électricien (electrical habilitation for non electricians) 27-MAR-13 to 28-MAR-13, 9.00 – 17.30, in French Habilitation électrique perso...

  3. Safety Training: places available in June 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   June 2013 (alphabetical order) First Aiders - Basic Course 13-JUN-13, 8.15 – 17.30, in English First Aiders - Refresher Course 06-JUN-13, 8.15 – 12.30, in French 06-JUN-13, 13.15 – 17.30, in French Habilitation ATEX niveau 1 (Habilitation ATEX level 1) 28-JUN-13, 9.00 – 17.30, in French Habilitation électrique personnel électricien basse et haute tensions (habilitation électrique for electricians in low and high voltage) 10-JUN-13 to 13-JUN-13, 9.00 – 17.30, in English Habilitation électrique personnel non électricien (habilitation électrique for non electricians) 03-JUN-13 (afternoon) to 04-JUN-13 (full day), 9.00 – 17.30, in English Laser Experts 03-JUN-13 to 04-JUN-13, 9.00 – 17.30, in English Laser Users 28-JUN-...

  4. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  5. Requirements for and development of trained manpower resources

    International Nuclear Information System (INIS)

    Alves, R. Nazare; Araujo, R. de; Pinto, C. Syllus M.; Dale, C. Marcio M.; Souza, Jair A.M.; Spitalnik, J.

    1977-01-01

    The Brazilian nuclear programme will require, by 1990, the installation of at least 10 000 MWe of nuclear power capacity, the implementation of the entire fuel cycle complex, and the creation of a reactor heavy components manufacturing industry and of a nuclear power plant engineering capability. It has been estimated that such a programme will have to employ until 1985, some 7000 to 8000 people at the engineering and technician levels. As a consequence, planning the manpower preparation and qualification, involving such large numbers, required not only thorough analyses of sectoral requirements but also careful consideration of depletion rates and losses during the training process. Taking this into account, the Universities and Technical Schools will need to graduate, in average, 450 - 550 additional engineers and technicians respectively per year during the next 10 years. For this purpose, the maximum possible use of the existing educational system in the country will refrain from excessive reliance upon external sources and strengthen the local infrastructure. Crash specialization courses have been developed, in conjunction with the Universities, to specifically comply with the requirements of the nuclear programme. Only in the case where no industrial experience can be provided in the country, on-the-job training in foreign firms is being considered. Training of nuclear power plant operators is also to be a local activity. An Operators Training Center, by using a plant simulator, is under implementation with a scheduled operational date in the early eighties. For the implementation of the nuclear manpower programme, Comissao Nacional de Energia Nuclear (CNEN) has been given the task of promoting and coordinating the nuclear academic education, whereas Empresas Nucleares Brasileiras S.A. (NUCLEBRAS) has the responsibility for the specialization and training of personnel in the nuclear technological fields [es

  6. Training requirements for agro-food industry in Portugal

    OpenAIRE

    Pedro D. Gaspar; Rita Pinheiro; Cláudia Domingues; Celestino Almeida; Teresa Paiva; Carlos D. Pereira; Manuela Vaz-Velho

    2015-01-01

    Agro-food companies are aware that the technical and soft skills of their employees directly influence business performance and, consequently, improving those skills will enhance the effectiveness and efficiency of their companies. This paper presents the main results of the AgriTraining project “Training requirements for the agro-food industry". Activities in pursuit of the objectives of this project involved: (1) analysis of the training needs in the agro-food industry in Portugal; (2) anal...

  7. Canister Storage Building (CSB) Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The purpose of this section is to explain the meaning of logical connectors with specific examples. Logical connectors are used in Technical Safety Requirements (TSRs) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TSRs are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings

  8. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  9. The TRIPOD e-learning Platform for the Training of Earthquake Safety Assessment

    International Nuclear Information System (INIS)

    Coppari, S.; Di Pasquale, G.; Goretti, A.; Papa, F.; Papa, S.; Paoli, G.; Pizza, A. G.; Severino, M.

    2008-01-01

    The paper summarizes the results of the in progress EU Project titled TRIPOD (Training Civil Engineers on Post-Earthquake Safety Assessment of Damaged Buildings), funded under the Leonardo Da Vinci program. The main theme of the project is the development of a methodology and a learning platform for the training of technicians involved in post-earthquake building safety inspections. In the event of a catastrophic earthquake, emergency building inspections constitute a major undertaking with severe social impact. Given the inevitable chaotic conditions and the urgent need of a great number of specialized individuals to carry out inspections, past experience indicates that inspection teams are often formed in an adhoc manner, under stressful conditions, at a varying levels of technical expertise and experience, sometime impairing the reliability and consistency of the inspection results. Furthermore each Country has its own building damage and safety assessment methodology, developed according to its experience, laws, building technology and seismicity. This holds also for the partners participating to the project (Greece, Italy, Turkey, Cyprus), that all come from seismically sensitive Mediterranean countries. The project aims at alleviating the above shortcomings by designing and developing a training methodology and e-platform, forming a complete training program targeted at inspection engineers, specialized personnel and civil protection agencies. The e-learning platform will provide flexible and friendly authoring mechanisms, self-teaching and assessment capabilities, course and trainee management, etc. Courses will be also made available as stand-alone multimedia applications on CD and in the form of a complete pocket handbook. Moreover the project will offer the possibility of upgrading different experiences and practices: a first step towards the harmonization of methodologies and tools of different Countries sharing similar problems. Finally, through wide

  10. Technical safety requirements control level verification

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  11. Training requirements for health physicists in the decontamination/decommissioning field

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Parzyck, D.C.

    1986-01-01

    While a significant decrease in the number of new facilities requiring health physics surveillance has occurred in the past decade, there has been a tremendous increase in the need for health physicists to fill regulatory requirements at existing facilities and the Decontamination and Decommissioning requirements of older facilities nearing the end of their operational lifetime. There is a continuing long-term need to provide trained health physicists with the special skills to meet these requirements. Decontamination and decommissioning programs require both basic and specialized health physics activities to be performed (1) to evaluate the radiation environment of the facility under consideration, (2) to establish the standards to which cleanup activities must be pursued, and (3) to adequately protect the personnel involved in the cleanup. Performance-based training, based on job task analysis, is an appropriate way to define the different types of health physics expertise required for D and D programs. Materials have been developed to describe potential job requirements in the radiation protection field, and the appropriate training goals to meet these requirements. 14 refs., 3 tabs

  12. Training requirements for health physicists in the decontamination/decommissioning field

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Parzyck, D.C.

    1986-01-01

    While a significant decrease in the number of new facilities requiring health physics surveillance has occurred in the past decade, there has been a tremendous increase in the need for health physicists to fill regulatory requirements at existing facilities and the Decontamination and Decommissioning requirements of older facilities nearing the end of their operational lifetime. There is a continuing long-term need to provide trained health physicists with the special skills to meet these requirements. Decontamination and decommissioning programs require both basic and specialized health physics activities to be performed (1) to evaluate the radiation environment of the facility under consideration, (2) to establish the standards to which cleanup activities must be pursued, and (3) to adequately protect the personnel involved in the cleanup. Performance-based training, based on job task analysis, is an appropriate way to define the different types of health physics expertise required for D and D programs. Materials have been developed to describe potential job requirements in the radiation protection field, and the appropriate training goals to meet these requirements

  13. Development of training course for high school 'Safety culture at nuclear facilities of Ukraine'

    International Nuclear Information System (INIS)

    Begun, V.V.; Shirokov, S.V.

    2008-01-01

    The content of new training course is considered. The course is introduced on the recommendations of the Institute for National Safety Issues of SNBO of Ukraine. The objective and tasks of the training are presented as a list of future knowledge and skills

  14. Safety Training: places available in February

    CERN Multimedia

    DGS Unit

    2012-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. FEBRUARY 2012 (alphabetical order) Conduite de Plates-Formes Elevatrices Mobiles de Personnel (PEMP) / Cherry-picker driving : 09-FEB-12 au 10-FEB-12, 08.00 – 17.30, in French (with possibility to have handouts in English) Magnetic Fields : 03-FEB-12, 9.30 – 12.00, in French Self-rescue mask : 02-FEB-12, 8.30 – 10.00, in French 02-FEB-12, 10.30 – 12.00, in English 07-FEB-12, 8.30 – 10.00, in French 07-FEB-12, 10.30 – 12.00, in English 14-FEB-12, 8.30 – 10.00, in French 14-FEB-12, 10.30 – 12.00, in English 16-FEB-12, 8.30 – 10.00, in French 16-FEB-12, 10.30 – 12.00, in English 21-FEB-12, 8.30 – 10.00, in French 21-FEB-12, 10.30 – 12.00, in English 28-FEB-12, 8.30 – 10.00, in French 28-FEB-12, 10.30 – 12.00, in English Radiologic...

  15. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  16. Training Activities to Maintain Competences in Nuclear Safety and Security: A Case Study of the Belgian Nuclear Research Centre

    International Nuclear Information System (INIS)

    Kesteloot, N.; Clarijs, T.; Coeck, M.; Vermeersch, F.

    2016-01-01

    Full text: The Belgian Nuclear Research Centre, SCK•CEN, is one of the largest research centers in Belgium. More than 700 employees advance research into nuclear energy and ionizing radiation for civilian use, and develop nuclear technologies for socially valuable purposes. Next to independent fundamental and applied research SCK-CEN provides advice, training, services and products. This paper describes the general approach towards the continuous professional development of all SCK-CEN personnel. The objective of these training activities is to maintain and increase the required competences, in order to optimize the output and the wellbeing on the work floor. Given the nature of the SCK-CEN activities, special attention is given to themes like radiation protection, security and industrial safety. A combination of classical face-to-face training, e-learning and on-the-job training is offered during the onboarding and further career path of an SCK-CEN employee. (author

  17. The European Nuclear Safety Training and Tutoring Institute (ENSTTI). Annex III [Example of Knowledge Management and Training for TSOs

    International Nuclear Information System (INIS)

    2018-01-01

    ENSTTI is an initiative of members of the ETSON. It was created in 2010 to put in place a high quality training mechanism to meet the training needs of experts at nuclear regulatory authorities and TSOs; to ensure the continuous development of qualified experts in this area; and to foster harmonization of technical practices in nuclear safety, nuclear security and radiation protection. This is achieved through the regular provision of vocational training and tutoring exclusively delivered by senior professionals of European TSOs that take into consideration the latest technical developments and is continuously up-dated and improved by applying a systematic approach to training.

  18. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  19. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  20. Maximising harm reduction in early specialty training for general practice: validation of a safety checklist.

    Science.gov (United States)

    Bowie, Paul; McKay, John; Kelly, Moya

    2012-06-21

    Making health care safer is a key policy priority worldwide. In specialty training, medical educators may unintentionally impact on patient safety e.g. through failures of supervision; providing limited feedback on performance; and letting poorly developed behaviours continue unchecked. Doctors-in-training are also known to be susceptible to medical error. Ensuring that all essential educational issues are addressed during training is problematic given the scale of the tasks to be undertaken. Human error and the reliability of local systems may increase the risk of safety-critical topics being inadequately covered. However adherence to a checklist reminder may improve the reliability of task delivery and maximise harm reduction. We aimed to prioritise the most safety-critical issues to be addressed in the first 12-weeks of specialty training in the general practice environment and validate a related checklist reminder. We used mixed methods with different groups of GP educators (n=127) and specialty trainees (n=9) in two Scottish regions to prioritise, develop and validate checklist content. Generation and refinement of checklist themes and items were undertaken on an iterative basis using a range of methods including small group work in dedicated workshops; a modified-Delphi process; and telephone interviews. The relevance of potential checklist items was rated using a 4-point scale content validity index to inform final inclusion. 14 themes (e.g. prescribing safely; dealing with medical emergency; implications of poor record keeping; and effective & safe communication) and 47 related items (e.g. how to safety-net face-to-face or over the telephone; knowledge of practice systems for results handling; recognition of harm in children) were judged to be essential safety-critical educational issues to be covered. The mean content validity index ratio was 0.98. A checklist was developed and validated for educational supervisors to assist in the reliable delivery of

  1. Non-stop training during LS1!

    CERN Multimedia

    HSE Unit

    2013-01-01

    The year 2013 is a busy year for the Safety Training team, who are seeing a dramatic increase in their activities during LS1. The Safety Training Service within the HSE Unit offers training courses all year round to people working on the CERN site who are exposed to a variety of potential hazards (e.g. chemical hazards, fire hazards, etc.) either because of the activities they perform (e.g. work in confined spaces or on machines) and/or their place of work (e.g. workshops, laboratories, underground areas, etc.).   LS1 has triggered an increase in the number of requests for training, mainly from people requiring to carry out work on the LHC. Indeed, in order to access the underground areas, it is obligatory to have taken certain safety courses such as the self-rescue mask or radiation protection training courses. Consequently, the number of training sessions and the number of people trained is currently twice what it was during the same period in 2012, with almost 4,600 people trained in 530 s...

  2. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues

    International Nuclear Information System (INIS)

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  3. 47 CFR 80.305 - Watch requirements of the Communications Act and the Safety Convention.

    Science.gov (United States)

    2010-10-01

    ... and the Safety Convention. 80.305 Section 80.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.305 Watch requirements of the Communications Act and the Safety...

  4. Safety requirements for the Pu carriers

    International Nuclear Information System (INIS)

    Mishima, H.

    1993-01-01

    Ministry of Transport of Japan has now set about studying requirements for Pu carriers to ensure safety. It was first studied what the basic concept of safe carriage of Pu should be, and the basic ideas have been worked out. Next the requirements for the Pu carriers were studied based on the above. There are at present no international requirements of construction and equipment for the nuclear-material carriers, but MOT of Japan has so far required special construction and equipment for the nuclear-material carriers which carry a large amount of radioactive material, such as spent fuel or low level radioactive waste, corresponding to the level of the respective potential hazard. The requirements of construction and equipment of the Pu carriers have been established considering the difference in heat generation between Pu and spent fuel, physical protection, and so forth, in addition to the above basic concept. (J.P.N.)

  5. Quality assurance requirements for the computer software and safety analyses

    International Nuclear Information System (INIS)

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  6. Safety requirements expected to the prototype fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    2014-11-01

    In July 2013, Nuclear Regulation Authority (NRA) has enforced new regulatory requirements in consideration of severe accidents for the commercial light water reactors (LWR) and also prototype power generation reactors such as the sodium-cooled fast reactors (SFR) of 'Monju' based on TEPCO Fukushima Daiichi nuclear power plant accident (hereinafter referred to as '1F accident') occurred in March 2011. Although the regulatory requirements for SFR will be revised by NRA with consideration for public comments, Japan Atomic Energy Agency (JAEA) set up 'Advisory Committee on Monju Safety Requirements' consisting of fast breeder reactor (FBR) and safety assessment experts in order to establish original safety requirements expected to the prototype FBR 'Monju' considering severe accidents with knowledge from JAEA as well as scientific and technical insights from the experts. This report summarizes the safety requirements expected to Monju discussed by the committee. (author)

  7. Meeting up-to-date safety requirements in the Russian NPP projects

    International Nuclear Information System (INIS)

    Tepkyan, G. O.; Yashkin, A. V.

    2014-01-01

    Safety features in Russian NPP designs are implemented by the combination of active and passive safety systems • Russian NPP designs are in compliance with up-to-date international and European safety requirements and refer to Generation III+ • Russian state-of-the-art designs have already implemented some design solutions, which take into account “post-Fukushima” requirements. Russian NPP design principles have been approved during the European discussions in spring 2012, including the IAEA extraordinary session addressed to Fukushima NPP accident

  8. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    Science.gov (United States)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  9. Evaluating SafeClub: can risk management training improve the safety activities of community soccer clubs?

    Science.gov (United States)

    Abbott, K; Klarenaar, P; Donaldson, A; Sherker, S

    2008-06-01

    To evaluate a sports safety-focused risk-management training programme. Controlled before and after test. Four community soccer associations in Sydney, Australia. 76 clubs (32 intervention, 44 control) at baseline, and 67 clubs (27 intervention, 40 control) at post-season and 12-month follow-ups. SafeClub, a sports safety-focused risk-management training programme (3x2 hour sessions) based on adult-learning principles and injury-prevention concepts and models. Changes in mean policy, infrastructure and overall safety scores as measured using a modified version of the Sports Safety Audit Tool. There was no significant difference in the mean policy, infrastructure and overall safety scores of intervention and control clubs at baseline. Intervention clubs achieved higher post-season mean policy (11.9 intervention vs 7.5 controls), infrastructure (15.2 vs 10.3) and overall safety (27.0 vs 17.8) scores than did controls. These differences were greater at the 12-month follow-up: policy (16.4 vs 7.6); infrastructure (24.7 vs 10.7); and overall safety (41.1 vs 18.3). General linear modelling indicated that intervention clubs achieved statistically significantly higher policy (prisk-management practice, in a sustainable way.

  10. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  11. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (French Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  12. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  13. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  14. Specification of advanced safety modeling requirements (Rev. 0).

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  15. Specification of advanced safety modeling requirements (Rev. 0)

    International Nuclear Information System (INIS)

    Fanning, T. H.; Tautges, T. J.

    2008-01-01

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will

  16. Current trends in codal requirements for safety in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Srivasista, K.; Shah, Y.K.; Gupta, S.K.

    2006-01-01

    The Code of practice on safety in nuclear power plant operation states the requirements to be met during operation of a nuclear power plant for assuring safety. Among various stages of authorization, regulatory body issues authorization for operation of a nuclear power plant, monitors and enforces regulatory requirements. The responsible organization shall have overall responsibility and the plant management shall have the primary responsibility for ensuring safe and efficient operation of its nuclear power plants. A set of codal requirements covering technical and administrative aspects are mandatory for the plant management to implement to ensure that the nuclear power plant is operated in accordance with the design intent. Requirements on operating procedures and instructions establish operation and maintenance, inspection and testing of the plant in a planned and systematic way. The requirements on emergency preparedness programme establish with a reasonable assurance that, in the event of an emergency situation, appropriate measures can be taken to mitigate the consequences. Commissioning requirements verify performance criteria during commissioning to ensure that the design intent and QA requirements are met. Several modifications in systems important to safety required during operation of a nuclear power plant are regulated. However new operational codal requirements arising out of periodic safety review, operational experience feedback, life management, probabilistic safety assessment, physical security, safety convention and obligations and decommissioning are not covered in the present code of practice for safety in nuclear power plant operation. Codal provisions on 'Review by operating organization on aspects of design having implications on operability' are also required to be addressed. The merits in developing such a methodology include acceptance of the design by operating organization, ensuring maintainability, proper layout etc. in the new designs

  17. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  18. IAEA Activities on Education and training in Radiation and Waste Safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Marabit, K.; Sadagopan, G.

    2003-01-01

    The statutory safety functions of the International Atomic Energy(IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place, enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. the IAEA education and training activities follow the resolutions of its General Conference and reflect the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training (e. g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000). In response to GC(44)/RES/13, the IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in its Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. A technical meeting was held in Vienna in March 2002 and concluded with an action plan for implementing the strategy up to 2010, the immediate action being the formation of a Steering Committee by the middle of 2002. This Steering Committee has the general remit to advise on the development and implementation of the strategy, as well as monitoring its progress. The first technical meeting of the Steering Committee took place on 25

  19. [Training in patient safety in medical and nursing schools].

    Science.gov (United States)

    Mira, J J; Guilabert, M; Vitaller, J; Ignacio, E

    2016-01-01

    To compare the information on patient safety received by students of medicine and nursing. Cross-sectional study was conducted using a convenience sample of medical and nursing students of 3 Universities. The Latin Patient Safety Student Information and a test of 5 questions with 5 options were used. A sample of 79 students in each group was enrolled to detect differences of .3 units (bilateral estimation), considering 80% statistical power and 95% confidence interval. A total of 144 students replied (74 nursing and 70 medicine students). Nursing students achieved higher scores in the communication with patients factor (3.8 vs 3.2, P<.001) and proactive attitude to identify risks for patient safety (4.3 vs 3.8, P<.001). Medical students were more aware of the inevitability of adverse events (2.3 vs 3.1, P<.001). Ten (7%) students had only one fault in the test, and only one (1%) answered all questions correctly. The training in patient safety should be improved both in nursing and medicine, although nursing students receive more information. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  20. Safety related requirements on future nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1991-01-01

    Nuclear power has the potential to significantly contribute to the future energy supply. However, this requires continuous improvements in nuclear safety. Technological advancements and implementation of safety culture will achieve a safety level for future reactors of the present generation of a probability of core-melt of less than 10 -5 per year, and less than 10 -6 per year for large releases of radioactive materials. There are older reactors which do not comply with present safety thinking. The paper reviews findings of a recent design review of WWER 440/230 plants. Advanced evolutionary designs might be capable of reducing the probability of significant off-site releases to less than 10 -7 per year. For such reactors there are inherent limitations to increase safety further due to the human element, complexity of design and capability of the containment function. Therefore, revolutionary designs are being explored with the aim of eliminating the potential for off-site releases. In this context it seems to be advisable to explore concepts where the ultimate safety barrier is the fuel itself. (orig.) [de

  1. Development of NPP Safety Requirements into Kenya's Grid Codes

    Energy Technology Data Exchange (ETDEWEB)

    Ndirangu, Nguni James; Koo, Chang Choong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    As presently drafted, Kenya's grid codes do not contain any NPP requirements. Through case studies of selected grid codes, this paper will study frequency, voltage and fault ride through requirements for NPP connection and operation, and offer recommendation of how these requirements can be incorporated in the Kenya's grid codes. Voltage and frequency excursions in Kenya's grid are notably frequently outside the generic requirement and the values observed by the German and UK grid codes. Kenya's grid codes require continuous operation for ±10% of nominal voltage and 45.0 to 52Hz on the grid which poses safety issues for an NPP. Considering stringent NPP connection to grid and operational safety requirements, and the importance of the TSO to NPP safety, more elaborate requirements need to be documented in the Kenya's grid codes. UK and Germany have a history of meeting high standards of nuclear safety and it is therefore recommended that format like the one in Table 1 to 3 should be adopted. Kenya's Grid code considering NPP should have: • Strict rules for voltage variation, that is, -5% to +10% of the nominal voltage • Strict rules for frequency variation, that is, 48Hz to 52Hz of the nominal frequencyand.

  2. Development of NPP Safety Requirements into Kenya's Grid Codes

    International Nuclear Information System (INIS)

    Ndirangu, Nguni James; Koo, Chang Choong

    2015-01-01

    As presently drafted, Kenya's grid codes do not contain any NPP requirements. Through case studies of selected grid codes, this paper will study frequency, voltage and fault ride through requirements for NPP connection and operation, and offer recommendation of how these requirements can be incorporated in the Kenya's grid codes. Voltage and frequency excursions in Kenya's grid are notably frequently outside the generic requirement and the values observed by the German and UK grid codes. Kenya's grid codes require continuous operation for ±10% of nominal voltage and 45.0 to 52Hz on the grid which poses safety issues for an NPP. Considering stringent NPP connection to grid and operational safety requirements, and the importance of the TSO to NPP safety, more elaborate requirements need to be documented in the Kenya's grid codes. UK and Germany have a history of meeting high standards of nuclear safety and it is therefore recommended that format like the one in Table 1 to 3 should be adopted. Kenya's Grid code considering NPP should have: • Strict rules for voltage variation, that is, -5% to +10% of the nominal voltage • Strict rules for frequency variation, that is, 48Hz to 52Hz of the nominal frequencyand

  3. DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY

    International Nuclear Information System (INIS)

    MC CLURE, D. A.; NELSON, C. A.; BOUDRIE, R. L.

    2001-01-01

    This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamos National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety

  4. Safety Training: places available in April 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue.   April 2013 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (cherry-picker driving) 15-APR-13 to 16-APR-13, 8.30 – 17.30, in French, with handouts in English Être TSO au CERN 09-APR-13 to 11-APR-13, 9.00 – 17.30, in French First-Aiders – Basic Course 18-APR-13, 8.15 – 17.30, in French First-Aiders – Refresher Course 04-APR-13, 8.15 – 12.30, in French 04-APR-13, 13.15 – 17.30, in French Habilitation ATEX niveau 2 (ATEX habilitation level 2) 11-APR-13 to 12-APR-13, 9.00 – 17.30, in French Habilitation électrique personnel électricien basse tension (electricial habilitation for electricians in low voltage) 08-APR-13 to 10-APR-13, 9.00 – 17.30, in French Habilitation &eac...

  5. Safety Training: places available in September 2013

    CERN Document Server

    Isabelle Cusato, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. September 2013 (alphabetical order) Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Cherry-picker driving) 12-SEP-13 au 13-SEP-13, 8.30 – 17.30, in French with handouts in English Ergonomics - Applying ergonomic principles in the workplace 19-SEP-13, 9.00 – 12.00, in French Être TSO au CERN (Being TSO at CERN) 10-SEP-13 to 12-SEP-13, 8.30 – 17.30, in French Habilitation ATEX - niveau 2 (ATEX habilitation - level 2) 19-SEP-13 to 20-SEP-13, 9.00 – 17.30, in French Habilitation électrique personnel électricien basse tension (electrical habilitation for electricians in low voltage) 11-SEP-13 to 13-SEP-13, 9.00 – 17.30, in English 23-SEP-13 to 25-SEP-13, 9.00 – 17.30, in French Habilitation électrique personnel non &eacut...

  6. Safety Training: places available in February 2014

    CERN Multimedia

    The Safety Training Team, HSE Unit

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   February 2014 (alphabetical order) ATEX Habilitation - Level 1 04-FEB-14, 9.00 – 17.30, in French Electrical Work - Lock-out 05-FEB-14, 13.30 – 17.30, in French Ergonomics – Office 06-FEB-14, 9.00 – 12.00, in English Fire Extinguisher 26-FEB-14, 10.30 – 12.00, in French 05-FEB-14, 10.30 – 12.00, in English First Aider - Level 1 – Initial 20-FEB-14, 8.30 – 17.30, in French First Aider - Refresher 06-FEB-14, 8.30 – 12.30, in French 06-FEB-14, 13.30 – 17.30, in French 13-FEB-14, 8.30 – 12.30, in English 13-FEB-14, 13.30 – 17.30, in English Habilitation électrique - Electrician Low Voltage – Initial 10-FEB-14 to 12-FEB-14, 9.00 – 17.30, in French Habilitation électrique - Electrician ...

  7. Safety Training: places available in March 2014

    CERN Multimedia

    Safety Training team, HSE Unit

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   March 2014 (alphabetical order) Ergonomics - Worksite and Workshop 24-MAR-14, 9.00 – 17.30, in French Fire Extinguisher 05-MAR-14, 10.30 – 12.00, in French 12-MAR-14, 8.30 – 10.00, in English 12-MAR-14, 10.30 – 12.00, in English First Aider - Level 1 – Initial 27-MAR-14, 8.30 – 17.30, in English First Aider – Refresher 20-MAR-14, 8.30 – 12.30, in French 20-MAR-14, 13.30 – 17.30, in French Habilitation électrique - Electrician Low Voltage – Initial 17-MAR-14 to 19-MAR-14, 9.00 – 17.30, in French 24-MAR-14 to 26-MAR-14, 9.00 – 17.30, in English Habilitation électrique - Electrician Low and High Voltage – Initial 18-MAR-14 to 21-MAR-14, 9.00 – 17.30, in English Habilitation &eacut...

  8. Safety Training: places available in January 2014

    CERN Multimedia

    Safety Training Team, HSE Unit

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   January 2014 (alphabetical order) Confined space 28-JAN-14, 9.00 – 17.30, in French Ergonomics – Office 30-JAN-14, 9.00 – 12.00, in French Fire Extinguisher 08-JAN-14, 10.30 – 12.00, in French 24-JAN-14, 10.30 – 12.00, in English 31-JAN-14, 10.30 – 12.00, in French First Aider - Level 1 – Initial 16-JAN-14, 8.30 – 17.30, in French 30-JAN-14, 8.30 – 17.30, in French First Aider – Refresher 09-JAN-14, 8.30 – 12.30, in French 09-JAN-14, 13.30 – 17.30, in French Habilitation électrique - Electrician Low Voltage - Initial 22-JAN-14 au 24-JAN-14, 9.00 – 17.30, in English Habilitation électrique - Electrician Low and High Voltage - Initial 28-JAN-14 au 31-JAN-14, 9.00 – 17.30, in French ...

  9. Safety Training: places available in January 2014

    CERN Document Server

    Safety Training Team, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   January 2014 (alphabetical order) Confined space 28-JAN-14, 9.00 – 17.30, in French Ergonomics – Office 30-JAN-14, 9.00 – 12.00, in French Fire Extinguisher 08-JAN-14, 10.30 – 12.00, in French 24-JAN-14, 10.30 – 12.00, in English 31-JAN-14, 10.30 – 12.00, in French First Aider - Level 1 – Initial 16-JAN-14, 8.30 – 17.30, in French 30-JAN-14, 8.30 – 17.30, in French First Aider – Refresher 09-JAN-14, 8.30 – 12.30, in French 09-JAN-14, 13.30 – 17.30, in French Habilitation électrique - Electrician Low Voltage - Initial 22-JAN-14 au 24-JAN-14, 9.00 – 17.30, in English Habilitation électrique - Electrician Low and High Voltage - Initial 28-JAN-14 au 31-JAN-14, 9.00 – 17.30, in French ...

  10. Safety Training: Ergonomie - sensibilisation à l'ergonomie bureautique - French version only

    CERN Multimedia

    Laetitia Laddada

    2004-01-01

    Nous vous proposons une 1/2 journée de sensibilisation sur les risques engendrés par une mauvaise posture lors du travail sur écran (mal de dos, fatigue visuelle, douleurs des poignets...) et des bonnes pratiques pour y remédier. Les prochaines sessions auront lieu le 8 juillet 2004. Les cours sont pris en charge par la Commission de Sécurité et animés par Clemente Pilly et Ribordy Marion de « PM postures ». L'inscription via EDH est obligatoire. Pour plus d'information et inscription par EDH à ce cours, veuillez consulter les pages Formation et Développement (groupe sécurité) de HR, ou contacter l'organisateur. Les places seront attribuées dans l'ordre de réception des inscriptions. Organisateur : Ana-Paula Bernardes/SC-GS (71385) Ana-paula.bernardes@cern.ch Formation en SECURITE SAFETY Training Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  11. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  12. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  13. Safety first: oilfield jobs sometimes go begging, but smart recruits pause for some training

    Energy Technology Data Exchange (ETDEWEB)

    Mowers, J.

    2000-05-01

    Occupational health and safety training available to prospective oilfield workers through the Petroleum Industry Training Service is discussed. The pre-employment program at PITS has been developed by the Canadian Association of Oilwell Drilling Contractors; about 240 students go through the program in an ordinary year. Training is done at the Nisku Campus of PITS and a second rig is waiting on standby for training at the site of the Leduc discovery near Devon. With both rigs in action, PITS will have the capacity to train up to 1,000 new hands a year. The course is also offered in Calgary where PITS is headquartered. The training is rigorous and hands-on; when not on the rig floor, students learn about off-the-rig jobs, such as mixing mud, packing gel, greasing, and digging ditches, in addition to more traditional 'book learning' about hydrogen sulphide, workplace hazardous materials, standard first aid and CPR. In addition to the pre-employment health and safety course, PITS also offers pre-employment programs for operators of production sites, including hands-on experience with an oil battery and gas plant at the Nisku campus. The pre-employment programs are supplementary to some 120 specialized course offered by PITS at Calgary and at numerous colleges and field locations.

  14. Preparedness and response for a nuclear or radiological emergency. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Requirements publication establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. Their implementation is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. The fulfilment of these requirements will also contribute to the harmonization of arrangements in the event of a transnational emergency. These requirements are intended to be applied by authorities at the national level by means of adopting legislation, establishing regulations and assigning responsibilities. The requirements apply to all those practices and sources that have the potential for causing radiation exposure or environmental radioactive contamination warranting an emergency intervention and that are: (a) Used in a State that chooses to adopt the requirements or that requests any of the sponsoring organizations to provide for the application of the requirements. (B) Used by States with the assistance of the FAO, IAEA, ILO, PAHO, OCHA or WHO in compliance with applicable national rules and regulations. (C) Used by the IAEA or which involve the use of materials, services, equipment, facilities and non-published information made available by the IAEA or at its request or under its control or supervision. Or (d) Used under any bilateral or multilateral arrangement whereby the parties request the IAEA to provide for the application of the requirements. The requirements also apply to the off-site jurisdictions that may need to make an emergency intervention in a State that adopts the requirements. The types of practices and sources covered by these requirements include: fixed and mobile nuclear reactors. Facilities for the mining and processing of radioactive ores. Facilities for fuel reprocessing and other fuel cycle facilities. Facilities for the management of radioactive waste. The transport of radioactive material. Sources of radiation used in

  15. 42 CFR 3.210 - Required disclosure of patient safety work product to the Secretary.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Required disclosure of patient safety work product... HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.210 Required disclosure of patient...

  16. Investigating the potential benefits of on-site food safety training for Folklorama, a temporary food service event.

    Science.gov (United States)

    Mancini, Roberto; Murray, Leigh; Chapman, Benjamin J; Powell, Douglas A

    2012-10-01

    Folklorama in Winnipeg, Manitoba, Canada, is a 14-day temporary food service event that explores the many different cultural realms of food, food preparation, and entertainment. In 2010, the Russian pavilion at Folklorama was implicated in a foodborne outbreak of Escherichia coli O157 that caused 37 illnesses and 18 hospitalizations. The ethnic nature and diversity of foods prepared within each pavilion presents a unique problem for food inspectors, as each culture prepares food in their own very unique way. The Manitoba Department of Health and Folklorama Board of Directors realized a need to implement a food safety information delivery program that would be more effective than a 2-h food safety course delivered via PowerPoint slides. The food operators and event coordinators of five randomly chosen pavilions selling potentially hazardous food were trained on-site, in their work environment, focusing on critical control points specific to their menu. A control group (five pavilions) did not receive on-site food safety training and were assessed concurrently. Public health inspections for all 10 pavilions were performed by Certified Public Health Inspectors employed with Manitoba Health. Critical infractions were assessed by means of standardized food protection inspection reports. The results suggest no statistically significant difference in food inspection scores between the trained and control groups. However, it was found that inspection report results increased for both the control and trained groups from the first inspection to the second, implying that public health inspections are necessary in correcting unsafe food safety practices. The results further show that in this case, the 2-h food safety course delivered via slides was sufficient to pass public health inspections. Further evaluations of alternative food safety training approaches are warranted.

  17. The influence of situation awareness training on nurses' confidence about patient safety skills: A prospective cohort study.

    Science.gov (United States)

    Stomski, Norman; Gluyas, Heather; Andrus, Prue; Williams, Anne; Hopkins, Martin; Walters, Jennifer; Sandy, Martinique; Morrison, Paul

    2018-04-01

    Several studies report that patient safety skills, especially non-technical skills, receive scant attention in nursing curricula. Hence, there is a compelling reason to incorporate material that enhances non-technical skills, such as situation awareness, in nursing curricula in order to assist in the reduction of healthcare related adverse events. The objectives of this study were to: 1) understand final year nursing students' confidence in their patient safety skills; and 2) examine the impact of situation awareness training on final year nursing students' confidence in their patient safety skills. Participants were enrolled from a convenience sample comprising final year nursing students at a Western Australia university. Self-reported confidence in patient safety skills was assessed with the Health Professional in Patient Safety Survey before and after the delivery of a situation awareness educational intervention. Pre/post educational intervention differences were examined by repeated measures ANOVA. No significant differences in confidence about patient safety skills were identified within settings (class/clinical). However, confidence in patient safety skills significantly decreased between settings i.e. nursing students lost confidence after clinical placements. The educational intervention delivered in this study did not seem to improve confidence in patient safety skills, but substantial ceiling effects may have confounded the identification of such improvement. Further studies are required to establish whether the findings of this study can be generalised to other university nursing cohorts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. THE EFFICIENCY IMPROVING OF PILOTS AND CADETS TRAINING TO SAFETY CONTROL USING THE MODIFICATIONS OF CLASSICAL METHOD OF "ROY" (PSO

    Directory of Open Access Journals (Sweden)

    V. V. Yurasov

    2017-01-01

    Full Text Available The article explains the use of modifications the classical method PSO to optimize the training pilots task on aircraft simulators. Model is based on the identification of the specific guarantee of safety in the task of training pilots of the features of simulation with the use of modern optimization models for long-term quantitative forecast of random processes. The author proved that the classical optimization techniques to aircraft supporting function, the input and output variables, and classes of equations defined by the model author. These circumstances lead to the fact that the obtained models do not have sufficient flexibility that in turn affects their behavior when adding new data points. The increased accuracy and the introduction of additional variables in the optimization problem of security is solved based on the methodology PSO. On the basis of mathematical simulation shows the potential of the PSO for the identification of quality indicators of a new level for the purpose of guaranteeing flight safety. The method of group accounting of arguments presents an original method for solving problems that require structural and parametric identification of models. The author's approach to the problem of optimization consists in taking into account qualitative indicators in terms of aviation events at the gym. On the basis of the mathematical apparatus created a dynamic model based on the classical method PSO. The results obtained are of high precision in compliance with international regulations guaranteeing flight safety and pilot training ICAO and SHEL. Therefore, the method of group accounting of arguments will be effective mathematical tool to build the model and training procedures.

  19. Discussion of important safety requirements for new nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Lin; Jia Xiang; Yan Tianwen; Li Wenhong; Li Chun

    2014-01-01

    This paper presents the analysis of several important safety requirements and improvement direction. Technical view of security goals on site safety evaluation, internal and external events fortification, serious accident prevention and mitigation, as well as the core, containment system and instrument control system design and engineering optimization, and etc are indicated. It will be useful for new plant design, construction and safety improvement. (authors)

  20. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-01-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  1. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  2. Implementing and measuring safety goals and safety culture. 4. Utility's Activities for Better Safety Culture After the JCO Accident

    International Nuclear Information System (INIS)

    Omoto, Akira

    2001-01-01

    three activities described below. As a part of self-diagnosis of organizational behavior and an individual's factors influencing safety, measurement was carried out by asking questions to every employee at the station, i.e., 21 questions asking if we are appropriately implementing safety culture 'standards' as set forth in INSAG-4 (Ref. 2). The purpose was twofold: to educate about INSAG-4 and to find areas for improvement. The results indicated that employees want to learn more about (a) the background for the specific actions required/prescribed in the procedures/guidelines and (b) how things go wrong if they do not strictly follow the procedures/guidelines. These were important findings, which led to the reconstruction of the on-site education and training. Considering that employees should be well informed on safety culture; management's policy; and lessons learned from incidents, domestic or international, we started the bimonthly magazine Safety Culture. The first publication included articles on 'Lessons Learned from JCO', 'The Results from the Self- Diagnosis', 'Lessons from an Incident at Hunterston NPS (LOOP Followed by Operator Actions for Safe Shutdown)', and others. The on-site training system has two elements: on-the-job training and off-the-job study with classroom and hands-on training. Most of the employees are trained at the On-Site Training Center with equipment and are qualified for specific job categories. Training of operators has its own lengthy program. Given the foregoing findings, we (a) started lectures on JCO lessons learned, (b) modified the educational system at the On-Site Training Center to nurture the employees with well-balanced knowledge and thinking (Fig. 1), and (c) prepared documents that describe the background and reasons for the actions required/prescribed in the procedures/guidelines for use in on-the-job training. The important point to be remembered about the JCO accident is that the criticality safety at this facility

  3. Training requirements for agro-food industry in Portugal

    Directory of Open Access Journals (Sweden)

    Pedro D. Gaspar

    2015-04-01

    Full Text Available Agro-food companies are aware that the technical and soft skills of their employees directly influence business performance and, consequently, improving those skills will enhance the effectiveness and efficiency of their companies. This paper presents the main results of the AgriTraining project “Training requirements for the agro-food industry". Activities in pursuit of the objectives of this project involved: (1 analysis of the training needs in the agro-food industry in Portugal; (2 analysis of the training provision and the training organizations; (3 analysis of market trends; (4 definition of a training strategy; and (5 adjustment and development of training strategies for the agro-food sector. This last activity comprised the development of training curricula, suitable for the food sector as a whole and adjusted for the specific needs of some traditional industries, in order to promote the development and competitiveness of the agro-food industry in Portugal. Such training curricula aimed to promote the uptake of innovative technologies and methodologies, increase the ability of agro-food industries to invest and take risks, and enable adoption of European Community standards for production and marketing. Gaps in training supply were identified and the training provision was updated according to the needs of the agro-food companies. It was determined that companies need and demand knowledge and innovation to increase their competitive position for internationalization purposes. It was possible to define a training strategy based on market-orientation for agro-food differentiation.

  4. Basic Program Elements for Federal employee Occupational Safety and Health Programs and related matters; Subpart I for Recordkeeping and Reporting Requirements. Final rule.

    Science.gov (United States)

    2013-08-05

    OSHA is issuing a final rule amending the Basic Program Elements to require Federal agencies to submit their occupational injury and illness recordkeeping information to the Bureau of Labor Statistics (BLS) and OSHA on an annual basis. The information, which is already required to be created and maintained by Federal agencies, will be used by BLS to aggregate injury and illness information throughout the Federal government. OSHA will use the information to identify Federal establishments with high incidence rates for targeted inspection, and assist in determining the most effective safety and health training for Federal employees. The final rule also interprets several existing basic program elements in our regulations to clarify requirements applicable to Federal agencies, amends the date when Federal agencies must submit to the Secretary of Labor their annual report on occupational safety and health programs, amends the date when the Secretary of Labor must submit to the President the annual report on Federal agency safety and health, and clarifies that Federal agencies must include uncompensated volunteers when reporting and recording occupational injuries and illnesses.

  5. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  6. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  7. Safety Training: places available in November - December 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   November - December 2013 (alphabetical order) Conduite de chariots élévateurs (Driving of forklifts) 04-NOV-13 to 05-NOV-13, 8.30 – 17.30, in French with handouts in English Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Driving of cherry-pickers) 09-DEC-13 to 10-DEC-13, 8.30 – 17.30, in French with handouts in English Habilitation électrique personnel électricien basse tension (Electrical habilitation for electricians in low voltage) 30-OCT-13 to 01-NOV-13, 9.00 – 17.30, in English 04-NOV-13 to 06-NOV-13, 9.00 – 17.30, in English Habilitation électrique personnel électricien basse et haute tensions (Electrical habilitation for electricians in low and high voltage) 16-DEC-13 to 19-DEC-13, 9.00 &...

  8. Safety Training: places available in November - December 2013

    CERN Multimedia

    Isabelle CUSATO, HSE Unit

    2013-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue (see here).   November - December 2013 (alphabetical order) Conduite de chariots élévateurs (Driving of forklifts) 04-NOV-13 to 05-NOV-13, 8.30 – 17.30, in French with handouts in English Conduite de plates-formes élévatrices mobiles de personnel (PEMP) (Driving of cherry-pickers) 09-DEC-13 to 10-DEC-13, 8.30 – 17.30, in French with handouts in English Habilitation électrique personnel électricien basse tension (Electrical habilitation for electricians in low voltage) 30-OCT-13 to 01-NOV-13, 9.00 – 17.30, in English 04-NOV-13 to 06-NOV-13, 9.00 – 17.30, in English Habilitation électrique personnel électricien basse et haute tensions (Electrical habilitation for electricians in low and high voltage) 16-DEC-13 to 19-DEC-13, 9.00 &am...

  9. How to bring issues of health and safety closer to young workers during their work training

    Directory of Open Access Journals (Sweden)

    Helena Mesarič

    2016-06-01

    Full Text Available The data collected by the European Community indicates that the young, economically active population, aged from 18 to 24 years, is more likely to suffer from occupational injuries and occupational diseases in comparison with the rest of the working population, due to the lack of experience and knowledge about health and safety in the workplace, and insufficient training for safe and healthy work practices. Employers must establish an adequate system to ensure workplace health and safety, with an emphasis on providing safety training for pupils and students undergoing apprenticeship and the newly-employed young people. The Ministry of Labour, Family, Social Affairs and Equal Opportunities runs a series of projects aiming to promote health and safety culture among young people in Slovenia. The goal of the national programme for introducing occupational health and safety into the education process is offering a variety of tools and devices for educators and teachers, which can be employed to introduce the issues of occupational health and safety to young people in an exciting and engaging manner.

  10. Safety Training: Ergonomics - Applying ergonomic principles in the workplace

    CERN Multimedia

    Isabelle Cusato

    2010-01-01

        We propose a half day awareness session on the hazards posed by a poor posture while working on a screen (back pain, eyestrain, sore wrists…) and best practices to address them. The next sessions will be held on 18 November 2010 (morning session in French and afternoon session in English). The registration via the Safety Training catalogue is mandatory. Places will be allocated in order of receipt. For any further information, please contact Isabelle Cusato, 73811.  

  11. Safety of sports facilities and training of graduates in physical education.

    Science.gov (United States)

    Romano Spica, V; Giampaoli, S; Di Onofrio, V; Liguori, G

    2015-01-01

    Post-industrial societies have to face the problem of physical inactivity and inappropriate lifestyles. Programs to promote physical activity are strongly supported by supranational, national and local institutions and organizations. These programs can be developed in sport facilities but also in places that are not institutionally dedicated to sport. The use of urban and working sites has the advantage of better reach the various segments of the population, but at the same time requires coordination between various professionals in structuring an effective intervention. Bibliographical research in the historical archives of the library of the University of Rome Foro Italico, online databases, paleoigiene (wikigiene), documents archives (GSMS-SItI, WHO, ISS, OsEPi, INAIL, ISTAT, national laws). Several guidelines and regulations face the problem of safety in sport environments. The context is in rapid evolution and directions are provided by public health authorities. Graduates in Sport and Physical Activity, represent an additional resource in terms of: prevention and safety in the workplace, health education, application of preventive and adapted physical activities in the territory. These tasks can be integrated in all prevention stages: e.g. childhood and primary prevention programs in school, adapted physical activity for the elderly. The contribution of public health specialists is strategic in the surveillance and coordination of integrated projects. At the same time, graduates in Physical Education appear to be pivots for health promotion and qualified resources for institutions in the territory. Their training should always include contents related to prevention and safety, regulations on sport and working environments, along with bases of preventive medicine related to the context of physical activity.

  12. New safety training for access to the PS complex areas

    CERN Multimedia

    2012-01-01

    Since 10/08/2012, a new course dedicated to the specific radiological risks in the accelerators of the PS complex has been available on SIR (https://sir.cern.ch/). This course complements the general classroom-based Radiation Safety training. Successful completion of the course will be obligatory and verified by the access system as from 01/11/2012 for access to the following accelerator areas: LINAC2, BOOSTER, PS and TT2. Information and reminder e-mails will be sent to all persons currently authorized to access the accelerators of the PS complex. For questions please contact the HSE unit and in particular, the Radiation Protection Group (+41227672504 or safety-rp-ps-complex@cern.ch).

  13. Increasing patient safety with neonates via handoff communication during delivery: a call for interprofessional health care team training across GME and CME

    Directory of Open Access Journals (Sweden)

    Vanderbilt AA

    2017-06-01

    Full Text Available Allison A Vanderbilt,1 Scott M Pappada,2 Howard Stein,3 David Harper,4 Thomas J Papadimos5 1Department of Family Medicine, 2Department of Anesthesiology, College of Medicine and Life Sciences, University of Toledo, 3Department of Pediatrics, ProMedica Toledo Children’s Hospital, 4Department of Obstetrics and Gynecology, ProMedica Toledo Hospital, 5Department of Anesthesiology, College of Medicine and the Life Sciences, University of Toledo, Toledo, OH, USA Abstract: Hospitals have struggled for years regarding the handoff process of communicating patient information from one health care professional to another. Ineffective handoff communication is recognized as a serious patient safety risk within the health care community. It is essential to take communication into consideration when examining the safety of neonates who require immediate medical attention after birth; effective communication is vital for positive patient outcomes, especially with neonates in a delivery room setting. Teamwork and effective communication across the health care continuum are essential for providing efficient, quality care that leads to favorable patient outcomes. Interprofessional simulation and team training can benefit health care professionals by improving interprofessional competence, defined as one’s knowledge of other professionals including an understanding of their training and skillsets, and role clarity. Interprofessional teams that include members with specialization in obstetrics, gynecology, and neonatology have the potential to considerably benefit from training effective handoff and communication practices that would ensure the safety of the neonate upon birth. We must strive to provide the most comprehensive systematic, standardized, interprofessional handoff communication training sessions for such teams, through Graduate Medical Education and Continuing Medical Education that will meet the needs across the educational continuum. Keywords

  14. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study.

    Science.gov (United States)

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.

  15. Development of a training programme for radiation protection officers in industrial irradiators

    International Nuclear Information System (INIS)

    Mumuni, I. I.

    2014-01-01

    The International Basic Safety Standards (BSS) for Protection against Ionizing Radiation and for the Safety of Radiation Sources establish the basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. One important aspect of the Safety Standard is education and training of all personnel involved in the activities of radiation and radioactive sources. According to the BSS a Radiation Protection Officer is an individual technically competent in radiation protection matters relevant for a given type of practice who is designated by the registrant or licensee to oversee the application of the requirements of the standards. By this assigned role, radiation protection officers for industrial irradiators should be adequately trained since these facilities involve very high dose rates during irradiation, such that a person accidentally exposed can receive a lethal dose within minutes or seconds and fatalities can occur. This training among others things will enable the radiation protection officers to understand practical application of the IAEA Safety Standard to industrial irradiator facilities, understand the requirements for safety assessments and emergency plans, be able to develop a radiation protection programme for irradiators, be familiar with the different types of industrial irradiators and their applications and understand the safety philosophy and design requirements for industrial irradiators. (author)

  16. International Atomic Energy Agency Activities on Education and Training in Radiation, Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Marbit, K.; Sadagopan, G.

    2005-01-01

    The statutory safety functions of the international Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the the resolutions of its general conferences and reflects the latest IAEA standards and guidance. several general conference resolutions have emphasized the importance of education and training (e.g. GC (XXXV)/RES/552 in 1991,GC (XXXVI)/ RES/584 in 1992, GC (43)/RES/13 in 1999 and more recently GC (44)/RES/13 in 2000). In response to GC (44) /RES/13, the IAEA prepared a strategic approach to education and training in radiation and waste safety (strategy on education and training) aiming at establishing, by 2010 sustainable education and training programmes in member states. This strategy was endorsed by the general conference resolution GC(45)/RES/10C that, inter alia, urged the secretariat to implement the strategy on education and training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation

  17. International Atomic Energy Agency Activities on Education and Training in Radiation Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Mrabit, K.; Sadagopan, G.

    2004-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training [e.g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000]. In response to GC(44)/RES/13, the IAEA prepared a S trategic Approach to Education and Training in Radiation and Waste Safety ( Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member State' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation. (Author)

  18. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues. Supplement 4

    International Nuclear Information System (INIS)

    1994-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. Supplement 3 gives status as of September 30, 1993. This annual report, Supplement 4, presents updated information as of September 30, 1994. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  19. The Strategy to Align Road Safety Education to the Further Education and Training Band Curriculum

    Science.gov (United States)

    Malan, Lianne; van Dijk, Gerda; Fourie, David

    2016-01-01

    Road safety education is a complex phenomenon which should be viewed holistically if taken into account the interconnectedness of education, infrastructure and enforcement. Effective road safety education is specifically important for learners in the Further Education and Training (FET) band, as they are active contributors to a community. The…

  20. Software Safety Analysis of Digital Protection System Requirements Using a Qualitative Formal Method

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon; Cha, Sung-Deok

    2004-01-01

    The safety analysis of requirements is a key problem area in the development of software for the digital protection systems of a nuclear power plant. When specifying requirements for software of the digital protection systems and conducting safety analysis, engineers find that requirements are often known only in qualitative terms and that existing fault-tree analysis techniques provide little guidance on formulating and evaluating potential failure modes. A framework for the requirements engineering process is proposed that consists of a qualitative method for requirements specification, called the qualitative formal method (QFM), and a safety analysis method for the requirements based on causality information, called the causal requirements safety analysis (CRSA). CRSA is a technique that qualitatively evaluates causal relationships between software faults and physical hazards. This technique, extending the qualitative formal method process and utilizing information captured in the state trajectory, provides specific guidelines on how to identify failure modes and the relationship among them. The QFM and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital protection system example

  1. IPPO training: socio-psychological training with horses

    Directory of Open Access Journals (Sweden)

    Doronina T. V.

    2016-09-01

    Full Text Available This article describes the socio-psychological training with horses "Ippo-training", aimed at the development of social competence of the participants, including interper- sonal perception, nonverbal means of communication, self-confidence, responsibility and commitment. The theoretical foundations of ippo-training from the points of social and animal psychology are examined. In particular, the author reveals the behavioral features of horses as social animals, the hierarchical structure of the herd, in which a person may be involved as the leader, which enables to find theoretical and behavioral similarities with the life of people in the society. The author indicates the main purpose of this type of work, results of ippo-training and variants of training for different types of participants — family, corporate or public ippo training. The article also provides guide- lines for conducting the training, technical requirements, qualifications which leaders need (psychologists and horsemen, safety techniques and an exemplary work plan.

  2. Technical safety requirements control level verification; TOPICAL

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  3. Implementation of digital safety related I and C systems at nuclear power plants. A systematic approach to training

    International Nuclear Information System (INIS)

    Roedig, Peter; Schoenfelder, Christian

    2012-01-01

    In the past, refurbishment or modernization projects at nuclear power plants (NPP) dealing with the AREVA product for safety related digital instrumentation and control (I and C) systems, i.e. TELEPERM registered XS (TXS), regularly led to the development and implementation of different project specific training courses. They mostly dealt with a basic introduction to TELEPERM registered XS, as well as project specific engineering of TELEPERM registered XS and maintenance of the TELEPERM registered XS system supplied with the project. However, it gradually emerged that diverse training needs of different personnel involved in refurbishment or modernization projects as well as in new build projects had to be considered in more detail. Additionally, each target group, e.g. project managers, project engineers, technical engineers, commissioning engineers, operating and maintenance personnel, will have to work with TELEPERM registered XS at different phases within a project. Consequently, it became necessary to take into account the diverse training and project needs. According to the Systematic Approach to Training (SAT) process as developed and promoted by the International Atomic Energy Agency (IAEA), a job and task analysis was performed. After identification of related training needs and redesigning as well as modification or development of appropriate training material, a comprehensive, standardized TELEPERM registered XS training offer is now available at the AREVA Reactor Training Center. This training offer can be easily adapted to project or customer specific requirements. (orig.)

  4. Functions important to nuclear power plant safety, and training and qualification of personnel

    International Nuclear Information System (INIS)

    1996-01-01

    The requirements for the safe operation of the organisation attending to direct operational, the maintenance and the technical support functions of a nuclear power plant are defined in the guide. The basic education, work experience and medical fitness for the job required during recruitment, the requirements relating to the initial training of a person for his job and certain job-specific approvals granted separately are presented. General requirements for the training function and for the refresher and continuing training arranged by the licence-holder are also set out. (1 ref.)

  5. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  6. Technical Safety Requirements for the B695 Segment

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-09-11

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  7. Technical Safety Requirements for the B695 Segment

    International Nuclear Information System (INIS)

    Laycak, D.

    2008-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  8. Optimizing compliance training for the waste management worker

    International Nuclear Information System (INIS)

    Copenhaver, E.D.

    1988-01-01

    Waste management workers are required to participate in special training mandated by a variety of Federal laws and DOE (Department of Energy) Orders; these include the Resource Conservation and Recovery Act (RCRA), Superfund Amendments Reauthorization Act (SARA) as implemented by OSHA (Occupational Safety and Health Administration) in CFR 1910.120, in addition to requirements for Hazard Communication, Radiation Workers, Respiratory Protection, Transportation, and Waste Generator training. The Technical Resources and Training Program is examining the course contents and mandated requirements to determine how to best meld these requirements into a training program that will still fulfill all requirements but eliminate the potential for duplication of some elements in successive courses. This approach may not eliminate all duplication between courses, but it should result in significant savings in man-hours demanded in a training environment which requires similar information to meet a host of regulatory requirements. The training matrix planned for Oak Ridge National Laboratory (ORNL) will be presented and discussed

  9. The actual development of European aviation safety requirements in aviation medicine: prospects of future EASA requirements.

    Science.gov (United States)

    Siedenburg, J

    2009-04-01

    Common Rules for Aviation Safety had been developed under the aegis of the Joint Aviation Authorities in the 1990s. In 2002 the Basic Regulation 1592/2002 was the founding document of a new entity, the European Aviation Safety Agency. Areas of activity were Certification and Maintenance of aircraft. On 18 March the new Basic Regulation 216/2008, repealing the original Basic Regulation was published and applicable from 08 April on. The included Essential Requirements extended the competencies of EASA inter alia to Pilot Licensing and Flight Operations. The future aeromedical requirements will be included as Annex II in another Implementing Regulation on Personnel Licensing. The detailed provisions will be published as guidance material. The proposals for these provisions have been published on 05 June 2008 as NPA 2008- 17c. After public consultation, processing of comments and final adoption the new proposals may be applicable form the second half of 2009 on. A transition period of four year will apply. Whereas the provisions are based on Joint Aviation Requirement-Flight Crew Licensing (JAR-FCL) 3, a new Light Aircraft Pilot Licence (LAPL) project and the details of the associated medical certification regarding general practitioners will be something new in aviation medicine. This paper consists of 6 sections. The introduction outlines the idea of international aviation safety. The second section describes the development of the Joint Aviation Authorities (JAA), the first step to common rules for aviation safety in Europe. The third section encompasses a major change as next step: the foundation of the European Aviation Safety Agency (EASA) and the development of its rules. In the following section provides an outline of the new medical requirements. Section five emphasizes the new concept of a Leisure Pilot Licence. The last section gives an outlook on ongoing rulemaking activities and the opportunities of the public to participate in them.

  10. Safety of patient meals in 2 hospitals in Alexandria, Egypt before and after training of food handlers.

    Science.gov (United States)

    El Derea, H; Salem, E; Fawzi, M; Abdel Azeem, M

    2008-01-01

    We assessed the food safety knowledge and food handling practices of 23 food handlers in 2 hospitals in Alexandria, Egypt [Gamal Abdel Nasser (GAN) and Medical Research Institute (MRI)] before and after a food safety training programme, and also the bacteriological quality of patient meals and kitchen equipment. There was a significant improvement in all knowledge-associated parameters except for personal hygiene in GAN. There was an improvement in the food safety practices in both hospitals. The bacteriological quality of most patient meals and food preparation surfaces and utensils improved after training. The bacteriological quality of patients' meals served in GAN was generally better than that in MRI.

  11. Crew resource management training adapted to nuclear power plant operators for enhancing safety attitude

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Kitamura, Masaharu; Takahashi, Makoto

    2015-01-01

    A conventional training program for nuclear power plant operators mainly focuses on the improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an additional training program aiming at the improvement of team performance. In the aviation domain, crew resource management (CRM) training has demonstrated the effectiveness in resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempt to introduce the CRM concept into operator training in nuclear power plant for the training of conceptual skill (that is, non-technical skill). In this paper an adapted CRM training for nuclear power plant operators is proposed. The proposed training method has been practically utilized in the training course of the managers of nuclear power plants. (author)

  12. Training manual for uranium mill workers on health protection from uranium

    International Nuclear Information System (INIS)

    McElroy, N.; Brodsky, A.

    1986-01-01

    This report provides information for uranium mill workers to help them understand the radiation safety aspects of working with uranium as it is processed from ore to yellowcake at the mills. The report is designed to supplement the radiation safety training provided by uranium mills to their workers. It is written in an easily readable style so that new employees with no previous experience working with uranium or radiation can obtain a basic understanding of the nature of radiation and the particular safety requirements of working with uranium. The report should be helpful to mill operators by providing training material to support their radiation safety training programs

  13. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  14. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2004-01-01

    The radiation safety training course has been conducted for nurses of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours covering basics of radiation, effects on human body, tips for radiation protection in clinical settings, and practical training, to more than 350 nurses overall. The pre-instruction survey by questionnaire revealed that 60% of nurses felt fears about radiation when they care for patients, which reduced to less than 15% in the post-instruction survey. The course also motivated nurses to give an answer patients' questions about radiation safety. In contrast, more than 30% of nurses were aware of neither their glass badge readings nor the maximum dose limit of radiation exposure even after the course. These results suggested that medical-educational collaborative training for nurses were effective on reducing nurses' fears about radiation and that repeated and continuous education would be necessary to establish their practice for radiation protection. (author)

  15. ORNL implementation of new health and safety requirements (DOE Order 5480.11)

    International Nuclear Information System (INIS)

    Abercrombie, J.S.

    1988-01-01

    New mandates in radiological protection outlined in DOE Order 5480. 11, include changes in the methodology for determining total radiation dose, ALARA program accountability, monitoring requirements, and standards for public entrance into controlled areas. The new order places distinct requirements concerning training at all DOE facilities. Radiation protection training requirements are addressed, including the effective communication of operations changes to all employees. This paper details the endeavors underway at ORNL in designing, developing, and delivering the training required by the new mandates. Strategies taken to reach the intended goals are explained. Efforts involve the design and implementation of the above mentioned radiation protection programs, a job-specific ALARA instructional package, and a Risk-Based Philosophy program matched to operational changes. 4 refs., 5 tabs

  16. SmartRoads: training Indonesian workers to become road safety ambassadors in industrial and community settings.

    Science.gov (United States)

    Montero, Kerry; Spencer, Graham; Ariens, Bernadette

    2012-06-01

    This paper reports on a programme to improve road safety awareness in an industrial community in the vicinity of Jakarta, in Indonesia. Adapting the model of a successful community and school-based programme in Victoria, in Australia, and using a peer education approach, 16 employees of a major manufacturing company were trained to implement road safety education programmes amongst their peers. Specific target groups for the educators were colleagues, schools and the local community. Over 2 days the employees, from areas as diverse as production, public relations, personnel services, administration and management, learned about road safety facts, causes of traffic casualties, prevention approaches and peer education strategies. They explored and developed strategies to use with their respective target groups and practised health education skills. The newly trained workers received certificates to acknowledge them as 'SmartRoads Ambassadors' and, with follow-up support and development, became road safety educators with a commitment and responsibility to deliver education to their respective work and local communities. This paper argues that the model has potential to provide an effective and locally relevant response to road safety issues in similar communities.

  17. Safety culture of nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Beixin

    2008-01-01

    This paper is a summary on the basis of DNMC safety culture training material for managerial personnel. It intends to explain the basic contents of safety, design, management, enterprise culture, safety culture of nuclear power plant and the relationship among them. It explains especially the constituent elements of safety culture system, the basic requirements for the three levels of commitments: policy level, management level and employee level. It also makes some analyses and judgments for some typical safety culture cases, for example, transparent culture and habitual violation of procedure. (authors)

  18. A comparative study of vocational education and occupational safety and health training in China and the UK.

    Science.gov (United States)

    Nie, Baisheng; Huang, Xin; Xue, Fei; Chen, Jiang; Liu, Xiaobing; Meng, Yangyang; Huang, Jinxin

    2018-06-01

    In order to enhance Chinese workers' occupational safety awareness, it is essential to learn from developed countries' experiences. This article investigates thoroughly occupational safety and health (OSH) in China and the UK; moreover, the article performs a comparison of Chinese and British OSH training-related laws, regulations and education system. The following conclusions are drawn: China's work safety continues to improve, but there is still a large gap compared with the UK. In China a relatively complete vocational education and training (VET) system has been established. However, there exist some defects in OSH. In the UK, the employer will not only pay attention to employees' physiological health, but also to their mental health. The UK's VET is characterized by classification and grading management, which helps integrate OSH into the whole education system. China can learn from the UK in the development of policies, VET and OSH training.

  19. Recommended safety objectives, principles and requirements for mini-reactors

    International Nuclear Information System (INIS)

    1991-05-01

    Canadian and international publications containing objectives, principles and requirements for the safety of nuclear facilities in general and nuclear power plants in particular have been reviewed for their relevance to mini-reactors. Most of the individual recommendations, sometimes with minor wording changes, are applicable to mini-reactors. However, some prescriptive requirements for the shutdown, emergency core cooling and containment systems of power reactors are considered inappropriate for mini-reactors. The Advisory Committee on Nuclear Safety favours a generally non-prescriptive approach whereby the applicant for a mini-reactor license is free to propose any means of satisfying the fundamental objectives, but must convince the regulatory agency to that effect. To do so, a probabilistic safety assessment (PSA) would be the favoured procedure. A generic PSA for all mini-reactors of the same design would be acceptable. Notwithstanding this non-prescriptive approach, the ACNS considers that it would be prudent to require the existence of at least one independent shutdown system and two physically independent locations from which the reactor can be shut down and the shutdown condition monitored, and to require provision for an assumed loss of integrity of the primary cooling system's boundary unless convincing arguments to the contrary are presented. The ACNS endorses in general the objectives and fundamental principles proposed by the interorganizational Small Reactor Criteria working group, and intends to review and comment on the documents on specific applications to be issued by that working group

  20. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    Science.gov (United States)

    Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000